JP6521744B2 - ガス絶縁開閉装置監視装置、ガス絶縁開閉装置監視方法、およびガス絶縁開閉設備 - Google Patents

ガス絶縁開閉装置監視装置、ガス絶縁開閉装置監視方法、およびガス絶縁開閉設備 Download PDF

Info

Publication number
JP6521744B2
JP6521744B2 JP2015109834A JP2015109834A JP6521744B2 JP 6521744 B2 JP6521744 B2 JP 6521744B2 JP 2015109834 A JP2015109834 A JP 2015109834A JP 2015109834 A JP2015109834 A JP 2015109834A JP 6521744 B2 JP6521744 B2 JP 6521744B2
Authority
JP
Japan
Prior art keywords
pressure
gas
insulated switchgear
temperature
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015109834A
Other languages
English (en)
Other versions
JP2016226146A (ja
Inventor
優 楯身
楯身  優
六戸 敏昭
敏昭 六戸
正志 西村
正志 西村
稲波 久雄
久雄 稲波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015109834A priority Critical patent/JP6521744B2/ja
Publication of JP2016226146A publication Critical patent/JP2016226146A/ja
Application granted granted Critical
Publication of JP6521744B2 publication Critical patent/JP6521744B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)

Description

本発明は、ガス絶縁開閉装置の内部で発生する接触不良を検出する技術に関する。
ガス絶縁開閉装置は遮断器、断路器、母線、避雷器、計器用変成器等の機器を絶縁性能の高い六フッ化硫黄ガスで封入する密閉タンクである。例えば、複数のガス絶縁開閉装置を連結し、変電所内に設置される配線を密封するのに用いられる。配線にガス絶縁開閉装置を用いることにより変電所の小型化が実現されている。ガス絶縁開閉装置は「GIS」ともいう(GIS:Gas Insulated Switch)。また、六フッ化硫黄ガスは「SFガス」ともいう。
GISは内部に、遮断器あるいは断路器など、可動部および接点を含む開閉器を封入する場合がある。開閉器は、接点が完全に接触する位置に収まらず、不完全に接触した状態になると、高い接触抵抗を持つこととなる。高い接触抵抗の部分に電流が流れると異常発熱が起こることがある。こ接触不良による異常発熱は接点を溶損させ、地絡あるいは短絡による事故の原因となる場合がある。
特許文献1は接触不良を検出する技術を開示している。特許文献1には、内部に封入されたSFガスの圧力(以下「ガス圧力」ともいう)の変化ΔPと導体の発熱量とから接触不良を検出する技術が示されている。
特開昭56−125908号公報
特許文献1で開示される技術は、短時間Δtにおける通電電流によるジュール熱が全てガス圧力を上昇させるエネルギーに反映されるという前提で異常な発熱が発生しているか否か判定している。しかしながら、実際には、ジュール熱はガス絶縁開閉装置に封入された機器および配線の温度上昇にも使われるため、ガス圧力の変化として表れるのは一部である。また、特許文献1の手法では、時間に対する電流の変化の割合が小さいとガス圧力の変化ΔPも小さくなるので、もともと電流の変化が小さいようなシステムには不向きな手法である。
本発明の目的は、ガス絶縁開閉装置内の異常を高い確度で検出する技術を提供することである。
本発明の一態様によるガス絶縁開閉装置監視装置は、複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するガス絶縁開閉装置監視装置であって、前記圧力容器内のガス圧力を取得する圧力取得手段と、ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する判定手段と、を有している。
本発明によれば、ガス絶縁開閉装置内の機器の異常を高い確度で検知することができる。
本実施形態によるガス絶縁開閉設備の概略的な物理構成を示すブロック図である。 ガス絶縁開閉装置1の全体構成の一例を示す図である。 圧力容器の断面を示す図である。 本実施形態による監視装置の概略的な機能構成を示すブロック図である。 本実施形態による監視装置の動作を示すフローチャートである。 ガス温度およびガス圧力の算出処理について説明するための図である。 ガス温度特性について説明するための図である。 20℃換算ガス圧力P20の経時変化を示すグラフである。 通電電流Iと20℃換算のガス圧力差ΔP20との関係を示すグラフである。 他の実施形態における処理の詳細処理を説明するための図である。 実測データの一例を示す図である。
本発明の実施形態について図面を参照して詳細に説明する。なお、後述する実施形態は一例であって、実施形態同士の組み合わせ、実施形態と公知又は周知の技術との組み合わせ、実施形態の一部を公知又は周知の技術で置換することができる。
図1は、本実施形態によるガス絶縁開閉設備の概略的な物理構成を示すブロック図である。図1を参照すると、本実施形態によるガス絶縁開閉設備は、ガス絶縁開閉装置1と、その監視装置100とを有している。
ガス絶縁開閉装置1は、SFガスを封入した円筒形の複数の圧力容器2a〜2cが連結された構造になっている。これらの圧力容器2a〜2cの中心部に、その同軸方向に導体の母線5が貫通している。一部の圧力容器2a〜2c(図1では圧力容器2b)の内部には、母線5だけではなく、機器6が封入されている。
機器6は一例として開閉装置すなわち接点を有する電気回路である。開閉装置の異常として接点の接触不良がある。接触不要は過剰な発熱の原因となる比較的重大な異常であるため、本実施形態ではこの接触不良を検知の対象としている。
図2は、ガス絶縁開閉装置1の全体構成の一例を示す図である。図2の例では、「001」から「0050」という多数の圧力容器2が複雑に連結されている。「001」の圧力容器2に着目すると、その中を母線5が貫通し、機器(開閉器)6が封入されている。
図1に戻り、監視装置100は、各圧力容器2の内部のガスの圧力を測定する圧力センサ3と、圧力容器2の表面の温度(以下「タンク温度」と呼ぶ)を測定するための温度センサ4と、母線5に流れる電流(以下「通電電流」と呼ぶ)を測定する電流センサ7と、各センサから出力されるアナログ信号をデジタル信号に変換するA/D変換器8と、A/D変換器8と通信線9により結ばれる処理部10と、測定したデータを記録する記録部11と、予め解析により推定した、タンク温度Ttankと、通電電流Iと、ガス温度Tgasとの相互の関係を表わす情報が予め記録されたガス温度特性データベース12と、接触不良による異常が発生したことを表示する表示部13とを有する。
図3は、圧力容器の断面を示す図である。圧力容器2は、筒状のシース21の内部にSFガス22が封入された構造である。圧力容器2内には母線5が貫通している。母線5は通電電流Iが流れる電線である。
図4は、本実施形態による監視装置の概略的な機能構成を示すブロック図である。図4を参照すると、監視装置100は、圧力センサ3、温度センサ4、および電流センサ7の他に、温度取得部10A、圧力取得部10B、および判定部10Cを有している。この温度取得部10A、圧力取得部10B、および判定部10Cは、図1における処理部10に相当する。
圧力取得部10Bは、圧力容器2内のガス圧力を取得する。判定部10Cは、ガス圧力が他の圧力容器2のガス圧力より所定の圧力差閾値以上高い圧力容器2の内部の機器6に異常が発生していると判定する。これにより、複数の圧力容器2のガス圧力の差と適切な圧力閾値との比較に基づいて圧力容器2内の機器6の異常を検知するので、機器6の異常による発熱がガス圧力の上昇にどの程度費やされるか、電流の時間変化がどの程度か等に関わりなく、機器6の異常を高い確度で検知することができる。
また、判定部10Cは、取得されるガス圧力に基づき圧力容器2からガスが漏れているか否か予め判定し、ガスが漏れていない圧力容器2について機器6に異常が発生しているか否か判定する。ガスが漏れている圧力容器2はガス圧力が低下してしまうので他の圧力容器2とのガス圧力の差によって機器6の異常を正常に検知できない。そのため、そのような圧力容器2を機器6の異常検知の対象から除外することにより、機器6の異常を高い確度で検知することを可能にしている。
また、判定部10Cは、隣り合った圧力容器2のガス圧力の差に基づき圧力容器2内の機器6の異常の有無を判定する。これにより、似通った外部環境に置かれた圧力容器2同士の内部のガス圧力の差により機器6の異常を検知するので、高い精度で機器6の異常を検知することができる。
さらに、判定部10Cは、判定対象の圧力容器2のガス圧力と判定対象の圧力容器2の両隣りの2つの圧力容器2のガス圧力との差をそれぞれ算出し、両方の差の値が圧力差閾値以上であれば、判定対象の圧力容器2内の機器6に異常が発生していると判定する。これにより、近い環境の両隣りの圧力容器2とのガス圧力の差が共に圧力差閾値以上である圧力容器2内の機器6の異常と判定するので、より高い精度で機器6の異常を検知することができる。
さらに本実施形態による監視装置100について詳細に説明する。
図5は、本実施形態による監視装置の動作を示すフローチャートである。
監視装置100は、所定の周期で、圧力センサ3で測定されるガス圧力と、温度センサ4で測定される圧力容器2のタンク温度と、電流センサ7で測定される導体(母線)5の通電電流とを収集する(ステップS1)。圧力センサ3、温度センサ4、および電流センサ7からのアナログの出力信号がA/D変換器8で各検出値を示すデジタル信号に変換されて処理部10に入力される。処理部10は、デジタル信号が示す各検出値を記録部11に格納する。
図6は、ガス温度およびガス圧力の算出処理について説明するための図である。図6にも示すように、次に監視装置100は、温度取得部10Aによって、タンク温度Ttankおよび通電電流Iに基づいて、ガス温度の一次推定値である一次推定ガス温度Tgas0を算出する(ステップS2)。その際、温度取得部10Aはガス温度特性データベース12を参照する。
ガス温度特性データベース12には予め圧力容器の寸法等を考慮して数値解析で演算されたガス温度特性のデータが格納されている。ガス温度特性は、電流Iをパラメータとしたタンク温度Ttankと一次推定ガス温度Tgas0との相関関係を示している。一次推定ガス温度Tgas0には、電流Iおよびタンク温度Ttankが安定した定常状態でのガス温度の推定値を用いている。
図7は、ガス温度特性について説明するための図である。図7(a)に、電流Iをパラメータとしたタンク温度Ttankと一次推定ガス温度Tgas0との相関関係のグラフが示されている。
ここで一例として、測定されたタンク温度TtankがT’[℃]であり、通電電流IがI’[kA]であったとする。図7(b)に示すように、電流I’は電流I1より大きく電流I2より小さい値であるとする。温度取得部10Aは、タンク温度Ttankを通電電流Iの二次曲線と想定して電流Iと電流Iの間を内挿し、その二次曲線に基づき、電流I’に対応する一次推定ガス温度Tgas0(T’,I’)を算出する。
なお、ここで二次曲線で内挿するのは、論理的には、母線5の電流による発熱量が電流の2乗に比例するためである。しかしながら、事前に、十分に細かい間隔の電流値毎にタンク温度とガス温度の相関関係を実測値として収集しておくことができれば、線形近似による補間を行ってもよい。
また、予め想定している電流Iの最大値よりも大きい電流I’が測定された場合、温度取得部10Aは、外挿によって一次推定ガス温度Tgas0を算出すればよい。
以上のように、電流Iとタンク温度Ttankから一次推定ガス温度Tgas0を得ることができる。
さらに、温度取得部10Aは、時系列に蓄積された一次推定ガス温度Tgas0をフィルタ処理することにより、ガス圧力の算出処理に用いるガス温度Tgasを算出する。
次に、監視装置100は、温度取得部10Aによって、一次推定ガス温度Tgas0をフィルタリング処理することにより、過渡的な温度推移を考慮したガス温度Tgasを算出する(ステップS3)。ここではフィルタリング処理の一例として、一次推定ガス温度Tgas0の履歴データを用いた移動平均演算を示す。系の時定数をτとした場合、時間τで算出された過去のガス温度の一次推定ガス温度Tgas0(i)(i=1,2,…,N)の平均値を算出する。
Figure 0006521744
式(1)において、N=(時定数τ)/(演算周期)である。つまり移動平均をとる時間は系の時定数に基づいて決めればよい。ここでは時定数τの範囲内の一次推定ガス温度Tgas0の平均を取る例を示したが、移動平均をとる時間範囲がこれに限定されることはない。時定数τの3倍程度までの移動平均を取ってもよい。
図3に示したような、母線5とシース21が同軸で無限に延びる圧力容器2と仮定して、誘導および輻射を無視すると、母線5、ガス22、シース21の非定常熱伝達方程式はそれぞれ式(2)(3)(4)で表わされる。
Figure 0006521744
また、母線5、ガス22、シース21の時定数はそれぞれ式(5)(6)(7)で表わされる。本実施形態では、一例として、母線5の時定数、ガス22の時定数、シース21の時定数のうち最大のものを系全体の時定数として用いる。
Figure 0006521744
上記各式における記号およびその添字は以下の通りである。
<記号>
T 温度[K]
ρ 密度[kg/m3]
c 比熱[J/kg・K]
V 体積[m3]
h 熱伝達率[W/(m2K)]
S 面積[m2]
t 時間[s]
I 電流[kA]
<添字>
a 導体
g ガス
th シース
b シース内表面
c シース外表面
∞ 外気
次に、監視装置100は、圧力取得部10Bにより、各圧力容器2内のSFガスのモル体積v[m/mol]を算出する(ステップS4)。その際、圧力取得部10Bは、各圧力容器2について、Beattie−Bridgemanの状態方程式を解くことにより、SFガスのモル体積vを算出する。
Figure 0006521744
A=1.578
B=0.1062×10-3
C=0.366×10-3
D=0.1236×10-3
R=8.3143 J/(mol・K)
続いて、圧力取得部10Bは、所定の基準温度に換算したガス圧力を算出する(ステップS5)。ここでは一例として基準温度を20℃とする。圧力取得部10Bは式(11)を用いて20℃の基準温度に換算したガス圧力P20を算出する。
Figure 0006521744
監視装置100は、計測あるいは算出した電流I、タンク温度Ttank、一次推定ガス温度Tgas0、ガス温度Tgas、20℃換算ガス圧力P20にタイムスタンプを付けて記録部11に保存する。
監視装置100は、判定部10Cによって、記録部11に蓄積された20℃換算ガス圧力P20のうち夜間の所定時刻のタイムスタンプが付されたデータを1日の代表値として抽出し、その代表値による回帰曲線P20=a×t+bの傾きaと切片bを算出する(ステップS6)。
図8は、20℃換算ガス圧力P20の経時変化を示すグラフである。図8のグラフは横軸が時間[年]、縦軸が20℃換算ガス圧力P20である。ガス漏れがなければ、モル体積は基本的には一定なので、温度を一定に換算するとガス圧力も基本的には一定である。ガス漏れが発生している圧力容器2では、この20℃換算ガス圧力P20の減少が大きくなる。夜間のデータを用いるのは、日毎の日射量の違いの影響を受けにくい、誤差の少ないデータで判定を行うためである。
判定部10Cは、各圧力容器2について切片bを基準とした傾き((a/b)×100[%])が閾値(−0.5%/年)よりも小さいか否か判定する(ステップS7)。傾き((a/b)×100[%])が閾値(−0.5%/年)よりも小さければ、判定部10Cは、その圧力容器2からSFガスが漏れていると判定し、表示部13に警報を表示する(ステップS8)。
一方、傾き((a/b)×100[%])が閾値(−0.5%/年)以上であれば、判定部10Cは、圧力容器2にガス漏れが発生していないと判定し、全ての区画の圧力容器2のガス圧力を取得する(ステップS9)。
そして、ステップS9の後、判定部10Cは、内部に機器6を備える圧力容器2(判定対象)のガス圧力と、他の圧力容器2のガス圧力との差ΔPを算出する(ステップS10)。続いて、判定部10Cは、ガス圧力差ΔPが閾値Pth以上であるか否か判定する(ステップS11)。
内部の機器6に接触不良が発生している圧力容器2では接触不良によって母線5の抵抗値が増大するが、それ以外の条件は圧力容器2間で一致しているとする。理想気体と仮定するとPV=nRTが成立するため、圧力容器2間の母線5の抵抗の差に依存する温度差ΔTに応じた圧力差ΔPが圧力容器2間で発生する。ΔPは温度差ΔTに比例するので、開閉器に接触不良が生じて接点の接触抵抗が高くなった場合、高くなった抵抗値に比例してジュール熱が増加し、圧力差ΔPが拡大する。
そこで、監視装置100は、内部に開閉器等の機器6が存在する圧力容器2を判定対象として、20℃換算ガス圧力P20と、同じ大きさの電流の流れるその他の圧力容器2の20℃換算ガス圧力P20bとの差ΔP20=P20−P20bを計算し、それを閾値Pthと比較する。
図9は、通電電流Iと20℃換算のガス圧力差ΔP20との関係を示すグラフである。閾値Pthは通電電流Iの一次関数である。機器6に異常がなければ、ガス圧力差ΔP20は閾値Pthを超えない。一方、機器6に異常があれば、ガス圧力差ΔP20は閾値Pthを超える。
ガス圧力差ΔPが閾値Pth以上であれば、判定部10Cは、判定対象の圧力容器2内の機器6にて接触不良による異常が発生していると判定し、表示部13に警報を表示する(ステップS12)。一方、ガス圧力差ΔPが閾値Pth以上でなければ、監視装置100はステップS1に戻って監視を継続する。
図2には、判定部10Cが異常を検知して表示部13に警報を表示したときの表示例が示されている。図2の例では、ガス絶縁開閉装置1の全ての圧力容器2と、それぞれの圧力容器2に一意に付与された番号が図示されている。図2の例には、圧力容器「013」に異常が検知され、表示部13ではその異常が発生している部分がブリンク表示等で強調表示されている様子が示されている。
上述のように、本実施形態における20℃換算ガス圧力差ΔP20の閾値Pthは通電電流Iの関数で表わされる。判定部10Cは、ガス圧力差ΔP20と、そのガス圧力差ΔP20を算出するのに用いられたガス圧力Pが圧力センサ3で測定されたときに電流センサ7で測定された通電電流Iを用いてその関数から算出された圧力差閾値Pthと、を比較する。これにより、通電電流Iの値に応じた圧力差閾値Pthを用いることができるので、通電電流Iが変化するシステムにおいても高い精度で機器の異常を検知することができる。
また、上述のように、本実施形態では、圧力取得部10Bは、圧力センサ3で測定されたガス圧力Pに基づき、温度取得部10Aで取得されたガス温度を所定の基準ガス温度(20℃)に換算したガス圧力P20を算出する。そして、判定部10Cは、換算後のガス圧力の差ΔP20を圧力差閾値Pthと比較する。これにより、ガス温度Tによるガス圧力Pの変動による誤差を除去し、高い精度でガス圧力に基づき計算を行うことができる。
なお、本実施形態では、20℃換算ガス圧力差ΔP20を閾値Pthと比較して異常検知を行う例を示したが、これに限定されることはなく、他の方法を用いて異常を検知してもよい。他の例では、監視装置100は、20℃換算ガス圧力差ΔP20の通電電流Iに対する値を算出し、図9に示したように、通電電流Iを横軸とし20℃換算ガス圧力差ΔP20を縦軸とするグラフにプロットする。そして、監視装置100は、回帰曲線をΔP20=K1*I+K2として、最小二乗法により、傾きK1と切片K2とを求める。更に、監視装置100は、傾きK1が所定の傾き閾値Kg以上であるか否か判定し、傾きK1が閾値Kg以上であれば、機器6の接点が接触不良であるとして、異常の警報を表示部13に表示させる。
次に、他の実施形態について説明する。
図10は、他の実施形態における処理の詳細処理を説明するための図である。
圧力取得部10Bは、温度取得部10Aが取得したガス温度Tgasと、圧力取得部10B自身が取得したガス圧力Pとに基づいて、圧力容器2内のガスのモル体積vを算出し、そのモル体積vに基づいて、ガス温度Tgasを基準ガス温度(20℃)に換算したガス圧力である20℃換算ガス圧力P20を算出する。また、温度取得部10Aは、モル体積vに基づいて算出した補正係数を用いて、圧力取得部10Bの入力となるガス温度Tgasを補正する。これによれば、基準ガス温度に換算したガス圧力を、モル体積の変動をフィードバックすることで補正したガス温度Tgasを用いて算出するので、実測結果に基づく補正によりガス圧力の精度を高め、機器6の異常検知の確度を高めることができる。
以下、より詳細に説明する。
温度取得部10Aは、図6を用いて説明したのと同じ方法で、測定されたタンク温度Ttankと電流Iに基づいて、一次推定ガス温度Tgas0を算出する。図10の構成では図6と異なるのは、温度取得部10Aがフィルタ処理ではなく実測に基づいて一次推定ガス温度Tgas0を補正してガス温度Tgasを算出する点である。温度取得部10Aは、式(12)によりガス温度の補正値ΔT=ΔT(i)(i=1,・・・,N)を算出し、一次推定ガス温度Tgas0から補正値ΔTを減算することにより、補正後のガス温度Tgasを算出する。
Figure 0006521744
温度取得部10Aは、式(12)の比例定数Kを、初期値K0=K(0)=・・・K(M)=K(0)=・・・K(M)=0とした所定期間のフィードバックによって補正して精度を高めていく。例えば所定期間の1年をかけて比例定数Kを決定した後は、温度取得部10Aは比例定数Kを固定して運用する。
以下、比例定数Kのフィードバックによって補正して決定する方法について説明する。
温度取得部10Aは、まず、本日を除く過去N日分のモル体積v(1),・・・,v(N)のデータを記録部11から取得する。図11は、実測データの一例を示す図である。図11では、現在時刻(16:00)から所定時間(3時間)内の過去のタンク温度Ttankと電流Iが太線で囲われている。モル体積v(1),・・・,v(N)は、この太線で囲われた実測データに基づいて算出された値である。
次に、温度取得部10Aは、取得したモル体積v(1),・・・,v(N)の平均値vを算出し、これをモル体積の真値とみなす。図8の説明で上述したように、ガス漏れがなければ、モル体積は基本的には一定なので、この平均値vを真値とみなすことができる。
次に、温度取得部10Aは、取得した過去のモル体積v(1),・・・,v(N)の誤差を算出する。モル体積の誤差の算出式は式(13)である。
Figure 0006521744
続いて、温度取得部10Aは式(14)により、モル体積の誤差Δv(i)のガス温度推定誤差ΔT(i)に対する比例定数K(T,v,P)を算出する。
Figure 0006521744
式(14)の((C+2v)RT−A−3Pv)/(CD−vC−v)Rの部分がKである。そして、温度取得部10Aは、記録部11から過去N日分の電流Iとタンク温度Ttankを取得し、式(15)に基づいてKの補正値ΔK=(ΔK,ΔK(0),・・・,ΔK(M),ΔK(0),・・・,ΔK(M))を算出する。
Figure 0006521744
上述した本発明の実施形態は、本発明の説明のための例示であり、本発明の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。
1…ガス絶縁開閉装置、10…処理部、100…監視装置、10A…温度取得部、10B…圧力取得部、10C…判定部、11…記録部、12…ガス温度特性データベース、13…表示部、2…圧力容器、21…シース、22…ガス、2a…圧力容器、2b…圧力容器、3…圧力センサ、4…温度センサ、5…導体(母線)、6…機器、7…電流センサ、9…通信線

Claims (12)

  1. 複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するガス絶縁開閉装置監視装置であって、
    前記圧力容器内のガス圧力を取得する圧力取得手段と、
    ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する判定手段と、
    を有し、
    前記判定手段は、取得される前記ガス圧力に基づき前記圧力容器からガスが漏れているか否か予め判定し、ガスが漏れていない圧力容器について前記機器に異常が発生しているか否か判定する、ガス絶縁開閉装置監視装置。
  2. 複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するガス絶縁開閉装置監視装置であって、
    前記圧力容器内のガス圧力を取得する圧力取得手段と、
    ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する判定手段と、
    を有し、
    前記判定手段は、判定対象の圧力容器のガス圧力と前記判定対象の圧力容器の両隣りの2つの圧力容器のガス圧力との差をそれぞれ算出し、両方の前記差の値が前記圧力差閾値以上であれば前記判定対象の圧力容器内の前記機器に異常が発生していると判定する、ガス絶縁開閉装置監視装置。
  3. 複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するガス絶縁開閉装置監視装置であって、
    前記圧力容器内のガス圧力を取得する圧力取得手段と、
    ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する判定手段と、
    前記圧力容器の内部のガス圧力を測定する圧力センサと、
    複数の前記圧力容器を通る母線に流れる通電電流を測定する電流センサと、
    前記圧力容器内のガス温度を取得する温度取得手段とを有し、
    前記圧力差閾値は通電電流の関数で表わされ、
    前記圧力取得手段は、前記圧力センサで測定されたガス圧力に基づき、前記温度取得手段で取得されたガス温度を所定の基準ガス温度に換算したガス圧力を算出し、
    前記判定手段は、換算後の該ガス圧力の差を、該ガス圧力の差を算出するのに用いられたガス圧力が前記圧力センサで測定されたときに前記電流センサで測定された通電電流を用いて前記関数から算出された前記圧力差閾値と比較する
    ス絶縁開閉装置監視装置。
  4. 前記圧力容器の表面のタンク温度を測定する温度センサを更に有し、
    前記温度取得手段は、前記タンク温度と前記通電電流に基づき前記ガス温度を算出する、
    請求項に記載のガス絶縁開閉装置監視装置。
  5. 前記圧力取得手段は、前記温度取得手段が取得した前記ガス温度と、前記圧力取得手段自身が取得した前記ガス圧力とに基づいて、前記圧力容器内のガスのモル体積を算出し、前記モル体積に基づいて、前記ガス温度を前記基準ガス温度に換算した前記ガス圧力を算出し、
    前記温度取得手段は、前記モル体積に基づいて算出した補正係数を用いて前記ガス温度を補正する、
    請求項に記載のガス絶縁開閉装置監視装置。
  6. 前記判定手段は、隣り合った圧力容器のガス圧力の差に基づき前記圧力容器内の前記機器の異常の有無を判定する、請求項1、3〜5のいずれか1項に記載のガス絶縁開閉装置監視装置。
  7. 前記圧力容器の内部のガス圧力を測定する圧力センサと、
    複数の前記圧力容器を通る母線に流れる通電電流を測定する電流センサと、を更に有し、
    前記圧力差閾値は通電電流の関数で表わされ、
    前記判定手段は、前記ガス圧力の差と、該ガス圧力の差を算出するのに用いられたガス圧力が前記圧力センサで測定されたときに前記電流センサで測定された通電電流を用いて前記関数から算出された前記圧力差閾値と、を比較する、
    請求項1または2に記載のガス絶縁開閉装置監視装置。
  8. 前記機器は接点を有する電気回路であり、
    前記機器の異常は前記接点における接触不良である、
    請求項1〜7のいずれか1項に記載のガス絶縁開閉装置監視装置。
  9. 複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するためのガス絶縁開閉装置監視方法であって、
    圧力取得手段が、前記圧力容器内のガス圧力を取得し、
    判定手段が、ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する、ガス絶縁開閉装置監視方法において、
    前記判定手段は、取得される前記ガス圧力に基づき前記圧力容器からガスが漏れているか否か予め判定し、ガスが漏れていない圧力容器について前記機器に異常が発生しているか否か判定する、ガス絶縁開閉装置監視方法。
  10. 前記判定手段は、隣り合った圧力容器のガス圧力の差に基づき前記圧力容器内の前記機器の異常の有無を判定する、請求項に記載のガス絶縁開閉装置監視方法。
  11. 複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置と、
    前記圧力容器内のガス圧力を取得し、ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する監視装置と、
    を有し、
    前記監視装置は、取得される前記ガス圧力に基づき前記圧力容器からガスが漏れているか否か予め判定し、ガスが漏れていない圧力容器について前記機器に異常が発生しているか否か判定する、ガス絶縁開閉設備。
  12. 前記監視装置は、隣り合った圧力容器のガス圧力の差に基づき前記圧力容器内の前記機器の異常の有無を判定する、請求項11に記載のガス絶縁開閉設備。
JP2015109834A 2015-05-29 2015-05-29 ガス絶縁開閉装置監視装置、ガス絶縁開閉装置監視方法、およびガス絶縁開閉設備 Active JP6521744B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015109834A JP6521744B2 (ja) 2015-05-29 2015-05-29 ガス絶縁開閉装置監視装置、ガス絶縁開閉装置監視方法、およびガス絶縁開閉設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015109834A JP6521744B2 (ja) 2015-05-29 2015-05-29 ガス絶縁開閉装置監視装置、ガス絶縁開閉装置監視方法、およびガス絶縁開閉設備

Publications (2)

Publication Number Publication Date
JP2016226146A JP2016226146A (ja) 2016-12-28
JP6521744B2 true JP6521744B2 (ja) 2019-05-29

Family

ID=57746059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109834A Active JP6521744B2 (ja) 2015-05-29 2015-05-29 ガス絶縁開閉装置監視装置、ガス絶縁開閉装置監視方法、およびガス絶縁開閉設備

Country Status (1)

Country Link
JP (1) JP6521744B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7018704B2 (ja) 2016-11-21 2022-02-14 株式会社細川洋行 自立袋の製造方法
CN109256859A (zh) * 2018-10-17 2019-01-22 国家电网有限公司 一种电力开关柜监测***
WO2020136881A1 (ja) * 2018-12-28 2020-07-02 株式会社東芝 診断装置、診断方法、及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027830A (ja) * 1988-06-23 1990-01-11 Nissin Electric Co Ltd ガス絶縁式電気設備の監視装置
JPH09121414A (ja) * 1995-10-25 1997-05-06 Ishikawajima Harima Heavy Ind Co Ltd ガス絶縁開閉装置の封入ガス監視方法及び装置
JPH09200918A (ja) * 1996-01-18 1997-07-31 Nissin Electric Co Ltd 電気機器の内部過熱異常診断方法
JP4628857B2 (ja) * 2005-05-02 2011-02-09 三菱電機株式会社 スローリーク検出装置

Also Published As

Publication number Publication date
JP2016226146A (ja) 2016-12-28

Similar Documents

Publication Publication Date Title
CN103854446B (zh) 一种高压开关柜动态温升诊断报警方法和装置
JP6514598B2 (ja) ガスリーク検知装置およびガスリーク検知方法
CN106918778B (zh) 用于中压开关设备中的松接头检测的方法和中压开关设备
CN102830319B (zh) 一种氧化锌避雷器绝缘状态带电检测装置及方法
JP6521744B2 (ja) ガス絶縁開閉装置監視装置、ガス絶縁開閉装置監視方法、およびガス絶縁開閉設備
WO2016038908A1 (ja) ガスリーク検知装置およびガスリーク検査方法
KR101604110B1 (ko) 비접촉 반도체형 통합 온습도 센서를 이용한 수배전반의 부스바 통합 관리 시스템
JP4628857B2 (ja) スローリーク検出装置
CN108181000A (zh) 一种基于gis壳体测温的断路器触头温升检测方法
JP2014532388A (ja) オンライン電気回路の定数測定による電力設備状態の監視システム及び方法
KR101515478B1 (ko) 자기센서에 의한 아크검출 방법 및 이를 이용한 아크발생 보호 수배전반
CN111458652A (zh) 直流充电桩的故障确定方法、装置和设备
KR20150043162A (ko) 실시간 육불화황 가스 모니터링 장치 및 방법
US12009160B2 (en) Monitoring method for an electric power transmission device
JP4977481B2 (ja) 絶縁監視装置
KR102260550B1 (ko) 운전 중인 전력설비 내부 전기회로정수 측정에 의한 설비 건전상태 감시 방법
KR101778102B1 (ko) 전력설비 종합예방진단용 그래픽 사용자 인터페이스를 제공하는 방법 및 전력설비 종합예방진단시스템
KR101412498B1 (ko) 과부하와 누설전류를 이용한 배전반 열화 진단장치
CN104568211A (zh) 开关柜触头和母排连接点温升在线监测装置及工作方法
CN204422095U (zh) 开关柜触头和母排连接点温升在线监测装置及***
Paul et al. Averting Failure of Pre-Insertion Resistor in Circuit Breaker Through Preventive Maintenance
Farzanehrafat et al. Review of power quality state estimation
KR102419753B1 (ko) 운전 중인 전력설비 내부 전기회로정수 측정에 의한 설비 건전상태 감시 방법
Gasiyarov et al. Substantiation of on-line monitoring methods for surge arrestors of closed 110 kV switchgear
US20230341473A1 (en) A method for monitoring an electrical power transmission system and an associated device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R150 Certificate of patent or registration of utility model

Ref document number: 6521744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150