JP6516325B2 - Evaluation method of remaining life of pipe - Google Patents

Evaluation method of remaining life of pipe Download PDF

Info

Publication number
JP6516325B2
JP6516325B2 JP2015064003A JP2015064003A JP6516325B2 JP 6516325 B2 JP6516325 B2 JP 6516325B2 JP 2015064003 A JP2015064003 A JP 2015064003A JP 2015064003 A JP2015064003 A JP 2015064003A JP 6516325 B2 JP6516325 B2 JP 6516325B2
Authority
JP
Japan
Prior art keywords
pipe
remaining life
inner diameter
deformation amount
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015064003A
Other languages
Japanese (ja)
Other versions
JP2016183898A (en
Inventor
真也 森岡
真也 森岡
修吾 岩▲崎▼
修吾 岩▲崎▼
博一 堤
博一 堤
哲司 片山
哲司 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015064003A priority Critical patent/JP6516325B2/en
Priority to PCT/JP2015/084234 priority patent/WO2016151953A1/en
Priority to RU2017133179A priority patent/RU2664891C1/en
Priority to MYPI2017703387A priority patent/MY194957A/en
Publication of JP2016183898A publication Critical patent/JP2016183898A/en
Application granted granted Critical
Publication of JP6516325B2 publication Critical patent/JP6516325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、管の余寿命評価方法に関する。   The present invention relates to a method for evaluating the remaining life of a pipe.

従来、高温および高圧の環境下で使用される各種プラントにおいて、運転時間の経過に伴いクリープ損傷が進行し、寿命が消費されることが知られている。そのため、機器の余寿命を評価する手法が種々開発されている。   Heretofore, in various plants used under high temperature and high pressure environments, it is known that creep damage progresses with the passage of operation time, and the life is consumed. Therefore, various methods for evaluating the remaining life of the device have been developed.

例えば、下記特許文献1には、経時的に加熱管の軸線方向における硬度分布を測定して当該加熱管における温度分布と時効程度を推定するとともに、硬度分布に基づいて加熱管の寸法測定を行って当該加熱管におけるクリープ変形量を得、硬度と変形量とを加熱管の素材に応じた所定の判断値と比較することにより、測定時における加熱管の余寿命を判断する加熱管の余寿命管理方法が開示されている。   For example, in Patent Document 1 below, the hardness distribution in the axial direction of the heating pipe is measured over time to estimate the temperature distribution and the degree of aging in the heating pipe, and the dimensions of the heating pipe are measured based on the hardness distribution. The remaining life of the heating tube which determines the remaining life of the heating tube at the time of measurement by obtaining the creep deformation amount in the heating tube and comparing the hardness and the deformation amount with a predetermined judgment value corresponding to the material of the heating tube Management methods are disclosed.

特開平9−159582号公報JP-A-9-159582

しかしながら、上述の加熱管の余寿命管理方法では、加熱管の余寿命を評価することができるものの、加熱管における温度分布と時効程度を推定するときに、経時的に加熱管の軸線方向における硬度分布を測定することから、作業が煩雑であるという課題があった。例えば、天然ガスを改質する改質器で用いられる触媒管の余寿命を評価する場合、測定及び評価作業が簡易、かつ、迅速であることが望まれていた。   However, although the remaining life management method of the heating tube described above can evaluate the remaining life of the heating tube, when estimating the temperature distribution and the degree of aging in the heating tube, the hardness in the axial direction of the heating tube with time There is a problem that the operation is complicated because the distribution is measured. For example, when evaluating the remaining life of a catalyst tube used in a reformer that reforms natural gas, it has been desired that the measurement and evaluation work be simple and quick.

以上のことから、本発明は前述した課題を解決するために為されたものであって、簡易、かつ、迅速な作業で管の余寿命を評価することができる管の余寿命評価方法を提供することを目的としている。   In view of the above, the present invention has been made to solve the above-described problems, and provides a method for evaluating the remaining life of a pipe that can evaluate the remaining life of the pipe by simple and quick operation. The purpose is to

上述した課題を解決する第1の発明に係る管の余寿命評価方法は、管の内径Dを導出する管の内径導出工程と、前記管の内径Dと当該管の初期内径D0の差から内径変形量ΔDを導出する管の内径変形量導出工程と、前記管の膨張率が任意の評価余寿命Tで寿命限界伸びXとなる条件にて変形予測線図を作成する変形予測線図作成工程と、前記変形予測線図に基づき前記管の内径導出工程にて前記管の内径Dを導出したときの変形量Aを評価余寿命有無の判定基準として取得する判定基準変形量取得工程と、前記管の内径Dを導出したときの累積誤差Bを算出する累積誤差算出工程と、前記管の内径変形量ΔDと前記評価余寿命有無の判定基準である前記変形量Aと前記累積誤差Bとに基づき前記管の余寿命を判定する余寿命判定工程とを有する、ことを特徴とする。   The remaining life evaluation method of a tube according to the first invention for solving the above-mentioned problems comprises the step of deriving the inner diameter of the tube for deriving the inner diameter D of the tube, and the inner diameter from the difference between the inner diameter D of the tube and the initial inner diameter D0 of the tube. Inner diameter deformation amount deriving step of the tube for deriving the deformation amount ΔD, and a deformation prediction diagram creating step for creating the deformation forecasting diagram under the condition that the expansion coefficient of the tube becomes the life limit elongation X with arbitrary evaluation remaining life T And a determination reference deformation amount acquisition step of acquiring a deformation amount A when the inner diameter D of the pipe is derived in the inner diameter derivation step of the pipe based on the deformation prediction diagram as a determination criterion of evaluation residual life presence or absence; The accumulated error calculating step of calculating the accumulated error B when the inner diameter D of the pipe is derived, and the deformed amount A and the accumulated error B which are determination criteria of the inner diameter deformation ΔD of the pipe and the evaluation residual life existence. And a remaining life determining step of determining the remaining life of the pipe based on the It is characterized by

上述した課題を解決する第2の発明に係る管の余寿命評価方法は、第1の発明に係る管の余寿命評価方法であって、前記変形予測線図を改良θ法により作成することを特徴とする。   The remaining life evaluation method of a pipe according to the second invention for solving the above-mentioned problems is the remaining life evaluation method of a pipe according to the first invention, wherein the deformation prediction diagram is created by the improved θ method It features.

上述した課題を解決する第3の発明に係る管の余寿命評価方法は、第1または第2の発明に係る管の余寿命評価方法であって、前記管の内径導出工程は、前記管の外径を計測して外径計測値を取得する外径計測値取得工程と、前記管の肉厚を測定して肉厚測定値を取得する肉厚測定値取得工程と、前記外径計測値および前記肉厚測定値に基づき前記管の内径を算出する内径算出工程とを有する、ことを特徴とする。   The remaining life evaluation method of a pipe according to the third invention for solving the above-mentioned problems is the remaining life evaluation method of a pipe according to the first or the second invention, wherein the inner diameter deriving step of the pipe An outer diameter measurement step of acquiring an outer diameter measurement value by measuring an outer diameter, a thickness measurement value acquisition step of acquiring a wall thickness measurement value by measuring a wall thickness of the pipe, and the outer diameter measurement value And an inner diameter calculating step of calculating an inner diameter of the pipe based on the thickness measurement value.

上述した課題を解決する第4の発明に係る管の余寿命評価方法は、第3の発明に係る管の余寿命評価方法であって、前記累積誤差Bは、前記管の外径計測時に生じる外径計測誤差と、前記管の肉厚測定時に生じる肉厚測定誤差と、前記管の作製時に生じる加工誤差とに基づき導出されることを特徴とする。   The remaining life evaluation method for a pipe according to the fourth invention for solving the above-mentioned problems is the remaining life evaluation method for a pipe according to the third invention, wherein the accumulated error B occurs when measuring the outer diameter of the pipe It is characterized in that it is derived based on an outer diameter measurement error, a wall thickness measurement error generated when measuring a wall thickness of the pipe, and a processing error generated when manufacturing the pipe.

上述した課題を解決する第5の発明に係る管の余寿命評価方法は、第1から第4の何れか一つの発明に係る管の余寿命評価方法であって、前記余寿命判定工程は、前記管の内径変形量導出工程で導出した前記管の内径変形量ΔDが、前記評価余寿命有無の判定基準である前記変形量Aと前記累積誤差Bとの差よりも小さいとき、前記管の余寿命が前記評価余寿命Tよりも長いと判定することを特徴とする。   The remaining life evaluation method of a pipe according to a fifth invention for solving the above-mentioned problems is the remaining life evaluation method of a pipe according to any one of the first to fourth inventions, wherein the remaining life judging step is When the inner diameter deformation amount ΔD of the tube derived in the inner diameter deformation amount deriving step of the tube is smaller than the difference between the deformation amount A and the cumulative error B, which is the determination criterion of the evaluation remaining life existence, It is characterized in that it is determined that the remaining life is longer than the evaluation remaining life T.

上述した課題を解決する第6の発明に係る管の余寿命評価方法は、第1から第5の何れか一つの発明に係る管の余寿命評価方法であって、前記余寿命判定工程は、前記管の内径変形量導出工程で導出した前記管の内径変形量ΔDが前記評価余寿命有無の判定基準である前記変形量Aと前記累積誤差Bとの和以上であるとき、前記管の余寿命が前記評価余寿命T以下であると判定することを特徴とする。   The remaining life evaluation method of a pipe according to a sixth invention for solving the above-mentioned problems is the remaining life evaluation method of a pipe according to any one of the first to fifth inventions, wherein the remaining life judging step is When the inner diameter deformation amount ΔD of the tube derived in the inner diameter deformation amount deriving step of the tube is equal to or greater than the sum of the deformation amount A and the accumulated error B which is the determination criterion of the evaluation remaining life existence, It is characterized in that it is determined that the life is equal to or less than the evaluation remaining life T.

上述した課題を解決する第7の発明に係る管の余寿命評価方法は、第1から第6の何れか一つの発明に係る管の余寿命評価方法であって、前記管は、天然ガスの改質に用いられる触媒管であることを特徴とする。   A remaining life evaluation method of a pipe according to a seventh invention for solving the above-mentioned problems is the remaining life evaluation method of a pipe according to any one of the first to sixth inventions, wherein the pipe is a natural gas It is characterized by being a catalyst tube used for reforming.

本発明によれば、簡易、かつ、迅速な作業で管の余寿命を評価することができる。   According to the present invention, the remaining life of the pipe can be evaluated by a simple and quick operation.

本発明の主な実施形態に係る管の余寿命評価方法の手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure of the remaining life evaluation method of the pipe | tube which concerns on main embodiment of this invention. 前記管の余寿命評価方法で作成した管の変形予測線図の一例を示す図である。It is a figure which shows an example of the deformation | transformation prediction diagram of the pipe | tube created by the remaining life evaluation method of the said pipe | tube. 前記管の余寿命評価方法の評価対象の一例である触媒管の概略図である。It is the schematic of the catalyst pipe | tube which is an example of evaluation object of the remaining life evaluation method of the said pipe | tube.

本発明に係る管の余寿命評価方法の主な実施形態を図面に基づいて説明するが、本発明は、図面に基づいて説明する以下の実施形態のみに限定されるものではない。   Although the main embodiment of the remaining life evaluation method of the pipe | tube which concerns on this invention is described based on drawing, this invention is not limited only to the following embodiment described based on drawing.

[主な実施形態]
本発明の主な実施形態に係る管の余寿命評価方法について、図1から図3に基づいて説明する。
本実施形態に係る管の余寿命評価方法では、天然ガス改質器に設けられる複数のホットコレクタのそれぞれに連結される、数100本から成る複数の触媒管に適用した場合について説明する。
[Main embodiments]
The remaining life evaluation method of the pipe | tube which concerns on main embodiment of this invention is demonstrated based on FIGS. 1-3.
In the method for assessing the remaining life of a pipe according to the present embodiment, the case where the method is applied to a plurality of several 100 catalyst pipes connected to each of a plurality of hot collectors provided in a natural gas reformer will be described.

前記天然ガス改質器は、例えば、図3に示すように、触媒管本体11、ショートピース12、ピグテール13で構成される触媒管14を複数備える。触媒管本体11は、軸心が上下方向に延在するように立設配置されている。ショートピース12は、触媒管本体11の下端部に連結され、軸心が上下方向に延在するように立設配置されている。ピグテール13は、ショートピース12の下端部に連結され、触媒管本体11よりも小径をなし、屈曲配置されている。ピグテール13の他端部がホットコレクタ15に連結されている。ホットコレクタ15は、軸心が水平方向(図示例では紙面表裏方向)に延在するように配置されている。ホットコレクタ15には、触媒管14と左右対称の位置に図示しない触媒管のピグテールの他端部が連結されている。さらに、ホットコレクタ15の軸心方向にて所定の間隔で当該ホットコレクタ15に連結される左右一対の触媒管が配置されている。天然ガス改質器には、複数の触媒管14が連結されたホットコレクタ15が複数配置されている。   For example, as shown in FIG. 3, the natural gas reformer includes a plurality of catalyst tubes 14 each including a catalyst tube body 11, a short piece 12, and a pigtail 13. The catalyst tube main body 11 is vertically disposed so that the axial center extends in the vertical direction. The short piece 12 is connected to the lower end portion of the catalyst tube main body 11, and is vertically disposed so that the axial center extends in the vertical direction. The pigtail 13 is connected to the lower end portion of the short piece 12 and has a smaller diameter than the catalyst tube main body 11 and is disposed so as to be bent. The other end of the pigtail 13 is connected to the hot collector 15. The hot collector 15 is disposed such that the axial center extends in the horizontal direction (in the illustrated example, in the front and back direction in the drawing). The other end of the pigtail of the catalyst pipe (not shown) is connected to the hot collector 15 at a position symmetrical with the catalyst pipe 14. Furthermore, a pair of left and right catalyst tubes connected to the hot collector 15 are disposed at predetermined intervals in the axial direction of the hot collector 15. The natural gas reformer is provided with a plurality of hot collectors 15 to which a plurality of catalyst tubes 14 are connected.

触媒管本体11、ショートピース12、ピグテール13は、例えば、HP−Nb−Ti(25Cr−35Ni−Nb、Ti)およびアロイ800H(Fe−32Ni−20Cr)で構成されている。触媒管本体11は、導入された混合ガス(メタンガス、水蒸気)21が反応して生成ガス(水素、水蒸気、一酸化炭素、二酸化炭素)22を生成している。この生成ガス22は、ショートピース12、ピグテール13を介してホットコレクタ15に流通している。   The catalyst tube body 11, the short piece 12, and the pigtail 13 are made of, for example, HP-Nb-Ti (25Cr-35Ni-Nb, Ti) and Alloy 800H (Fe-32Ni-20Cr). The catalyst tube main body 11 reacts with the introduced mixed gas (methane gas, water vapor) 21 to generate a product gas (hydrogen, water vapor, carbon monoxide, carbon dioxide) 22. The generated gas 22 is circulated to the hot collector 15 through the short piece 12 and the pigtail 13.

触媒管本体11は、約900℃以上の炉内に配置される。ショートピース12およびピグテール13は、炉外に配置されるものの、内部を約900℃のガスが流通している。   The catalyst tube main body 11 is disposed in a furnace of about 900 ° C. or higher. Although the short piece 12 and the pigtail 13 are disposed outside the furnace, a gas of about 900 ° C. flows through the inside.

本実施形態に係る管の余寿命評価方法は、図1に示すように、管の内径導出工程S1と、管の内径変形量導出工程S2と、閾値導出工程S3と、余寿命判定工程S4とを有する。   The remaining life evaluation method of the pipe according to the present embodiment is, as shown in FIG. 1, an inner diameter deriving step S1 of the pipe, an inner diameter deformation amount deriving step S2 of the pipe, a threshold deriving step S3, and a remaining life determining step S4. Have.

管の内径導出工程S1にて、上述した触媒管本体11(管)の現在の内径Dが導出される。まず、治具を用いて触媒管本体11の外径を当該触媒管本体11の長手方向全体に亘って計測する(外径計測工程S1a)。これにより、触媒管本体11の延在方向にて膨出箇所を特定することができる。続いて、超音波計測器などの計測器を用いて触媒管本体11の肉厚を例えば2箇所測定する(肉厚測定工程S1b)。続いて、外径計測工程S1aで得られた触媒管本体11の外径計測値から、肉厚測定工程S1bで得られた触媒管本体11の肉厚測定値を引くことにより触媒管本体11の現在の内径Dを算出する(内径算出工程S1c)。   At the inner diameter deriving step S1 of the tube, the current inner diameter D of the catalyst tube main body 11 (tube) described above is derived. First, the outer diameter of the catalyst tube main body 11 is measured over the entire longitudinal direction of the catalyst tube main body 11 using a jig (outer diameter measurement step S1a). Thereby, the bulging part can be specified in the extending direction of the catalyst tube main body 11. Subsequently, the thickness of the catalyst tube main body 11 is measured, for example, at two places using a measuring instrument such as an ultrasonic measuring instrument (thickness measuring step S1b). Subsequently, by subtracting the thickness measurement value of the catalyst pipe main body 11 obtained in the thickness measurement step S1b from the outer diameter measurement value of the catalyst pipe main body 11 obtained in the outer diameter measurement step S1a The current inner diameter D is calculated (inner diameter calculation step S1c).

管の内径変形量導出工程S2にて、上述した触媒管本体11(管)の初期内径D0からの変形量ΔDが導出される。触媒管本体11の初期内径D0は、前記天然ガス改質器に搭載される前に、上述の管の内径導出工程S1と同様な手順にて導出される。この触媒管本体11の初期内径D0と、上述した管の内径導出工程S1で導出された触媒管本体11の現在の内径Dとの差から触媒管本体11の内径変形量ΔDが導出される。   In the inner diameter deformation amount deriving step S2 of the tube, the deformation amount ΔD from the initial inner diameter D0 of the catalyst tube main body 11 (tube) described above is derived. The initial inner diameter D0 of the catalyst tube main body 11 is derived in the same procedure as the above-described tube inner diameter deriving step S1 before being mounted on the natural gas reformer. An inner diameter deformation amount ΔD of the catalyst tube main body 11 is derived from the difference between the initial inner diameter D0 of the catalyst tube main body 11 and the current inner diameter D of the catalyst tube main body 11 derived in the above-described tube inner diameter deriving step S1.

閾値導出工程S3にて、触媒管本体11(管)の余寿命を評価するときに用いる閾値が導出される。まず、触媒管本体11(管)がT年後に打ち切り伸びとなる、すなわち、T年後(評価余寿命で)の膨張率が寿命限界伸びXとなることを条件として、触媒管本体11(管)の変形予測線図を作成する(変形予測線図作成工程S3a)。前記変形予測線図は、例えば、改良θ法を用いて作成することが好ましい。横軸を時間とし縦軸を膨張率とした変形予測線図にて、評価余寿命であるT1年後に膨張率が寿命限界伸びXとなるとき、例えば、図2に示すように、計測時(触媒管本体11の内径導出時)t1と評価余寿命T1との和t2にて膨張率が寿命限界伸びXとなる曲線L1が得られる。また、評価余寿命であるT2(>T1)年後に膨張率が寿命限界伸びXとなるとき、計測時(触媒管本体11の内径導出時)t1と評価余寿命T2との和t3にて膨張率が寿命限界伸びXとなる曲線L2が得られる。   In the threshold derivation step S3, a threshold used to evaluate the remaining life of the catalyst tube main body 11 (tube) is derived. First, the catalyst tube main body 11 (tube) (tube) has a breaking elongation after T years, that is, the expansion coefficient after T years (with evaluation remaining life) becomes the life limit elongation X, the catalyst tube main body 11 (tube The deformation prediction diagram of (a) is created (deformation prediction diagram creating step S3a). The deformation prediction diagram is preferably created, for example, using a modified θ method. In the deformation prediction diagram in which the horizontal axis is time and the vertical axis is expansion coefficient, when the expansion coefficient becomes the life limit elongation X after T1 year which is the evaluation remaining life, for example, as shown in FIG. When the inner diameter of the catalyst tube main body 11 is derived t1 and the evaluation remaining life T1, a curve L1 in which the expansion coefficient becomes the life limit elongation X is obtained. In addition, when the expansion coefficient becomes the life limit elongation X after T2 (> T1) years, which is the evaluation remaining life, expansion is performed by the sum t3 of measurement time (during the inner diameter of the catalyst tube main body 11) t1 and the evaluation remaining life T2. A curve L2 is obtained in which the rate becomes the life limit elongation X.

続いて、変形予測線図作成工程S3aで得られた変形予測線図に基づき、計測時点(触媒管本体11の内径導出時点)での変形量Aを評価余寿命有無の判定基準として取得する(判定基準変形量取得工程S3b)。例えば、評価余寿命T1にて膨張率が寿命限界伸びXとなる場合には、曲線L1に基づき計測時点t1での膨張率A1を評価余寿命有無の判定基準として取得する。評価余寿命T2にて膨張率が寿命限界伸びXとなる場合には、曲線L2に基づき、計測時点t1での膨張率A2を評価余寿命有無の判定基準として取得する。   Subsequently, based on the deformation prediction diagram obtained in the deformation prediction diagram creation step S3a, the deformation amount A at the measurement time (when the inner diameter is derived from the catalyst tube main body 11) is acquired as a determination criterion of the presence or absence of evaluation remaining life ( Judgment criteria deformation amount acquisition step S3b). For example, when the expansion rate becomes the life limit elongation X at the evaluation remaining life T1, the expansion rate A1 at the measurement time point t1 is acquired based on the curve L1 as a determination standard of the evaluation remaining life existence. When the expansion rate becomes the life limit elongation X at the evaluation remaining life T2, based on the curve L2, the expansion rate A2 at the measurement time point t1 is acquired as a determination criterion of the evaluation remaining life existence.

続いて、内径導出時の累積誤差Bを算出する(累積誤差算出工程S3c)。内径導出時の累積誤差Bは、触媒管本体11の外径計測時に生じる誤差(外径計測誤差)と、触媒管本体11の肉厚測定時に生じる誤差(肉厚測定誤差)と、触媒管本体11の作製時(例えば、触媒管本体11の内径などの加工時)に生じる誤差(加工誤差)とに基づき算出することが好ましい。内径導出時の累積誤差Bとして、外径計測誤差と肉厚測定誤差と加工誤差とをそれぞれ二乗し、これらの和の平方根を用いることが好ましい。   Subsequently, an accumulated error B at the time of deriving the inner diameter is calculated (accumulated error calculation step S3c). The accumulated error B at the time of internal diameter derivation is an error (outer diameter measurement error) generated when measuring the outer diameter of the catalyst tube main body 11, an error (wall thickness measurement error) generated when measuring the thickness of the catalyst tube main body 11, and It is preferable to calculate based on an error (processing error) that occurs at the time of manufacturing of 11 (for example, at the time of processing of the inner diameter of the catalyst tube main body 11, etc.). It is preferable to use the square root of the sum of the outer diameter measurement error, the thickness measurement error, and the processing error as the accumulated error B at the time of deriving the inner diameter.

余寿命判定工程S4にて、触媒管本体11(管)の余寿命が判定される。まず、管の内径変形量導出工程S2で導出した触媒管本体11の内径変形量ΔDが、計測時点(触媒管本体11の内径導出時点)での触媒管本体11の変形量Aと内径導出時の累積誤差Bとの差よりも小さいか判定する(余寿命下限値評価工程S4a)。前記触媒管本体11の内径変形量ΔDが、計測時点での触媒管本体11の変形量Aと内径導出時の累積誤差Bとの差よりも小さいときには、触媒管本体11の余寿命が評価余寿命Tより長いと判定する(余寿命下限値判定工程S4c)。他方、前記条件(前記触媒管本体11の内径変形量ΔDが、計測時点での触媒管本体11の変形量Aと内径導出時の累積誤差Bとの差よりも小さい)を満たさないときには、計測時点での触媒管本体11の変形量Aと内径導出時の累積誤差Bとの和を基準にして触媒管本体11の余寿命を評価する(余寿命上限値評価工程S4b)。前記触媒管本体11の内径変形量ΔDが、計測時点での触媒管本体11の変形量Aと内径導出時の累積誤差Bとの和以上であるときには、触媒管本体11の余寿命が評価余寿命T以下であると判定する(余寿命上限値判定工程S4d)。他方、前記条件(前記触媒管本体11の内径変形量ΔDが、計測時点での触媒管本体11の変形量Aと内径導出時の累積誤差Bとの和以上である)を満たさないときには、触媒管本体11の余寿命Tの有無について判定不可と判定する(余寿命有無判定不可工程S4e)。この場合、前記触媒管本体11の余寿命の有無を別の方法で評価することになる。   In the remaining life determination step S4, the remaining life of the catalyst tube body 11 (tube) is determined. First, when the inner diameter deformation amount ΔD of the catalyst tube main body 11 derived in the inner diameter deformation amount deriving step S2 of the tube is the deformation amount A of the catalyst tube main body 11 at the measurement time (the inner diameter derivation time of the catalyst tube main body 11) It is determined whether the difference is smaller than the difference with the accumulated error B (remaining life lower limit evaluation step S4a). When the inside diameter deformation amount ΔD of the catalyst tube main body 11 is smaller than the difference between the deformation amount A of the catalyst tube main body 11 at the measurement time and the accumulated error B at the time of internal diameter derivation, the remaining life of the catalyst tube main body 11 is overestimated It is determined that it is longer than the life T (remaining life lower limit determination step S4c). On the other hand, when the above condition (the inner diameter deformation amount ΔD of the catalyst pipe main body 11 is smaller than the difference between the deformation amount A of the catalyst pipe main body 11 at the measurement time and the accumulated error B at the time of inner diameter derivation) is measured The remaining life of the catalyst tube main body 11 is evaluated based on the sum of the deformation amount A of the catalyst tube main body 11 at the time and the accumulated error B at the time of internal diameter derivation (remaining life upper limit evaluation step S4b). When the inside diameter deformation amount ΔD of the catalyst tube main body 11 is equal to or more than the sum of the deformation amount A of the catalyst tube main body 11 at the measurement time and the accumulated error B at the time of internal diameter derivation, the remaining life of the catalyst tube main body 11 is overestimated It is determined that the life T is less than or equal to T (remaining life upper limit determination step S4d). On the other hand, when the condition (the inner diameter deformation amount ΔD of the catalyst tube main body 11 is not less than the sum of the deformation amount A of the catalyst tube main body 11 at the measurement time and the accumulated error B at the time of inner diameter derivation) is satisfied It is determined that the determination of the presence or absence of the remaining life T of the pipe body 11 is not possible (remaining life presence determination impossible step S4e). In this case, the presence or absence of the remaining life of the catalyst tube main body 11 will be evaluated by another method.

したがって、本実施形態によれば、前記触媒管本体11の内径Dを導出する管の内径導出工程S1と、触媒管本体11の内径Dと当該触媒管本体11の初期内径D0の差から内径変形量ΔDを導出する管の内径変形量導出工程S2と、前記触媒管本体11の膨張率が任意の評価余寿命Tで寿命限界伸びXとなる条件にて変形予測線図を作成する変形予測線図作成工程S3aと、前記変形予測線図に基づき、内径導出(計測)時点での変形量Aを評価余寿命有無の判定基準として取得する判定基準変形量取得工程S3bと、内径導出時の累積誤差Bを算出する累積誤差算出工程S3cと、前記触媒管本体11の内径変形量ΔDと前記評価余寿命有無の判定基準である前記変形量Aと前記累積誤差Bとに基づき前記触媒管本体11の余寿命を判定する余寿命判定工程S4とを有することにより、評価余寿命Tを基準にして触媒管本体11の余寿命を簡易、かつ、迅速な作業で正確に評価することができる。よって、評価余寿命Tを基準にして継続運転の可否を判定することができる。   Therefore, according to the present embodiment, the inner diameter is deformed from the difference between the inner diameter D of the catalyst tube main body 11 and the initial inner diameter D0 of the catalyst tube main body 11. Deformation prediction line to create a deformation prediction diagram under the condition that the expansion coefficient of the catalyst tube main body 11 becomes the life limit elongation X with an arbitrary evaluation remaining life T to derive the inner diameter deformation amount S2 of the pipe for deriving the amount ΔD Determination criterion deformation amount acquisition step S3b which acquires deformation amount A at internal diameter derivation (measurement) time as a judgment standard of evaluation remaining life existence based on figure creation step S3a and the above-mentioned deformation prediction diagram, and accumulation at the time of internal diameter derivation Based on the accumulated error calculation step S3c for calculating the error B, the inner diameter deformation amount ΔD of the catalyst pipe main body 11, and the deformation amount A and the accumulated error B, which are determination criteria for the evaluation residual life existence. Determine the remaining life of The remaining life of the catalyst tube main body 11 can be accurately evaluated in a simple and quick operation on the basis of the evaluation remaining life T by having the remaining life determining step S4. Therefore, it is possible to determine the possibility of the continuous operation based on the evaluation remaining life T.

前記変形予測線図を改良θ法により作成することにより、変形予測線図の作成が比較的容易であり、作業の煩雑化を抑制することができる。   By creating the deformation prediction diagram by the improved θ method, it is relatively easy to create a deformation prediction diagram, and it is possible to suppress the complication of work.

前記管の内径導出工程S1は、外径計測値取得工程S1aと肉厚測定値取得工程S1bと内径算出工程S1cとを有することにより、触媒管本体11におけるクリープ変形量の最も大きい箇所にて、触媒管本体11の余寿命を比較的簡易な作業で正確に評価することができる。   The inner diameter deriving step S1 of the pipe has an outer diameter measurement value acquiring step S1a, a thickness measurement value acquiring step S1b, and an inner diameter calculating step S1c, so that the largest amount of creep deformation in the catalyst pipe body 11 can be obtained. The remaining life of the catalyst tube main body 11 can be accurately evaluated by a relatively simple operation.

前記累積誤差Bが、外径計測誤差と肉厚測定誤差と加工誤差とに基づき導出されることにより、触媒管本体11の余寿命をより正確に評価することができる。   Since the accumulated error B is derived based on the outer diameter measurement error, the wall thickness measurement error, and the processing error, the remaining life of the catalyst tube main body 11 can be evaluated more accurately.

前記余寿命判定工程S4は、前記管の内径変形量導出工程S2で導出した前記触媒管本体11の内径変形量ΔDが前記評価余寿命有無の判定基準である前記変形量Aと前記累積誤差Bとの差よりも小さいとき、前記触媒管本体11の余寿命が評価余寿命Tよりも長いと判定することにより、比較的簡易な作業で触媒管本体11の余寿命を正確に評価することができる。よって、評価余寿命Tを基準にして継続運転の可否を判定することができる。   In the remaining life determination step S4, the deformation amount A and the accumulated error B, in which the inside diameter deformation amount ΔD of the catalyst pipe main body 11 derived in the inside diameter deformation amount deriving step S2 of the pipe is the evaluation criterion of the evaluation remaining life presence or absence The residual life of the catalyst pipe body 11 can be accurately evaluated by a relatively simple operation by determining that the residual life of the catalyst pipe body 11 is longer than the evaluation residual life T when the difference is smaller than it can. Therefore, it is possible to determine the possibility of the continuous operation based on the evaluation remaining life T.

前記余寿命判定工程S4は、前記管の内径変形量導出工程S2で導出した前記触媒管本体11の内径変形量ΔDが前記評価余寿命有無の判定基準である前記変形量Aと前記累積誤差Bとの和以上であるとき、前記触媒管本体11の余寿命が評価余寿命T以下であると判定することにより、触媒管本体11の余寿命の上限値を特定することができる。よって、評価余寿命Tを基準にして継続運転の可否を判定することができる。   In the remaining life determination step S4, the deformation amount A and the accumulated error B, in which the inside diameter deformation amount ΔD of the catalyst pipe main body 11 derived in the inside diameter deformation amount deriving step S2 of the pipe is the evaluation criterion of the evaluation remaining life presence or absence When it is determined that the remaining life of the catalyst tube main body 11 is equal to or less than the evaluation remaining life T, the upper limit value of the remaining life of the catalyst tube main body 11 can be specified. Therefore, it is possible to determine the possibility of the continuous operation based on the evaluation remaining life T.

前記管は、天然ガスの改質に用いられる触媒管(触媒管本体11)であることにより、評価余寿命Tを基準として継続運転の可否を判定することができる。   Since the pipe is a catalyst pipe (catalyst pipe main body 11) used for reforming natural gas, it is possible to determine whether or not the continuous operation can be performed on the basis of the evaluation remaining life T.

なお、上記では、余寿命の評価対象を触媒管(触媒管本体11)とした場合について説明したが、高温環境で用いられて寿命末期にクリープ変形する管の余寿命評価に適用することも可能である。このような場合であっても、上述の管の余寿命評価方法と同様な作用効果を奏する。   In the above description, the case of using the catalyst tube (catalyst tube main body 11) as the evaluation target of the remaining life has been described, but it is also possible to apply to the remaining life evaluation of a tube that is used in a high temperature environment and creep deforms at the end of the life It is. Even in such a case, the same operation and effect as the above-described method for assessing the remaining life of the pipe can be obtained.

11 触媒管本体
12 ショートピース
13 ピグテール
14 触媒管
15 ホットコレクタ
21 混合ガス(H2O,CH4
22 生成ガス(H2,H2O,CO,CO2
11 catalyst tube body 12 short piece 13 pigtail 14 catalyst tube 15 hot collector 21 mixed gas (H 2 O, CH 4 )
22 Product gas (H 2 , H 2 O, CO, CO 2 )

Claims (7)

管の内径Dを導出する管の内径導出工程と、
前記管の内径Dと当該管の初期内径D0の差から内径変形量ΔDを導出する管の内径変形量導出工程と、
前記管の膨張率が任意の評価余寿命Tで寿命限界伸びXとなる条件にて変形予測線図を作成する変形予測線図作成工程と、
前記変形予測線図に基づき前記管の内径導出工程にて前記管の内径Dを導出したときの変形量Aを評価余寿命有無の判定基準として取得する判定基準変形量取得工程と、
前記管の内径Dを導出したときの累積誤差Bを算出する累積誤差算出工程と、
前記管の内径変形量ΔDと前記評価余寿命有無の判定基準である前記変形量Aと前記累積誤差Bとに基づき前記管の余寿命を判定する余寿命判定工程と
を有する、ことを特徴とする管の余寿命評価方法。
An inner diameter deriving step of the tube for deriving the inner diameter D of the tube;
An inner diameter deformation amount deriving step of the tube for deriving an inner diameter deformation amount ΔD from a difference between the inner diameter D of the tube and the initial inner diameter D0 of the tube;
A deformation prediction diagram drawing step of drawing a deformation prediction diagram on the condition that the expansion coefficient of the pipe becomes the life limit elongation X with an arbitrary evaluation remaining life T, and
A determination reference deformation amount acquisition step of acquiring a deformation amount A when the inner diameter D of the pipe is derived in the inner diameter derivation step of the pipe based on the deformation prediction diagram as a determination criterion of evaluation residual life presence or absence;
A cumulative error calculating step of calculating a cumulative error B when the inner diameter D of the pipe is derived;
And a remaining life determining step of determining the remaining life of the pipe on the basis of the deformation amount A which is the determination standard of presence or absence of the internal diameter deformation ΔD of the pipe and the evaluation remaining life, and the remaining life of the pipe. How to evaluate the remaining life of pipes
請求項1に記載された管の余寿命評価方法であって、
前記変形予測線図を改良θ法により作成する
ことを特徴とする管の余寿命評価方法。
The method for evaluating the remaining life of a pipe according to claim 1, wherein
A method for evaluating the remaining life of a pipe, characterized in that the deformation prediction diagram is created by an improved θ method.
請求項1または請求項2に記載された管の余寿命評価方法であって、
前記管の内径導出工程は、前記管の外径を計測して外径計測値を取得する外径計測値取得工程と、前記管の肉厚を測定して肉厚測定値を取得する肉厚測定値取得工程と、前記外径計測値および前記肉厚測定値に基づき前記管の内径を算出する内径算出工程と
を有する、ことを特徴とする管の余寿命評価方法。
A method for evaluating the remaining life of a pipe according to claim 1 or 2,
The inner diameter deriving step of the pipe is an outer diameter measurement value acquiring step of measuring an outer diameter of the pipe to acquire an outer diameter measurement value, and a wall thickness of measuring a thickness of the pipe to acquire a thickness measurement value A method for evaluating the remaining life of a pipe, comprising: a measured value acquiring step; and an inner diameter calculating step of calculating an inner diameter of the pipe based on the outer diameter measurement value and the wall thickness measurement value.
請求項3に記載された管の余寿命評価方法であって、
前記累積誤差Bは、前記管の外径計測時に生じる外径計測誤差と、前記管の肉厚測定時に生じる肉厚測定誤差と、前記管の作製時に生じる加工誤差とに基づき導出される
ことを特徴とする管の余寿命評価方法。
The method for evaluating the remaining life of a pipe according to claim 3,
The accumulated error B is derived based on an outer diameter measurement error generated when measuring the outer diameter of the pipe, a wall thickness measurement error generated when measuring the wall thickness of the pipe, and a processing error generated when manufacturing the pipe How to evaluate the remaining life of the tube that is characterized.
請求項1から請求項4の何れか一項に記載された管の余寿命評価方法であって、
前記余寿命判定工程は、前記管の内径変形量導出工程で導出した前記管の内径変形量ΔDが、前記評価余寿命有無の判定基準である前記変形量Aと前記累積誤差Bとの差よりも小さいとき、前記管の余寿命が前記評価余寿命Tよりも長いと判定する
ことを特徴とする管の余寿命評価方法。
A method for evaluating the remaining life of a pipe according to any one of claims 1 to 4,
In the remaining life determination step, the inner diameter deformation amount ΔD of the pipe derived in the inner diameter deformation amount deriving step of the pipe is a difference between the deformation amount A, which is the determination criterion of the evaluation remaining life presence or absence, and the cumulative error B It is determined that the remaining life of the pipe is longer than the evaluation remaining life T when the pipe is too small.
請求項1から請求項5の何れか一項に記載された管の余寿命評価方法であって、
前記余寿命判定工程は、前記管の内径変形量導出工程で導出した前記管の内径変形量ΔDが前記評価余寿命有無の判定基準である前記変形量Aと前記累積誤差Bとの和以上であるとき、前記管の余寿命が前記評価余寿命T以下であると判定する
ことを特徴とする管の余寿命評価方法。
A method for evaluating the remaining life of a pipe according to any one of claims 1 to 5,
In the remaining life determination step, the inner diameter deformation amount ΔD of the pipe derived in the inner diameter deformation amount deriving step of the pipe is greater than or equal to the sum of the deformation amount A and the accumulated error B, which is the determination criterion of the evaluation residual life existence. At one time, it is determined that the remaining life of the pipe is equal to or less than the evaluation remaining life T.
請求項1から請求項6の何れか一項に記載された管の余寿命評価方法であって、
前記管は、天然ガスの改質に用いられる触媒管である
ことを特徴とする管の余寿命評価方法。
A method for evaluating the remaining life of a pipe according to any one of claims 1 to 6,
The method for evaluating the remaining life of a tube, wherein the tube is a catalyst tube used for reforming natural gas.
JP2015064003A 2015-03-26 2015-03-26 Evaluation method of remaining life of pipe Active JP6516325B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015064003A JP6516325B2 (en) 2015-03-26 2015-03-26 Evaluation method of remaining life of pipe
PCT/JP2015/084234 WO2016151953A1 (en) 2015-03-26 2015-12-07 Method for assessing remaining service life of pipe
RU2017133179A RU2664891C1 (en) 2015-03-26 2015-12-07 Method of estimation pipe remaining service life
MYPI2017703387A MY194957A (en) 2015-03-26 2015-12-07 Method for assessing remaining service life of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064003A JP6516325B2 (en) 2015-03-26 2015-03-26 Evaluation method of remaining life of pipe

Publications (2)

Publication Number Publication Date
JP2016183898A JP2016183898A (en) 2016-10-20
JP6516325B2 true JP6516325B2 (en) 2019-05-22

Family

ID=56978195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064003A Active JP6516325B2 (en) 2015-03-26 2015-03-26 Evaluation method of remaining life of pipe

Country Status (4)

Country Link
JP (1) JP6516325B2 (en)
MY (1) MY194957A (en)
RU (1) RU2664891C1 (en)
WO (1) WO2016151953A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1161875A2 (en) * 1983-12-21 1985-06-15 Всесоюзный Дважды Ордена Трудового Красного Знамени Теплотехнический Научно-Исследовательский Институт Им.Ф.Э.Дзержинского Method of determining residual durability of pipes of power plant boiler steam superheater
JP3567575B2 (en) * 1995-12-04 2004-09-22 千代田化工建設株式会社 Heating tube remaining life management method
JP2007225292A (en) * 2006-02-21 2007-09-06 Mitsubishi Heavy Ind Ltd Predicting device and measuring instrument for pipe residual life, and processor for measured pipe data
JP2010203919A (en) * 2009-03-03 2010-09-16 Ihi Corp Structural analysis apparatus and structural analysis method
JP5591217B2 (en) * 2011-12-09 2014-09-17 三菱重工業株式会社 Evaluation method for catalyst tubes for natural gas reformers
JP2013122411A (en) * 2011-12-12 2013-06-20 Mitsubishi Heavy Ind Ltd Pipe creep life evaluation method
RU2518409C1 (en) * 2013-05-31 2014-06-10 ОАО "Всероссийский научно-исследовательский институт по эксплуатации атомных электростанций" (ОАО ВНИИАЭС) Method for evaluating gamma-percentile life of product by results of nondestructive check using test samples with hidden defects
RU2518407C1 (en) * 2013-06-27 2014-06-10 Открытое акционерное общество "Всероссийский научно-исследовательский институт по эксплуатации атомных электростанций" (ОАО ВНИИАЭС) Method for nondestructive inspection of product in course of its operation
WO2015111184A1 (en) * 2014-01-24 2015-07-30 中国電力株式会社 Remaining-service-life evaluation method for metal pipe suffering from creep damage

Also Published As

Publication number Publication date
MY194957A (en) 2022-12-28
RU2664891C1 (en) 2018-08-23
JP2016183898A (en) 2016-10-20
WO2016151953A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
Hosseinzadeh et al. Slitting and contour method residual stress measurements in an edge welded beam
JP2013122411A (en) Pipe creep life evaluation method
JP5591217B2 (en) Evaluation method for catalyst tubes for natural gas reformers
JP2011064381A (en) Method of estimating metal temperature of boiler heat transfer pipe and method of estimating lifetime
JP5739320B2 (en) Sample liquid vaporization system, diagnostic system and diagnostic program
JP2009244061A (en) State-monitoring system and state-monitoring method
JP6516325B2 (en) Evaluation method of remaining life of pipe
Kim et al. A study on welding residual stress analysis of a small bore nozzle with dissimilar metal welds
JP2006138480A (en) Control system of wastage of piping system
CN108009329B (en) Method for determining minimum pipeline length of 9% Cr hot-strength steel pipeline welding process evaluation
Kim et al. Investigation on the effects of geometric variables on the residual stresses and PWSCC growth in the RPV BMI penetration nozzles
JP2016183900A (en) Initial creep resistant estimation method and residual life estimation method for heat resistant member
JP5039606B2 (en) Corrosion rate estimation method for boiler heat transfer tubes
KR101656672B1 (en) Evaluating method for degree of risk using creep and wall thinning of heat exchanger steam tube
WO2016151954A1 (en) Method for estimating use temperature of heat resistant member
JP2018072027A (en) Method, apparatus and program for determining timing of performing chemical cleaning of boiler water-cooled wall pipe material
Salman et al. Determination of correlation functions of the oxide scale growth and the temperature increase
JP4767184B2 (en) Soundness evaluation method for boiler pipes and attached pipes
JP2023005279A (en) Remaining lifetime evaluation method for heat transfer tube, and remaining lifetime evaluation device for heat transfer tube
CN107688700A (en) A kind of 9%Cr refractory steel pipeline post weld heat treatment heating power computational methods
CN109635404B (en) Steam pipeline pressure drop estimation method, device and system
JP2010261826A (en) Flow measuring method
JP5822856B2 (en) Creep damage evaluation method
JP6220257B2 (en) Pipe life evaluation method
JP2013122396A (en) Piping stress computation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R150 Certificate of patent or registration of utility model

Ref document number: 6516325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605