JP6532086B2 - Externally shielded non-contact power supply - Google Patents

Externally shielded non-contact power supply Download PDF

Info

Publication number
JP6532086B2
JP6532086B2 JP2016090025A JP2016090025A JP6532086B2 JP 6532086 B2 JP6532086 B2 JP 6532086B2 JP 2016090025 A JP2016090025 A JP 2016090025A JP 2016090025 A JP2016090025 A JP 2016090025A JP 6532086 B2 JP6532086 B2 JP 6532086B2
Authority
JP
Japan
Prior art keywords
power
coil
magnetic
power transmission
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016090025A
Other languages
Japanese (ja)
Other versions
JP2017200334A (en
Inventor
喜多男 山本
喜多男 山本
望月 正志
正志 望月
恭之 沖米田
恭之 沖米田
渡辺 敦
敦 渡辺
祐輔 風間
祐輔 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aircraft Industry Co Ltd
Original Assignee
Showa Aircraft Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aircraft Industry Co Ltd filed Critical Showa Aircraft Industry Co Ltd
Priority to JP2016090025A priority Critical patent/JP6532086B2/en
Publication of JP2017200334A publication Critical patent/JP2017200334A/en
Application granted granted Critical
Publication of JP6532086B2 publication Critical patent/JP6532086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、非接触給電装置に関する。すなわち、路面等の送電側から車輌等の受電側に非接触で電力を供給する、非接触給電装置に関するものである。   The present invention relates to a noncontact power feeding device. More specifically, the present invention relates to a noncontact power feeding apparatus that supplies power from a power transmission side such as a road surface to a power reception side such as a vehicle in a noncontact manner.

《技術的背景》
ケーブル等の機械的接触なしで、例えば電気自動車(EV)にワイヤレス給電する、非接触給電装置(WPT)(Wireless Power Transfer)が、需要に基づき開発,実用化されている。
この非接触給電装置では、電磁誘導の相互誘導作用に基づき、路面等に定置された送電側の送電コイルから、車輌等に搭載された受電側の受電コイルに対し、数10mm〜数100mm程度のエアギャップを存して近接対応しつつ、電力を供給する(後述する図5も参照)。
このような非接触給電装置としては、ループコイル方式(サーキュラーコイル方式)とソレノイドコイル方式の2方式が、代表的である。
"Technical background"
A wireless power transfer (WPT) (Wireless Power Transfer) wirelessly feeding, for example, an electric vehicle (EV) without mechanical contact such as a cable has been developed and put to practical use based on demand.
In this non-contact power feeding device, the power transmission coil on the power transmission side fixed on the road surface etc. and the power receiving coil on the power reception side mounted on the vehicle etc. Power is supplied while maintaining close proximity with the air gap (see also FIG. 5 described later).
As such a noncontact power feeding apparatus, two systems of a loop coil system (circular coil system) and a solenoid coil system are representative.

《従来例1:ループコイル方式》
ループコイル方式の非接触給電装置1は、図6の(1)図に示したように、送電側回路の送電コイル2も、受電側回路の受電コイル3も、共にサーキュラーコイル等のループコイルLよりなる。
そして、送電側も受電側もそれぞれ、ループ面外側の背面側に、平板状のフェライトコア等の磁心コア4、5が配設されると共に、その外側に、ほぼ同面積の平板状のアルミ板等の電磁遮蔽材6,7が、配設されており、それぞれ3層構造よりなる。
給電に際しては、高周波交流を送電コイル2に通電すると、送電コイル2と受電コイル3間のエアギャップGに、コイル起磁力により磁束の磁路aが形成され、高周波磁界が誘起されて、送電側から受電側に電力が供給される。
Conventional Example 1: Loop Coil Method
As shown in (1) of FIG. 6, both the power transmission coil 2 of the power transmission side circuit and the power receiving coil 3 of the power receiving side circuit of the non-contact power feeding device 1 of the loop coil type are loop coils L such as circular coils. It consists of.
Then, on both the power transmission side and the power reception side, magnetic core cores 4 and 5 such as flat ferrite cores are disposed on the back side outside the loop surface, and flat aluminum plates of substantially the same area on the outside And the like are disposed, and each has a three-layer structure.
When feeding a high frequency alternating current to the power transmission coil 2, a magnetic path a of magnetic flux is formed in the air gap G between the power transmission coil 2 and the power reception coil 3 by the coil magnetomotive force, and a high frequency magnetic field is induced. Power is supplied to the power receiving side.

《従来例2:ソレノイドコイル方式》
ソレノイドコイル方式の非接触給電装置8は、図6の(2)図に示したように、送電側回路の送電コイル9も、受電側回路の受電コイル10も、共にソレノイドコイルRよりなる。
そして、送電側も受電側もそれぞれ、柱状や平板状のフェライトコア等の磁心コア11,12に対し、筒状に軸方向に螺状巻回されてなる。
給電に際しては、高周波交流を送電コイル9に通電すると、送電コイル9と受電コイル10間のエアギャップGに、コイル起磁力により磁束の磁路aが形成され、高周波磁界が誘起されて、送電側から受電側に電力が供給される。
Conventional Example 2: Solenoid Coil Method
In the non-contact power feeding device 8 of the solenoid coil system, as shown in FIG. 6 (2), both the power transmission coil 9 of the power transmission side circuit and the power receiving coil 10 of the power receiving side circuit are both formed of the solenoid coil R.
And both the power transmission side and the power reception side are cylindrically spirally wound in the axial direction around the core cores 11 and 12 such as a columnar or flat ferrite core.
When feeding a high frequency alternating current to the power transmission coil 9, a magnetic path a of magnetic flux is formed in the air gap G between the power transmission coil 9 and the power receiving coil 10 by the coil magnetomotive force, and a high frequency magnetic field is induced. Power is supplied to the power receiving side.

このような非接触給電装置1としては、例えば、次の特許文献1,2に示されたものが挙げられる。非接触給電装置8としては、例えば、次の特許文献3,4に示されたものが挙げられる。
特開2012ー016106号公報 特開2012ー143106号公報 特開2011ー050127号公報 特開2013ー055229号公報
As such a non-contact electric power feeding apparatus 1, what was shown by following patent documents 1 and 2 is mentioned, for example. Examples of the non-contact power feeding device 8 include those shown in the following Patent Documents 3 and 4.
Unexamined-Japanese-Patent No. 2012-016106 JP, 2012-143106, A JP, 2011-050127, A JP, 2013-055229, A

《課題》
ところで、このような非接触給電装置1,8については、次の課題が指摘されていた。
給電に際し、エアギャップGに形成される給電用の磁路a以外に、外部へと磁路が形成される、という課題が指摘されていた。
そして、送電コイル2と受電コイル3間や、送電コイル9と受電コイル10間で、高周波交流にて誘起された大きな密度の高周波磁界(高周波電磁界,交番電磁界)、そして強力な電磁波が、非接触給電装置1,8から、外部へと漏洩,拡散,放射,伝搬されるようになる。
もって、近隣周辺に悪影響を及ぼし、例えば10m〜100m程度離れたエリアにおいて、電磁波障害,電波妨害,人体機能障害、等を引き起こす虞があった。
電波法では、非接触給電装置1,8から10m離れた外部地点での磁界強度について、許容値が法的に規定されている(規制値は出力3kWにて45dBuA/m程度)。
"Task"
By the way, the following subjects were pointed out about such non-contact electric supply devices 1 and 8.
In the case of power feeding, in addition to the power feeding magnetic path a formed in the air gap G, it has been pointed out that the magnetic path is formed to the outside.
Then, between the power transmission coil 2 and the power reception coil 3, and between the power transmission coil 9 and the power reception coil 10, a high density high frequency magnetic field (high frequency electromagnetic field, alternating electromagnetic field) induced by high frequency alternating current, and strong electromagnetic waves, Leakage, diffusion, radiation, and propagation come from the non-contact power feeding devices 1 and 8 to the outside.
Therefore, the area around the neighborhood is adversely affected, and there is a risk that electromagnetic interference, radio interference, human function impairment, etc. may occur in an area separated by, for example, 10 m to 100 m.
In the Radio Law, the allowable value is legally specified for the magnetic field intensity at an external point 10 m away from the non-contact power feeding device 1 or 8 (the regulated value is about 45 dBuA / m at an output of 3 kW).

《ループコイル方式の課題》
このような課題について、更に詳述する。まず、図6の(1)図のループコイル方式の非接触給電装置1については、次のとおり。
この非接触給電装置1にあっては、送電コイル2や受電コイル3の背面側に、磁心コア4,5や電磁遮蔽材6,7が配設されており、それぞれの背面方向B(図面上では上下方向,Z方向)外部については、漏洩放射される磁界強度がかなり低下し、電磁波もかなり削減される。
これに対し、側面方向S(図面上では、左右方向,X方向、および、前後の紙面表裏方向,Y方向)については、外部に対し遮るものがなく外部開放されており、磁界,電磁波が強度低下,削減されることなく、漏洩放射されやすかった。
すなわち、非接触給電装置1の外周側方の側面方向Sを中心に、外部へと磁路が形成され、高周波磁界そして電磁波が、外部へと漏洩,拡散,放射,伝搬する虞があった。
<< Problems of loop coil method >>
Such issues will be described in more detail. First, as to the non-contact power feeding device 1 of the loop coil type in FIG. 6 (1), it is as follows.
In the non-contact power feeding device 1, the core cores 4 and 5 and the electromagnetic shielding members 6 and 7 are disposed on the back side of the power transmission coil 2 and the power receiving coil 3, respectively. Then, in the vertical direction, in the Z direction), the intensity of the leaked magnetic field is considerably reduced and the electromagnetic waves are considerably reduced.
On the other hand, the side direction S (in the drawing, the left and right direction, the X direction, and the front and back surfaces of the sheet, the Y direction) is open to the outside without blocking to the outside, and the magnetic field and electromagnetic waves are strong. It was easy to be leaked without being reduced or reduced.
That is, there is a possibility that a magnetic path is formed to the outside centering on the side surface direction S on the outer peripheral side of the non-contact power feeding device 1 and the high frequency magnetic field and the electromagnetic wave leak, diffuse, radiate and propagate to the outside.

《ソレノイドコイル方式の課題》
これに対し、図6の(2)図のソレノイドコイル方式の非接触給電装置8については、次のとおり。
この非接触給電装置8は、上述したループコイル方式の非接触給電装置1にも増して、高周波磁界そして電磁波の外部漏洩,拡散,放射,伝搬の虞があった。
すなわち、背面方向B側へ外部漏洩する磁界遮蔽用として、図中想像線表示したようにフェライトコア等の磁心コア4,5をもしも配設すると、磁路aに対し磁心コア4,5との間にできる図中想像線表示の磁路の磁気抵抗が低いので、肝心の磁路aの結合が低下してしまう。送電コイル9と受電コイル10間の結合係数が低下してしまうという、致命的難点が発生してしまう。
又、図中想像線表示したアルミ板等の電磁遮蔽材6,7は、内部誘起される渦電流によって磁場を反射するものであるが、磁心コア4,5と共に使用せず単独でもしも使用したとすると、高レベルの磁束通過,渦電流により誘導加熱されて、大きなジュール熱損失が発生するという、大きな難点が発生する。専用の冷却構造も必要となる。
結局、ソレノイド方式は、磁心コア4,5や電磁遮蔽材6,7の使用に問題があり、高周波磁界の外部漏洩の虞が、側面方向Sのみならず背面方向Bにも存しており、給電効率低下という難点も指摘される。
これらの面からは、ループコイル方式の方が優れている。もって本発明は、従来のループコイル方式の非接触給電装置1について、漏洩放射磁界の点を更に検討,改良したものである。
<< Problems of solenoid coil method >>
On the other hand, the non-contact power feeding device 8 of the solenoid coil system in FIG. 6 (2) is as follows.
In addition to the above-described contactless power supply device 1 of the loop coil type, the contactless power supply device 8 has a risk of external leakage, diffusion, radiation, and propagation of a high frequency magnetic field and an electromagnetic wave.
That is, as shown in the imaginary line in the figure, magnetic core cores 4 and 5 such as ferrite cores are disposed for shielding magnetic field leaking to the back direction B side, the magnetic path a with magnetic core 4 and 5 Since the reluctance of the magnetic path of the imaginary line display in the figure which can be between is low, the coupling of the magnetic path a at the core will be reduced. A fatal point occurs that the coupling coefficient between the transmitting coil 9 and the receiving coil 10 is lowered.
In addition, electromagnetic shielding materials 6 and 7 such as aluminum plates shown with imaginary lines in the figure reflect a magnetic field due to internally induced eddy currents, but they were not used together with magnetic cores 4 and 5 but were used alone or in combination. If this is done, there is a big problem that induction heating is caused by high level magnetic flux passage and eddy current to generate large Joule heat loss. A dedicated cooling structure is also required.
After all, the solenoid system has problems in the use of the magnetic cores 4 and 5 and the electromagnetic shielding members 6 and 7, and the risk of external leakage of the high frequency magnetic field exists not only in the side direction S but also in the back direction B, It is pointed out that the power supply efficiency declines.
From these points, the loop coil system is better. Therefore, the present invention is a further study and improvement of the point of the leakage radiation magnetic field with respect to the conventional contactless power supply device 1 of the loop coil type.

《本発明について》
本発明の外部磁気遮蔽式の非接触給電装置は、このような実情に鑑み、上記従来技術の課題を解決すべくなされたものである。
そして本発明は、第1に、背面方向外部および側面方向外部への漏洩放射磁界が、強度低下すると共に遮蔽され、第2に、しかもこれが、簡単な構成により容易に実現される、外部磁気遮蔽式の非接触給電装置を提案することを目的とする。
<< About the present invention >>
In view of such circumstances, the external magnetic shielding type non-contact power feeding device of the present invention has been made to solve the problems of the prior art.
And, the present invention, firstly, the external magnetic shielding, in which the leakage radiation magnetic field to the outside in the back direction and the outside in the side direction is reduced in strength and shielded, and secondly, this is easily realized by the simple configuration. The purpose is to propose a contactless power supply device of the formula.

このような課題を解決する本発明の技術的手段は、特許請求の範囲に記載したように、次のとおりである。
請求項1については、次のとおり。
請求項1の外部磁気遮蔽式の非接触給電装置では、該非接触給電装置が、電磁誘導の相互誘導作用に基づき、送電側の送電コイルから受電側の受電コイルに、エアギャップを存し非接触で近接対応しつつ電力を供給する。
そして、該送電コイルおよび該受電コイルは、それぞれ、円形や方形等の環状をなすループコイルよりなり、奇数個使用されると共に、ループ面外側の背面側に、平板状の磁心コアそして電磁遮蔽材が配設されている。
該磁心コアおよび該電磁遮蔽材は、該送電コイルおよび該受電コイルより大きな面積よりなると共に、同心に配置される。該電磁遮蔽材は、該磁心コアの面積の2倍以上の面積よりなる。該磁心コアは、フェライトコアよりなり、該電磁遮蔽材は、非磁性で高電導性の非鉄金属材料よりなっている。
そして、該送電コイルおよび該受電コイルについて、それぞれ奇数個を使用したことにより、送受電側の該磁心コアは、それぞれ、給電用磁路の形成に際し、その磁界中で磁化されて磁気的に分極する外周端部が、同極となる。
もってそれぞれ、該磁心コアの該外周端部相互間には、背面側外部に回り込む閉ループ磁路そして磁界は、形成されない。そこで、背面方向に外部漏洩放射される虞のある磁路そして磁界は、抑制される。
The technical means of the present invention for solving such problems is as follows, as described in the claims.
About Claim 1, it is as follows.
In the external magnetic shielding type non-contact power feeding device according to claim 1, the non-contact power feeding device includes an air gap from the power transmission coil on the power transmission side to the power receiving coil on the power receiving side based on mutual induction of electromagnetic induction. Supply power while supporting close proximity.
The power transmission coil and the power reception coil are respectively an annular loop coil such as a circle or a square, and an odd number is used, and a flat core core and an electromagnetic shielding material are used on the back side of the loop surface. Is provided.
The magnetic core and the electromagnetic shielding material are concentrically disposed with a larger area than the power transmission coil and the power reception coil. The electromagnetic shielding material has an area twice or more the area of the magnetic core. The core is a ferrite core, and the electromagnetic shielding material is made of a nonmagnetic and highly conductive nonferrous metal material.
Then, by using an odd number of each of the power transmission coil and the power reception coil, the magnetic core on the power transmission and reception side is magnetized in the magnetic field and magnetically polarized in forming the power feeding magnetic path, respectively. The outer peripheral end portion becomes the same pole.
Therefore, no closed magnetic path and magnetic field are formed between the outer peripheral ends of the core cores, respectively, around the back side. Thus, the magnetic path and the magnetic field which may be externally leaked and radiated in the back direction are suppressed.

又、送受電側の該磁心コアは、給電に際し磁気的に分極する外周端部が、送受電間で異極となり、もって相互間にも磁路そして磁界が形成される。
これに対し、送受電側の該電磁遮蔽材が、それぞれ、該磁心コアよりかなり広い面積よりなり、該磁心コアに対し庇状に外周側方に張り出し突出しており、もって給電に際し、側面方向に外部漏洩放射される虞のある磁路そして磁界を、遮蔽すべく機能すること、を特徴とする。
請求項2については、次のとおり。
請求項2の外部磁気遮蔽式の非接触給電装置は、請求項1において、該電磁遮蔽材は、該送電側および該受電側について、その両方に配設されることなく、そのいずれか一方のみに配設されること、を特徴とする。
In the core core on the power transmission / reception side, the outer peripheral end magnetically polarized during power feeding becomes a different pole between power transmission / reception, thereby forming a magnetic path and a magnetic field between each other.
On the other hand, the electromagnetic shielding material on the power transmission and reception side has an area much larger than that of the magnetic core, and protrudes outward in the form of a bowl with respect to the magnetic core. It is characterized in that it functions to shield magnetic paths and magnetic fields that may be externally leaked and radiated.
The claim 2 is as follows.
In the external magnetic shielding type non-contact power feeding apparatus according to the second aspect of the present invention, in the first aspect, the electromagnetic shielding material is not disposed on both of the power transmission side and the power receiving side, either one of them. To be disposed in

《作用等について》
本発明は、このような手段よりなるので、次のようになる。
(1)この非接触給電装置では、給電に際し、受電コイルが送電コイルに、エアギャップを存して近接対応位置する。
(2)そして送電コイルが通電され、受電コイルとの間に磁路が形成され、もって電磁誘導の相互誘導作用に基づき、送電側から受電側に電力が供給される。
(3)ところで、この種の非接触給電装置では、エアギャップ内に止まらず外部に向けても磁路が形成され、磁界が外部漏洩放射される虞がある。
(4)そこで、まず背面方向には、磁心コアや電磁遮蔽材が配設されており、背面方向への磁界の外部漏洩放射は、かなり抑制される。
(5)しかし、背面方向については、更に次のとおり。磁心コアは、給電用磁路の形成に際し、その磁界中で磁化されて磁気的に分極するが、磁心コアの磁気的に分極する外周端部間について、それぞれ背面方向側の外部に回り込む磁路そして磁界が、漏洩放射,形成される可能性がある。
(6)これに対し本発明は、送電コイルや受電コイルについて、奇数個のループコイルを採用したことにより、磁心コアは、分極する外周端部相互間が同じ極性となり反発しあうので、上述した背面方向側の外部に回り込む磁路,磁界は形成されない。
(7)他方、側面方向については、次のとおり。側面方向については、給電用磁路の形成に伴い、外部へと磁路そして磁界が、漏洩放射,形成されやすかった。そして、この点は、給電に際し磁気的に分極する送受電側の磁心コアの外周端部間が、異なる極性に磁気分極することによっても、助長される。
(8)これに対し本発明は、電磁遮蔽材の面積を磁心コアの2倍以上とした、広い面積の遮蔽効果により、つまり庇状に側方に長く張り出し突出した遮蔽効果により、上述した側面方向等の外部への磁路,磁界形成は、大幅に遮られ,削減される。
(9)この非接触給電装置では、このように背面方向および側面方向について、磁路そして磁界の外部漏洩放射が抑制され、近隣周辺への悪影響は回避される。
(10)しかもこれは、奇数個ループコイルの採用と、電磁遮蔽材の面積拡大とにより、簡単容易に実現される。
(11)そこで、本発明は、次の効果を発揮する。
<< About an action etc. >>
The present invention is as follows because it comprises such means.
(1) In this non-contact power feeding device, at the time of power feeding, the power receiving coil is located close to the power transmitting coil with an air gap therebetween.
(2) The power transmission coil is energized, and a magnetic path is formed between the power transmission coil and the power reception coil, whereby power is supplied from the power transmission side to the power reception side based on the mutual induction of the electromagnetic induction.
(3) By the way, in this type of non-contact power feeding device, a magnetic path may be formed even in the air gap without being limited to the outside, and the magnetic field may be leaked and radiated from the outside.
(4) Therefore, first, the magnetic core and the electromagnetic shielding material are disposed in the back direction, and the external leakage radiation of the magnetic field in the back direction is considerably suppressed.
(5) However, the back direction is as follows. The magnetic core is magnetized and magnetically polarized in the magnetic field when forming the feeding magnetic path, but the magnetic path goes around to the outside on the back direction side between the magnetically polarized outer peripheral end portions of the magnetic core. A magnetic field can then be formed, which is a leakage radiation.
(6) On the other hand, according to the present invention, since the odd number of loop coils are adopted for the power transmission coil and the power reception coil, the cores have the same polarity between the outer peripheral end portions to be polarized and repel each other. A magnetic path or magnetic field is not formed that turns to the outside on the back direction side.
(7) On the other hand, the side direction is as follows. As for the side direction, along with the formation of the feeding magnetic path, the magnetic path and the magnetic field were likely to be leaked and formed to the outside. And this point is promoted also by magnetically polarizing between the outer peripheral end portions of the magnetic core of the power transmission and reception side magnetically polarized in the power feeding to different polarities.
(8) On the other hand, according to the present invention, the area of the electromagnetic shielding material is twice or more than that of the magnetic core, and the shielding effect of a large area, that is, the side surface mentioned above Magnetic path and magnetic field formation to the outside such as direction is largely interrupted and reduced.
(9) In this noncontact power feeding apparatus, the external leakage radiation of the magnetic path and the magnetic field is suppressed in the back direction and the side direction in this manner, and the adverse effect on the vicinity of the neighborhood is avoided.
(10) Furthermore, this can be easily and easily realized by adopting an odd number of loop coils and expanding the area of the electromagnetic shielding material.
(11) Therefore, the present invention exhibits the following effects.

《第1の効果》
第1に、背面方向外部および側面方向外部への漏洩放射磁界が、強度低下すると共に、遮蔽される。
本発明の外部磁気遮蔽式の非接触給電装置は、まず、送電コイルや受電コイルが、それぞれ、奇数個のループコイルよりなると共に、背面側に磁心コアそして電磁遮蔽材が配設された3層構造よりなる。
もって、磁心コアの磁気的に分極する外周端部相互間には、背面方向外部に回り込む磁路そして磁界は、形成されない。勿論、送電コイルと受電コイル間で誘起された磁路そして磁界が、背面方向外部に漏洩放射されることも、抑制される。
これと共に、本発明の非接触給電装置は、電磁遮蔽材が、磁心コアの2倍以上等の広い面積よりなる。もって、送電コイルと受電コイル間で誘起された磁路そして磁界が、側面方向外部に漏洩放射されることが、抑制される。そして、送受電側の磁心コアについて、異極分極する外周端部相互間に形成される磁路そして磁界も、抑制される。
この非接触給電装置では、このように、高周波磁界そして電磁波の外部漏洩,拡散,放射,伝搬が、大幅に低減される。電波法の磁界強度の許容値規定も、満たすことも可能であり、近隣周辺に電磁波障害,電波妨害,人体機能障害等の悪影響を及ぼす虞も、解消される。
First effect
First, the leakage radiation magnetic field to the back outside and side outside is shielded as well as the strength is reduced.
In the external magnetic shielding type non-contact power feeding device according to the present invention, first, the power transmission coil and the power reception coil are each formed of an odd number of loop coils, and a three-layer in which the magnetic core and the electromagnetic shielding material are disposed on the back side. It consists of a structure.
Therefore, no magnetic path and magnetic field are formed between the magnetically polarized outer peripheral ends of the magnetic core in the back direction. Of course, it is also suppressed that the magnetic path and magnetic field induced between the power transmission coil and the power reception coil are leaked to the outside in the back direction.
At the same time, in the non-contact power feeding device of the present invention, the electromagnetic shielding material has a wide area such as twice or more of that of the core. Thus, the magnetic field and the magnetic field induced between the power transmission coil and the power reception coil are suppressed from being leaked to the outside in the lateral direction. Then, the magnetic path and the magnetic field formed between the outer peripheral end portions of different polarity polarization are suppressed with respect to the core core on the power transmission and reception side.
In this non-contact power feeding apparatus, the external leakage, diffusion, radiation and propagation of the high frequency magnetic field and the electromagnetic wave are thus greatly reduced. It is also possible to satisfy the allowable value specification of the magnetic field strength of the Radio Law, and the possibility of adverse effects such as electromagnetic wave interference, radio wave interference, human body dysfunction and the like around the neighborhood is eliminated.

《第2の効果》
第2に、しかもこれは、簡単容易に実現される。
本発明の外部磁気遮蔽式の非接触給電装置では、送電コイルや受電コイルとして、奇数個のループコイルを採用すると共に、電磁遮蔽材として、磁心コアより2倍以上等広い面積のものを採用してなる。このように簡単な構成により、上述した第1の効果を容易に実現する。
もって、製作コスト面に優れている。又、既存の非接触給電装置に対しても、遮蔽強化のため広い面積の電磁遮蔽材に交換,追加することによって、後付けで容易に適用可能である。これに付帯して、新たな回路部品,装置等を付設することも不要であり、信頼性にも優れている。
更に、アルミ板等の非鉄金属製の電磁遮蔽材は、送電側カプラや受電側カプラの容器のバックプレートとして、使用されることも多く、実用上、簡単容易にカプラの機械的強度を向上させることにもなる。
このように、この種従来技術に存した課題がすべて解決される等、本発明の発揮する効果は、顕著にして大なるものがある。
Second effect
Second, this is easily and easily achieved.
In the external magnetic shielding type non-contact power feeding device of the present invention, an odd number of loop coils are adopted as a power transmission coil and a power receiving coil, and an electromagnetic shielding material having an area larger by twice or more than a core core is adopted. Become. With such a simple configuration, the first effect described above is easily realized.
Therefore, the manufacturing cost is excellent. Also, the existing non-contact power feeding device can be easily applied retrofitly by replacing and adding to a wide area electromagnetic shielding material to strengthen the shielding. It is not necessary to attach new circuit parts, devices, etc. incidental to this, and the reliability is also excellent.
Furthermore, a nonferrous metal electromagnetic shielding material such as an aluminum plate is often used as a back plate of a power transmission side coupler or a container of a power reception side coupler, and the mechanical strength of the coupler is easily and easily improved in practice. It will also be.
As described above, the effects exerted by the present invention are remarkable and large, such that all the problems existing in this type of prior art are solved.

本発明に係る外部磁気遮蔽式の非接触給電装置について、発明を実施するための形態の説明に供し、第1例の要部を示す。そして(1)図は、平面説明図、(2)図は、正面説明図である。(3)図,(4)図は、磁場分布等の正面説明図である。The external magnetic shielding type non-contact power feeding apparatus according to the present invention will be described in the form for carrying out the invention, and a main part of a first example will be shown. (1) is a plan view, and (2) is a front view. (3) FIG., (4) FIG. 同発明を実施するための形態の説明に供す。そして(1)図は、第2例の要部の平面説明図、(2)図は、同第2例の要部の正面説明図である。(3)図,(4)図は、第3例,第4例の要部の平面説明図である。It provides for the explanation of the form for carrying out the same invention. And (1) A figure is a plane explanatory view of an important section of the 2nd example, (2) A front explanatory view of an important section of the 2nd example. (3) Figure, (4) Figure is plane explanatory drawing of the principal part of the 3rd example and the 4th example. 同発明を実施するための形態の説明に供し、(1)図は、ループ数と放射電磁界強度との関係を示す、試験データの説明図である。(2)図は、比較例の要部の平面説明図、(3)図は、同比較例の要部の正面説明図である。FIG. 2 is an explanatory view of test data showing the relationship between the number of loops and the radiated electromagnetic field strength, for explaining the embodiment for carrying out the present invention; FIG. (2) The figure is a plan explanatory view of the main part of the comparative example, and (3) the front explanatory view of the main part of the comparative example. 同発明を実施するための形態の説明に供し、(1)図は、電磁遮蔽材の面積と放射磁界強度との関係を示す、試験データのグラフである。(2)図は、比較例の要部の正面説明図である。FIG. 2 is a graph of test data showing the relationship between the area of the electromagnetic shielding material and the intensity of the emitted magnetic field, illustrating the mode for carrying out the invention; FIG. (2) The figure is a front view of the main part of the comparative example. 非接触給電装置の一例を示し、(1)図は、全体の側面概略図、(2)図は、構成ブロック図である。An example of a non-contact electric power supply is shown, (1) The figure is the side schematic of the whole, (2) A figure is a block diagram. 従来例に係る非接触給電装置の要部の正面説明図であり、(1)図は、従来例1を示し、(2)図は、従来例2を示す。It is front explanatory drawing of the principal part of the non-contact electric power supply which concerns on a prior art example, (1) A prior art example is shown, and (2) a prior art example is shown.

以下、本発明を実施するための形態について、詳細に説明する。
《非接触給電装置13について》
まず、本発明の前提として、非接触給電装置(WPT)13について、図5を参照して、一般的に説明しておく。
非接触給電装置13は、電磁誘導の相互誘導作用に基づき、送電側回路14の送電コイル2から、バッテリー15,その他の負荷に接続された受電側回路16の受電コイル3に、エアギャップGを存して近接対応位置しつつ、非接触で電力を供給する
Hereinafter, modes for carrying out the present invention will be described in detail.
<< About non-contact power supply device 13 >>
First, as a premise of the present invention, a non-contact power feeding device (WPT) 13 will be generally described with reference to FIG.
The non-contact power feeding device 13 receives an air gap G from the power transmission coil 2 of the power transmission side circuit 14 to the power receiving coil 3 of the power receiving side circuit 16 connected to the battery 15 and other loads based on mutual induction of electromagnetic induction. Power is supplied contactlessly while being in close proximity

このような非接触給電装置13について、更に詳述する。まず、1次側の送電側回路14は、給電スタンド17等の給電エリアにおいて、地面,路面,その他の地上18側に定置配置される。
これに対し、2次側の受電側回路16は、電気自動車(EV)や電車等の車輌19,その他の移動体側に搭載される。車載の受電側回路16は、図示のように、バッテリー15に接続されるのが代表的であるが、その他の負荷に直接接続される場合もある。
給電に際し、送電側回路14の送電コイル2と受電側回路16の受電コイル3とは、数10mm〜数100mm程度の僅かなエアギャップGを存して、対応位置する。
そして図示のように、受電コイル3が送電コイル2に対し、上側等から正対,対応位置して停止される停止給電方式が代表的である。停止給電方式の場合、受電コイル3と送電コイル2とは、上下等で対をなす対称構造よりなる。これに対し、受電コイル3が送電コイル2上を低速走行されつつ給電を行う、移動給電方式も可能である。
送電側回路14の送電コイル2は、高周波電源(電源インバータ)20に接続されている。高周波電源20は、周波数等交換用インバータ等よりなり、例えば数kHz〜数10kHz〜数100kHz程度の高周波交流を、送電コイル2に向けて通電する。
受電側回路16の受電コイル3からの出力は、図示ではバッテリー15に供給され、充電されたバッテリー15にて走行用モータ21が駆動される。図中22は、交流を直流に変換するコンバータ(整流部や平滑部)、23は、直流を交流に変換するインバータである。
Such a non-contact power feeding device 13 will be described in more detail. First, the power transmission side circuit 14 on the primary side is fixedly disposed on the ground, the road surface, or the other ground 18 side in the feed area such as the feed stand 17 or the like.
On the other hand, the power receiving side circuit 16 on the secondary side is mounted on a vehicle 19 such as an electric car (EV) or a train, or on the other moving body side. Although the on-vehicle power receiving side circuit 16 is typically connected to the battery 15 as shown, it may be directly connected to other loads.
At the time of power feeding, the power transmitting coil 2 of the power transmitting side circuit 14 and the power receiving coil 3 of the power receiving side circuit 16 correspond to each other with a slight air gap G of about several tens of mm to several hundreds of mm.
Then, as shown in the drawing, the stop feeding method in which the power receiving coil 3 is stopped with the power transmitting coil 2 facing up from the upper side or the like and corresponding position is typical. In the case of the stop feeding method, the power receiving coil 3 and the power transmitting coil 2 have a symmetrical structure forming a pair at the top and bottom. On the other hand, a mobile power feeding method is also possible in which the power receiving coil 3 is fed at a low speed while traveling on the power transmitting coil 2 at a low speed.
The power transmission coil 2 of the power transmission circuit 14 is connected to a high frequency power supply (power supply inverter) 20. The high frequency power supply 20 is composed of an inverter for exchanging frequency and the like, and for example, applies a high frequency alternating current of several kHz to several tens of kHz to several hundreds of kHz toward the power transmission coil 2.
The output from the power receiving coil 3 of the power receiving side circuit 16 is supplied to the battery 15 in the drawing, and the traveling motor 21 is driven by the charged battery 15. In the figure, reference numeral 22 denotes a converter (rectifying unit or smoothing unit) for converting alternating current to direct current, and reference numeral 23 denotes an inverter for converting direct current to alternating current.

電磁誘導の相互誘導作用については、次のとおり。給電に際し、送電コイル2での磁束形成により、受電コイル3に誘導起電力を生成させ、もって送電コイル2から受電コイル3に電力を供給することは、公知公用である。
すなわち送電コイル2に、高周波電源20から給電交流,励磁電流を印加,通電することにより、自己誘導起電力が発生して磁界が送電コイル2の周囲に生じ、磁束がコイル面に対して直角方向に形成される。そして形成された磁束が、受電コイル3を貫き錯交することにより、誘導起電力が生成され磁界が誘起される。
このように誘起生成された磁界を利用して、数kW以上〜数10kW〜数100kW程度の電力供給が可能となる。送電コイル2側の磁束の磁気回路と、受電コイル3側の磁束の磁気回路は、相互間にも磁束の磁気回路つまり磁路aが形成されて、電磁結合される。
非接触給電装置13では、このような電磁誘導の相互誘導作用に基づき、非接触給電が行われる。
非接触給電装置13について、一般的説明は以上のとおり。
The interaction of electromagnetic induction is as follows. It is well known that the power receiving coil 3 is caused to generate an induced electromotive force by the magnetic flux formation in the power transmitting coil 2 at the time of power feeding, and the power is thus supplied from the power transmitting coil 2 to the power receiving coil 3.
That is, by applying feeding alternating current and excitation current from the high frequency power supply 20 to the power transmission coil 2 and energizing them, a self-induced electromotive force is generated to generate a magnetic field around the power transmission coil 2 and magnetic flux is perpendicular to the coil surface Is formed. Then, the generated magnetic flux penetrates and mixes with the power receiving coil 3 to generate an induced electromotive force and induce a magnetic field.
Power supply of several kW or more to several tens of kW to several hundred kW can be performed by using the induced magnetic field. The magnetic circuit of the magnetic flux on the power transmission coil 2 side and the magnetic circuit of the magnetic flux on the power receiving coil 3 side are also magnetically coupled with each other by forming a magnetic circuit of magnetic flux, that is, a magnetic path a.
In the non-contact power feeding device 13, non-contact power feeding is performed based on such mutual induction of the electromagnetic induction.
The general description of the non-contact power feeding device 13 is as described above.

《本発明の概要》
以下、本発明の非接触給電装置13について、図1〜図4を参照して説明する。まず、本発明の概要については、次のとおり。
本発明の外部磁気遮蔽式の非接触給電装置13は、上述したように、電磁誘導の相互誘導作用に基づき、送電側の送電コイル2から受電側の受電コイル3に、エアギャップGを存し非接触で近接対応しつつ、電力を供給する。
送電コイル2および受電コイル3は、それぞれ、円形や方形等の環状をなすループコイルよりなり、奇数個使用されると共に、ループ面外側の背面側に、平板状の磁心コア4,5そして電磁遮蔽材24,25が、配設されている。
そこでまず、磁心コア4,5は、それぞれ給電に際し、磁気的に分極する外周端部が同極となる。もって、磁心コア4,5の外周端部相互間には、背面方向B側の外部に回り込む閉ループ磁路bそして磁界は、形成されない。
又、電磁遮蔽材24,25は、それぞれ、磁心コア4,5より広い面積よりなり、磁心コア4,5に対し庇状に外周側方に張り出し突出している。もって給電に際し、非接触給電装置13から近隣周辺へと外部漏洩放射される虞のある磁路cそして磁界を、遮蔽すべく機能する。
本発明の概要については、以上のとおり。以下、このような本発明について、更に詳述する。
Outline of the Invention
Hereafter, the non-contact electric power supply 13 of this invention is demonstrated with reference to FIGS. 1-4. First, the outline of the present invention is as follows.
As described above, the external magnetic shielding type non-contact power feeding device 13 of the present invention includes the air gap G from the power transmission coil 2 on the power transmission side to the power receiving coil 3 on the power reception side based on the mutual induction of electromagnetic induction. Power is supplied while contactless and close contact.
The power transmission coil 2 and the power reception coil 3 are respectively an annular loop coil such as a circle or a square, and an odd number of coil coils are used. Materials 24, 25 are provided.
Therefore, first, the outer peripheral end portions of the magnetic cores 4 and 5 that are magnetically polarized at the time of feeding respectively have the same polarity. Thus, between the outer peripheral ends of the core cores 4 and 5, the closed loop magnetic path b and the magnetic field which are wound around the outside in the back direction B are not formed.
Further, the electromagnetic shielding members 24 and 25 have areas larger than the core cores 4 and 5, respectively, and project outward in the form of a bowl from the core cores 4 and 5 and project outward. Thus, when feeding power, the magnetic path c and the magnetic field which may be leaked and radiated from the non-contact power feeding device 13 to the vicinity of the neighborhood are functioned to be shielded.
The outline of the present invention is as described above. Hereinafter, the present invention will be described in more detail.

《送電コイル2,受電コイル3について》
送電コイル2,受電コイル3について、図1,図2を参照して説明する。
送電コイル2および受電コイル3は、それぞれ、円形や方形等の環状をなすサーキュラーコイル,スパイラルコイル,その他のループコイルよりなる。
例えば、複数本の絶縁被覆された導線が、同一平面において並列化された平行位置関係を維持しつつ巻回され、もって全体的に平坦で肉厚の薄い扁平フラット状をなし、多くの場合、中央にスペース空間が形成される。図示例は、円環構造のサーキュラーコイルよりなるが、方形環構造,その他の形状の環構造コイルも可能である。
<< About the power transmission coil 2 and the power receiving coil 3 >>
The power transmission coil 2 and the power reception coil 3 will be described with reference to FIGS. 1 and 2.
The power transmission coil 2 and the power reception coil 3 are respectively formed of a circular coil, a circular coil, an annular circular coil, a spiral coil, and other loop coils.
For example, a plurality of insulation coated conductors are wound while maintaining parallel positional relationship in parallel in the same plane, thereby forming a generally flat and thin flat flat shape, and in many cases, A space is formed at the center. Although the illustrated example comprises a circular coil having an annular structure, a ring structure coil having a square ring structure and other shapes is also possible.

送電コイル2および受電コイル3としては、それぞれ、このようなループコイルが奇数個用いられる。
すなわち、図1の第1例のように1個、図2の第2例のように3個、図2の第3例,第4例のように5個,9個、その他の奇数個が使用され、相互に隣接配置される。
3個以上の場合は、第2例のように、直線的に縦又は横に並ぶケースや、第3例,第4例のように、平面的に縦横に広がって並ぶケースが可能である。
送電コイル2,受電コイル3については、概略以上のとおり。
As the power transmission coil 2 and the power reception coil 3, an odd number of such loop coils are used respectively.
That is, one as in the first example of FIG. 1, three as in the second example of FIG. 2, five, nine as in the third example and fourth example of FIG. Used and placed adjacent to each other.
In the case of three or more, as in the second example, there may be a case linearly aligned vertically or horizontally, or a case horizontally and vertically extended and aligned as in the third and fourth examples.
The power transmission coil 2 and the power reception coil 3 are as described above.

《奇数個の理由》
次に、送電コイル2,受電コイル3について、奇数個採用の理由を、図1の(3)図,図2の(2)図,図3の(3)図等を参照して、説明する。
給電に際しては、送電コイル2と受電コイル3間のエアギャップG内には、磁束の磁路aが給電用に形成される。そして、このような磁路aが形成されると、フェライトコア等の磁心コア4,5は、その磁界中で磁化され磁気的に分極する(図中表示のN極,S極を参照)。
すると、図3の(3)図に示したように、送電コイル2や受電コイル3が2個等偶数個使用された、比較例の非接触給電装置1(図6の(1)図のものと同一構成)では、背面方向B側の外部に回り込む磁路bが、形成されるようになる。すなわち、送電側の磁心コア4および受電側の磁心コア5では、それぞれ、分極した端部がN極とS極と異なるので、引き合って磁力が作用する。
このように、送電コイル2および受電コイル3として、偶数個のループコイルを使用すると、閉ループの背面磁路bそして背面磁界が、漏洩放射形成されるようになる。
<< Odd number of reasons >>
Next, the reason for adopting an odd number of power transmission coils 2 and power reception coils 3 will be described with reference to (3) in FIG. 1, (2) in FIG. 2, and (3) in FIG. .
At the time of feeding, a magnetic path a of magnetic flux is formed in the air gap G between the transmitting coil 2 and the receiving coil 3 for feeding. Then, when such a magnetic path a is formed, the core cores 4 and 5 such as ferrite cores are magnetized in the magnetic field and magnetically polarized (refer to the N pole and the S pole shown in the figure).
Then, as shown in (3) of FIG. 3, the non-contact power feeding apparatus 1 of the comparative example ((1) of FIG. 6) in which the power transmission coil 2 and the power receiving coil 3 are used is an even number such as two. In the same configuration as in the above, the magnetic path b that turns around to the outside on the back direction B side is formed. That is, in the magnetic core 4 on the power transmission side and the magnetic core 5 on the power reception side, the polarized end portions are different from the N pole and the S pole, respectively, so that the magnetic force acts to attract each other.
As described above, when an even number of loop coils are used as the power transmission coil 2 and the power reception coil 3, the back magnetic path b of the closed loop and the back magnetic field are leaked and formed.

これに対し本発明では、図1の(3)図,図2の(2)図等に示したように、送電コイル2および受電コイル3として、奇数個のループコイルを採用したので、給電に際し上述した比較例のように、背面方向B側の外部に回り込む背面磁路bは、形成されない。背面磁界は、漏洩放射形成されない。
すなわち、送電側の磁心コア4および受電側の磁心コアでは、それぞれ、分極した端部が同じ極性となる。図示では、送電側の磁心コア4では、端部がS極同士となって反発しあうので、背面磁路bは形成されない。受電側の磁心コア5でも、端部がN極同士となって反発しあうので、閉ループの背面磁路bは形成されない(図1の(3)図中に想像線表示した磁路bは、形成されない)。
このように奇数個のループコイル場合は、偶数個のループコイルのように背面磁路bそして背面磁界が形成されないので、外部への漏洩放射磁界の磁界強度が大きく低下せしめられる。
奇数個採用の理由については、以上のとおり。
On the other hand, in the present invention, as shown in (3) of FIG. 1, (2) of FIG. 2, etc., an odd number of loop coils are adopted as the power transmission coil 2 and the power reception coil 3, As in the comparative example described above, the back magnetic path b that turns around to the outside on the back direction B side is not formed. The back magnetic field is not leaked radiation formed.
That is, in the magnetic core 4 on the power transmission side and the magnetic core on the power reception side, the polarized end portions have the same polarity. In the drawing, in the magnetic core 4 on the power transmission side, the end portions become S poles and repel each other, so the back magnetic path b is not formed. Since the end portions of the power-receiving-side magnetic core 5 also have their N poles to repel each other, the closed back magnetic path b is not formed (the magnetic path b shown in phantom in FIG. 1 (3) is Not formed).
As described above, in the case of an odd number of loop coils, since the back magnetic path b and the back magnetic field are not formed as in the even number of loop coils, the magnetic field strength of the leaked radiation magnetic field to the outside is greatly reduced.
The reason for adopting the odd number is as above.

《図3の(1)図の試験データ等について》
ここで、ループ数と放射電磁界強度との関係を示す、図3の(1)図の試験データ等について説明しておく。
・この試験は、非接触給電装置1(図6の(1)図を参照)の送電コイル2、すなわち従来より一般的なループコイル方式の非接触給電装置の送電コイル2に関する。受電コイル3についてもこれに準じる。
・図中の「ループ数」とは、ループコイルの数を示す。図中の「+(プラス)」と「−(マイナス)」は、ループコイルが作り出す電磁界の向きを表す。
・図中の「遮蔽有り」とは、ループコイルの外側に電磁遮蔽材6や磁心コア4を設けた場合に関する(図6の(1)図を参照)。「遮蔽無し」とは、これらを設けなかった場合に関する。
・図中の「数値」は、10m離れた外部地点へと漏洩放射された放射電磁界強度の最大値(dBμV/m)を示す。
<< About the test data etc. of figure (1) figure of >>
Here, the test data etc. of the (1) figure of FIG. 3 which show the relationship between the number of loops and radiation electromagnetic field intensity are demonstrated.
-This test relates to the power transmission coil 2 of the non-contact power feeding device 1 (see (1) in FIG. 6), that is, the power transmission coil 2 of the non-contact power feeding device of the loop coil system conventionally used. The same applies to the power receiving coil 3.
The “number of loops” in the figure indicates the number of loop coils. "+ (Plus)" and "-(minus)" in the figure indicate the direction of the electromagnetic field generated by the loop coil.
-"With shielding" in the figure relates to the case where the electromagnetic shielding material 6 and the magnetic core 4 are provided on the outside of the loop coil (see (1) in FIG. 6). "No shielding" relates to the case where these are not provided.
The “numerical value” in the figure indicates the maximum value (dB μV / m) of the radiated electromagnetic field intensity leaked to the external point 10 m apart.

まず、試験結果については次のとおり。「ループ数」奇数の場合は、「遮蔽有り」の方が、「遮蔽無し」より放射電磁界強度が低かった。これに対し、「ループ数」偶数の場合は、「遮蔽有り」より「遮蔽無し」の方が、放射電磁界強度が低かった。
他方、実用面については次のとおり。実用面では、カプラの機械的強度向上のため、電磁遮蔽材6,7を、その容器のバックプレートとして使用するニーズが高かった。
本発明では、このような実用面のニーズに対応すべく、電磁遮蔽材24,25を使用することにした。
又、このような電磁遮蔽材24,25の使用は、上述した試験データによっても裏付けられている。すなわち、前述したように、送電コイル2および受電コイル3として、奇数個のループコイルを採用した場合つまり「ループ数」奇数の場合は、試験データ上も「遮蔽有り」の方が、放射電磁界強度が低下していた次第である。
図3の(1)図の試験データ等については、以上のとおり。
First, the test results are as follows. In the case of the "loop number" odd number, the "shielded" had a lower radiation field strength than the "shielded". On the other hand, in the case of the "number of loops" even, the radiation electromagnetic field intensity was lower in the "non-shielded" than in the "shielded".
On the other hand, the practical aspects are as follows. From the practical point of view, there is a high need for using the electromagnetic shielding materials 6, 7 as the back plate of the container in order to improve the mechanical strength of the coupler.
In the present invention, in order to meet such practical needs, the electromagnetic shielding members 24 and 25 are used.
The use of such electromagnetic shielding materials 24, 25 is also supported by the test data described above. That is, as described above, in the case where an odd number of loop coils are adopted as the power transmission coil 2 and the power reception coil 3, that is, in the case of an odd number of "loops", "shielded" is also a radiation electromagnetic field It depends on the strength being reduced.
About the test data etc. of the figure (1) of FIG. 3, it is the above.

《電磁遮蔽材24,25等について》
次に、電磁遮蔽材24,25等について、図1,図2,図4等を参照して、更に詳述する。
送電コイル2および受電コイル3は、それぞれ、そのループ面外側の背面側に、平板状の磁心コア4,5そして電磁遮蔽材24,25が、内から外へ順に配設されている。
内側の磁心コア4,5は、代表的にはフェライトコアを使用され、高透磁率材料、強磁性体よりなる。
もって、コイルインダクタンスを増加させ電磁結合を強化する機能と共に、形成される磁束を誘導,収集,方向付けすべく機能する。そして、送電コイル2や受電コイル3より大きな面積の円板状,環板状,その他の平板状をなし、同心に配置される。
外側の電磁遮蔽材24,25は、非磁性で高電導性の非鉄金属材料よりなり、平板状をなし、送電コイル2,磁心コア4や受電コア3,磁心コア4と、同心に配置される。
そして例えばアルミ板よりなり、透磁率が低く磁気遮蔽用として機能し、内部誘起される渦電流によって磁場を反射し、もって外部への磁界(電磁界),電磁波,磁束の漏洩放射を、遮蔽すべく機能する。
なお、送電コイル2,磁心コア4,電磁遮蔽材24(6)等の3層構造にて、送電側カプラ26が構成されており、電磁遮蔽材24(6)が、その容器のバックプレートを形成するケースも多い。
同様に、受電コイル3,磁心コア5,電磁遮蔽材25(7)等の3層構造にて、受電側カプラ27が構成されており、電磁遮蔽材25(7)が、その容器のバックプレートを形成するケースも多い(図4の(2)図の比較例,従来例も参照)。
<< About electromagnetic shielding materials 24, 25 etc. >>
Next, the electromagnetic shielding members 24, 25 and the like will be described in more detail with reference to FIG. 1, FIG. 2, FIG.
In the power transmission coil 2 and the power reception coil 3, flat core cores 4 and 5 and electromagnetic shielding members 24 and 25 are disposed in order from the inside to the outside on the back side outside the loop surface.
The inner core cores 4 and 5 are typically ferrite cores, and made of high permeability material and ferromagnetic material.
Together with its function to increase the coil inductance and enhance the electromagnetic coupling, it functions to induce, collect and direct the generated magnetic flux. Then, they are arranged concentrically in a disk shape, an annular plate shape, or another flat plate shape having a larger area than the power transmission coil 2 and the power reception coil 3.
The outer electromagnetic shielding members 24 and 25 are made of nonmagnetic and highly conductive nonferrous metal material, have a flat plate shape, and are disposed concentrically with the power transmission coil 2, the magnetic core 4, the power receiving core 3, and the magnetic core 4. .
For example, it is made of an aluminum plate, has a low permeability, functions as a magnetic shield, reflects the magnetic field by the internally induced eddy current, and shields the leaked radiation of the magnetic field (electromagnetic field), electromagnetic waves and magnetic flux to the outside. To function.
In addition, the power transmission side coupler 26 is comprised by 3 layer structure of the power transmission coil 2, the magnetic core core 4, and the electromagnetic shielding material 24 (6) etc., and the electromagnetic shielding material 24 (6) serves as the backplate of the container. There are many cases to form.
Similarly, the power receiving side coupler 27 is constituted by a three-layer structure of the power receiving coil 3, the magnetic core core 5, the electromagnetic shielding material 25 (7), etc., and the electromagnetic shielding material 25 (7) There are also many cases of forming (see also the comparative example of FIG. 4 (2) and the conventional example).

さて、「発明が解決しようとする課題」欄で前述したように、送電コイル2や受電コイル3の側面方向S(図面上では、左右方向,X方向、および、前後の紙面表裏方向,Y方向)については、外部へ磁界が漏洩放射されやすかった。
そして、このように外部へと漏洩放射される磁路cの形成には、磁心コア4,5の磁気分極メカニズムが、寄与している。
すなわち、図4の(2)図の比較例の非接触給電装置1について示したように、送電コイル2と受電コイル3間のエアギャップG内に、給電用の磁路aが形成されると、フェライトコア等の磁心コア4,5は、その磁界中で磁化され、磁気的に分極する(図中表示のN極,S極を参照)。
そして、受電側カプラ27の磁心コア5の端部が、例えばN極に分極するのに対し、送電側カプラ26の磁心コア4の端部は、例えばS極に分極する。このような極性が異なる磁気分極により、縦方向に磁気双極子が存在するのと同様な状態となり、磁心コア4,5端部がN極とS極と異なるので、引き合って磁力が作用する。
もって磁路cが形成されるが、図示した比較例の非接触給電装置1(図6の(1)図のものと同一構成)にあっては、送電側カプラ26と受電側カプラ27間から、外部に開放された状態で形成され、外部の遠くまで届くことが可能となる。磁界が外部へと強力に漏洩,放射される可能性が生じる。
このようにして、比較例の非接触給電装置1では、送電コイル2と受電コイル3に加え、このような磁心コア4,5の磁気分極により、磁路cが強力に形成され、例えば10m離れた地点での磁界強度が強まるようになる。
Now, as described above in the section "Problems to be solved by the invention", the side direction S of the power transmission coil 2 and the power receiving coil 3 (horizontal direction, X direction, front and back paper front and back directions, Y direction in the drawing) ), It was easy to leak and radiate the magnetic field to the outside.
The magnetic polarization mechanism of the core cores 4 and 5 contributes to the formation of the magnetic path c leaked to the outside as described above.
That is, as shown in the non-contact power feeding device 1 of the comparative example of FIG. 4 (2), when the magnetic path a for feeding is formed in the air gap G between the power transmitting coil 2 and the power receiving coil 3 The core cores 4 and 5 such as ferrite cores are magnetized in the magnetic field and polarized magnetically (refer to N pole and S pole shown in the figure).
The end of the core 5 of the power receiving coupler 27 is polarized, for example, to the N pole, whereas the end of the core 4 of the power transmitting coupler 26 is polarized, for example, to the S pole. Such a magnetic polarization with different polarities brings about a state similar to the presence of the magnetic dipole in the longitudinal direction, and since the ends of the core cores 4 and 5 are different from the N pole and the S pole, they attract each other and the magnetic force acts.
Thus, the magnetic path c is formed, but in the case of the non-contact power feeding apparatus 1 of the comparative example shown in the drawing (the same configuration as that of FIG. 6 (1)), from between the power transmission coupler 26 and the power reception coupler 27. , It is formed in the state open | released outside, and it becomes possible to reach to the distant place of the exterior. There is a possibility that the magnetic field may be strongly leaked and emitted to the outside.
Thus, in the non-contact power feeding device 1 of the comparative example, the magnetic path c is formed strongly by such magnetic polarization of the core cores 4 and 5 in addition to the power transmitting coil 2 and the power receiving coil 3. The magnetic field strength at the point becomes stronger.

《電磁遮蔽材24,25の面積について》
これへの対策として、本発明では、電磁遮蔽材24,25を、磁心コア4,5よりかなり大幅に広い面積(大きさ,平面的広さ)とした。具体的には、磁心コア4,5の面積の2倍以上の面積に設定した。
すなわち電磁遮蔽材24,25は、同心の磁心コア4,5に対し、庇状に外周側方に長く張り出し突出している。これにより、磁路cの形成は大幅に削減される(図1の(4)図に想像線表示したような磁路cは、殆ど形成されない)。
これについて更に詳述する。図4の(1)図は、磁心コア4,5に対する電磁遮蔽材24,25の面積比と、放射磁界強度との関係を示す、試験データのグラフである。
・この試験は、磁心コア4に対する電磁遮蔽材24の面積比(倍数表示)、および、磁心コア5に対する電磁遮蔽材25の面積比(倍数表示)に関する。
・グラフ中、「背面方向の値」とは、各図中の背面方向B(図面上では上下方向,Z方向)に、10m離れた外部地点での磁界強度の値である。
・グラフ中、「側面方向の値」とは、各図中の側面方向S(図面上では左右方向,X方向や、前後紙面方向,Y方向)に、10m離れた外部地点での磁界強度の値である。
・グラフ中、「送電側のみに配置」とは、送電側のみに電磁遮蔽材24を配設した場合を示す。「受電側のみに配置」とは、受電側のみに電磁遮蔽材25を配設した場合を示す。「両側に配置」とは、送電側と受電側の両方に、電磁遮蔽材24,25をそれぞれ配設した場合を示す。
・グラフ中、「磁界強度」は、外部へと漏洩放射された磁界強度を、10m離れた地点で計測した値である。
<< Area of electromagnetic shielding materials 24 and 25 >>
As a countermeasure against this, in the present invention, the electromagnetic shielding materials 24 and 25 have areas (sizes and planar sizes) much wider than the magnetic cores 4 and 5. Specifically, the area was set to be twice or more the area of the cores 4 and 5.
That is, the electromagnetic shielding members 24 and 25 project outward from the concentric core cores 4 and 5 in the form of a bowl so as to extend outward. As a result, the formation of the magnetic path c is greatly reduced (the magnetic path c as shown by the imaginary line in (4) of FIG. 1 is hardly formed).
This will be described in more detail. FIG. 4A is a graph of test data showing the relationship between the area ratio of the electromagnetic shielding materials 24 and 25 to the magnetic cores 4 and 5 and the radiation magnetic field strength.
This test relates to the area ratio (in multiples) of the electromagnetic shielding material 24 to the core 4 and the area ratio (in multiples) of the electromagnetic shielding 25 to the core 5.
In the graph, “value in the back direction” is the value of the magnetic field strength at an external point 10 m apart in the back direction B (vertical direction in the drawing, Z direction in the drawings) in each drawing.
In the graph, “value in the side direction” means the value of the magnetic field strength at an external point separated by 10 m in the side direction S in each figure (left and right direction in the drawing, X direction, front and back sheet direction, Y direction). It is a value.
In the graph, “disposed on only the power transmission side” indicates the case where the electromagnetic shielding material 24 is disposed only on the power transmission side. The “disposed only on the power receiving side” indicates the case where the electromagnetic shielding material 25 is disposed only on the power receiving side. The “disposed on both sides” indicates the case where the electromagnetic shielding members 24 and 25 are disposed on both the power transmission side and the power reception side.
In the graph, the "magnetic field strength" is a value obtained by measuring the magnetic field strength leaked to the outside at a point 10 m away.

試験結果については、次のa,bのとおり。
a.例えば電波法による10m離れた地点での規制値は、「両側に配置された」電磁遮蔽材24,25の面積を、それぞれ磁心コア4,5の例えば2.5倍以上程度とすることにより、その遮蔽効果にて、背面方向B,側面方向S共にクリアー可能、とのデータが得られた。
b.その他、電磁遮蔽材24,25の面積を、磁心コア4,5の2倍以上を目安とすることにより、その遮蔽効果にて放射磁界強度を大きく低下せしめることが可能、とのデータが得られた。
The test results are as follows a and b.
a. For example, by setting the area of the electromagnetic shielding members 24 and 25 "disposed on both sides" to, for example, about 2.5 times or more of that of the magnetic core cores 4 and 5, respectively, the regulation value at a point 10 m away by the Radio Law. As a result of the shielding effect, data was obtained that both the back direction B and the side direction S can be cleared.
b. In addition, by setting the area of the electromagnetic shielding materials 24 and 25 to be twice or more of that of the magnetic cores 4 and 5 as a standard, data can be obtained that the radiation magnetic field strength can be largely reduced by the shielding effect. The

従って、非接触給電装置13の設計,製作時において、その設置場所の状況,環境状態に対応して、「背面方向の値」や「側面方向の値」を勘案しつつ、次のイ,ロの選択が行われることになる。
イ.まず、「送電側のみに配置」か、「受電側のみに配置」か、「両側に配置」かが、選択される。
ロ.これと共に、磁心コア4,5に対する、電磁遮蔽材24,25の面積倍率が、2倍以上のいずれかの倍率で、選択される。
例えば、このようなイ,ロの選択の結果、電磁遮蔽材24,25は、送電側カプラ26および受電側カプラ27について、その両方に配設されることなく、そのいずれか一方のみに配設されるケースも、勿論考えられる。
このように電磁遮蔽材24,25は、磁心コア4,5の面積の2倍以上の面積に設定される。その形状が円形や正方形の場合、寸法比で言えば、√2倍以上に設定される。
電磁遮蔽材24,25等については、以上のとおり。
Therefore, at the time of design and manufacture of the non-contact power feeding device 13, in consideration of “value in the back direction” and “value in the side direction” in accordance with the conditions of the installation place and the environmental conditions The choice of will be made.
B. First, “arrangement only on the power transmission side”, “arrangement only on the power reception side”, or “arrangement on both sides” is selected.
B. At the same time, the area magnification of the electromagnetic shielding materials 24 and 25 with respect to the core cores 4 and 5 is selected at any magnification of 2 or more.
For example, as a result of such selection of b and b, the electromagnetic shielding members 24 and 25 are not disposed on both of the power transmission side coupler 26 and the power reception side coupler 27 and are disposed on only one of them. The case to be done is of course also conceivable.
As described above, the electromagnetic shielding members 24 and 25 are set to have an area twice or more the area of the magnetic cores 4 and 5. When the shape is circular or square, in terms of dimensional ratio, it is set to √2 times or more.
The electromagnetic shielding materials 24, 25 etc. are as described above.

《図面について》
なお、図1の(4)図や図4の(2)図は、説明用の略図である。すなわち、図面右半分の磁路a,cのみを図示し、左半分は、右半分に準じるので図示を省略。
又、図1の(3)図,(4)図,図2の(2)図,図3の(3)図,図4の(2)図等において、磁心コア4,5のN極,S極の磁気分極表示は、給電時の一瞬の状態によるものである。
すなわち、送電コイル2や受電コイル3に流れる電流は交流なので、対応してN極とS極の磁気分極は、交流の正負に合わせて時間的,周期的に交互に交番反転するが、図示はその一瞬を把握したものである。
更に、図1の(1)図,図2の(1)図,(3)図,(4)図,図3の(1)図,(2)図等において、「+(プラス)と−(マイナス)」は、コイルが作り出す磁界の向きの表示であるが、これについても上述に準じ、給電時の一瞬の状態による。
<< About the drawing >>
Note that FIG. 1 (4) and FIG. 4 (2) are schematic diagrams for explanation. That is, only the magnetic paths a and c in the right half of the drawing are illustrated, and the left half conforms to the right half, so the illustration is omitted.
In (1), (2), (2), (3), and (2) of FIG. 1, the N-poles of the core cores 4 and 5, The magnetic polarization display of the S pole is due to the momentary state at the time of feeding.
That is, since the current flowing through the power transmission coil 2 and the power reception coil 3 is alternating current, the magnetic polarizations of the N and S poles are alternately alternately reversed temporally and periodically according to the positive and negative of alternating current. It is what grasped the moment.
Furthermore, in (1) of FIG. 1, (1) of FIG. 2, (3), (4), (1) of FIG. 3, (2), etc., “+ (plus) and − “(Minus)” is an indication of the direction of the magnetic field generated by the coil, but this is also based on the momentary state at the time of power feeding, as described above.

《作用等》
本発明の外部磁気遮蔽式の非接触給電装置13は、以上説明したように構成されている。そこで以下のようになる。
(1)非接触給電装置13では、給電に際し、車輌19等に搭載された受電側回路16の受電コイル3が、路面等に定置配置された送電側回路14の送電コイル2に、エアギャップGを存して正対,近接対応位置する(図5を参照)。
<< Operation >>
The external magnetic shielding type non-contact power feeding device 13 of the present invention is configured as described above. Therefore, it becomes as follows.
(1) In the case of the non-contact power feeding device 13, at the time of power feeding, the power receiving coil 3 of the power receiving side circuit 16 mounted on the vehicle 19 etc. , And in close proximity, corresponding positions (see FIG. 5).

(2)そして送電コイル2が、高周波交流を励磁電流として通電され、もって、送電側カプラ26の送電コイル2と受電側カプラ27の受電コイル3との間のエアギャップGに、磁束の磁路aが形成され、両者が電磁結合される。
非接触給電装置13では、このような電磁誘導の相互誘導作用に基づき、電力が送電側回路14から受電側回路16へと、供給される(図5を参照)。
(2) Then, the power transmission coil 2 is energized with high frequency alternating current as excitation current, so that the magnetic path of the magnetic flux is generated in the air gap G between the power transmission coil 2 of the power transmission side coupler 26 and the power receiving coil 3 of the power receiving side coupler 27 a is formed, and both are electromagnetically coupled.
In the non-contact power feeding device 13, electric power is supplied from the power transmission side circuit 14 to the power receiving side circuit 16 based on the mutual induction action of such electromagnetic induction (see FIG. 5).

(3)ところで、この種の非接触給電装置13では、エアギャップG内の磁路aに止まらず、外部に向けても磁路b,cが形成される虞がある。
すなわち、送電側カプラ26と受電側カプラ27間において、高周波交流に基づき誘起された大きな密度の磁界(電磁界)そして強力な電磁波が、背面方向Bや側面方向Sの外部に向けて漏洩,拡散,放射,伝搬される危険がある。
(3) By the way, in the non-contact power feeding device 13 of this type, there is a possibility that the magnetic paths b and c may be formed even if the magnetic path a in the air gap G is not stopped but is directed to the outside.
That is, between the power transmission side coupler 26 and the power reception side coupler 27, a large density magnetic field (electromagnetic field) induced by high frequency alternating current (electromagnetic field) and strong electromagnetic waves leak and diffuse toward the outside in the back direction B and side direction S. , Radiation, there is a risk of being transmitted.

(4)まず、送電側カプラ26や受電側カプラ27の背面方向B(図面上では上下方向,Z方向)には、磁心コア4,5や電磁遮蔽材24,25が配設されている。
もって背面方向Bに漏洩放射される磁界強度,電磁波は、かなり抑制される(図6の(1)図を参照)。
(4) First, the core cores 4 and 5 and the electromagnetic shielding members 24 and 25 are disposed in the back surface direction B (vertical direction in the drawing, Z direction in the drawing) of the power transmission coupler 26 and the power reception coupler 27.
Therefore, the magnetic field intensity and the electromagnetic wave leaked and radiated in the back direction B are considerably suppressed (see FIG. 6 (1)).

(5)しかし背面方向Bに関しては、次の可能性がある。すなわち送電側や受電側では、磁心コア4,5の磁気的に分極する外周端部相互間について、異なる極性の場合は磁力が作用する。
もって、送電側カプラ26や受電側カプラ27について、それぞれ背面方向B側の外部に回り込む磁路bそして磁界が、漏洩放射,形成される可能性がある(図3の(3)図を参照)。
(5) However, with respect to the rear direction B, there are the following possibilities. That is, on the power transmission side and the power reception side, in the case of different polarities, a magnetic force acts between the magnetically polarized outer peripheral end portions of the magnetic cores 4 and 5.
Therefore, there is a possibility that the magnetic path b and the magnetic field can be leaked and formed around the power transmission side coupler 26 and the power reception side coupler 27 respectively, which lead to the outside in the back direction B side (see FIG. 3 (3)). .

(6)これに対し、本発明の非接触給電装置13では、送電コイル2や受電コイル3として、それぞれ、奇数個のループコイルを採用してなる(図1,図2を参照)。
もって、送電側や受電側の磁心コア4,5では、それぞれ、分極する端部が同じ極性となり反発しあうので、上述した磁路bは形成されない。すなわち、送電側カプラ26や受電側カプラ27の背面方向B側の外部に回り込む磁路bそして磁界は、形成されない(図1の(3)図で想像線表示した磁路bは、形成されない)。
(6) On the other hand, in the non-contact power feeding device 13 of the present invention, an odd number of loop coils are adopted as the power transmission coil 2 and the power reception coil 3 respectively (see FIGS. 1 and 2).
Therefore, in the power transmission side and the power reception side magnetic cores 4 and 5, since the end portions to be polarized have the same polarity and repel each other, the above-described magnetic path b is not formed. That is, the magnetic path b and the magnetic field that come around to the outside on the back direction B side of the power transmission coupler 26 and the power reception coupler 27 are not formed (the magnetic path b shown in phantom in FIG. 1 (3) is not formed) .

(7)他方、側面方向Sに関しては、次の可能性がある。送電側カプラ26と受電側カプラ27間の側面方向S(図面上では、左右方向,X方向、および、前後の紙面表裏方向,Y方向)については、遮るものがなく、外部へと磁路cそして磁界が、漏洩放射,形成されやすかった(図6の(1)図を参照)。
さらにこの点は、送受電側の磁心コア4,5の外周端部間が、異なる極性に磁気分極して、相互間に磁力が作用することによっても、助長される(図4の(2)図を参照)。
(7) On the other hand, with respect to the lateral direction S, there are the following possibilities. There is no obstruction in the lateral direction S between the power transmission coupler 26 and the power reception coupler 27 (in the drawing, the left and right direction, the X direction, and the front and back paper surface front and back directions, and the Y direction). And the magnetic field was apt to be leaked and formed (see FIG. 6 (1)).
Furthermore, this point is also promoted by the magnetic polarization between the outer peripheral ends of the core cores 4 and 5 on the power transmission and reception sides to different polarities and the magnetic force acting between them ((2) in FIG. 4). See the figure).

(8)これに対し、本発明の非接触給電装置13では、電磁遮蔽材24,25を、磁心コア4,5より大幅に広い面積とした。代表的には2倍以上の面積、例えば2倍〜4倍程度とした(図1,図2,図4の(1)図等を参照)。
このように広い面積での遮蔽効果により、つまり外周側方に庇状に長く張り出し突出した電磁遮蔽材24,25の遮蔽効果により、上述した磁路cそして磁界の外部への漏洩放射,形成は、殆ど遮られ大幅に削減される(図1の(4)図で想像線表示した磁路cは、殆ど形成されない)。
(8) On the other hand, in the non-contact power feeding device 13 of the present invention, the electromagnetic shielding materials 24 and 25 have a much larger area than the magnetic cores 4 and 5. Typically, the area is twice or more, for example, about 2 to 4 times (see FIGS. 1, 2 and 4 (1) and the like).
With such a large area shielding effect, that is, by the shielding effect of the electromagnetic shielding members 24 and 25 protruding in a bowl shape long in the outer peripheral side direction, the above described magnetic path c and the leakage radiation to the outside of the magnetic field are formed. (Magnetic path c shown in phantom in FIG. 1 (4) is hardly formed).

(9)この非接触給電装置13は、上記項目(6),(8)により、背面方向Bおよび側面方向Sについて、大きな密度の磁界そして強力な電磁波が、外部に漏洩,拡散,放射,伝搬される危険は、解消される。近隣周辺に悪影響を及ぼす事態は、回避される。
例えば、10m離れた地点における磁界強度を、電波法の磁界強度の許容値以下とすることも可能となる。
(9) The non-contact power feeding device 13 leaks, diffuses, radiates, and propagates a magnetic field of a large density and a strong electromagnetic wave in the back direction B and the side direction S according to the items (6) and (8). The danger of being eliminated is eliminated. An adverse effect on the neighborhood is avoided.
For example, it is also possible to make the magnetic field strength at a point 10 m apart at or below the allowable value of the magnetic field strength of the Radio Law.

(10)そしてこれは、送電コイル2や受電コイル3に、奇数個のループコイルを採用すると共に、電磁遮蔽材24,25の構成として、広い面積のものを採用したことにより、実現される。簡単な構成により、容易に実現される。
本発明の作用等については、以上のとおり。
(10) And this is realized by adopting an odd number of loop coils for the power transmission coil 2 and the power reception coil 3 and adopting a wide area as the configuration of the electromagnetic shielding members 24 and 25. It is easily realized by a simple configuration.
The operation of the present invention is as described above.

1 非接触給電装置(従来例)
2 送電コイル
3 受電コイル
4 磁心コア(本発明)
5 磁心コア(本発明)
6 電磁遮蔽材(従来例)
7 電磁遮蔽材(従来例)
8 非接触給電装置(従来例)
9 送電コイル(従来例)
10 受電コイル(従来例)
11 磁心コア(従来例)
12 磁心コア(従来例)
13 非接触給電装置(本発明)
14 送電側回路
15 バッテリー
16 受電側回路
17 給電スタンド
18 地上
19 車輌
20 高周波電源
21 モータ
22 コンバータ
23 インバータ
24 電磁遮蔽材(本発明)
25 電磁遮蔽材(本発明)
26 送電側カプラ
27 受電側カプラ
G エアギャップ
B 背面方向
S 側面方向
L ループコイル
R ソレノイドコイル
a 磁路
b 磁路
c 磁路
1 Non-contact power supply (conventional example)
2 power transmission coil 3 power reception coil 4 core core (invention)
5 Core Core (invention)
6 Electromagnetic shielding material (conventional example)
7 Electromagnetic shielding material (conventional example)
8 Non-contact power supply (conventional example)
9 Power transmission coil (conventional example)
10 Receiving coil (conventional example)
11 Core core (conventional example)
12 core core (conventional example)
13 Non-contact power supply device
14 power transmission side circuit 15 battery 16 power receiving side circuit 17 power supply stand 18 ground 19 vehicle 20 high frequency power source 21 motor 22 converter 23 inverter 24 electromagnetic shielding material (this invention)
25 Electromagnetic shielding material (invention)
26 Power transmission side coupler 27 Power reception side coupler G Air gap B Back direction S Side direction L Loop coil R Solenoid coil a Magnetic path b Magnetic path c Magnetic path

Claims (2)

電磁誘導の相互誘導作用に基づき、送電側の送電コイルから受電側の受電コイルに、エアギャップを存し非接触で近接対応しつつ電力を供給する、非接触給電装置において、
該送電コイルおよび該受電コイルは、それぞれ、円形や方形等の環状をなすループコイルよりなり、奇数個使用されると共に、ループ面外側の背面側に、平板状の磁心コアそして電磁遮蔽材が配設されており、
該磁心コアおよび該電磁遮蔽材は、該送電コイルおよび該受電コイルより大きな面積よりなると共に、同心に配置され、該電磁遮蔽材は、該磁心コアの面積の2倍以上の面積よりなり、該磁心コアは、フェライトコアよりなり、該電磁遮蔽材は、非磁性で高電導性の非鉄金属材料よりなっており、
該送電コイルおよび該受電コイルについて、それぞれ奇数個を使用したことにより、
送受電側の該磁心コアは、それぞれ、給電用磁路の形成に際し、その磁界中で磁化されて磁気的に分極する外周端部が、同極となり、
もってそれぞれ、該磁心コアの該外周端部相互間には、背面側外部に回り込む閉ループ磁路そして磁界は、形成されないので、背面方向に外部漏洩放射される虞のある磁路そして磁界は抑制され、
又、送受電側の該磁心コアは、給電に際し磁気的に分極する外周端部が、送受電間で異極となり、もって相互間にも磁路そして磁界が形成されるが、
送受電側の該電磁遮蔽材が、それぞれ、該磁心コアよりかなり広い面積よりなり、該磁心コアに対し庇状に外周側方に張り出し突出しており、もって給電に際し、側面方向に外部漏洩放射される虞のある磁路そして磁界を、遮蔽すべく機能すること、を特徴とする外部磁気遮蔽式の非接触給電装置。
A noncontact power feeding apparatus, which supplies electric power while keeping an air gap in close contact with a power receiving coil on the power receiving side from the power transmission coil on the power transmission side based on the mutual induction action of electromagnetic induction,
The power transmission coil and the power reception coil are respectively formed of an annular loop coil such as a circle or a square, and an odd number of coil coils are used, and a flat core core and an electromagnetic shielding material are arranged on the back side outside the loop surface. Is set up,
The magnetic core and the electromagnetic shielding material have a larger area than the power transmission coil and the receiving coil, and are concentrically arranged, and the electromagnetic shielding material has an area twice or more the area of the magnetic core. The core is a ferrite core, and the electromagnetic shielding material is made of a nonmagnetic and highly conductive nonferrous metal material.
By using an odd number of each of the power transmission coil and the power reception coil,
When forming the feeding magnetic path, the outer core end on the power transmission and receiving side is magnetized in the magnetic field and magnetically polarized, and the outer peripheral end becomes the same pole,
Therefore, a closed loop magnetic path and a magnetic field are not formed between the outer peripheral ends of the core cores, and the magnetic path and the magnetic field which are likely to be leaked in the back direction are suppressed. ,
Also, the magnetic core on the power transmission / reception side has an outer peripheral end magnetically polarized during power feeding, which has different poles between power transmission / reception, thereby forming a magnetic path and magnetic field between each other,
The electromagnetic shielding materials on the power transmission and reception sides each have an area much larger than that of the magnetic core, and protrude outward in the form of a bowl with respect to the magnetic core. An external magnetic shield type non-contact power supply characterized by functioning to shield a magnetic path and a magnetic field which may
請求項1において、該電磁遮蔽材は、該送電側および該受電側について、その両方に配設されることなく、そのいずれか一方のみに配設されること、を特徴とする外部磁気遮蔽式の非接触給電装置。   The external magnetic shielding type according to claim 1, wherein the electromagnetic shielding material is disposed on only one of the power transmission side and the power reception side without being disposed on both of the power transmission side and the power reception side. Contactless power supply equipment.
JP2016090025A 2016-04-28 2016-04-28 Externally shielded non-contact power supply Active JP6532086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016090025A JP6532086B2 (en) 2016-04-28 2016-04-28 Externally shielded non-contact power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016090025A JP6532086B2 (en) 2016-04-28 2016-04-28 Externally shielded non-contact power supply

Publications (2)

Publication Number Publication Date
JP2017200334A JP2017200334A (en) 2017-11-02
JP6532086B2 true JP6532086B2 (en) 2019-06-19

Family

ID=60238366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016090025A Active JP6532086B2 (en) 2016-04-28 2016-04-28 Externally shielded non-contact power supply

Country Status (1)

Country Link
JP (1) JP6532086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102281868B1 (en) * 2019-06-11 2021-07-26 주식회사 케이티앤지 Aerosol generating device including inductive coil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5688549B2 (en) * 2013-04-10 2015-03-25 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Coil module and electronic device
US9837204B2 (en) * 2013-12-17 2017-12-05 Qualcomm Incorporated Coil topologies for inductive power transfer
WO2016007674A1 (en) * 2014-07-08 2016-01-14 Witricity Corporation Resonator balancing in wireless power transfer systems
US20160013661A1 (en) * 2014-07-08 2016-01-14 Witricity Corporation Resonators for wireless power transfer systems
JP6476721B2 (en) * 2014-10-10 2019-03-06 株式会社Ihi Power receiving coil device and non-contact power feeding system

Also Published As

Publication number Publication date
JP2017200334A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP5902693B2 (en) Selectable electromagnetic shield
CN111430125A (en) Flux coupling device and magnetic structure thereof
JP4356844B2 (en) Non-contact power feeding device
US10014104B2 (en) Coil arrangements in wireless power transfer systems for low electromagnetic emissions
WO2015008662A1 (en) Foreign matter detection device and method for contactless power supply device
JP5274989B2 (en) Non-contact power feeding device
US10358045B2 (en) Methods and apparatus for wirelessly transferring power
JP6299320B2 (en) Coil unit and wireless power transmission device
JP2010093180A (en) Non-contact power supply
KR101711532B1 (en) Power receiving device, vehicle, and power transmission device
JP6303684B2 (en) Coil unit and wireless power transmission device
US20120153741A1 (en) Non-contact power feeding apparatus
JP2011258807A (en) Non-contact power feeding device
WO2015146889A1 (en) Power reception system
JP2017103461A (en) Non-contact feeding transformer
TW200832860A (en) Non-contact type power feeder system for mobile object and protecting apparatus therefor
JP2010173503A (en) Non-contact power supply device
WO2021051993A1 (en) Wireless charging device
JP2011223703A (en) Portable type non-contact power supply device
JP6003565B2 (en) Non-contact power feeding device
JP6179160B2 (en) Wireless power transmission equipment
JP6537071B2 (en) External demagnetization type non-contact power supply device
JP2013175621A (en) Magnetic sheet, transmission coil component and non-contact charging apparatus
WO2012001758A1 (en) Non-contact electric power feeding device
JP6532086B2 (en) Externally shielded non-contact power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190515

R150 Certificate of patent or registration of utility model

Ref document number: 6532086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250