JP6520623B2 - Method of predicting alkali spill risk on land site - Google Patents

Method of predicting alkali spill risk on land site Download PDF

Info

Publication number
JP6520623B2
JP6520623B2 JP2015196638A JP2015196638A JP6520623B2 JP 6520623 B2 JP6520623 B2 JP 6520623B2 JP 2015196638 A JP2015196638 A JP 2015196638A JP 2015196638 A JP2015196638 A JP 2015196638A JP 6520623 B2 JP6520623 B2 JP 6520623B2
Authority
JP
Japan
Prior art keywords
max
soil
alkali
correlation
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015196638A
Other languages
Japanese (ja)
Other versions
JP2017066827A (en
Inventor
晴彦 篠崎
晴彦 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015196638A priority Critical patent/JP6520623B2/en
Publication of JP2017066827A publication Critical patent/JP2017066827A/en
Application granted granted Critical
Publication of JP6520623B2 publication Critical patent/JP6520623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

この発明は、アルカリ性物質を溶出して地下水中にアルカリを流出させるリスクのある土木資材(以下、「アルカリ性資材」という。)を陸上現場で使用するに際し、この陸上現場の土壌のアルカリ吸着を考慮したコンピュータシミュレーションにより、雨水等によるアルカリ流出リスクを予測する方法に関する。   The present invention takes into consideration the alkali adsorption of the soil on the land when using a civil engineering material (hereinafter referred to as "alkaline material") which has the risk of leaching the alkaline substance and causing alkali to flow out to the ground water. The present invention relates to a method of predicting the risk of alkaline runoff due to rainwater or the like by computer simulation.

陸上での土木工事には、道路土工、地盤改良工、舗装工、仮設工等の道路工事を始めとして、重機や車両の走行性改善のための仮設道路、駐車場、資材置場、林道等において行われる簡易舗装や、土地の嵩上げや軟弱地盤の改良等を目的とした盛土、覆土等、様々な工事がある。そして、このような土木工事においては、砂利等の土木資材を単に敷き詰めただけで、表面が被覆されることなく、土木資材がそのまま外気に露出されたままにされることが多々ある。   For civil engineering work on land, including road construction such as road earthwork, ground improvement work, paving work, temporary construction work, etc., temporary construction roads, parking lots, material storage areas, forest roads, etc. for improving the travelability of heavy machinery and vehicles. There are various constructions such as simple paving to be carried out, embankment for the purpose of raising the land and improvement of soft ground, covering soil and so on. And, in such civil engineering works, there are many cases in which civil engineering materials are left exposed to the outside air as they are without covering the surface only by simply laying civil engineering materials such as gravel.

一方、このような土木工事で用いられる土木資材としては、岩石を破砕して得られる砕石、山砂等の天然資源や、建設副産物等として発生するコンクリート塊やアスファルトコンクリート塊を破砕して得られる再生砕石、製鉄所から副生する鉄鋼スラグ等のリサイクル材料があるが、天然資源については、良質な材料の枯渇や自然保護意識の高まり等により、簡易舗装や嵩上げ盛土等の用途にはリサイクル材料の利用が推進されている。特に、リサイクル材料のうちの鉄鋼スラグについては、締固め特性が良好で高い支持力が得られることから、陸上現場において、道路用路盤材、軟弱地盤上の仮設道路、資材置場、嵩上げ盛土等の用途に多く用いられている。   On the other hand, as civil engineering materials used in such civil engineering work, natural resources such as crushed stone obtained by crushing rocks, natural sand such as mountain sand, and concrete lumps and asphalt concrete lumps generated as construction by-products are obtained by crushing There are recycled materials such as recycled crushed stone and iron and steel slag by-produced from steelworks. With regard to natural resources, recycled materials are used for applications such as simple paving and raised embankments due to exhaustion of high-quality materials and rising awareness of natural protection. The use of is being promoted. In particular, steel slag among recycled materials has good compaction characteristics and high support strength, so road grounds for road, temporary roads on soft ground, material storage, bulking embankment etc. It is often used for applications.

しかしながら、リサイクル材料には、例えば鉄鋼スラグや再生砕石等のようにカルシウム成分等のアルカリ性物質が含まれていることが多々あり、降雨時や防塵目的の散水時に雨水等によりリサイクル材料からアルカリが溶出し、数十年あるいは数百年の長期間の間には、アルカリ水が地下に浸透し、地下水のpHを上昇させるリスクが懸念される。   However, recycled materials often contain alkaline substances such as calcium components such as steel slag and regenerated crushed stone, etc. Alkali is eluted from recycled materials by rain water etc. when raining or when watering for dustproof purposes. There is a concern that alkaline water may penetrate underground and raise the pH of groundwater during long periods of several decades or hundreds of years.

そこで、本発明者は、先に、アルカリ性物質を溶出して地下水中にアルカリ(OH-)を流出させるリスクのあるアルカリ性資材として鉄鋼スラグを例にし、土壌汚染や地下水汚染等の解析ツールとして、下記の式(1)を基本方程式とする移流分散解析の手法を用い、また、現場土壌の分配係数kdを非特許文献2に記載された方法(以下、「非特許文献2の方法」という。)に従ってアルカリ吸着試験により実験的に求め、アルカリ流出リスクを予測した(非特許文献1)。

Figure 0006520623
The present inventor has previously alkali groundwater eluting an alkaline substance (OH -) and iron and steel slag as an example as an alkaline material at risk to flow out, as an analysis tool, such as soil contamination and groundwater contamination, Using the method of advection dispersion analysis with the following equation (1) as the basic equation, and the distribution coefficient k d of the in-situ soil described in Non-patent document 2 (hereinafter referred to as “method in Non-patent document 2” According to the above, it was experimentally determined by the alkali adsorption test to predict the alkali outflow risk (non-patent document 1).
Figure 0006520623

「pHシミユレーション技術を用いた鉄鋼スラグの土木利用におけるアルカリ流出のリスク評価」新日鉄住金技報第399号(2014年)、第10〜13頁"Risk assessment of alkali spill in civil engineering use of steel slag using pH simulation technology" Nippon Steel & Sumitomo Metal Technical Report No. 399 (2014), pages 10-13 嘉門 雅史、勝見 武、大山 将「セメント・石灰幸定処理発生土の環境要因としてのアルカリ溶出とその制御」第7回廃棄物学会研究発表会講演論文集、pp218-221(1996)Kamon, Masashi, Katsumi, Takeshi, Oyama, Masaru "Alkali leaching as an environmental factor of soil generated by cement and lime treatment and its control" Proceedings of the 7th Annual Conference of the Japan Society for Waste Management, pp. 218-221 (1996)

しかるに、移流分散解析の基礎方程式(1)では、土壌のアルカリ吸着現象を物質の移動の遅れとして扱い、それを下記の式(7)
R=1+(ρd/θ)kd…(7)
(但し、式中、θは体積含水率であり、ρdは土粒子密度であり、また、kdは飽和土に対する分配係数である。)
で表わされる遅延係数Rでモデル化するためには、現場土壌の分配係数kdを求めることが必要になる。なお、分配係数kdとは、対象物質の溶液中の濃度(今回の場合、土壌の間隙水の濃度)に対する土壌に吸着される物質の量の比である。
However, in the basic equation (1) of advection dispersion analysis, the alkaline adsorption phenomenon of the soil is treated as a delay in the movement of matter, which is expressed by the following equation (7)
R = 1 + (ρd / θ) k d (7)
(Wherein, θ is the volume moisture content, ρ d is the soil particle density, and k d is the partition coefficient for saturated soil)
To model in in delay factor represented R, it is necessary to determine the distribution coefficient k d of the field soil. Note that the distribution coefficient k d, (the present case, the concentration of the interstitial water of the soil) concentration in the solution of the target substance is the ratio of the amount of the substance to be adsorbed to the soil against.

そして、この現場土壌の分配係数kdを求める方法としては、吸着モデルとして、下記のフロインドリッヒによる吸着等温式(2)
d=kCa…(2)
(但し、式中、Cは間隙水中の物質濃度であり、kは分配係数kdを求める際の定数であり、また、aは分配係数kdを求める際の定数である。)
があり、このフロインドリッヒによる吸着等温式(2)の分配係数kdについては、現場土壌を用いたアルカリ吸着試験により実験的に求める必要があり、このアルカリ吸着試験には極めて多くの操作と時間とを要する。
Then, as a method for determining the distribution coefficient k d of the field soil, as an adsorption model, following Freundlich by adsorption isotherm (2)
k d = kC a (2)
(Wherein, C is the concentration of the substance in the pore water, k is a constant for determining the distribution coefficient k d , and a is a constant for determining the distribution coefficient k d )
The partition coefficient k d of the adsorption isotherm (2) by Freundrich needs to be determined experimentally by an alkaline adsorption test using in-situ soil, and this alkaline adsorption test requires a large number of operations and time. And

すなわち、現場土壌の分配係数kdを非特許文献2の方法に従ってアルカリ吸着試験により実験的に求める際には、先ず土壌とアルカリ溶液(アルカリ性資材から現場土壌に浸透するアルカリ溶液水)とを混合し、アルカリ溶液中のアルカリ性物質が土壌に吸着されてそれ以上は吸着されなくなるまで(平衡になるまで)十分に接触させ、その後にアルカリ溶液のpH値を測定する操作を、所定の面積当り同一の種類と考えられる土壌を複数個所から採取し、それぞれ各土壌の質量とアルカリ溶液の濃度及び質量の組み合わせを様々に変更しながら、土壌にアルカリ溶液中のアルカリ物質が吸着しなくなるまで実施し、このようにして得られた多数のデータから平衡時のアルカリ溶液のアルカリ量(濃度:mol/g)と吸着アルカリ量(OH-mol/g)との関係(グラフ図及び/又は関係式)を求め、この関係から当該現場土壌の分配係数kdを求めることが必要になる。このため、アルカリ性資材を陸上現場で使用する際には、現場土壌のアルカリ吸着を考慮した移流分散解析を用いるコンピュータシミュレーションにより雨水等によるアルカリ流出リスクを予測するためには、極めて多くの手間と時間とを要することになる。 That is, when experimentally determined by alkaline adsorption test according to the distribution coefficient k d of the field soil in Non-Patent Document 2 method, first, soil and alkaline solution (alkaline solution water from penetrating from the alkaline material in situ soil) and the mixture Contact with the soil until the alkaline substance in the alkaline solution is adsorbed to the soil and no longer adsorbed (until equilibrium), and then the operation of measuring the pH value of the alkaline solution is the same per predetermined area The soil which is considered to be a kind of soil is collected from a plurality of places, and various combinations of the mass of each soil and the concentration and mass of the alkaline solution are carried out until the alkaline substance in the alkaline solution is not adsorbed to the soil. The relationship between the alkali amount (concentration: mol / g) and the adsorbed alkali amount (OH - mol / g) of the alkali solution at equilibrium from a large number of data thus obtained (Graphs and / or relational expression) is obtained, consisting of this relationship is necessary to determine the distribution coefficient k d of the field soil. Therefore, when alkaline materials are used on land, it is necessary to use a large amount of labor and time to predict the risk of alkaline runoff due to rain water or the like by computer simulation using advection dispersion analysis taking into account the alkaline adsorption of the on-site soil. And will be required.

そこで、本発明者は、移流分散解析で用いる遅延係数Rを求める際に必要な現場土壌の分配係数kdを簡便に予測する方法について、できれば上記のアルカリ吸着試験を行うことなく簡便に求める方法について、様々な種類の土壌を用いて様々な観点から数多くの検討を行った。そして、このような検討を進める中で、以下のような知見を得た。 Therefore, the present inventor can easily obtain the method of easily predicting the distribution coefficient k d of the on-site soil necessary for obtaining the delay coefficient R used in advection dispersion analysis, preferably without performing the above-mentioned alkali adsorption test. A number of studies were conducted from various points of view using various types of soil. And while advancing such an examination, the following findings were obtained.

すなわち、第1に、土壌のアルカリ吸着モデルがフロインドリッヒ型の吸着等温式で表現できることを知見し、また、第2に、土壌の最大アルカリ吸着能Cmax(mol/g)と、フロインドリッヒ吸着等温式(2)により土壌の分配係数kdを求める際に必要な定数kとの間には一定の相関関係〔Cmax−k相関関係〕が存在し、このCmax−k相関関係を用いて最大アルカリ吸着能Cmaxから定数kを予測できることを見出し、更に、第3に、土壌の最大アルカリ吸着能Cmaxと、フロインドリッヒ吸着等温式(2)により土壌の分配係数kdを求める際に必要な定数aとの間には一定の分布領域〔Cmax−a分布領域〕が存在し、このCmax−a分布領域の中から定数aとして分配係数を小さくに評価できるように安全な値を選ぶことにより評価可能なことを見出した。そして、Cmax−k相関関係から予測された定数kとCmax−a分布領域の中から安全値として採用された定数aとを用いることにより、現場土壌の分配係数kdを予測することができることを見出した。 That is, firstly, it was found that the alkaline adsorption model of soil can be expressed by a Freundlich-type adsorption isotherm, and secondly, the maximum alkaline adsorption capacity C max (mol / g) of soil and Freundrich adsorption A constant correlation [C max -k correlation] exists between the constant k necessary to determine the soil distribution coefficient k d by the isothermal equation (2), and this C max -k correlation is used. found to be able to predict the constant k from the maximum alkali adsorption capacity C max Te, further, the third, and a maximum alkali adsorption capacity C max of the soil, when obtaining the distribution coefficient k d of the soil by Freundlich adsorption isotherm (2) There is a constant distribution region [C max -a distribution region] between the constant a required for this, and it is safe to be able to evaluate the distribution coefficient as a constant a small from among this C max -a distribution region Can be evaluated by choosing a value I found the door. Then, by using the constant k predicted from the C max -k correlation and the constant a adopted as a safety value from the C max -a distribution region, it is possible to predict the distribution coefficient k d of the in-situ soil I found out what I could do.

更に、土壌の最大アルカリ吸着能Cmax(mol/g)に関して、以下のような知見を得た。
すなわち、第4に、現場土壌が10%粒径D10(JIS A 1204)0.0001mm以上の土壌である場合には、JIS A 1204(土の粒度試験方法)に準拠して測定し求められた粒度指標DS(mm)と最大アルカリ吸着能Cmaxとの間に一定の相関関係〔DS−Cmax相関関係〕が存在し、土壌の粒度指標DS(mm)を測定することにより最大アルカリ吸着能Cmaxを予測できることを見出し、また、第5に、現場土壌がJIS A 1205(土の液性限界・塑性限界試験方法)の適用が可能であるJIS A 1205試験適用可能な土壌の場合には、JIS A 1205(土の液性限界・塑性限界試験方法)に準拠して測定された液性限界LL(%)又は塑性限界LS(%)と最大アルカリ吸着能Cmaxとの間に一定の相関関係〔LL−Cmax相関関係又はLS−Cmax相関関係〕が存在し、土壌の液性限界LL(%)及び/又は塑性限界LS(%)を測定することにより最大アルカリ吸着能Cmaxを予測できることを見出した。そして、これらDS−Cmax相関関係、LL−Cmax相関関係、又はLS−Cmax相関関係から予測された最大アルカリ吸着能Cmaxの予測値(Cmax予測値)を用いて、フロインドリッヒ吸着等温式(2)から現場土壌の分配係数kdを求める際に必要な定数kを求め、また、定数aを決定することができ、その結果、現場土壌の分配係数kdを予測することができることを見出した。
Furthermore, the following findings were obtained regarding the maximum alkali adsorption capacity C max (mol / g) of the soil.
That is, fourthly, in the case where the on-site soil is a soil having a 10% particle diameter D 10 (JIS A 1204) of 0.0001 mm or more, it is determined by measurement in accordance with JIS A 1204 (soil particle size testing method). There is a fixed correlation [D S -C max correlation] between the particle size index D S (mm) and the maximum alkaline adsorption capacity C max, and by measuring the particle size index D S (mm) of the soil It is found that the maximum alkaline adsorption capacity C max can be predicted, and fifthly, the soil that can be applied to the in-situ JIS A 1205 test method in which JIS A 1205 (a liquid limit of plasticity / plastic limit test method of soil) is applicable In the case of the following, the liquid limit L L (%) or the plastic limit L S (%) and the maximum alkali adsorption capacity C max measured according to JIS A 1205 (Method of testing for the limit of liquid nature and plasticity of soil) certain correlation [L L -C max correlation or L S -C max correlation] is present between the soil of liquid limit L L (%) and / or It found to be able to predict the maximum alkali adsorption capacity C max by measuring sexual limit L S (%). Then, using the predicted value (C max predicted value) of the maximum alkali adsorption capacity C max predicted from the D S -C max correlation, the L L -C max correlation, or the L S -C max correlation The constant k necessary for determining the in-situ distribution coefficient k d can be determined from the Freundrich adsorption isotherm (2), and the constant a can be determined. As a result, the in-situ distribution coefficient k d can be predicted. I found that I could do it.

本発明は、以上のような知見の下になされたものであり、アルカリ性資材を陸上現場で使用する際に、陸上現場の土壌(現場土壌)のアルカリ吸着を考慮した移流分散解析手法により、陸上現場でのアルカリ流出リスクを予め予測するために必要なアルカリ吸着パラメーターの簡便な予測方法を提供するものである。   The present invention has been made under the above findings, and when alkaline materials are used on land, the advection dispersion analysis method taking into account the alkali adsorption of the soil on the land (in-situ soil) is applied to the land. It is intended to provide a simple method of predicting alkali adsorption parameters required to predict the risk of alkaline run-off in situ.

すなわち、本発明の要旨とするところは以下の通りである。
(1) アルカリ性物質を溶出して地下水中にアルカリを流出させるリスクのある土木資材(以下、「アルカリ性資材」という。)を陸上現場で使用するに際し、予め前記陸上現場の土壌(現場土壌)のアルカリ吸着を考慮した移流分散解析により、長期間の雨水等によるアルカリ流出リスクを予測する方法において、
前記現場土壌のアルカリ吸着現象に関する遅延係数Rを用い、また、この遅延係数Rを、下記のフロインドリッヒ吸着等温式(2)
d=kCa……(2)
(但し、式中、Cは間隙水のアルカリ性物質の濃度であり、k及びaは実験的に求められる定数である。)
を採用した前記現場土壌の分配係数kdから求めるに際し、
前記現場土壌の最大アルカリ吸着能Cmax(mol/g)を求め、
次いで、予め複数の土壌を用いて求められた最大アルカリ吸着能Cmaxと定数kとの相関関係〔Cmax−k相関関係〕を用いて、先に求められたCmaxから前記式(2)における現場土壌の定数kを予測すると共に、予め複数の土壌を用いて求められた最大アルカリ吸着能Cmaxに対する定数aの分布領域〔Cmax−a分布領域〕の中から安全を考慮して前記式(2)における現場土壌の定数aとして定め、
この予測された現場土壌の定数kと安全を考慮して採用された現場土壌の定数aとを用いて前記現場土壌の分配係数kdを求めることを特徴とする陸上現場におけるアルカリ流出リスクの予測方法。
(2) 求められた前記現場土壌の最大アルカリ吸着能Cmax(mol/g)の値が、現場土壌を用いて実測されたCmax実側値であることを特徴とする前記(1)に記載の陸上現場におけるアルカリ流出リスクの予測方法。
(3) 前記現場土壌の定数k及びaを求める際に用いられる前記現場土壌の最大アルカリ吸着能Cmax(mol/g)は、現場土壌の10%粒径D10(JIS A 1204)が0.0001mm以上である場合に、これら複数の10%粒径D10(JIS A 1204)0.0001mm以上の土壌を用いて、JIS A 1204(土の粒度試験方法)に準拠して測定された土壌の粒度指標DS(mm)と当該土壌の最大アルカリ吸着能Cmaxとの相関関係〔DS−Cmax相関関係〕を予め求めておき、JIS A 1204に準拠して測定された前記現場土壌の粒度指標DS(mm)から前記DS−Cmax相関関係を用いて予測されたCmax予測値であることを特徴とする前記(1)に記載の陸上現場におけるアルカリ流出リスクの予測方法。
(4) 前記現場土壌の平均粒径DS(mm)から当該現場土壌の最大アルカリ吸着能Cmax(mol/g)を予測する際に用いられる前記DS−Cmax相関関係が、下記の関係式(3)
max(mol/g)=a×DS b…(3)
〔但し、式(3)において、粒度指標Dsは10%粒径D10、20%粒径D20、30%粒径D30のいずれかであり、粒度指標Dsが10%粒径D10のときa=2×10-5及びb=0.469であり、粒度指標Dsが20%粒径D20のときa=3×10-5及びb=0.547であり、また、粒度指標Dsが30%粒径D30のときa=3×10-5及びb=0.755である。〕
で表されることを特徴とする前記(3)に記載の陸上現場におけるアルカリ流出リスクの予測方法。
(5) 前記現場土壌の定数k及びaを求める際に用いられる前記現場土壌の最大アルカリ吸着能Cmax(mol/g)は、現場土壌の10%粒径D10(JIS A 1204)が0.0001mm未満の粘土系土壌である場合に、又は現場土壌についてJIS A 1205(土の液性限界・塑性限界試験方法)の適用が可能である場合に、これら複数のJIS A 1205試験適用可能な土壌を用い、JIS A 1205(土の液性限界・塑性限界試験方法)に準拠して測定された土壌の液性限界LL(%)と当該土壌の最大アルカリ吸着能Cmaxとの相関関係〔LL−Cmax相関関係〕、又は土壌の塑性限界LS(%)と当該最大アルカリ吸着能Cmaxとの相関関係〔LS−Cmax相関関係〕を予め求めておき、JIS A 1205に準拠して測定された前記現場土壌の液性限界LL(%)又は塑性限界LS(%)から前記LL−Cmax相関関係又はLS−Cmax相関関係を用いて予測されたCmax予測値であることを特徴とする前記(1)に記載の陸上現場におけるアルカリ流出リスクの予測方法。
(6) 前記現場土壌の液性限界LL(%)から当該現場土壌の最大アルカリ吸着能Cmax(mol/g)を予測する前記LL−Cmax相関関係が、下記の関係式(4)
max(mol/g)=0.996×10-5×LL(%)−0.0002…(4)
で表され、また、
前記現場土壌の塑性限界LS(%)から当該現場土壌の最大アルカリ吸着能Cmax(mol/g)を予測する前記LS−Cmax相関関係が、下記の関係式(5)
max(mol/g)=1.494×10-5×LS(%)+0.0002…(5)
で表されることを特徴とする前記(5)に記載の陸上現場におけるアルカリ流出リスクの予測方法。
(7) 前記最大アルカリ吸着能Cmax(mol/g)から現場土壌の定数kを予測する前記Cmax−k相関関係が、下記の関係式(6)
k=196×Cmax(mol/g)…(6)
で表されることを特徴とする前記(1)〜(6)のいずれかに記載の陸上現場におけるアルカリ流出リスクの予測方法。
(8) 前記最大アルカリ吸着能Cmax(mol/g)から現場土壌の定数aを求める際の前記Cmax−a分布領域が−0.3〜−1.0の範囲であり、前記安全値定数aとして下限値−1.0の値を採用することを特徴とする前記(1)〜(7)のいずれかに記載の陸上現場におけるアルカリ流出リスクの予測方法。
That is, the place made into the summary of the present invention is as follows.
(1) When using a civil engineering material (hereinafter referred to as "alkaline material") which has the risk of leaching out alkaline substances and causing alkali to flow out to groundwater, the soil (on-site soil) of the land site is used in advance. In the method of predicting the alkali spill risk due to long-term rain water etc. by advection dispersion analysis in consideration of alkali adsorption,
The delay coefficient R related to the alkaline adsorption phenomenon of the in-situ soil is used, and this delay coefficient R is expressed by the following Freundrich adsorption isotherm (2).
k d = kC a ...... (2)
(Wherein, C is the concentration of the alkaline substance in the pore water, and k and a are experimentally determined constants)
When determining from the distribution coefficient k d of the above-mentioned on-site soil adopting
Determine the maximum alkaline adsorption capacity C max (mol / g) of the aforementioned in-situ soil,
Then, using the correlation between the maximum alkaline adsorption capacity C max and the constant k previously determined using a plurality of soils [C max -k correlation], the above equation (2) is obtained from the C max previously determined In addition to predicting the constant k of the in-situ soil in the field, and taking into account the safety from among the distribution region [C max -a distribution region] of the constant a for the maximum alkali adsorption capacity C max previously obtained using a plurality of soils Determined as the constant a of the field soil in equation (2),
Prediction of alkaline runoff risk on a land site characterized by determining the distribution coefficient k d of the in-situ soil by using the predicted in-situ soil constant k and the in-situ constant a adopted in consideration of safety Method.
(2) The value of the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil determined as described above is the C max actual value measured using the in-situ soil; Method of predicting the risk of alkali spill on land site as described.
(3) The maximum alkali adsorption capacity C max (mol / g) of the in-situ soil used when determining the constants k and a of the in-situ soil is 10% particle diameter D 10 (JIS A 1204) of the in-situ soil Soils measured according to JIS A 1204 (Grade size test method of soil) using soils of 10% particle diameter D 10 (JIS A 1204) 0.0001 mm or more when the diameter is .0001 mm or more Correlation between the particle size index D S (mm) of the soil and the maximum alkaline adsorption capacity C max of the soil [D S -C max correlation] is determined in advance, and the aforementioned in-situ soil measured according to JIS A 1204 The method for predicting alkali spill risk in a land site according to the above (1), characterized in that it is a C max predicted value predicted using the D S -C max correlation from the particle size index D S (mm) of .
(4) The D S -C max correlation used when predicting the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil from the average particle diameter D S (mm) of the in-situ soil is as follows: Relational expression (3)
C max (mol / g) = a × D S b (3)
[Wherein, in the formula (3), the particle size index Ds is either 10% particle size D 10 , 20% particle size D 20 or 30% particle size D 30 and the particle size index Ds is 10% particle size D 10 When a = 2 × 10 −5 and b = 0.469, and when the particle size index Ds is 20% particle diameter D 20 , a = 3 × 10 −5 and b = 0.547, and the particle size index Ds Is 30% particle diameter D 30 and a = 3 × 10 −5 and b = 0.755. ]
The prediction method of the alkali spill risk in the on-site site as described in said (3) characterized by being represented by these.
(5) The maximum alkali adsorption capacity C max (mol / g) of the in-situ soil used when determining the constants k and a of the in-situ soil is 10% particle diameter D 10 (JIS A 1204) of the in-situ soil When it is a clay soil having a diameter of less than .0001 mm, or when application of JIS A 1205 (a method for testing the liquid limit and plastic limit of the soil) is possible for the in-situ soil, these plural JIS A 1205 tests can be applied. Correlation between the liquid limit L L (%) of the soil and the maximum alkali adsorption capacity C max of the soil, using the soil and measured according to JIS A 1205 (Method of testing the limit of liquid and plasticity of the soil). The correlation between [L L -C max correlation] or the plastic limit L S (%) of the soil and the maximum alkaline adsorption capacity C max [L S -C max correlation] is previously determined, and JIS A 1205 From the liquid limit L L (%) or the plastic limit L S (%) of the above-mentioned in-situ soil measured according to the above-mentioned L L -C max correlation or L S -The method for predicting alkali spill risk at a land site according to the above (1), which is a Cmax predicted value predicted using a Cmax correlation.
(6) The L L -C max correlation for predicting the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil from the liquid limit L L (%) of the in-situ soil is represented by the following relational expression (4 )
C max (mol / g) = 0.996 × 10 -5 × L L (%)-0.0002 (4)
Is also represented by
The L S -C max correlation that predicts the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil from the plastic limit L S (%) of the in-situ soil is the following relational expression (5)
C max (mol / g) = 1.494 × 10 −5 × L S (%) + 0.0002 (5)
The prediction method of the alkali spill risk in the on-site site as described in said (5) characterized by being represented by these.
(7) The C max -k correlation which predicts the constant k of the in-situ soil from the maximum alkali adsorption capacity C max (mol / g) is expressed by the following relational expression (6)
k = 196 × C max (mol / g) (6)
The prediction method of the alkali spill risk in the on-site site in any one of said (1)-(6) characterized by being represented by these.
(8) The C max -a distribution region when determining the constant a of the in-situ soil from the maximum alkaline adsorption capacity C max (mol / g) is in the range of -0.3 to -1.0, and the safety value The value of the lower limit -1.0 is adopted as a constant a, The prediction method of the alkali spill risk in the on-site site in any one of said (1)-(7) characterized by the above-mentioned.

本発明の陸上現場におけるアルカリ流出リスクの予測方法によれば、陸上現場の土壌(現場土壌)の最大アルカリ吸着能Cmax(mol/g)を測定するだけの簡便な方法で、フロインドリッヒ吸着等温式で用いる定数kを予測し、また、安全値としての定数aを選ぶことができ、現場土壌の分配係数kdを予測して現場土壌の移流分散解析に用いる遅延係数Rを決定し、現場土壌の移流分散解析で遅延係数Rを計算し、陸上現場におけるアルカリ流出リスクを簡便に予測することができる。 According to the method of predicting the risk of alkali spill on land according to the present invention, the Freundrich adsorption isotherm is a simple method of measuring the maximum alkali adsorption capacity C max (mol / g) of the soil on the land (in-situ soil). predicting a constant k to be used in the formula, also you can choose the constant a as a safety value, and determines a delay factor R used in advection dispersion analysis of field soil by predicting the distribution coefficient k d of field soil, site It is possible to calculate the delay factor R by advection analysis of soil and easily predict the risk of alkaline runoff on land.

また、現場土壌の最大アルカリ吸着能Cmax(mol/g)についても、JIS A 1204(土の粒度試験方法)に準拠して粒度指標DS(mm)を測定するだけで、又は、JIS A 1205(土の液性限界・塑性限界試験方法)に準拠して液性限界LL(%)及び/又は塑性限界LS(%)を求めるだけで簡便に予測することができ、このCmax予測値を用いて現場土壌の分配係数kdを予測し、また、現場土壌の移流分散解析で遅延係数Rを計算し、陸上現場におけるアルカリ流出リスクを簡便に予測することができる。 In addition, the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil can also be measured by simply measuring the particle size index D S (mm) in accordance with JIS A 1204 (gradation test method for soil), or The C max can be simply predicted simply by determining the liquid limit L L (%) and / or the plastic limit L S (%) in accordance with 1205 (a method for testing the limit of soil and plasticity). predicts the distribution coefficient k d of field soil using a predictive value and calculates a delay factor R in advection dispersion analysis of field soil, alkali spill risk onshore site can be easily predicted.

図1は、鉄鋼スラグ等のアルカリ性資材からのアルカリ溶出(源泉項Qc)を設定する際に用いたpH測定試験のためのpH測定試験装置の一例を示す説明図である。FIG. 1 is an explanatory view showing an example of a pH measurement test apparatus for a pH measurement test used when setting an alkaline elution (a source term Qc) from an alkaline material such as steel slag. 図2は、本発明の実施例で得られた鉄鋼スラグからのアルカリ溶出(源泉項Qc)を設定する際のpH測定試験の結果「累積通水量(経過年数)−浸透水のpH値の関係」を示すグラフ図である。FIG. 2 shows the results of the pH measurement test when setting the alkali elution (water source term Qc) from the iron and steel slag obtained in the example of the present invention “the cumulative amount of water flow (ageing years) -the relationship between the pH value of the permeation water Is a graph showing “. 図3は、ある粘土系土壌について、非特許文献2の方法に基づいてアルカリ吸着試験を実施し、平衡時のアルカリ溶液のアルカリ量(濃度:mol/g)と吸着アルカリ量(OH-mol/g)との関係を整理し、最大アルカリ吸着能Cmaxと分配係数kdとを求める際の一例を示すグラフ図である。FIG. 3 shows an alkali adsorption test conducted on a clay soil according to the method of Non-Patent Document 2, and the alkali amount (concentration: mol / g) and the adsorbed alkali amount (OH mol / g) of the alkali solution at equilibrium. organize the relationship between g), is a graph showing an example for obtaining the maximum alkali adsorption capacity C max and distribution coefficient k d. 図4は、本発明の実施例で用いられた56種の土壌の最大アルカリ吸着能Cmax(mol/g)の分布を整理したグラフ図である。FIG. 4 is a graph showing the distribution of the maximum alkali adsorption capacity C max (mol / g) of the 56 soils used in the examples of the present invention. 図5は、本発明の実施例1で得られた土壌の最大アルカリ吸着能Cmax(mol/g)と定数kとの相関関係〔Cmax−k相関関係〕を示すグラフ図である。FIG. 5 is a graph showing the correlation between the maximum alkali adsorption capacity C max (mol / g) of the soil obtained in Example 1 of the present invention and the constant k [C max -k correlation]. 図6は、本発明の実施例1で得られた土壌の最大アルカリ吸着能Cmax(mol/g)に対する定数aの分布領域〔Cmax−a分布領域〕を示すグラフ図である。FIG. 6 is a graph showing the distribution area [C max -a distribution area] of the constant a with respect to the maximum alkali adsorption capacity C max (mol / g) of the soil obtained in Example 1 of the present invention. 図7は、本発明の実施例2で得られた土壌の粒度指標Ds(mm)と最大アルカリ吸着能Cmax(mol/g)との相関関係(DS−Cmax相関関係)を示すグラフ図である。FIG. 7 shows the correlation (D S -C max correlation) between the particle size index D s (mm) and the maximum alkali adsorption capacity C max (mol / g) of the soil obtained in Example 2 of the present invention FIG. 図8は、本発明の実施例3で得られた土壌の液性限界LL(%)又は塑性限界LS(%)と最大アルカリ吸着能Cmax(mol/g)との相関関係(LL−Cmax相関関係又はLS−Cmax相関関係)を示すグラフ図である。FIG. 8 shows the correlation (L) between the liquid limit L L (%) or the plastic limit L S (%) of the soil obtained in Example 3 of the present invention and the maximum alkali adsorption capacity C max (mol / g) L -C max correlation or L S -C max correlation) is a graph showing a.

本発明は、アルカリ性資材を陸上現場で使用する際に、この陸上現場の土壌(現場土壌)のアルカリ吸着を考慮した移流分散解析により、数十年あるいは数百年に及ぶ長期間の雨水等によるアルカリ流出リスクを予測するための方法である。ここで、前記アルカリ性資材としては、JGS 0211-2000「土懸濁液のpH試験方法」に準拠して測定されたpH値が8.6以上のものを対象としている。これは、陸上の河川水の環境基準がpH値8.5であるので、この環境基準を超えるpH値として設定したものである。   The present invention is based on advection dispersion analysis in consideration of alkali adsorption of the soil on site (in-situ soil) when alkaline materials are used on land, and it is possible that rain water etc. over a long period of several decades or hundreds of years are used. It is a method to predict the alkali spill risk. Here, as the alkaline material, one having a pH value of 8.6 or more measured in accordance with JGS 0211-2000 “pH test method of soil suspension” is targeted. This is set as a pH value exceeding this environmental standard, since the environmental standard of river water on land is pH value 8.5.

解析を行うための必要な情報やパラメーター及び設定方法は以下の通りである。
使用するアルカリ性資材や周辺の土壌を含む解析対象範囲の幾何学的情報(寸法、大きさ等)は、通常の有限要素法と同様に解析対象を分割された要素で表わし、各要素構成する接点に座標値を入力して設定することができる。
また、遅延係数Rを求めるために必要なフロインドリッヒ吸着等温式(2)で用いる現場土壌の分配係数kd及び源泉項Qc以外の情報として、使用するアルカリ性資材や現場土壌の物理特性として必要な土粒子密度、透水係数については、直接JIS規格で定められた方法により求めて使用し、また、間隙率については、土質に応じて予めプログラムで与えられている値を用いるか、若しくは、使用するアルカリ性資材や現場土壌の乾燥状態での単位容積質量を現場あるいは室内にて直接測定し、前述の土粒子密度より土質力学の理論により求めて使用することができる。
The necessary information, parameters, and setting methods for analysis are as follows.
Geometrical information (size, size, etc.) of the analysis target range including alkaline materials used and surrounding soil (the size, size, etc.) represent the analysis target by divided elements as in the usual finite element method, and the contacts constituting each element The coordinate value can be input and set in.
Further, as the Freundlich distribution coefficient k d and information other than the source term Qc field soil used in the adsorption isotherm (2) necessary for obtaining a delay factor R, required as physical properties of the alkaline materials and field soil used For soil particle density and hydraulic conductivity, use it as determined directly by the method defined in the JIS standard, and for porosity, use a value given by a program in advance according to the soil quality, or use The unit volume mass in the dry state of the alkaline material or the in-situ soil can be directly measured in the field or in the room, and it can be used by being determined according to the theory of soil mechanics from the above-mentioned soil particle density.

ここで、使用するアルカリ性資材に関する解析パラメーターの源泉項Qcについては、例えば図1に示すpH測定試験装置を用いて下記の方法で設定することができる。
すなわち、上端部に上方に向けて開口する開口部5と側方に向けて開口する溢水口6とを有し、下端中央部には下方に向けて開口する流出口7をするカラム2を使用し、このカラム2内下部に層厚d1の透水層3を形成し、また、この透水層3の上に層厚d2及び所定量の試料(アルカリ性資材)層4を形成して試験体1を構成し、この試験体1の開口部5から蒸留水を連続的に通水し、この際の通水液のpH値を経時的に測定し、得られた通水量及びpH値のデータから試料(アルカリ性資材)層4についての累積通水液固比〔累積通水量(質量)/アルカリ性資材の質量〕とpH値との関係を求め、得られた試験結果の累積通水液固比が陸上現場での累積通水液固比〔{降雨浸透量(質量)×経年数}/{アルカリ性資材の厚さ×乾燥密度}〕と同じであるとして、この試験結果の累積通水液固比を経過年数とpH値との関係に変換し、更に、このpH値を水酸基イオン濃度(OH-=10(pH-14))に変換し、経過年数と共に変化するpH値を濃度固定境界として試料(アルカリ性資材)層4の源泉項Qcとして使用する方法である。
なお、この解析パラメーターの源泉項Qcを設定するためのその他の方法としては、下記の式で与えられる溶出フラックスJを用いてもよい。
溶出フラックスJは、J=10(pH-14)×Tにおける通水量(L)/質量(g)を計算し、この溶出フラックスJ〔ある時刻における単位質量及び単位時間当りの溶出量(速度)〕を縦軸とし、経過時間Tを横軸にして得られる関係図を溶出フラックスJ=k・exp(-aT)×αVβの指数関数の式で近似させて得ることができる。但し、上記の各式において、k及びaは定数であり、α及びβは流速依存係数であり、Tは経過時間であり、及び、Vは流速である。
Here, about the source term Qc of the analysis parameter regarding the alkaline material to be used, it can set by the following method, for example using pH measuring test apparatus shown in FIG.
That is, the column 2 is used which has an opening 5 which opens upward at the upper end and an overflow 6 which opens laterally, and has an outlet 7 which opens downward at the center of the lower end. A water-permeable layer 3 of layer thickness d 1 is formed in the lower part of the column 2, and a layer (d 2) and a predetermined amount of sample (alkaline material) layer 4 are formed on the water-permeable layer 3. 1. Make distilled water from the opening 5 of the test body 1 continuously, measure the pH value of the water flow liquid at this time, and obtain the data of water quantity and pH value obtained The relationship between the cumulative liquid-solid ratio [accumulated water flow (mass) / mass of alkaline material] and pH value for the sample (alkaline material) layer 4 is determined from the above, and the cumulative liquid-solid ratio of the obtained test results Is the cumulative water-solid ratio on land site [{Rainfall penetration (mass) × number of years} / {thickness of alkaline material × dry density}]. As it converts the accumulated water passage liquid-solid ratio of the test results on the relationship between the number of years elapsed and pH value, further, the pH value hydroxyl ion concentration - converted to (OH = 10 (pH-14 )) This is a method of using a pH value which changes with age as a concentration fixed boundary as a source term Qc of the sample (alkaline material) layer 4.
As another method for setting the source term Qc of this analysis parameter, the elution flux J given by the following equation may be used.
The elution flux J is calculated as the amount of water flow (L) / mass (g) at J = 10 (pH-14) × T, and this elution flux J [unit mass at a given time and elution amount per unit time (speed) ] it can be a on the vertical axis, obtained by approximating a relation diagram obtained by the elapsed time T on the horizontal axis by the formula of exponential function of elution flux J = k · exp (-aT) × αV β. However, in each of the above equations, k and a are constants, α and β are flow rate dependent coefficients, T is the elapsed time, and V is the flow rate.

本発明においては、遅延係数Rを求めるためにフロインドリッヒ吸着等温式(2)で用いる現場土壌の分配係数kdについて、現場土壌の最大アルカリ吸着能Cmax(mol/g)を求め、次いで、予め複数の土壌を用いて求められた最大アルカリ吸着能Cmaxと定数kとの相関関係〔Cmax−k相関関係〕を用いて、先に求められたCmaxから現場土壌の定数kを予測すると共に、予め複数の土壌を用いて求められた最大アルカリ吸着能Cmaxに対する定数aの分布領域〔Cmax−a分布領域〕の中から分配係数を小さく評価可能な安全な値を選んで現場土壌の定数aを定め、このCmax−k相関関係を用いて予測された現場土壌の定数kと、Cmax−a分布領域の中から安全値として採用された現場土壌の定数aとを用いて現場土壌の分配係数kdを求める。 In the present invention, the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil is determined for the in-situ soil distribution coefficient k d used in the Freundrich adsorption isotherm (2) to obtain the retardation factor R, and then Using the correlation between the maximum alkaline adsorption capacity C max and the constant k previously obtained using a plurality of soils [C max- k correlation], the constant k of the field soil is predicted from the C max previously obtained Select a safe value that can evaluate the distribution coefficient small from the distribution area [C max- a distribution area] of the constant a with respect to the maximum alkali adsorption capacity C max obtained beforehand using a plurality of soils The constant a of the soil is determined, the constant k of the in-situ soil predicted using this C max -k correlation, and the constant a of the in-situ soil adopted as a safe value from the C max -a distribution region are used determine the distribution coefficient k d of site soil Te

ここで、現場土壌の定数kをCmax−k相関関係を用いて予測するために、また、現場土壌の定数aをCmax−a分布領域の中から安全値として選んで定めるために用いられる現場土壌の最大アルカリ吸着能Cmax(mol/g)については、その測定方法や求め方等について特に制限されるものではなく、現場土壌から実測されたCmax実側値であってもよく、また、後述する方法で現場土壌について予測されたCmax予測値であってもよい。ここで、現場土壌からCmax実側値を測定する方法としては、例えば非特許文献2の方法を例示することができ、この方法は、所定量の土壌に対して数水準の濃度の消石灰溶液を数水準の量で混合し、2時間放置後の懸濁水のpH値を測定し、土壌に加えられたOHの量(mol/L)を横軸に、また、土壌によって中和(吸着)されたOHの量(mol/L)を縦軸にして溶液中のアルカリ(OH-)量と土壌に吸着されたアルカリ(OH-)量との関係図を描き、土壌に吸着されたアルカリ(OH-)量が限界に達した時のアルカリ(OH-)量を当該現場土壌の最大アルカリ吸着能Cmaxとする方法である。 Here, it is used to predict the constant k of the in-situ soil using the C max -k correlation, and also to select the constant a of the in-situ soil as a safe value from the C max -a distribution region. The maximum alkali adsorption capacity C max (mol / g) of the in-situ soil is not particularly limited as to the measuring method or the determination method, and may be the actual C max value measured from the in-situ soil, In addition, it may be a C max predicted value predicted for the on-site soil by a method described later. Here, as a method of measuring the C max actual value from in-situ soil, for example, the method of Non-Patent Document 2 can be exemplified, and this method is a slaked lime solution with several levels of concentration for a given amount of soil. Were mixed at several levels, and the pH value of suspended water after standing for 2 hours was measured, and the amount of OH (mol / L) added to the soil was plotted on the horizontal axis, and was neutralized (adsorbed by the soil) ) has been OH - amount (mol / L) and in the vertical axis alkali solution (OH -) amount and alkali adsorbed on the soil (OH -) draw a graph showing the relationship between the amount adsorbed by the soil alkali (OH -) - a method for the amount of the maximum alkali adsorption capacity C max of the field soil weight alkali when it reaches the limit (OH).

また、本発明において、上記の現場土壌の定数k及びaを求める際に用いられる現場土壌の最大アルカリ吸着能Cmax(mol/g)を予測する方法については、現場土壌の特性に応じて、以下の方法が挙げられる。
すなわち、現場土壌が10%粒径D10(JIS A 1204)0.0001mm以上の粘土系土壌である場合には、JIS A 1204(土の粒度試験方法)に準拠して測定された土壌の粒度指標DS(mm)と当該土壌の最大アルカリ吸着能Cmaxとの相関関係〔DS−Cmax相関関係〕を予め求めておき、JIS A 1204に準拠して測定された前記現場土壌の平均粒径DS(mm)から前記DS−Cmax相関関係を用いて最大アルカリ吸着能Cmaxを予測し、この予測された最大アルカリ吸着能CmaxをCmax予測値とする方法である。
In the present invention, the method for predicting the maximum alkaline adsorption capacity C max (mol / g) of the in-situ soil used when determining the above-mentioned in-situ soil constants k and a depends on the characteristics of the in-situ soil The following methods may be mentioned.
That is, when the in-situ soil is a clay-based soil having a particle size of 10% D 10 (JIS A 1204) 0.0001 mm or more, the particle size of the soil measured according to JIS A 1204 (gradation test method of soil) A correlation between the index D S (mm) and the maximum alkaline adsorption capacity C max of the soil [D S -C max correlation] is determined in advance, and the average of the soil in the field measured according to JIS A 1204 The maximum alkali adsorptivity C max is predicted from the particle size D S (mm) using the D S -C max correlation, and the predicted maximum alkali adsorptivity C max is used as a C max predicted value.

また、現場土壌がJIS A 1205(土の液性限界・塑性限界試験方法)の適用が可能である場合には、JIS A 1205(土の液性限界・塑性限界試験方法)に準拠して測定された土壌の液性限界LL(%)及び/又は塑性限界LS(%)と当該土壌の最大アルカリ吸着能Cmax(mol/g)との相関関係〔LL−Cmax相関関係及び/又はLS−Cmax相関関係〕を予め求めておき、JIS A 1205に準拠して測定された前記現場土壌の液性限界LL(%)及び/又は塑性限界LS(%)から前記LL−Cmax相関関係及び/又はLS−Cmax相関関係を用いて最大アルカリ吸着能Cmaxを予測し、この予測された最大アルカリ吸着能CmaxをCmax予測値とする方法である。 In addition, when the in-situ soil can be applied according to JIS A 1205 (Method of testing for liquid limit of plasticity / plasticity limit of soil), measurement is performed according to JIS A 1205 (Method for testing of liquidity limit of plasticity / limit of plasticity of soil) Correlation between the liquid limit L L (%) and / or the plastic limit L S (%) of the soil being treated and the maximum alkali adsorption capacity C max (mol / g) of the soil [L L -C max correlation and / or L S -C max correlation] obtained in advance, liquid limit of the field soil was measured according to JIS a 1205 L L (%) and / or from said plastic limit L S (%) The maximum alkali adsorption capacity C max is predicted using L L -C max correlation and / or L S -C max correlation, and this predicted maximum alkali adsorption capacity C max is used as the C max prediction value. .

本発明によれば、アルカリ性資材を陸上現場で使用する際に、上述した非特許文献2の方法に従って実測されたCmax実側値、又は、上述したDS−Cmax相関関係、LL−Cmax相関関係、又はLS−Cmax相関関係から予測されたCmax予測値を用いて、上述したCmax−k相関関係から現場土壌の定数kを予測すると共に、上述したCmax−a分布領域の中から安全な値を選んで現場土壌の定数aを定め、これら予測された現場土壌の予測定数kと定数aとを用いて現場土壌の分配係数kdを求め、この求められた分配係数kdを用い、移流分散解析により、数十年あるいは数百年に及ぶ長期間の雨水等によるアルカリ流出リスクを予測する。 According to the present invention, when an alkaline material is used on land, the C max actual value measured according to the method of Non-Patent Document 2 mentioned above, or the D S -C max correlation mentioned above, L L- C max correlation, or L S -C using a max predicted C max predicted value from the correlation, as well as predicting the constant k the field soils from the above C max -k correlations above C max -a A safe value is selected from the distribution area to determine the constant a of the in-situ soil, and the distribution coefficient k d of the in-situ soil is obtained using the predicted constant k of the in-situ soil and the constant a. using the distribution coefficient k d, the advection dispersion analysis, predicting the alkali effluent risks from long-term rainwater decades or hundreds of years.

以下、アルカリ性資材として鉄鋼スラグを用いる場合を例にして、本発明で用いるCmax−k相関関係、Cmax−a分布領域、DS−Cmax相関関係、LL−Cmax相関関係、及びLS−Cmax相関関係を求めた実施例と、これらの相関関係と分布領域を用いてアルカリ流出リスクを予測した実施例とに基づいて、本発明を具体的に説明する。 Hereinafter, taking the case of using steel slag as the alkaline material as an example, C max -k correlation, C max -a distribution region, D S -C max correlation, L L -C max correlation, and the like used in the present invention The present invention will be specifically described on the basis of an example in which the L S -C max correlation is determined, and an example in which the alkaline outflow risk is predicted using the correlation and the distribution region.

〔鉄鋼スラグの源泉項Qc〕
鉄鋼スラグからのアルカリ溶出(源泉項Qc)は、図1に示す前述のpH測定試験装置を用いる方法で設定した。すなわち、直径77mmφ及び溢水口6までの高さ70mmのカラム2を用い、層厚35cmの排水層3と、試料(鉄鋼スラグ)層4として層厚25cm及び2455gの鉄鋼スラグ(アルカリ性資材)とを充填し、この鉄鋼スラグ層4の上に溢水口6まで10cmの高さの空間を有する試験体1を形成し、この試験体1の上部から蒸留水を連続的に通水し、この際の通水液のpH値を経時的に測定して鉄鋼スラグ4についての累積通水液固比〔累積通水量(質量)/アルカリ性資材の質量〕とpH値との関係を求めた。
[Source term of iron and steel slag Qc]
The alkali elution (source term Qc) from the steel slag was set by the method using the above-mentioned pH measurement test apparatus shown in FIG. That is, using a column 2 with a diameter of 77 mmφ and a height of 70 mm up to the overflow 6, the drainage layer 3 with a layer thickness of 35 cm, and a steel slag (alkaline material) with a layer thickness of 25 cm as a sample (iron and steel slag) layer 4 Then, a test body 1 having a height of 10 cm is formed on the steel slag layer 4 up to the overflow 6 and distilled water is continuously supplied from the top of the test body 1 at this time. The pH value of the water flow was measured over time, and the relationship between the cumulative water-solid ratio [cumulative water flow (mass) / mass of alkaline material] and the pH value for the steel slag 4 was determined.

このようにして求められた鉄鋼スラグ4の累積通水液固比〔累積通水量(質量)/アルカリ性資材の質量〕とpH値との関係を陸上現場での経過年数とpH値との関係に換算するために、年間降雨量を1800mm/年、鉄鋼スラグ4で形成される舗装等のスラグ層の厚さを25cm、このスラグ層の乾燥密度を2.2g/cm3、及びスラグ層上に降った雨がこのスラグ層を通過する割合(浸透率)を0.5と想定し、年間降雨量1800mm/年×浸透率0.5×{1年/10/(スラグ層厚さ25cm×スラグ層乾燥密度2.2g/cm3)}の計算式から陸上現場での累積通水量を1.63/年とし、上記の累積通水液固比〔累積通水量(質量)/アルカリ性資材の質量〕とpH値との関係を陸上現場での経過年数とpH値の関係に変換した。
なお、年間降水量は、非特許文献2に示されるアルカリ吸着厚さの試算例として設定されている年間降雨量の平均値1760mmを参考に設定した。また、降雨浸透率については、同じく非特許文献2に示されるアルカリ吸着厚さの試算例として設定されている1/3に対して安全側の0.5を採用した。また、スラグ層の厚さは、通常の仮設路盤材に用いられている平均的な厚さとして25cmに設定した。
The relationship between the cumulative liquid-solid ratio (accumulated water flow (mass) / mass of alkaline material) and pH value of iron and steel slag 4 determined in this way and the pH value on the relationship between the age of the land site and the pH value In order to convert, annual rainfall amount is 1,800 mm / year, thickness of slag layer such as pavement formed of steel slag 4 is 25 cm, dry density of this slag layer is 2.2 g / cm 3 , and on slag layer Assuming that the rate of rain falling through this slag layer (permeability) is 0.5, the annual rainfall amount is 1800 mm / year × permeability rate 0.5 × {1 year / 10 / (slag layer thickness 25 cm × slag The cumulative water flow rate at the on-site site is 1.63 / year from the formula of the layer dry density of 2.2 g / cm 3 )}, and the above cumulative water-flow solid ratio [cumulative water flow rate (mass) / mass of alkaline material The relationship between the pH value and the pH value was converted to the relationship between the age of the land site and the pH value.
In addition, the annual precipitation amount was set with reference to the average value 1760 mm of the annual rainfall amount set as a calculation example of the alkali adsorption thickness shown in Non-Patent Document 2. In addition, as for the rainfall penetration rate, 0.5 on the safe side was adopted to 1/3, which is similarly set as a trial calculation example of the alkali adsorption thickness shown in Non-patent Document 2. Moreover, the thickness of the slag layer was set to 25 cm as an average thickness currently used for the common temporary base material.

得られた結果は、図2の「経年年数−浸透水のpH」の関係を示すグラフ図に示す通りであり、更に、この図2に示す結果を図中直線で示すように20年毎の変化に近似し、また、浸透水を鉄鋼スラグ層4の間隙水とし、求められたpH値を表1に示すように水酸基イオン濃度(OH-=10(pH-14))に変換し、この水酸基イオン濃度(OH-=10(pH-14))を経過年数と共に変化する濃度境界として鉄鋼スラグの要素(源泉項Qc)に与えた。 The obtained result is as shown in the graph showing the relationship of "ageing age-pH of osmosis water" in Fig. 2, and furthermore, the result shown in this Fig. 2 is shown by a straight line in the figure every 20 years. approximates the change, also the osmosis water and pore water of the steel slag layer 4, the pH value obtained hydroxyl ion concentration as shown in Table 1 - is converted to (OH = 10 (pH-14 )), the hydroxyl ion concentration - gave (OH = 10 (pH-14 )) elements of the steel slag as the concentration boundary change over years (the source term Qc).

Figure 0006520623
Figure 0006520623

〔土壌の粒度指標及び液性(塑性)限界、最大アルカリ吸着能の測定〕
液性限界LL(%)及び塑性限界LS(%)を求めることができない非塑性の砂・シルト系の16種類の土壌と、液性限界LL(%)及び塑性限界LS(%)を求めることができる10種類の粘性土壌の合計26種類の土壌を用い、JIS A 1204(土の粒度試験方法)に準拠して各土壌の粒度指標DS(mm)〔10%粒径D10、20%粒径D20、30%粒径D30、及び50%粒径D50〕を測定し、更に粘性土についてはJIS A 1205(土の液性限界・塑性限界試験方法)に準拠して各土壌の液性限界LL(%)及び塑性限界LS(%)を測定し、また、上記の非特許文献2の方法に従って各土壌の平衡時のアルカリ溶液のアルカリ量(濃度:mol/g)及び各土壌に吸着された吸着アルカリ量(OH-mol/g)を測定し、これら測定されたアルカリ溶液のアルカリ量及び吸着アルカリ量のデータについてアルカリ量を横軸に、また、吸着アルカリ量を縦軸に整理し、得られた図3に示すグラフから吸着アルカリ量の最大値を読み取り、この値を最大アルカリ吸着能Cmax(mol/g)として求めた。
[Measurement of soil particle size index and liquid (plasticity) limit, maximum alkali adsorption capacity]
Liquidity limit L L (%) and plasticity limit L S (%) can not be determined 16 types of soil of non-plastic sand and silt system, liquidity limit L L (%) and plasticity limit L S (% Particle size index D S (mm) [10% particle size D of each soil according to JIS A 1204 (Grade size test method of soil), using a total of 26 soils of 10 types of viscous soil which can be determined 10 , 20% particle size D 20 , 30% particle size D 30 , and 50% particle size D 50 ] are measured, and furthermore, in the case of viscous soil, it conforms to JIS A 1205 (a method of testing the limit of liquid properties and limit of plasticity of soil). Then, the liquid limit L L (%) and the plastic limit L S (%) of each soil are measured, and the alkali amount (concentration: mol / g) and the adsorption amount of alkali adsorbed on the soil (OH - mol / g) was measured, the amount of alkali for the data of alkali content and adsorption alkali content of the measured alkali solution The shaft also adsorbed alkali content organized on the vertical axis, from the graph shown in FIG. 3 obtained readings the maximum adsorption alkali content was determined this value as the maximum alkali adsorption capacity C max (mol / g) .

このようにして物性の測定に用いられた56種類の土壌について、求められた最大アルカリ吸着能Cmax(mol/g)の値は図4に示す通りであった。
また、これら各土壌について、上で得られた図3から次のようにしてフロインドリッヒ吸着等温式(2:kd=kCa)における分配係数k、定数k及び定数aを求めた。すなわち、分配係数kdは、図3に示す右上がりの直線部分の勾配に相当するので、この図3の縦軸である吸着アルカリ量(OH-mol/g)をSとし、また、横軸である平衡時のアルカリ溶液のアルカリ量(濃度:mol/g)をCとし、これら吸着アルカリ量Sとアルカリ量Csk関係をS=kCa+1の累乗関数として近似し、分配係数kdが「対象物質の溶液中の濃度に対する土壌に吸着される物質の量の比」であることから、kd=S/C=kCa+1/C=kCaとして、この式から分配係数k、定数k及び定数aをそれぞれ求めた。
The value of the maximum alkali adsorption capacity C max (mol / g) determined for the 56 types of soil used for the measurement of physical properties in this way is as shown in FIG.
Further, for each of these soils, the distribution coefficient k d , the constant k and the constant a in the Freundrich adsorption isotherm (2: k d = kC a ) were determined as follows from FIG. 3 obtained above. That is, since the distribution coefficient k d corresponds to the slope of the straight line rising to the right shown in FIG. 3, let S be the amount of adsorbed alkali (OH - mol / g) which is the vertical axis in FIG. Let C be the alkali amount (concentration: mol / g) of the alkali solution at equilibrium, and approximate the relationship between the adsorbed amount S and the alkali amount Csk as a power function of S = kC a + 1 , and the distribution coefficient k d is Since it is "the ratio of the amount of the substance adsorbed to the soil to the concentration of the target substance in the solution", the distribution coefficient k d is calculated from this equation as k d = S / C = kC a + 1 / C = kC a , Constant k and constant a were obtained respectively.

〔実施例1:土壌のCmaxとCmax−k相関関係及びCmax−a分布領域〕
以上のようにして求められた上記56種類の各土壌に関する最大アルカリ吸着能Cmax(mol/g)と定数k及び定数aとについて、最大アルカリ吸着能Cmaxと定数kとの関係を整理し、Cmaxとkとの相関関係(Cmax−k相関関係)を求めると共に、最大アルカリ吸着能Cmax(mol/g)に対する定数aの分布領域(Cmax−a分布領域)とを求めた。
この全ての土壌について求められた最大アルカリ吸着能Cmaxと定数kとの相関関係(Cmax−k相関関係)は図5に示す通りであり、決定係数R2≧0.95という高い相関性が示され、また、このCmax−k相関関係については、下記の関係式(6)
k=196×Cmax(決定係数R2=0.9547)…(6)
で与えられた。
[Example 1: Cmax and Cmax- k correlation and Cmax- a distribution area of soil]
Regarding the maximum alkali adsorption capacity C max (mol / g) and the constant k and the constant a for each of the 56 types of soils determined as described above, the relationship between the maximum alkali adsorption capacity C max and the constant k is organized , C max and k (C max −k correlation), and the distribution area (C max −a distribution area) of the constant a with respect to the maximum alkali adsorption capacity C max (mol / g) .
The correlation (C max -k correlation) between the maximum alkaline adsorptivity C max and the constant k determined for all soils is as shown in FIG. 5, and the correlation as high as the determination coefficient R 2 0.90.95 For this C max -k correlation, the following relationship (6)
k = 196 × C max (coefficient of determination R 2 = 0.9547) (6)
Was given.

また、以上のようにして求められた上記56種類の各土壌に関する最大アルカリ吸着能Cmax(mol/g)と定数k及び定数aとについて、最大アルカリ吸着能Cmax(mol/g)に対する定数aの分布領域(Cmax−a分布領域)を求めた。
この全ての土壌について求められた最大アルカリ吸着能Cmax(mol/g)と定数aとを整理し、最大アルカリ吸着能Cmax(mol/g)に対する定数aの分布領域(Cmax−a分布領域)を求めた結果は、図6に示す通りであり(図6では、図5に合わせて10-4×Cmax−a分布領域として表示した。)、分布領域は−0.3〜−1.0の範囲であって相関性は認められなかった。
In addition, the maximum alkali adsorption capacity C max (mol / g) and the constant k and the constant a for each of the 56 types of soils determined as described above are constants with respect to the maximum alkali adsorption capacity C max (mol / g) The distribution area (C max −a distribution area) of a was determined.
The maximum alkali adsorption capacity C max (mol / g) and the constant a determined for all the soils are arranged, and the distribution area of the constant a with respect to the maximum alkali adsorption capacity C max (mol / g) (C max- a distribution The result of obtaining the region) is as shown in FIG. 6 (in FIG. 6, it is displayed as a 10 −4 × C max −a distribution region in FIG. 5 according to FIG. 5), and the distribution region is −0.3 to − There was no correlation within the range of 1.0.

〔実施例2:DS−Cmax相関関係〕
上で得られた各土壌についての粒度指標DS(mm)及び最大アルカリ吸着能Cmax(mol/g)を整理し、土壌の粒度指標DS(mm)と最大アルカリ吸着能Cmax(mol/g)との相関関係〔DS−Cmax相関関係〕を求めた。
結果は、図7に示す通りであり、50%粒径D50の場合には最大アルカリ吸着能Cmax(mol/g)との相関性が決定係数R2=0.3242と低かったが、10%粒径D10、20%粒径D20、及び30%粒径D30の場合にはいずれも決定係数R2≧0.7と高い相関性を示した。また、このDS−Cmax相関関係は、下記の関係式(3)
max=a×DS b…(3)
〔但し、式(3)において、粒度指標Dsは10%粒径D10、20%粒径D20、30%粒径D30のいずれかであり、粒度指標Dsが10%粒径D10のときa=2×10-5、b=0.469、及び決定係数R2=0.7267であり、粒度指標Dsが20%粒径D20のときa=3×10-5、b=0.547、及び決定係数R2=0.7342であり、また、粒度指標Dsが30%粒径D30のときa=3×10-5、b=0.755、及び決定係数R2=0.7626である。〕
で与えられる。
Example 2: D S -C max correlation]
The particle size index D S (mm) and the maximum alkali adsorption capacity C max (mol / g) of each soil obtained above are arranged, and the soil particle size index D S (mm) and the maximum alkali adsorption capacity C max (mol The correlation [D S -C max correlation] with / g) was determined.
The results are as shown in FIG. 7. In the case of the 50% particle diameter D 50 , the correlation with the maximum alkali adsorption capacity C max (mol / g) was low with a determination coefficient R 2 = 0.3242, In the case of the 10% particle diameter D 10 , the 20% particle diameter D 20 , and the 30% particle diameter D 30 , all showed high correlation with the determination coefficient R 2 0.70.7. Further, this D S -C max correlation is expressed by the following relational expression (3)
C max = a × D S b (3)
[Wherein, in the formula (3), the particle size index Ds is either 10% particle size D 10 , 20% particle size D 20 or 30% particle size D 30 and the particle size index Ds is 10% particle size D 10 When a = 2 × 10 −5 , b = 0.469, and the coefficient of determination R 2 = 0.7267, and the particle size index Ds is 20% particle diameter D 20 a = 3 × 10 −5 , b = 0 .547, and the coefficient of determination is R 2 = 0.7342, also when the particle size index Ds is 30% particle diameter D 30 a = 3 × 10 -5 , b = 0.755, and the coefficient of determination R 2 = 0 It is .7626. ]
Given by

〔実施例3:LL−Cmax相関関係及びLS−Cmax相関関係〕
上で得られた各土壌についての液性限界LL(%)、塑性限界LS(%)、及び最大アルカリ吸着能Cmax(mol/g)を整理し、土壌の液性限界LL(%)又は塑性限界LS(%)と最大アルカリ吸着能Cmax(mol/g)との相関関係〔LL−Cmax相関関係又はLS−Cmax相関関係〕を求めた。
結果は、図8に示す通りであり、液性限界LL(%)又は塑性限界LS(%)と最大アルカリ吸着能Cmax(mol/g)との相関性についてはいずれも決定係数R2≧0.8と高い値を示した。また、これらのLL−Cmax相関関係及びLS−Cmax相関関係については、下記の関係式(4)及び(5)
max=0.996×10-5×LL(%)−0.0002(決定係数R2=0.8608)…(4)
max=1.494×10-5×LS(%)+0.0002(決定係数R2=0.8507)…(5)
で与えられる。
[Example 3: L L -C max correlation and L S -C max correlation]
The liquid limit L L (%), the plastic limit L S (%), and the maximum alkali adsorption capacity C max (mol / g) for each soil obtained above are arranged, and the liquid limit L L ( %) Or the correlation between the plastic limit L S (%) and the maximum alkali adsorption capacity C max (mol / g) [L L -C max correlation or L S -C max correlation] was determined.
The results are as shown in FIG. 8, and both of the correlation between the liquid limit L L (%) or the plastic limit L S (%) and the maximum alkali adsorption capacity C max (mol / g) are the determination coefficients R It showed a high value of 2 ≧ 0.8. Moreover, about these L L -C max correlation and L S -C max correlation, the following relational expressions (4) and (5)
C max = 0.996 × 10 −5 × L L (%) − 0.0002 (coefficient of determination R 2 = 0.8608) (4)
C max = 1.494 × 10 −5 × L S (%) + 0.0002 (coefficient of determination R 2 = 0.8507) (5)
Given by

〔実施例4:Cmax実測値とCmax−k相関関係及びCmax−a分布領域とから分配係数kdの予測〕
ある陸上現場の土壌(現場土壌)について、JIS A 1204(土の粒度試験方法)に従って10%粒径D10、20%粒径D20、及び30%粒径D30を測定し、また、非特許文献2の方法に従って、アルカリ吸着試験を実施すると共に、得られた結果を非特許文献2の方法に基づいて平衡時のアルカリ溶液のアルカリ量(濃度)(mol/L)と吸着アルカリ量(OH-mol/g)との関係に整理し、平衡時のアルカリ溶液のアルカリ量(濃度) (mol/L)が大きい範囲で吸着アルカリ量(OH-mol/g)が一定値になる時の値を読み取って最大アルカリ吸着能Cmax(mol/g)を求めた。
また、平衡時のアルカリ溶液のアルカリ量(濃度)(mol/L)と吸着アルカリ量(OH-mol/g)との関係を示すグラフから、平衡時のアルカリ溶液のアルカリ量(濃度)(mol/L)が小さい範囲における累乗型の近似曲線を求め(例えばエクセルにおける累乗近似の指定)、得られた近似曲線の式S=k'Cxより、分配係数kd=kCa-1の定数k=k'、a=x-1として求めた。
このようにして実測された最大アルカリ吸着能Cmax(mol/g)、分配係数の定数k、及び定数aと、溶液濃度cが10mol/m3、1mol/m3、0.1mol/m3、及び0.01mol/m3の場合に算出された分配係数kdの値とを表2に示す。
[Example 4: Prediction of distribution coefficient k d from C max actual measurement value and C max -k correlation and C max -a distribution region]
10% particle size D10, 20% particle size D20, and 30% particle size D30 are measured according to JIS A 1204 (soil particle size testing method) for a certain land site soil (field soil), and Non-patent document 2 The alkali adsorption test is carried out according to the method described above, and the obtained results are shown in the method of Non-Patent Document 2 and the alkali amount (concentration) (mol / L) of the alkali solution at equilibrium and the adsorbed alkali amount (OH - mol Based on the relationship with / g), read the value when the amount of adsorbed alkali (OH - mol / g) becomes constant in the range where the alkali amount (concentration) (mol / L) of the alkali solution at equilibrium is large. The maximum alkali adsorption capacity C max (mol / g) was determined.
Also, from the graph showing the relationship between the alkali amount (concentration) (mol / L) of the alkali solution at equilibrium and the adsorbed amount (OH - mol / g), the alkali amount (concentration) (mol) of the alkali solution at equilibrium Find a power-type approximate curve in a range where / L) is small (for example, designation of power approximation in Excel), and from the equation S = k'C x of the obtained approximate curve, a constant of distribution coefficient k d = kC a-1 It calculated | required as k = k 'and a = x-1.
The maximum alkali adsorption capacity C max (mol / g), the constant k of the distribution coefficient and the constant a thus measured, and the solution concentration c is 10 mol / m 3 , 1 mol / m 3 , 0.1 mol / m 3 And the value of the distribution coefficient k d calculated in the case of 0.01 mol / m 3 are shown in Table 2.

また、上記のある現場土壌について、本発明の実施例2に基づいて10%粒径D10、20%粒径D20、及び30%粒径D30の測定から予測した最大アルカリ吸着能Cmax(mol/g)と、この予測された最大アルカリ吸着能Cmax(mol/g)から本発明の実施例1に基づいて予測し、また、安全を考慮して定められた分配係数の定数k、及び定数aの予測値を、上記の実測された最大アルカリ吸着能Cmax(mol/g)、分配係数の定数k、及び定数aの結果と、溶液濃度cが10mol/m3、1mol/m3、0.1mol/m3、及び0.01mol/m3の場合に予測された分配係数kdの結果とを表2に示す。 In addition, the maximum alkali adsorption capacity C max predicted from the measurement of 10% particle size D 10 , 20% particle size D 20 , and 30% particle size D 30 according to Example 2 of the present invention for the above-mentioned in-situ soil The constant k of the distribution coefficient which is predicted based on Example 1 of the present invention from (mol / g) and the predicted maximum alkaline adsorption capacity C max (mol / g), and also in consideration of safety , And the predicted value of the constant a, the result of the measured maximum alkali adsorption capacity C max (mol / g), the constant k of the distribution coefficient, and the constant a, and the solution concentration c is 10 mol / m 3 , 1 mol / Table 2 shows the predicted distribution coefficients k d for m 3 , 0.1 mol / m 3 and 0.01 mol / m 3 .

Figure 0006520623
Figure 0006520623

この表2に示す結果より、最大アルカリ吸着能Cmax、分配係数の定数kについて、アルカリ吸着試験により直接求められた実測値と予測された予測値とがほぼ同等であることが理解され、また、定数aについては、実測値と予測値との間に差異があるが、安全側の値であることが理解される。
また、以上の予測された最大アルカリ吸着能Cmaxと、分配係数の定数k及び定数aを基に予測された分配係数kdは完全には一致しないが、少なくとも高濃度のアルカリ領域(pH=11, 12)においては、予測値の方が小さく安全側に評価できることが理解される。
From the results shown in Table 2, it is understood that the measured values directly obtained by the alkali adsorption test and the predicted values predicted for the maximum alkali adsorption capacity C max and the constant k of the distribution coefficient are substantially equivalent. As for the constant a, although there is a difference between the measured value and the predicted value, it is understood that it is the value on the safe side.
Also, although the predicted maximum alkaline adsorption capacity C max and the distribution coefficient k d predicted based on the constant k of the distribution coefficient and the constant a do not completely match, at least the high concentration alkali region (pH In 11 and 12), it is understood that the predicted value is smaller and can be evaluated on the safe side.

Claims (8)

アルカリ性物質を溶出して地下水中にアルカリを流出させるリスクのある土木資材(以下、「アルカリ性資材」という。)を陸上現場で使用するに際し、予め前記陸上現場の土壌(現場土壌)のアルカリ吸着を考慮した移流分散解析により、アルカリ性資材から現場土壌に浸透するアルカリ溶液水によるアルカリ流出リスクを予測する方法において、
前記現場土壌のアルカリ吸着現象に関する遅延係数Rを用い、また、この遅延係数Rを、下記のフロインドリッヒ吸着等温式(2)
d=kCa…(2)
(但し、式中、Cは間隙水のアルカリ性物質の濃度であり、k及びaは実験的に求められる定数である。)
を採用した前記現場土壌の分配係数kdから求めるに際し、
前記現場土壌の最大アルカリ吸着能Cmax(mol/g)を求め、
次いで、予め複数の土壌を用いて求められた最大アルカリ吸着能Cmaxと定数kとの相関関係〔Cmax−k相関関係〕を用いて、先に求められたCmaxから前記式(2)における現場土壌の定数kを予測すると共に、予め複数の土壌を用いて求められた最大アルカリ吸着能Cmaxに対する定数aの分布領域〔Cmax−a分布領域〕の中から安全を考慮して前記式(2)における現場土壌の定数aとして定め、
この予測された現場土壌の定数kと安全を考慮して採用された現場土壌の定数aとを用いて前記現場土壌の分配係数kdを求めることを特徴とする陸上現場におけるアルカリ流出リスクの予測方法。
When using a civil engineering material (hereinafter referred to as "alkaline material") that has the risk of leaching out alkaline substances and causing alkali to flow out to groundwater, the alkali adsorption of the soil (on-site soil) of the above-mentioned land site is made in advance. In the method of predicting the alkali spill risk by the alkaline solution water which penetrates from the alkaline material to the in-situ soil by advection dispersion analysis taken into consideration,
The delay coefficient R related to the alkaline adsorption phenomenon of the in-situ soil is used, and this delay coefficient R is expressed by the following Freundrich adsorption isotherm (2).
k d = kC a (2)
(Wherein, C is the concentration of the alkaline substance in the pore water, and k and a are experimentally determined constants)
When determining from the distribution coefficient k d of the above-mentioned on-site soil adopting
Determine the maximum alkaline adsorption capacity C max (mol / g) of the aforementioned in-situ soil,
Then, using the correlation between the maximum alkaline adsorption capacity C max and the constant k previously determined using a plurality of soils [C max -k correlation], the above equation (2) is obtained from the C max previously determined In addition to predicting the constant k of the in-situ soil in the field, and taking into account the safety from among the distribution region [C max -a distribution region] of the constant a for the maximum alkali adsorption capacity C max previously obtained using a plurality of soils Determined as the constant a of the field soil in equation (2),
Prediction of alkaline runoff risk on a land site characterized by determining the distribution coefficient k d of the in-situ soil by using the predicted in-situ soil constant k and the in-situ constant a adopted in consideration of safety Method.
求められた前記現場土壌の最大アルカリ吸着能Cmax(mol/g)の値が、現場土壌を用いて実測されたCmax実側値であることを特徴とする請求項1に記載の陸上現場におけるアルカリ流出リスクの予測方法。 The land site according to claim 1, wherein the value of the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil determined is the C max actual value measured using the in-situ soil. Method of predicting alkaline spill risk in Japan. 前記現場土壌の定数k及びaを求める際に用いられる前記現場土壌の最大アルカリ吸着能Cmax(mol/g)は、現場土壌の10%粒径D10(JIS A 1204)が0.0001mm以上である場合に、これら複数の10%粒径D10(JIS A 1204)0.0001mm以上の土壌を用いて、JIS A 1204(土の粒度試験方法)に準拠して測定された土壌の粒度指標DS(mm)と当該土壌の最大アルカリ吸着能Cmaxとの相関関係〔DS−Cmax相関関係〕を予め求めておき、JIS A 1204に準拠して測定された前記現場土壌の粒度指標DS(mm)から前記DS−Cmax相関関係を用いて予測されたCmax予測値であることを特徴とする請求項1に記載の陸上現場におけるアルカリ流出リスクの予測方法。 The maximum alkali adsorption capacity C max (mol / g) of the in-situ soil used when determining the constants k and a of the in-situ soil is 10 01% particle diameter D 10 (JIS A 1204) of the in-situ soil of 0.0001 mm or more When it is, the particle size index of the soil measured according to JIS A 1204 (gradient test method of the soil) using soil of more than these 10% particle size D 10 (JIS A 1204) 0.0001 mm or more The particle size index of the field soil measured in accordance with JIS A 1204 in advance by determining the correlation between D S (mm) and the maximum alkaline adsorption capacity C max of the soil [D S -C max correlation]. The method according to claim 1, wherein the predicted value is a C max prediction value predicted from the D S (mm) using the D S -C max correlation. 前記現場土壌の平均粒径DS(mm)から当該現場土壌の最大アルカリ吸着能Cmax(mol/g)を予測する際に用いられる前記DS−Cmax相関関係が、下記の関係式(3)
max(mol/g)=a×DS b…(3)
〔但し、式(3)において、粒度指標Dsは10%粒径D10、20%粒径D20、30%粒径D30のいずれかであり、粒度指標Dsが10%粒径D10のときa=2×10-5及びb=0.469であり、粒度指標Dsが20%粒径D20のときa=3×10-5及びb=0.547であり、また、粒度指標Dsが30%粒径D30のときa=3×10-5及びb=0.755である。〕
で表されることを特徴とする請求項3に記載の陸上現場におけるアルカリ流出リスクの予測方法。
The D S -C max correlation used when predicting the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil from the average particle diameter D S (mm) of the in-situ soil is the following relationship ( 3)
C max (mol / g) = a × D S b (3)
[Wherein, in the formula (3), the particle size index Ds is either 10% particle size D 10 , 20% particle size D 20 or 30% particle size D 30 and the particle size index Ds is 10% particle size D 10 When a = 2 × 10 −5 and b = 0.469, and when the particle size index Ds is 20% particle diameter D 20 , a = 3 × 10 −5 and b = 0.547, and the particle size index Ds Is 30% particle diameter D 30 and a = 3 × 10 −5 and b = 0.755. ]
The prediction method of the alkali spill risk in the land site according to claim 3, characterized in that
前記現場土壌の定数k及びaを求める際に用いられる前記現場土壌の最大アルカリ吸着能Cmax(mol/g)は、現場土壌の10%粒径D10(JIS A 1204)が0.0001mm未満の粘土系土壌である場合に、又は現場土壌についてJIS A 1205(土の液性限界・塑性限界試験方法)の適用が可能である場合に、これら複数のJIS A 1205試験適用可能な土壌を用い、JIS A 1205(土の液性限界・塑性限界試験方法)に準拠して測定された土壌の液性限界LL(%)と当該土壌の最大アルカリ吸着能Cmaxとの相関関係〔LL−Cmax相関関係〕、又は土壌の塑性限界LS(%)と当該最大アルカリ吸着能Cmaxとの相関関係〔LS−Cmax相関関係〕を予め求めておき、JIS A 1205に準拠して測定された前記現場土壌の液性限界LL(%)又は塑性限界LS(%)から前記LL−Cmax相関関係又はLS−Cmax相関関係を用いて予測されたCmax予測値であることを特徴とする請求項1に記載の陸上現場におけるアルカリ流出リスクの予測方法。 The maximum alkali adsorption capacity C max (mol / g) of the in-situ soil used when determining the constants k and a of the in-situ soil is 10% particle diameter D 10 (JIS A 1204) of the in-situ soil less than 0.0001 mm In the case of clay soils of this type, or when it is possible to apply JIS A 1205 (Method for testing the liquid limit of plasticity / plasticity limit of soil) for the in-situ soil, the soils applicable to the plurality of JIS A 1205 tests are used , The correlation between the liquid limit L L (%) of the soil measured in accordance with JIS A 1205 (the method of testing the limit of liquid and plasticity of the soil) and the maximum alkali adsorption capacity C max of the soil [L L -C max correlation] or correlation between the soil plasticity limit L S (%) and the maximum alkaline adsorption capacity C max [L S -C max correlation] in advance, and in accordance with JIS A 1205 wherein the liquid of said measured field soil Te limit L L (%) or plastic limit L S (%) L L -C max correlation or L S - prediction method of the alkali spill risk on land site according to claim 1, characterized in that the predicted C max predicted value using the max correlation. 前記現場土壌の液性限界LL(%)から当該現場土壌の最大アルカリ吸着能Cmax(mol/g)を予測する前記LL−Cmax相関関係が、下記の関係式(4)
max(mol/g)=0.996×10-5×LL(%)−0.0002…(4)
で表され、また、
前記現場土壌の塑性限界LS(%)から当該現場土壌の最大アルカリ吸着能Cmax(mol/g)を予測する前記LS−Cmax相関関係が、下記の関係式(5)
max(mol/g)=1.494×10-5×LS(%)+0.0002…(5)
で表されることを特徴とする請求項5に記載の陸上現場におけるアルカリ流出リスクの予測方法。
The L L -C max correlation for predicting the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil from the liquid limit L L (%) of the in-situ soil is the following relationship (4)
C max (mol / g) = 0.996 × 10 -5 × L L (%)-0.0002 (4)
Is also represented by
The L S -C max correlation that predicts the maximum alkali adsorption capacity C max (mol / g) of the in-situ soil from the plastic limit L S (%) of the in-situ soil is the following relational expression (5)
C max (mol / g) = 1.494 × 10 −5 × L S (%) + 0.0002 (5)
The method of predicting the risk of alkali spill on land according to claim 5, characterized in that
前記最大アルカリ吸着能Cmax(mol/g)から現場土壌の定数kを予測する前記Cmax−k相関関係が、下記の関係式(6)
k=196×Cmax(mol/g)…(6)
で表されることを特徴とする請求項1〜6のいずれかに記載の陸上現場におけるアルカリ流出リスクの予測方法。
The C max -k correlation which predicts the constant k of the in-situ soil from the maximum alkaline adsorption capacity C max (mol / g) is the following relational expression (6)
k = 196 × C max (mol / g) (6)
The method for predicting the risk of alkali spill on land according to any one of claims 1 to 6, characterized in that
前記最大アルカリ吸着能Cmax(mol/g)から現場土壌の定数aを求める際の前記Cmax−a分布領域が−0.3〜−1.0の範囲であり、前記安全値定数aとして下限値−1.0の値を採用することを特徴とする請求項1〜7のいずれかに記載の陸上現場におけるアルカリ流出リスクの予測方法。 The C max -a distribution region at the time of determining the constant a of the in-situ soil from the maximum alkaline adsorption capacity C max (mol / g) is in the range of -0.3 to -1.0, and as the safety value constant a The method for predicting alkali spill risk in a land site according to any one of claims 1 to 7, wherein a value of lower limit -1.0 is adopted.
JP2015196638A 2015-10-02 2015-10-02 Method of predicting alkali spill risk on land site Active JP6520623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015196638A JP6520623B2 (en) 2015-10-02 2015-10-02 Method of predicting alkali spill risk on land site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015196638A JP6520623B2 (en) 2015-10-02 2015-10-02 Method of predicting alkali spill risk on land site

Publications (2)

Publication Number Publication Date
JP2017066827A JP2017066827A (en) 2017-04-06
JP6520623B2 true JP6520623B2 (en) 2019-05-29

Family

ID=58494320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015196638A Active JP6520623B2 (en) 2015-10-02 2015-10-02 Method of predicting alkali spill risk on land site

Country Status (1)

Country Link
JP (1) JP6520623B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954323B2 (en) * 2018-03-19 2021-10-27 Jfeスチール株式会社 Judgment method of granular material, manufacturing method of granular material for roadbed material and manufacturing method of roadbed material
JP6980242B1 (en) * 2021-03-22 2021-12-15 国立研究開発法人国立環境研究所 Environmental impact prediction method for pollutant spills and environmental impact prediction program for pollutant spills

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761183A (en) * 1987-01-20 1988-08-02 Geochemical Corporation Grouting composition comprising slag
JPH10204906A (en) * 1997-01-21 1998-08-04 Fujita Corp Alkali absorbing sheet and alkali elusion preventing method
JP3806227B2 (en) * 1997-05-23 2006-08-09 独立行政法人土木研究所 Alkali leaching prevention method for improved embankment creation
JP2005013786A (en) * 2003-06-23 2005-01-20 Gifu Prefecture Estimation method and estimation program of amount of heavy metal flowing out of soil
JP2009150757A (en) * 2007-12-20 2009-07-09 Jfe Steel Corp Ca2+ ELUTION AMOUNT TEST METHOD OF SLUG, AND EVALUATION METHOD OF SLUG
WO2009123088A1 (en) * 2008-03-31 2009-10-08 東レ株式会社 Separation membrane, method of producing the same and separation membrane module using the separation membrane
JP2012189416A (en) * 2011-03-10 2012-10-04 Nippon Steel Corp Elution amount testing method for slugs
JP5806611B2 (en) * 2011-12-17 2015-11-10 新日鐵住金株式会社 Soil improvement construction method using steel slag
JP6142760B2 (en) * 2013-10-08 2017-06-07 新日鐵住金株式会社 Strength prediction method for modified soil
JP6195377B2 (en) * 2014-01-29 2017-09-13 株式会社奥村組 Advection diffusion analysis method for pollutants

Also Published As

Publication number Publication date
JP2017066827A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
Hudaykulov et al. Filter leaching of salt soils of automobile roads
Preuth et al. Stability analysis of a human-influenced landslide in eastern Belgium
Hermansson et al. Frost heave and water uptake rates in silty soil subject to variable water table height during freezing
Umrao et al. Soil slope instability along a strategic road corridor in Meghalaya, north-eastern India
Bagriacik et al. A new experimental approach to the improvement of sandy soils with construction demolition waste and cement
JP6520623B2 (en) Method of predicting alkali spill risk on land site
Ogila Analysis and assessment of slope instability along international mountainous road in North Africa
Ling et al. Laboratory and field study of electroosmosis dewatering for pavement subgrade soil
Vannucci et al. Strength parameters of debris using a large shear box apparatus: application to a case history
Liu et al. Long-term performance of temperature and humidity in the road embankment constructed with recycled construction and demolition wastes
Ng et al. Analysis of a landfill cover without geomembrane using varied particle sizes of recycled concrete
Apul et al. A review of water movement in the highway environment: Implications for recycled materials use
Zaini et al. Effect of Alstonia Angustiloba tree moisture absorption on the stabilization of unsaturated residual soil slope
Zhao et al. Investigation on the properties and distribution of air voids in porous asphalt with relevance to the Pb (II) removal performance
Zimmermann et al. Metal concentrations in soil and seepage water due to infiltration of roof runoff by long term numerical modelling
El-Banna et al. Creating digital maps for geotechnical characteristics of soil based on GIS technology and remote sensing
Zhang et al. Stability evaluation of the high fill deposit slope subjected to rainfall considering water deterioration
Sabtan Performance of a steel structure on Ar-Rayyas Sabkha soils
Tehrani Developing a new instrumented soil column to study climate-induced ground movement in expansive soil
Al-Yaqout Insitu hydraulic conductivity tests for compacted calcareous sands using Sealed Double Ring Infiltrometers (SDRI)
Nguyen et al. Moisture transfer finite element modeling with soil-water characteristic curve-based parameters and its application to Nhan Co red mud basin slope
Pearson et al. Influence of soil, precipitation, and antecedent moisture on stormwater runoff and leachate from runoff boxes containing simulated urban landscape soils
Joel et al. Effect of compactive effort on strength indices of laterite treated with calcium carbide waste
Ali Egyptian Collapsible Soils, Case Study-Region Affected by Varying Moisture Content
Adabanija et al. Obtaining Suction Distribution Within Vadose Zone of Highway Pavement System in Southwestern Nigeria Using Physico-Empirical Approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151