JP6512695B2 - ブレーキシステム - Google Patents

ブレーキシステム Download PDF

Info

Publication number
JP6512695B2
JP6512695B2 JP2015069380A JP2015069380A JP6512695B2 JP 6512695 B2 JP6512695 B2 JP 6512695B2 JP 2015069380 A JP2015069380 A JP 2015069380A JP 2015069380 A JP2015069380 A JP 2015069380A JP 6512695 B2 JP6512695 B2 JP 6512695B2
Authority
JP
Japan
Prior art keywords
brake
pressure
fluid
control
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015069380A
Other languages
English (en)
Other versions
JP2016188037A (ja
Inventor
智洋 金児
智洋 金児
平 井澤
平 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VEONEER NISSIN BRAKE SYSTEMS JAPAN CO.LTD.
Original Assignee
VEONEER NISSIN BRAKE SYSTEMS JAPAN CO.LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VEONEER NISSIN BRAKE SYSTEMS JAPAN CO.LTD. filed Critical VEONEER NISSIN BRAKE SYSTEMS JAPAN CO.LTD.
Priority to JP2015069380A priority Critical patent/JP6512695B2/ja
Publication of JP2016188037A publication Critical patent/JP2016188037A/ja
Application granted granted Critical
Publication of JP6512695B2 publication Critical patent/JP6512695B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は車両用として用いられるブレーキシステムに関する。
従来、ブレーキ操作子の操作量に応じて液圧を発生させるブレーキシステムとして、例えば、特許文献1に示すようなブレーキバイワイヤ式のものが知られている。
このブレーキシステムは、入力装置とスレーブシリンダと液圧制御装置とを有しており、二つのブレーキ系統を備えている。入力装置は、ブレーキ操作子に連結されたピストンによって液圧を発生させるマスタシリンダと、ブレーキ操作子に擬似的な操作反力を付与するストロークシミュレータとを備える。スレーブシリンダは、電動アクチュエータとしての電動モータと、この電動モータにより駆動されるピストンとを備える。
このブレーキシステムでは、ブレーキ操作子の操作量に応じてスレーブシリンダの電動モータが駆動され、電動モータにより駆動されるスレーブシリンダピストンによって車輪ブレーキに液圧が作用される。また、アンチロックブレーキ制御時には、液圧制御装置が作動され車輪ブレーキに作用するブレーキ液圧が調整される。
特開2012−106637号公報
特許文献1のブレーキシステムでは、スレーブシリンダの駆動で液圧系統を昇圧する構成であるので、スレーブシリンダに備わるスレーブシリンダピストンのストロークを大きくすることによって、高液圧領域まで好適に昇圧することができる。つまり、スレーブシリンダピストンのストローク量を大きくすることで、運転者の要求液圧に対応した昇圧機能を有するブレーキシステムが得られる。しかしながら、スレーブシリンダピストンのストローク量を大きくすると、シリンダの軸長が拡大してしまい、スレーブシリンダの大型化、ひいてはブレーキシステムの大型化を来してしまう。また、アンチロックブレーキ制御時には、車輪ブレーキに作用する液圧を増圧、保持または減圧する制御が頻繁に行われるため、車輪ブレーキに供給するブレーキ液を確保するためにスレーブシリンダが大型化するおそれがあった。
本発明は、スレーブシリンダの大型化を回避しつつ高液圧領域まで好適に昇圧することができ、しかも、車輪ブレーキに供給するブレーキ液を好適に確保することができるブレーキシステムを提供することを課題とする。
このような課題を解決するために創案された本発明のブレーキシステムは、運転者のブレーキ操作子の操作によって車輪ブレーキに作用させる液圧を発生するマスタシリンダと、前記ブレーキ操作子の操作量に応じて駆動する電動アクチュエータによってピストンを作動させることで液圧を発生させるスレーブシリンダと、を備えている。ブレーキシステムは、前記マスタシリンダから車輪ブレーキに至る液圧路と、前記液圧路に設けられた切替弁と、前記スレーブシリンダから前記切替弁に通じる連通路と、前記連通路に設けられ、前記連通路を遮断可能な遮断弁と、を備えている。さらに、ブレーキシステムは、前記車輪ブレーキから前記スレーブシリンダに至る戻り流路と、前記戻り流路に設けられ、車輪ブレーキの減圧時に前記車輪ブレーキから前記戻り流路に逃されたブレーキ液を貯溜する蓄圧室と、前記スレーブシリンダにブレーキ液を吸液するための吸液制御を実行する制御手段と、を備えている。前記制御手段は、吸液制御時に、前記遮断弁を閉じるとともに、前記電動アクチュエータによって前記ピストンを減圧方向に駆動させる制御を実行する。前記減圧時には、前記蓄圧室に貯溜されたブレーキ液が吸液制御によって前記戻り流路を通じて前記スレーブシリンダに流入する構成とされている。また、前記蓄圧室に貯溜されたブレーキ液量または液圧を取得する取得手段を備え、前記制御手段は、前記取得手段で取得されたブレーキ液量または液圧が所定以上となった場合に吸液制御を行う構成とされている。
ここで、「前記電動アクチュエータによって前記ピストンを減圧方向に駆動させる」とは、ピストンが初期位置から加圧方向に駆動された位置から、減圧方向に駆動させるということである。
かかるブレーキシステムでは、車輪ブレーキの減圧時に車輪ブレーキに作用する液圧を
減圧する減圧制御がなされると、車輪ブレーキから逃されたブレーキ液が戻り流路に流れ
て蓄圧室に貯溜される。制御手段により吸液制御が実行されると、遮断弁が閉じられ、ス
レーブピストンが減圧方向に駆動される。これによって、スレーブシリンダの液圧室が負
圧となり、蓄圧室に貯溜されていたブレーキ液が戻り流路を通じてスレーブシリンダに吸
液される。したがって、スレーブシリンダの軸長を比較的短く設定したとしても、吸液制
御によって液圧室内に再加圧のためのブレーキ液を補給することができる。これにより、
スレーブシリンダの大型化を回避しつつ、高液圧領域まで好適に昇圧することができるブ
レーキシステムが得られる。しかも、車輪ブレーキの減圧制御が頻繁に行われたとしても
、戻り流路に逃がされたブレーキ液を吸液制御によってスレーブシリンダに吸液すること
ができ、必要なブレーキ液を好適に確保することができる。したがって、車輪ブレーキの
減圧制御が長く継続しても、車輪ブレーキに作用する液圧を好適に増圧することができ、
効率のよいブレーキシステムとすることができる。
また、制御手段は、前記取得手段で取得されたブレーキ液量または液圧が所定以上となった場合に吸液制御を行うので、蓄圧室に貯溜されたブレーキ液量または液圧に基づいて、吸液制御を行うためのタイミングを容易に特定することができる。したがって、効率のよい吸液制御を行うことができる。
さらに、蓄圧室内のブレーキ液は、圧力が付与された状態で貯溜されるので、吸液制御時にスレーブシリンダの液圧室が負圧になると、スレーブシリンダ側の吸込みと蓄圧室側の押出しとによって、ブレーキ液がスレーブシリンダの液圧室にスムーズに流れ込む。これによって迅速な吸液が実現され、例えば、アンチロックブレーキ制御時に車輪ブレーキに供給するブレーキ液を好適に確保することができる。
また、ブレーキ液を貯溜するリザーバタンクと、前記リザーバタンクから前記戻り流路に至る補給路と、前記補給路に設けられ、前記補給路を遮断可能なカット弁と、を備え、前記制御手段が、前記減圧時に、前記カット弁を閉弁するとよい。このようにすると、車輪ブレーキの減圧時にカット弁によって補給路が遮断され、減圧制御によって蓄圧室に貯溜されたブレーキ液がスレーブシリンダの液圧室に好適に吸液(還流)される。
また、前記制御手段は、アンチロックブレーキ制御が継続している間は前記カット弁の閉弁制御を維持し続けるとよい。このようにすると、通常のブレーキ時やシステム最大発生液圧が必要となる急ブレーキ等の特殊なブレーキ時にリザーバタンクからスレーブシリンダにブレーキ液が吸液される。したがって、スレーブシリンダの大型化を回避しつつ、高液圧領域まで好適に昇圧することができる。
また、前記取得手段は、前記戻り流路に設置された圧力センサであるとよい。このようにすると、圧力センサによって蓄圧室に貯溜されたブレーキ液量を容易に特定することができる。
また、前記戻り流路には、前記蓄圧室側から前記スレーブシリンダ側へのブレーキ液の流入のみを許容するチェック弁が設けられているとよい。このようにすると、アンチロックブレーキ制御の吸液制御時に、スレーブシリンダの液圧室が減圧されることで、蓄圧室に貯溜されているブレーキ液をチェック弁を通じてスレーブシリンダに吸液することができる。また、スレーブシリンダで発生した液圧が蓄圧室側へ伝達するのをチェック弁によって好適に防止することができる。
また、前記リザーバタンク、前記補給路、前記カット弁を備える構成では、高負荷ブレーキ制御時に、リザーバタンク内のブレーキ液を補給路を通じてスレーブシリンダに吸液することができる。また、スレーブシリンダで発生した液圧がリザーバタンク側へ伝達するのをチェック弁によって好適に防止することができる。
また、前記遮断弁を常開型電磁弁とすることで、スレーブシリンダによって車輪ブレーキに液圧を発生させる通常のブレーキ時に、遮断弁に通電する必要がなくなる。したがって、消費電力を最小限に抑えることができる。
本発明によると、スレーブシリンダの大型化を回避しつつ高液圧領域まで好適に昇圧することができ、しかも、車輪ブレーキに供給するブレーキ液を好適に確保することができるブレーキシステムが得られる。
本発明の一実施形態に係るブレーキシステムを示す液圧回路図である。 (a)(b)は切替弁および遮断弁の構造を模式的に示す説明図である。 スレーブシリンダのストローク量と圧力との関係を示す図である。 図1に示すブレーキシステムの起動時の液圧回路図である。 吸液制御に至る場合のフローチャートである。 要求液圧と必要ストローク量との関係を示す図である。 システム最大のホイールシリンダ圧が要求された時の吸液制御のタイミングを示すタイムチャートである。 常用のブレーキ時における吸液制御のタイミングを示すタイムチャートである。 アンチロックブレーキ制御時における吸液制御のタイミングを示すタイムチャートである。
以下、本発明を実施するための形態を、添付した図面を参照しつつ詳細に説明する。
ブレーキシステムAは、図1に示すように、原動機(エンジンや電動モータ等)の起動時に作動するバイ・ワイヤ(By Wire)式のブレーキシステムと、原動機の停止時などに作動する油圧式のブレーキシステムとの双方を備えるものである。
ブレーキシステムAは、主として、マスタシリンダ10と、スレーブシリンダ20と、制御弁手段としての液圧制御装置30と、を備えている。ブレーキシステムAは、エンジン(内燃機関)のみを動力源とする自動車の他、モータを併用するハイブリッド自動車やモータのみを動力源とする電気自動車・燃料電池自動車等にも搭載することができる。
マスタシリンダ10は、二つのピストン11,12を有するタンデム型である。マスタシリンダ10は、ブレーキペダルP(ブレーキ操作子)の踏力によって(操作量に応じて)車輪ブレーキFL,RR,RL,FRに作用させる液圧を発生する。マスタシリンダ10には、ストロークシミュレータ40が接続されている。ストロークシミュレータ40は、ブレーキペダルPに擬似的な操作反力を付与する。
スレーブシリンダ20は、ブレーキペダルPの操作量に応じて電動モータ24(電動アクチュエータ)を駆動させることで液圧を発生させる。スレーブシリンダ20の発生した液圧(以下、「発生液圧」という)は、車輪ブレーキFL,RR,RL,FRに作用する。
液圧制御装置30は、車輪ブレーキに作用する液圧を制御し、車両挙動の安定化を支援する。
本実施形態のブレーキシステムAでは、マスタシリンダ10、スレーブシリンダ20および液圧制御装置30が一つの基体1に備わり、一体のユニットとして構成されている。
基体1内には、第一ブレーキ系統K1および第二ブレーキ系統K2が備わる。第一ブレーキ系統K1には、マスタシリンダ10から二つの車輪ブレーキFL,RRに通じる第一液圧路2aが設けられ、第二ブレーキ系統K2には、マスタシリンダ10から残りの車輪ブレーキRL,FRに通じる第二液圧路2bが設けられている。また、基体1内には、分岐液圧路3、共通液圧路4、第一連通路5a、第二連通路5b、補給路9a、戻り液路9bが形成されている。第一液圧路2aには、第一圧力センサ6が設けられている。共通液圧路4には、第二圧力センサ7が設けられている。
マスタシリンダ10は、有底円筒状のシリンダ穴10aに挿入された第一ピストン11および第二ピストン12と、シリンダ穴10a内に収容された二つの第一弾性部材17aおよび第二弾性部材17bと、を備えている。マスタシリンダ10にはブレーキ液を貯溜するリザーバタンク15が付設されている。
シリンダ穴10aの底面10bと第一ピストン11との間には第一圧力室16aが形成されている。第一圧力室16aにはコイルばねである第一弾性部材17aが介設されている。
第一ピストン11と第二ピストン12との間には第二圧力室16bが形成されている。また、第二圧力室16bにはコイルばねである第二弾性部材17bが介設されている。
なお、シリンダ穴10aの内周面には、複数のカップシール10c,10cが装着されている。
第二ピストン12の端部は、プッシュロッドP1を介してブレーキペダルPに連結されている。第一ピストン11および第二ピストン12は、ブレーキペダルPの踏力を受けてシリンダ穴10a内を摺動し、両圧力室16a,16b内のブレーキ液を加圧する。両圧力室16a,16b内で加圧されたブレーキ液は、シリンダ穴10aに設けられた出力ポート18a,18bを通じて出力される。
出力ポート18aには第一液圧路2aが接続され、出力ポート18bには第二液圧路2bが接続されている。第一液圧路2aおよび第二液圧路2bは、下流側の液圧制御装置30に接続されている。
また、マスタシリンダ10には、第二ピストン12のストロークを検出するストロークセンサSTが組み付けられている。
ストロークシミュレータ40は、シミュレータシリンダ穴41に挿入されたシミュレータピストン42と、シミュレータシリンダ穴41の底面41bとシミュレータピストン42との間に介設された二つの弾性部材43,44と、を備えている。
シミュレータシリンダ穴41内には、圧力室45が形成されている。圧力室45は、導入口46とシミュレータピストン42との間に設けられていて、分岐液圧路3、第二液圧路2bおよび出力ポート18bを介して、マスタシリンダ10の第二圧力室16bに通じている。したがって、ブレーキペダルPを操作してマスタシリンダ10の第二圧力室16bで液圧が発生すると、ストロークシミュレータ40のシミュレータピストン42が弾性部材43,44の付勢力に抗して移動する。これにより、ブレーキペダルPに擬似的な操作反力が付与される。弾性部材43,44が配置される背圧室47には、ポート47aを介してリザーバタンク連通路9が接続されている。リザーバタンク連通路9はマスタシリンダ10のポート19を介してリザーバタンク15に連通している。
スレーブシリンダ20は、シリンダ穴21に挿入された一つのスレーブシリンダピストン22と、シリンダ穴21内に収容された弾性部材23と、電動モータ24と、駆動伝達部25と、を備えている。
シリンダ穴21の底部21bとスレーブシリンダピストン22(以下、ピストン22という)との間には液圧室26が形成されている。液圧室26にはコイルばねである弾性部材23が配置されている。
液圧室26は、共通液圧路4および第一連通路5aを介して第一液圧路2aに通じるとともに、共通液圧路4および第二連通路5bを介して第二液圧路2bに通じている。
電動モータ24は、電動サーボモータである。電動モータ24は、コイル部24aと、ベアリング24bに支持された回転部24cとを備えている。回転部24cには磁石24dが取り付けられている。
回転部24cの内側には、駆動伝達部25が備わる。駆動伝達部25は、電動モータ24の回転駆動力を直線方向の軸力に変換するものである。駆動伝達部25は、ピストン22に当接しているロッド25aと、ロッド25aと回転部24cとの間に配置された複数のボール25bと、を備えている。ロッド25aの外周面には、螺旋状のねじ溝が形成されており、このねじ溝には複数のボール25bが転動自在に収容されている。ロッド25aの先端部(ピストン22との対向部)は半球状に形成されている。回転部24cは、複数のボール25bに螺合されている。このように、回転部24cとロッド25aとの間にはボールねじ機構が設けられている。
電動モータ24は、基体1に装着される制御手段としての電子制御装置70によって駆動制御される。電動モータ24には、図示しない回転角センサが取り付けられている。回転角センサの検出値は電子制御装置70に入力される。電子制御装置70は、回転角センサの検出値に基づいて、スレーブシリンダ20のピストン22のストローク量を算出する。
電動モータ24の回転部24cが回転すると、回転部24cとロッド25aとの間に設けられたボールねじ機構によって、ロッド25aに直線方向の軸力が付与され、ロッド25aが前後方向に進退移動する。
ロッド25aがピストン22側に移動したときには、ピストン22がロッド25aからの入力を受けてシリンダ穴21内を進動(加圧方向に移動)し、液圧室26内のブレーキ液が加圧される。また、ロッド25aがピストン22とは反対側に移動したときには、弾性部材23の付勢力によってピストン22がシリンダ穴21内を退動(減圧方向に移動)し、液圧室26内のブレーキ液が減圧される。
液圧制御装置30は、車輪ブレーキFL,RR,RL,FRの各ホイールシリンダWに付与する液圧を適宜制御するものである。液圧制御装置30は、アンチロックブレーキ制御を実行し得る構成を備えており、配管を介して各ホイールシリンダWに接続されている。また、液圧制御装置30には、戻り液路9bが接続されている。
車輪ブレーキFL,RR,RL,FRは、それぞれ配管を介して基体1の出口ポート301に接続されている。そして、通常時は、ブレーキペダルPの踏力に対応してスレーブシリンダ20から出力された液圧が両液圧路2a,2bを通じて各車輪ブレーキFL,RR,RL,FRの各ホイールシリンダWに付与される。
なお、以下では、液圧制御装置30において、第一液圧路2aに接続された系統を「第一液圧系統300a」と称し、第二液圧路2bに接続された系統を「第二液圧系統300b」と称する。
第一液圧系統300aには、各車輪ブレーキFL,RRに対応して二つの制御弁装置Vが設けられており、同様に、第二液圧系統300bには、各車輪ブレーキRL,FRに対応して二つの制御弁装置Vが設けられている。
制御弁装置Vは、スレーブシリンダ20から車輪ブレーキFL,RR,RL,FR(詳細には、ホイールシリンダW)への液圧の行き来を制御する弁であり、ホイールシリンダWに作用する液圧(以下、「ホイールシリンダ圧」という)を増圧、保持または減圧させることができる。そのため、制御弁装置Vは、入口弁31、出口弁32、チェック弁33を備えて構成されている。
入口弁31は、第一液圧路2aから各車輪ブレーキFL,RRへ至る二つの液圧路、および第二液圧路2bから各車輪ブレーキRL,FRへ至る二つの液圧路に一つずつ配置されている。入口弁31は、常開型の比例電磁弁(リニアソレノイド弁)であり、入口弁31のコイルに流す駆動電流の値に応じて、入口弁31の上下流の差圧(入口弁31の開弁圧)が調整可能となっている。入口弁31は、通常時に開いていることで、スレーブシリンダ20から各ホイールシリンダWへ液圧が付与されるのを許容している。また、入口弁31は、車輪がロックしそうになったときに電子制御装置70の制御により閉塞し、各ホイールシリンダWに付与される液圧を遮断する。
出口弁32は、各ホイールシリンダWと戻り液路9bとの間に配置された常閉型の電磁弁である。出口弁32は、通常時に閉塞されているが、車輪がロックしそうになったときに電子制御装置70の制御により開放される。出口弁32が開弁すると、各ホイールシリンダWに作用しているブレーキ液が減圧する。
チェック弁33は、各入口弁31に並列に接続されている。チェック弁33は、ホイールシリンダW側からスレーブシリンダ20側(マスタシリンダ10側)へのブレーキ液の流入のみを許容する弁である。したがって、入口弁31を閉じた状態にしたときにおいても、チェック弁33は、各ホイールシリンダW側からスレーブシリンダ20側へのブレーキ液の流れを許容する。
このような液圧制御装置30では、電子制御装置70により入口弁31および出口弁32の開閉状態を制御することで、各ホイールシリンダWのホイールシリンダ圧が調整される。例えば、入口弁31が開、出口弁32が閉となる通常状態において、ブレーキペダルPを踏み込めば、スレーブシリンダ20からの液圧がそのままホイールシリンダWへ伝達してホイールシリンダ圧が増圧する。また、入口弁31が閉、出口弁32が開となる状態であれば、ホイールシリンダWから戻り液路9b側へブレーキ液が逃されて流出し、ホイールシリンダ圧が減少して減圧する。さらに、入口弁31と出口弁32がともに閉となる状態では、ホイールシリンダ圧が保持される。
次に、基体1内に形成された各液圧路について説明する。
二つの第一液圧路2aおよび第二液圧路2bは、いずれもマスタシリンダ10のシリンダ穴10aを起点とする液圧路である。
第一液圧路2aは、マスタシリンダ10の第一圧力室16aに通じている。一方、第二液圧路2bは、マスタシリンダ10の第二圧力室16bに通じている。第一液圧路2aは、下流側の車輪ブレーキFL,RRに通じている。一方、第二液圧路2bは、下流側の車輪ブレーキRL,FRに通じている。
分岐液圧路3は、第二液圧路2bからストロークシミュレータ40の圧力室45に至る液圧路である。分岐液圧路3にはバルブとしての常閉型電磁弁8が設けられている。常閉型電磁弁8は分岐液圧路3を開閉するものである。
二つの第一連通路5aおよび第二連通路5bは、いずれも、スレーブシリンダ20の液圧室26を起点とする液圧路である。第一連通路5aおよび第二連通路5bは、共通液圧路4に合流して、シリンダ穴21につながっている。第一連通路5aは液圧室26から第一液圧路2aに至る流路であり、一方、第二連通路5bも液圧室26から第二液圧路2bに至る流路である。
第一液圧路2aと第一連通路5aとの連結部位には、三方向弁である第一切替弁51が設けられている。第一切替弁51は、2ポジション3ポートの電磁弁である。第一切替弁51は、図2(a)に示すように、弁体51aが第一弁座51cに着座する第一のポジションと、図2(b)に示すように、弁体51aが第二弁座51dに着座する第二のポジションとを選択可能である。第一のポジションでは、第一液圧路2aの上流側(マスタシリンダ10側)と第一液圧路2aの下流側(液圧制御装置30側、車輪ブレーキFL,RR)とが連通し、第一連通路5aへの通路が遮断される。つまり、第一切替弁51が第一のポジションにあるときの車輪ブレーキFL,RRは、マスタシリンダ10と連通するが、スレーブシリンダ20とは遮断される(非連通状態となる)。なお、第一のポジションでは、コイル51eが非通電状態であるので、リターンスプリング51bの付勢力によって弁体51aが第一弁座51cに着座している。また、第二のポジションでは、図2(b)に示すように、第一液圧路2aの上流側への連通が遮断され、第一連通路5aと第一液圧路2aの下流側とが連通する。つまり、切替弁51が第二のポジションにあるときの車輪ブレーキFL,RRは、マスタシリンダ10と遮断される(非連通状態となる)が、スレーブシリンダ20とは連通した状態となる。なお、第二のポジションでは、コイル51eが通電状態であるので、コイル51eの磁力によって弁体51aが第二弁座51dに着座している。
一方、第二液圧路2bと第二連通路5bとの連結部位には、三方向弁である第二切替弁52が設けられている。第二切替弁52は、2ポジション3ポートの電磁弁である。第二切替弁52は、図2(a)に示すように、弁体51aが第一弁座51cに着座する第一のポジションと、図2(b)に示すように、弁体51aが第二弁座51dに着座する第二のポジションとを選択可能である。第一のポジションでは、第二液圧路2bの上流側(マスタシリンダ10側)と第二液圧路2aの下流側(液圧制御装置30側、車輪ブレーキRL,FR)とが連通し、第二連通路5bへの通路が遮断される。つまり、第二切替弁52が第一のポジションにあるときの車輪ブレーキRL,FRは、マスタシリンダ10と連通するが、スレーブシリンダ20とは遮断される(非連通状態となる)。なお、第一のポジションでは、コイル51eが非通電状態であるので、リターンスプリング51bの付勢力によって弁体51aが第一弁座51cに着座している。また、第二のポジションでは、図2(b)に示すように、第二液圧路2bの上流側への連通が遮断され、第二連通路5bと第二液圧路2bの下流側とが連通する。つまり、切替弁52が第二のポジションにあるときの車輪ブレーキRL,FRは、マスタシリンダ10と遮断される(非連通状態となる)が、スレーブシリンダ20とは連通した状態となる。なお、第二のポジションでは、コイル51eが通電状態であるので、コイル51eの磁力によって弁体51aが第二弁座51dに着座している。
なお、第一切替弁51および第二切替弁52は、電子制御装置70によってポジションが切り替わる。ちなみに、第一切替弁51および第二切替弁52は、システムの起動時や、マスタシリンダ10からホイールシリンダWに液圧を直接作用させるバックアップモード時には、弁体51aが第一のポジションにある。また、第一切替弁51および第二切替弁52は、スレーブシリンダ20からホイールシリンダWに液圧を作用させる通常のブレーキ制御時等に、弁体51aが第二のポジションにある。
第一連通路5aには、第一遮断弁61が設けられている。第一遮断弁61は常開型電磁弁であり、第一連通路5aを開閉する。図2(a)に示すように、コイル61eに通電しないときは、リターンスプリング61bの付勢力によって弁体61aが弁座61cから離座し、第一連通路5aが連通する。また、図2(b)に示すように、コイル61eに通電したときは、磁力で弁体61aが弁座61cに着座し、第一連通路5aが遮断する。閉弁時の第一遮断弁61の弁体61aは、上流側(液圧発生源側)となるスレーブシリンダ20側から弁座61cに押し付けられる。第一遮断弁61の開閉(コイル61eに対する通電制御)は、電子制御装置70によって行われる。
第二連通路5bには、第二遮断弁62が設けられている。第二遮断弁62は常開型電磁弁であり、第二連通路5bを開閉する。図2(a)に示すように、コイル61eに通電しないときは、リターンスプリング61bの付勢力によって弁体61aが弁座61cから離座し、第二連通路5bが連通する。また、図2(b)に示すように、コイル61eに通電したときは、磁力で弁体61aが弁座61cに着座し、第二連通路5bが遮断する。閉弁時の第二遮断弁62の弁体61aは、上流側(液圧発生源側)となるスレーブシリンダ20側から弁座61cに押し付けられる。第二遮断弁62の開閉(コイル61eに対する通電制御)は、電子制御装置70によって行われる。
二つの圧力センサ6,7は、いずれも、ブレーキ液圧の大きさを検知するものである。両圧力センサ6,7で取得された情報(検出値)は電子制御装置70に入力される。
一方の圧力センサ6は、マスタシリンダ10と第一切替弁51との間の第一液圧路2aに配置されている。圧力センサ6は、マスタシリンダ10で発生した液圧を検知するマスタ圧センサとして機能する。
他方の圧力センサ7は、共通液圧路4に配置されている。圧力センサ7は、スレーブシリンダ20で発生した液圧を検知する。
補給路9aは、図1に示すように、リザーバタンク15を起点とし、リザーバタンク15から戻り流路9bに至る流路である。補給路9aには、カット弁93が設けられている。カット弁93は補給路9aを開閉するものである。カット弁93は、常開型電磁弁であり、アンチロックブレーキ制御における車輪ブレーキの減圧時に電子制御装置70の制御(通電制御)により閉じられて補給路9aを遮断する。そして、アンチロックブレーキ制御が継続している間は(アンチロック制御モード中は)閉弁状態を維持し続ける。また、カット弁93は、アンチロックブレーキ制御時以外は開いている(非通電制御されている)ことで、リザーバタンク15から戻り流路9bへブレーキ液が流れるのを許容している。
戻り流路9bは、液圧制御装置30からスレーブシリンダ20に至る液路である。戻り液路9bには、アンチロックブレーキ制御の減圧制御時に、液圧制御装置30の出口弁32を介して各ホイールシリンダWから逃されたブレーキ液が流入する。戻り流路9bには、圧力センサ91およびリザーバ92が設けられている。圧力センサ91は、特許請求の範囲における取得手段に相当する。また、リザーバ92は、特許請求の範囲における蓄圧室に相当する。
圧力センサ91の検出値は、電子制御装置70に入力され、リザーバ92に貯溜されているブレーキ液量の算出に用いられる。この場合、電子制御装置70は、予め記憶させておいたマップ等に基づいて圧力センサ91の検出値からリザーバ92に貯溜されているブレーキ液量を算出する。
リザーバ92は、液圧路9eを介して戻り流路9bに通じている。リザーバ92は、アンチロックブレーキ制御の減圧制御時に、戻り液路9bに逃がされたブレーキ液を一時的に貯溜する機能を有している。リザーバ92は、リザーバ穴92aに挿入されたリザーバピストン921と、リザーバ穴92aの底面92bとリザーバピストン921との間に介設された弾性部材922と、を備えている。リザーバ92は、弾性部材922の付勢力によって戻り流路9bに逃されたブレーキ液を蓄圧状態にて貯溜する。リザーバ92に貯溜されたブレーキ液は、吸液制御時にスレーブシリンダ20に吸液される。
戻り流路9bは、分岐戻り流路9cを介して共通液圧路4に接続されている。分岐戻り流路9cには、チェック弁9dが設けられている。チェック弁9dは、リザーバ92側(リザーバタンク15側)から共通液圧路4側(スレーブシリンダ20側)へのブレーキ液の流入のみを許容する。
スレーブシリンダ20のピストン22が初期位置にあるとき、リザーバタンク15のブレーキ液が、補給路9a、戻り流路9b、スレーブシリンダ20の補給ポート20a、ピストン22の補給孔22aを通じて、液圧室26に補給される。また、後記する急ブレーキ等の特殊なブレーキ時(高負荷ブレーキ時)には、吸液制御によって、リザーバタンク15のブレーキ液が、補給路9a、戻り流路9b、分岐戻り流路9c、共通液圧路4、スレーブシリンダ20の接続孔20bを通じて、液圧室26に吸液される。さらに、アンチロックブレーキ制御時には、吸液制御によって、戻り流路9bのリザーバ92に貯溜されたブレーキ液が、戻り流路9b、分岐戻り流路9c、共通液圧路4を通じてスレーブシリンダ20に吸液される。また、アンチロックブレーキ制御の終了後には、リザーバ92に貯溜されているブレーキ液が戻り液路9bから補給路9aを通じてリザーバタンク15に戻される。
電子制御装置70は、内部に制御基板(図示せず)を収容し、基体1の側面等に取り付けられている。電子制御装置70は、両圧力センサ6,7やストロークセンサSTの各種センサから得られた情報(検出値)や予め記憶させておいたプログラム等に基づいて、常閉型電磁弁8の開閉、電動モータ24の作動、両切替弁51,52の作動、両遮断弁61,62の開閉、および液圧制御装置30の制御弁装置Vの開閉を制御する。
また、電子制御装置70は、電動モータ24を駆動制御するとともに、第一切替弁51、第二切替弁52、第一遮断弁61および第二遮断弁62の作動を制御する。また、電子制御装置70は、スレーブシリンダ20により発生した液圧がブレーキペダルPの操作量に対応した液圧まで上昇したか否かを判定する機能(判定手段としての機能)を備えている。具体的に、電子制御装置70は、予め記憶させておいたプログラムとして、図3に示すマップを参照し、圧力センサ7で検出された液圧が、ブレーキペダルPの操作量に対応した液圧(ストロークセンサSTにより検出)まで上昇したか否か(予めプログラムされた判定値まで上昇したか否か)を判定する。そして、電子制御装置70は、判定結果に基づいて、スレーブシリンダや、両切替弁51,52、および両遮断弁61,62を制御する。電子制御装置70の判定に基づく制御の詳細は後記する。
また、電子制御装置70は、吸液制御を行う機能を備えている。吸液制御は、戻り流路9bを通じてブレーキ液を積極的に吸液し、スレーブシリンダ20内のブレーキ液を確保するための制御である。例えば、高液圧領域までスレーブシリンダ20で加圧するためにブレーキ液を確保したい場合に吸液制御が実行される。また、スレーブシリンダ20の発生液圧が運転者の要求液圧となった状態(この状態を「定常」という)で、それ以降の加圧に備えてブレーキ液を予め確保しておく場合に吸液制御が実行される。さらに、アンチロックブレーキ制御時に、増圧に備えて、ブレーキ液を予め確保しておく場合に吸液制御が実行される。吸液制御の詳細は後記する。
次にブレーキシステムの動作について概略説明する。
(通常のブレーキ制御)
ブレーキシステムAでは、システムが起動されると、分岐液圧路3の常閉型電磁弁8が開弁される。この状態では、ブレーキペダルPの操作によってマスタシリンダ10で発生した液圧は、ホイールシリンダWには伝達されずに、ストロークシミュレータ40に伝達される。そして、圧力室45の液圧が大きくなり、シミュレータピストン42が弾性部材43,44の付勢力に抗して底面41b側に移動することで、ブレーキペダルPのストロークが許容され、擬似的な操作反力がブレーキペダルPに付与される。
また、ブレーキペダルPが操作されたことをストロークセンサSTが検知すると、図4に示すように、第一切替弁51および第二切替弁52が励磁され弁体51aが第二のポジションに移動する(図2(b)参照)。この移動によって第一液圧路2aの下流側(車輪ブレーキ側)と第一連通路5aとが通じるとともに、第二切替弁52によって第二液圧路2bの下流側と第二連通路5bとが通じる。つまり、マスタシリンダ10とホイールシリンダWとが遮断された状態(非連通状態)になるとともに、スレーブシリンダ20がホイールシリンダWと連通した状態になる。
また、ストロークセンサSTによって、ブレーキペダルPの踏み込みが検知されると、電子制御装置70によりスレーブシリンダ20の電動モータ24が駆動され、スレーブシリンダ20のピストン22が底部21b側に移動することで、液圧室26内のブレーキ液が加圧される。
電子制御装置70は、スレーブシリンダ20の発生液圧(圧力センサ7で検出された液圧)と、マスタシリンダ10から出力された液圧(ブレーキペダルPの操作量に対応した液圧)とを対比し、その対比結果に基づいて電動モータ24の回転速度等を制御する。このようにして、ブレーキシステムAでは液圧を昇圧させる。
スレーブシリンダ20の発生液圧は、液圧制御装置30を介して各ホイールシリンダWに伝達され、各ホイールシリンダWが作動することにより、各車輪に制動力が付与される。
ブレーキペダルPの踏み込みが解除されると、電子制御装置70によりスレーブシリンダ20の電動モータ24が逆転駆動され、ピストン22が弾性部材23によって電動モータ24側に戻される。これによって、液圧室26内が降圧され、各ホイールシリンダWの作動が解除される。
なお、スレーブシリンダ20が作動しない状態(例えば、イグニッションOFFや、電力が得られない場合など)においては、第一切替弁51,第二切替弁52、常閉型電磁弁8が初期状態に戻る(図1参照)。第一切替弁51,第二切替弁52が初期状態に戻ると、第一液圧路2aが連通するとともに、第二液圧路2bが連通する。この状態では、マスタシリンダ10で発生した液圧が各ホイールシリンダWに直接伝達される。
(吸液制御)
次に、吸液制御について説明する。吸液制御とは、スレーブシリンダ20の液圧室26内にブレーキ液を確保するためにリザーバタンク15やリザーバ92からブレーキ液を吸液する制御である。なお、液圧室26には、急ブレーキ等の特殊なブレーキ時やアンチロックブレーキ制御が頻繁に継続するような場合を除いて、それ以外の通常(常用)のブレーキ制御時(第一遮断弁61、第二遮断弁62が開いているブレーキ制御時)に必要な量のブレーキ液が確保されている。
初めに、システム最大発生液圧が必要となる急ブレーキ等の特殊なブレーキ時における吸液制御について説明する。急ブレーキ等の特殊なブレーキ時には、常用のブレーキ制御時の液圧よりも高い液圧が要求される。この場合、スレーブシリンダ20では、シリンダ穴21内を加圧方向にスライドしたピストン22が、シリンダ穴21の底部21bに当接する寸前の位置で減圧方向に戻される(電動モータ24側に戻される)という吸液制御が行われる。以下、図5〜図7を参照して詳細に説明する。図5はシステム最大ホイールシリンダ圧が必要となる吸液制御を説明するためのフローチャート、図6は要求液圧と必要ストローク量との関係を示すマップである。
初めに、図5のステップS21において、ストロークセンサSTの検出値ST1を電子制御装置70に入力し、ステップS22において、検出値ST1に基づく運転者の要求液圧P3を算出する。
その後、ステップS23において、図6に示すマップに基づいて、要求液圧P3に対応するピストン22の必要ストローク量STWを算出する。
その後、ステップS24において、算出した必要ストローク量STWが常用最大ストローク量(リミットストローク量)STLを超えるか否かを判定する。リミットストローク量STLは、例えば、加圧時にピストン22が初期位置からシリンダ穴21の底部21bに当接する直前の位置まで移動したときの移動距離として設定されている。つまり、ステップS24では、リミットストローク量STL以内のストローク量で運転者の要求液圧P3を発生することができるか否かを判定している。
ステップS24において、必要ストローク量STWがリミットストローク量STLよりも小さいと判定した場合(ステップS24、No)には、ステップS21に戻り、以下のステップS22,S23を繰り返す。
ステップS24において、必要ストローク量STWがリミットストローク量STLよりも大きいと判定した場合(ステップS24、Yes)には、ステップS25に移行し、ピストン22の戻し量STBを算出する。つまり、リミットストローク量STLで運転者の要求液圧P3をまかなえない場合に、リミットストローク量STLを超えて加圧すべく、ピストン22を減圧方向に一旦戻して再加圧を行う。戻し量STBは、図6に示すマップに基づいて算出することができる。
その後、ステップS26において、スレーブシリンダ20の加圧駆動を開始する。そして、続くステップS27において、スレーブシリンダ20のストローク量STR(通算ストローク量)を入力する。
その後、ステップS28において、入力されたストローク量STRがリミットストローク量STL以上となったか否かを判定する。ステップS28において、入力されたストローク量STRがリミットストローク量STL以上ではないと判定した場合(ステップS28、No)には、ステップS27に戻る。
ステップS28において、入力されたストローク量STRがリミットストローク量STL以上となった場合(ステップS28、Yes)には、ステップS29に移行し、吸液制御を開始する。
吸液制御に移行すると、電子制御装置70は、第一遮断弁61および第二遮断弁62を閉弁制御する。この場合、第一遮断弁61および第二遮断弁62は、スレーブシリンダ20側から車輪ブレーキ側に向けて弁体61aが閉弁する(リターンスプリング61bの付勢力を受けて閉弁する)ので、閉弁時には、スレーブシリンダ20側からの液圧を受けて弁体61aが弁座61cにスムーズに着座する(図2(a)(b)参照)。第一遮断弁61および第二遮断弁62の下流側の液圧は、第一遮断弁61および第二遮断弁62の閉弁によって保持状態にされる。
その後、前記ステップS25で算出した戻し量STB分、電動モータ24を減圧方向(戻し方向)に駆動する。そうすると、減圧方向にピストン22が戻され、ホイールシリンダWの液圧が保持状態とされたまま、液圧室26が減圧して負圧状態となる。これによって、補給路9a、戻り流路9b、分岐戻り流路9cおよび共通液圧路4を通じてリザーバタンク15から液圧室26にブレーキ液が吸液される。この場合、吸液されるブレーキ液の量は、戻し量STBに基づくものであり、加圧を補完することが可能な量とされている。
その後、ステップS30において、ピストン22を加圧方向に再び駆動するとともに、第一遮断弁61および第二遮断弁62を開弁制御する。これによって、ホイールシリンダWの圧力(以下、「ホイールシリンダ圧V1」という)が再び昇圧され、運転者の要求液圧P3に対応するホイールシリンダ圧V1が得られる。
なお、第一遮断弁61および第二遮断弁62の開弁のタイミングは、例えば、ピストン22を戻し方向に駆動した後、加圧方向にピストン22を駆動し、第一遮断弁61および第二遮断弁62の下流側の液圧(ホイールシリンダ圧V1)に対してスレーブシリンダ20の発生液圧SCVが同圧となるタイミングで開弁するか、または同圧になる直前のタイミングにて開弁するのがよい。このタイミングで開弁することによって、第一遮断弁61および第二遮断弁62の上流側と下流側との液圧の差圧がない状態のため、開弁動作をスムーズに行うことができるとともに、自然な昇圧特性を得ることができる。なお、第一遮断弁61および第二遮断弁62の下流側の液圧に対してスレーブシリンダ20の発生液圧SCVが同圧となった後のタイミングにて開弁することもできる。この場合には、発生液圧SCVにリターンスプリング61bの荷重を加えた圧力になるまでに開弁するのがよい。
図7はシステム最大のホイールシリンダ圧V1Mが要求された時の吸液制御のタイミングを示すタイムチャートである。スレーブシリンダ20のピストン22が加圧方向に駆動され、図7に示すように、時刻T1でストローク量STRがリミットストローク量STLに到達すると、吸液制御が開始される(液圧制御の開始タイミング)。つまり、常用圧力最大値VM(太破線で図示)までは、吸液制御なしにホイールシリンダ圧V1が上昇される。
吸液制御では、前記のように、前記ステップS25で算出した戻し量STB分、電動モータ24が減圧方向(戻し方向)に駆動され、液圧室26にブレーキ液が吸液される(時刻T1から時刻T2)。
一方、第一遮断弁61および第二遮断弁62は時刻T1で閉弁される。これによって、ホイールシリンダ圧V1は、時刻T1から時刻T2まで保持される。
時刻T2において、ピストン22が加圧方向に再び駆動されてストローク量STR(通算ストローク量)が再び増加すると、ホイールシリンダ圧V1が上昇を開始する。そして、時刻T4でシステム最大のホイールシリンダ圧V1Mまで上昇し、リミットストローク量STLを超えた加圧が補完される。
本実施形態のブレーキシステムAでは、吸液制御を備えているので、スレーブシリンダ20の軸長を必要以上に確保することなく、システムの最大液圧を高めることができる。
次に、スレーブシリンダ20の発生液圧に影響のないタイミングで行う吸液制御について図8を参照して説明する。図8の吸液制御では、リミットストロークまでピストン22(図1参照)が到達することのない常用のブレーキ時を前提としている。図8の吸液制御では、運転者の要求液圧までホイールシリンダ圧V1が昇圧した後、ブレーキペダルPの操作に変化が生じない場合(保持状態である場合)に、吸液制御を行うものである。なお、吸液制御中に運転者のブレーキペダルPの操作に変化が生じた場合、例えば、ブレーキペダルPがさらに踏み込まれたり、踏み込みが解除されたりした場合には、吸液制御を中止する。以下、電子制御装置70による吸液制御を詳細に説明する。
運転者によりブレーキペダルPが踏み込まれると、前記と同様にして、ストロークセンサSTの検出値ST1に基づき運転者の要求液圧P3(不図示)が算出される。そして、要求液圧P3に基づき、前記図6に示すマップから必要ストローク量STWが算出される。その後、必要ストローク量STWに基づきスレーブシリンダ20が駆動され、加圧方向にピストン22が加圧駆動される。そうすると、ストローク量STRが大きくなるにつれ、ホイールシリンダ圧V1が上昇する。
その後、時刻t1において、ブレーキペダルPの踏み込みが保持され、この保持状態が所定時間継続されると、時刻t2において吸液制御のフラグが立てられ(電子制御装置70により吸液制御を実行する必要があると判定され)、第一遮断弁61および第二遮断弁62が閉弁される。これにより、ホイールシリンダ圧V1が保持状態にされる。
その後、時刻t3において、減圧方向にピストン22が減圧駆動される。なお、戻し量STBは、例えば、前記必要ストローク量STWに基づいて求めることができる。減圧方向にピストン22が減圧駆動されると、スレーブシリンダ20の発生液圧SCVが下降し(時刻t3→時刻t4)、液圧室26が負圧状態になる。これによって、リザーバタンク15から補給路9a、戻り流路9b、分岐戻り流路9cおよび共通液圧路4を通じて、ブレーキ液が液圧室26に吸液される(図1参照)。
時刻t4において、加圧方向にピストン22が駆動され、スレーブシリンダ20の発生液圧SCVがホイールシリンダ圧V1(第一遮断弁61および第二遮断弁62の下流側の液圧)と同圧となるように加圧される。時刻t5において、スレーブシリンダ20の発生液圧SCVがホイールシリンダ圧V1と同圧になったら、第一遮断弁61および第二遮断弁62が開弁される。
その後、時刻t6において、運転者によりブレーキペダルPが再び踏み込まれると、ストローク量STRの上昇に応じてホイールシリンダ圧V1が上昇する。そして、時刻t7において、ブレーキペダルPの踏み込みが保持され、この保持状態が所定時間継続されると、時刻t8において吸液制御のフラグが立てられ、第一遮断弁61および第二遮断弁62が閉弁される。これにより、ホイールシリンダ圧V1が保持状態にされる。
そして、時刻t9において、減圧方向にピストン22が減圧駆動される。戻し量STBは、例えば、時刻t6から時刻t7におけるストローク量STRの上昇による必要ストローク量STWに基づいて求めることができる。減圧方向にピストン22が減圧駆動されると、スレーブシリンダ20の発生液圧SCVが下降し(時刻t9→時刻t10)、液圧室26が負圧状態になる。これによって、リザーバタンク15から補給路9a、戻り流路9b、分岐戻り流路9cおよび共通液圧路4を通じて、ブレーキ液が液圧室26に吸液される(図1参照)。
この状態で、時刻t10において、運転者によりブレーキペダルPが踏み込まれると、吸液制御が中止される。そして、吸液制御の中止に伴い、時刻t10において、第一遮断弁61および第二遮断弁62が開弁される。
スレーブシリンダ20の発生液圧SCVは、ブレーキペダルPの踏み込みによって一気に上昇され、スレーブシリンダ20の発生液圧SCVが再び上昇される(時刻t11)。
その後、時刻t12において、ブレーキペダルPの踏み込みが保持され、この保持状態が所定時間継続されると、前記と同様にして時刻t13において吸液制御のフラグが立てられ、第一遮断弁61および第二遮断弁62が閉弁される。これにより、ホイールシリンダ圧V1が保持状態にされる。
そして、時刻t14において、減圧方向にピストン22が駆動される。この場合の戻し量STBは、例えば、時刻t11から時刻t12におけるストローク量STRの上昇による必要ストローク量STWに基づいて求めることができる。減圧方向にピストン22が駆動されると、スレーブシリンダ20の発生液圧SCVが再び下降し(時刻t14→時刻t15)、液圧室26が負圧状態になる。これによって、リザーバタンク15から補給路9a、戻り流路9b、分岐戻り流路9cおよび共通液圧路4を通じて、ブレーキ液が液圧室26に吸液される(図1参照)。
この状態で、時刻t15において、運転者によりブレーキペダルPの踏み込みが解除されると、吸液制御が中止される。そして、吸液制御の中止に伴い、時刻t15において、第一遮断弁61および第二遮断弁62が開弁される。
また、時刻t15において、スレーブシリンダ20の発生液圧SCVがホイールシリンダ圧V1(第一遮断弁61および第二遮断弁62の下流側の液圧)と同圧となるように、加圧方向にピストン22が一旦駆動される(時刻t15→時刻t17)。その後、減圧方向にピストン22が駆動され、ホイールシリンダ圧V1が降圧される。
次に、アンチロックブレーキ制御時における吸液制御について図9を参照して説明する。アンチロックブレーキ制御時には、車輪ブレーキに作用する液圧を増圧、保持または減圧する制御が頻繁に行われるため、車輪ブレーキに供給するブレーキ液を確保する必要がある。図9に示す吸液制御は、アンチロックブレーキ制御時に戻り流路9bのリザーバ92に貯溜されたブレーキ液量BRが所定以上となる液圧に到達した場合に、吸液制御を行うようにしたものである。つまり、ブレーキ液量BRが所定液圧に到達した場合に、ピストン22のストローク量STRがリミットストローク量STLに到達しているとして吸液制御を行うようにしたものである。以下、電子制御装置70による吸液制御を詳細に説明する。
図9に示すように、時刻t21において、運転者によりブレーキペダルPが踏み込まれると、前記と同様にして、ストロークセンサSTの検出値ST1に基づき運転者の要求液圧P3(不図示)が算出される。そして、要求液圧P3に基づき、図6に示すマップから必要ストローク量STWが算出される。そして、必要ストローク量STWに基づきスレーブシリンダ20が駆動され、加圧方向にピストン22が加圧駆動される。そうすると、ストローク量STRが大きくなるにつれてホイールシリンダ圧V1が上昇する。
その後、時刻t22において、車輪がロック状態に陥りそうになると、液圧制御装置30によりアンチロックブレーキ制御が実行される。アンチロックブレーキ制御は、ホイールシリンダWに作用する液圧を減圧状態、増圧状態、あるいは一定に保持する保持状態を適宜選択することで実現される。なお、減圧、増圧および保持のいずれの状態を選択するかは、車輪の近傍に設けられた車輪速度センサから得られる車輪速度等の情報に基づいて、電子制御装置70によって判断される。アンチロックブレーキ制御が開始されると、つまり、車輪ブレーキの減圧が開始されると、電子制御装置70によって図1に示す補給路9aのカット弁93が閉じられる。
アンチロックブレーキ制御において、時刻t22で減圧状態が選択されると、図1に示す液圧制御装置30の入口弁31が閉弁されるとともに出口弁32が開弁され、ホイールシリンダWに作用しているブレーキ液が出口弁32を通じて戻り液路9bに逃される。つまり、スレーブシリンダ20からホイールシリンダWに供給されたブレーキ液の一部が戻り液路9bに逃される。このため、例えば、アンチロックブレーキ制御において、時刻t23で減圧状態が選択され、その後、時刻t24で増圧状態が選択された場合等には、増圧に必要な液圧を確保するために、ピストン22のストローク量STRが増やされる。
戻り流路9bに逃がされたブレーキ液は、戻り流路9bのリザーバ92に一時的に貯溜される。リザーバ92に貯溜されたブレーキ液量は、圧力センサ91の検出値にて特定される。電子制御装置70は、圧力センサ91の検出値を取得し、これに基づいてリザーバ92に貯溜されたブレーキ液量BRを算出する。電子制御装置70は、算出されたブレーキ液量BRが所定液圧に到達したか否かを監視する。
その後、アンチロックブレーキ制御が継続して増圧状態が繰り返し選択され、時刻t25において、リザーバ92に貯溜されたブレーキ液量BRが所定液圧に到達すると、電子制御装置70により吸液制御が行われる。吸液制御では、第一遮断弁61および第二遮断弁62が閉弁され(時刻t25)、前記と同様にして算出した戻し量STBに基づいてピストン22が減圧方向(戻し方向)に減圧駆動される(時刻t26)。そうすると、液圧室26が減圧して負圧状態となり、リザーバ92に貯溜されていたブレーキ液が、戻り流路9b、分岐戻り流路9cおよび共通液圧路4を通じて、液圧室26に吸液される。これによって、増圧に必要な所望の発生液圧SCVが確保される(許容リミットを超えたストローク量STRが確保される)。
吸液が完了したら、加圧方向にピストン22が加圧駆動され、スレーブシリンダ20の発生液圧SCVがホイールシリンダ圧V1(第一遮断弁61および第二遮断弁62の下流側の液圧)と同圧となるように加圧される。その後、第一遮断弁61および第二遮断弁62が開弁制御され(時刻t27)、吸液制御が終了する(時刻t28)。なお、以降のアンチロックブレーキ制御において、再びブレーキ液量BRが所定液圧に到達した場合には、前記と同様にして吸液制御が行われ、増圧に必要な所望の発生液圧SCVが確保される。
以上、ブレーキ液量BRが所定液圧に到達した場合の吸液制御について説明したが、これに限られることはなく、アンチロックブレーキ制御が保持制御または減圧制御となったタイミングで吸液制御を行うようにしてもよい。この場合には、増圧制御以外のタイミングで吸液制御が行われるので、アンチロックブレーキ制御時にブレーキ液を効果的に確保することができる。
また、ピストン22のストローク量STRが許容リミットに到達した場合に、ブレーキ液量BRが所定液圧に到達しているとして吸液制御を行うようにしてもよい。
また、電子制御装置70に、路面摩擦係数を推定可能な路面摩擦係数推定手段を設け、この路面摩擦係数推定手段によって推定された路面摩擦係数が所定未満となったタイミングで吸液制御を行うように構成してもよい。この場合には、、例えば、路面摩擦係数の低い低μ路においてアンチロックブレーキ制御(減圧制御、保持制御)が比較的長時間継続される場合にブレーキ液を効果的に確保することができる。
以上説明した本実施形態のブレーキシステムでは、減圧制御時に逃がされたブレーキ液をリザーバ92に貯溜し、これをスレーブシリンダ20に吸液する構成であるので、スレーブシリンダ20の軸長を比較的短く設定したとしても、液圧室26内に再加圧のためのブレーキ液を好適に補給することができる。これにより、スレーブシリンダ20の大型化を回避しつつ、高液圧領域まで好適に昇圧することができるブレーキシステムAが得られる。しかも、アンチロックブレーキ制御時に、増圧、保持または減圧する制御が頻繁に行われたとしても、戻り流路9bに逃がされたブレーキ液を吸液制御によってスレーブシリンダ20に吸液することができ、必要なブレーキ液を好適に確保することができる。したがって、アンチロックブレーキ制御が長く継続したとしても、車輪ブレーキに作用する液圧を好適に増圧することができ、効率のよいブレーキシステムとすることができる。
さらに、リザーバ92においてブレーキ液は、圧力が付与された状態で貯溜されるので、吸液制御時にスレーブシリンダ20の液圧室26が負圧になると、スレーブシリンダ20側の吸込みとリザーバ92側の押出しとによって、ブレーキ液が液圧室26にスムーズに流れ込む。これによって迅速な吸液が実現され、アンチロックブレーキ制御時に車輪ブレーキFL,RR,RL,FRに作用させるブレーキ液を好適に確保することができる。
また、アンチロックブレーキ制御時にリザーバタンク15から戻り流路9bに至る補給路9aがカット弁93によって遮断されるので、戻り流路9bが閉ループとされ、吸液制御によってリザーバ92に貯溜されたブレーキ液がスレーブシリンダ20の液圧室26に好適に吸液(還流)される。
また、カット弁93は、アンチロックブレーキ制御時以外の場合に開弁されるので、開かれている通常のブレーキ時やシステム最大発生液圧が必要となる急ブレーキ等の特殊なブレーキ時にリザーバタンク15からスレーブシリンダ20にブレーキ液が吸液される。したがって、スレーブシリンダ20の大型化を回避しつつ、高液圧領域まで好適に昇圧することができる。
また、圧力センサ91の検出値に基づいて吸液制御のタイミングを特定できるので、効率よく吸液制御を行うことができる。また、圧力センサ91を設けるという簡単な手段によって吸液制御のタイミングを特定できるので、システムの構成が簡単になる。
また、戻り流路9bにチェック弁9dが設けられているので、アンチロックブレーキ制御の吸液制御時に、スレーブシリンダ20の液圧室26が減圧されることで、リザーバ92に貯溜されているブレーキ液をチェック弁9dを通じてスレーブシリンダ20に吸液することができる。また、スレーブシリンダ20で発生した液圧がリザーバ92側へ伝達するのをチェック弁9dによって好適に防止することができる。
また、高負荷ブレーキ制御時に、リザーバタンク20内のブレーキ液を補給路9aを通じてスレーブシリンダ20に吸液することができる。また、スレーブシリンダ20で発生した液圧がリザーバタンク20側へ伝達するのをチェック弁9dによって好適に防止することができる。
また、第一遮断弁61および第二遮断弁62は、常開型電磁弁であるので、スレーブシリンダ20によって車輪ブレーキに液圧を発生させる通常のブレーキ時に、こららの第一遮断弁61および第二遮断弁62に通電する必要がなくなる。したがって、消費電力を最小限に抑えることができる。
なお、吸液制御は、運転者の要求液圧の昇圧量が所定以下となったタイミングで行うように構成してもよい。このようにすると、ブレーキフィーリングに影響がでないタイミングにて吸液制御を好適に行うことができる。
また、吸液制御は、運転者の要求液圧の絶対値が所定以上となったタイミングで行うように構成してもよい。このようにすると、例えば、通常のブレーキ時よりも大きな昇圧を伴うブレーキアシスト制御時等において良好に昇圧を行うことができる。
また、戻り流路9bの圧力センサ91は必ずしも設けなくてもよい。この場合、スレーブシリンダ20の作動状況や各出口弁32の開閉作動状況等に基づいて、リザーバ92に貯溜されているブレーキ液量を電子制御装置70によって推定してもよい。
また、センサ値(液圧)からブレーキ液量を換算せずに、センサ値(液圧)をそのまま用いてこれを所定の閾値と比較して、吸液制御を行うように構成してもよい。
1 基体
5a 第一連通路(連通路)
5b 第二連通路(連通路)
9a 補給路
9b 戻り流路
9d チェック弁
10 マスタシリンダ
15 リザーバタンク
20 スレーブシリンダ
22 ピストン
26 液圧室
30 液圧制御装置
40 ストロークシミュレータ
51 第一切替弁(切替弁)
52 第二切替弁(切替弁)
61 第一遮断弁(遮断弁)
62 第二遮断弁(遮断弁)
70 電子制御装置(制御手段)
92 リザーバ(蓄圧室)
91 圧力センサ(取得手段)
93 カット弁
A ブレーキシステム
P ブレーキペダル(ブレーキ操作子)
FL,RR,RL,FR 車輪ブレーキ
W ホイールシリンダ

Claims (6)

  1. 運転者のブレーキ操作子の操作によって車輪ブレーキに作用させる液圧を発生するマスタシリンダと、前記ブレーキ操作子の操作量に応じて駆動する電動アクチュエータによってピストンを作動させることで液圧を発生させるスレーブシリンダと、を備えたブレーキシステムであって、
    前記マスタシリンダから車輪ブレーキに至る液圧路と、
    前記液圧路に設けられた切替弁と、
    前記スレーブシリンダから前記切替弁に通じる連通路と、
    前記連通路に設けられ、前記連通路を遮断可能な遮断弁と、
    前記車輪ブレーキから前記スレーブシリンダに至る戻り流路と、
    前記戻り流路に設けられ、車輪ブレーキの減圧時に前記車輪ブレーキから前記戻り流路に逃されたブレーキ液を貯溜する蓄圧室と、
    前記スレーブシリンダにブレーキ液を吸液するための吸液制御を実行する制御手段と、を備え、
    前記制御手段は、吸液制御時に、前記遮断弁を閉じるとともに、前記電動アクチュエータによって前記ピストンを減圧方向に駆動させる制御を実行するようになっており、
    前記減圧時には、前記蓄圧室に貯溜されたブレーキ液が吸液制御によって前記戻り流路を通じて前記スレーブシリンダに流入するようになっており、
    前記蓄圧室に貯溜されたブレーキ液量または液圧を取得する取得手段を備え、
    前記制御手段は、前記取得手段により取得されたブレーキ液量または液圧が所定以上となった場合に吸液制御を行うことを特徴とするブレーキシステム。
  2. 請求項1に記載のブレーキシステムであって、
    ブレーキ液を貯溜するリザーバタンクと、
    前記リザーバタンクから前記戻り流路に至る補給路と、
    前記補給路に設けられ、前記補給路を遮断可能なカット弁と、を備え、
    前記制御手段は、前記減圧時に、前記カット弁を閉弁することを特徴とするブレーキシステム。
  3. 請求項2に記載のブレーキシステムであって、
    前記制御手段は、アンチロックブレーキ制御が継続している間は前記カット弁の閉弁制御を維持し続けることを特徴とするブレーキシステム。
  4. 請求項1から請求項3のいずれか1項に記載のブレーキシステムであって、
    前記取得手段は、前記戻り流路に配置された圧力センサであることを特徴とするブレーキシステム。
  5. 請求項1から請求項のいずれか1項に記載のブレーキシステムであって、
    前記戻り流路には、前記蓄圧室側から前記スレーブシリンダ側へのブレーキ液の流入のみを許容するチェック弁が設けられていることを特徴とするブレーキシステム。
  6. 請求項1から請求項のいずれか1項に記載のブレーキシステムであって、
    前記遮断弁は、常開型電磁弁であることを特徴とするブレーキシステム。
JP2015069380A 2015-03-30 2015-03-30 ブレーキシステム Active JP6512695B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069380A JP6512695B2 (ja) 2015-03-30 2015-03-30 ブレーキシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069380A JP6512695B2 (ja) 2015-03-30 2015-03-30 ブレーキシステム

Publications (2)

Publication Number Publication Date
JP2016188037A JP2016188037A (ja) 2016-11-04
JP6512695B2 true JP6512695B2 (ja) 2019-05-15

Family

ID=57240229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069380A Active JP6512695B2 (ja) 2015-03-30 2015-03-30 ブレーキシステム

Country Status (1)

Country Link
JP (1) JP6512695B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995813B2 (en) 2016-09-27 2021-05-04 Hitachi Astemo, Ltd. Shock absorber
US10913436B2 (en) * 2018-03-30 2021-02-09 Veoneer Nissin Brake Systems Japan Co., Ltd. Systems and methods for reducing energy consumption within a braking system of a vehicle
CN113460009B (zh) * 2021-07-28 2022-09-23 中国第一汽车股份有限公司 一种集成式制动***补液控制方法及车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484986B2 (ja) * 1999-09-03 2010-06-16 トヨタ自動車株式会社 ブレーキ液圧源装置およびブレーキ装置
DE102010020002B4 (de) * 2010-05-10 2024-03-28 Zf Active Safety Gmbh Hydraulikbaugruppe für eine Fahrzeug-Bremsanlage
JP5432880B2 (ja) * 2010-11-17 2014-03-05 本田技研工業株式会社 車両用ブレーキシステム

Also Published As

Publication number Publication date
JP2016188037A (ja) 2016-11-04

Similar Documents

Publication Publication Date Title
JP5849030B2 (ja) ブレーキ制御装置
EP3056398B1 (en) Brake system
JP5892706B2 (ja) ブレーキ液圧発生装置
JP2006111251A (ja) ブレーキ制御装置
US10654457B2 (en) Electric brake system and method for controlling the same
JP6512695B2 (ja) ブレーキシステム
WO2017146194A1 (ja) 車両用制動装置
JP6304633B2 (ja) ブレーキシステム
JP6257028B2 (ja) 車両用ブレーキ液圧制御システム
JP6245696B2 (ja) ブレーキ液圧発生装置
JP6288857B2 (ja) ブレーキシステム
JP6245655B2 (ja) ブレーキシステム
JP5949093B2 (ja) 車両用の制動制御装置
JP6338111B2 (ja) ブレーキシステム
JP7037959B2 (ja) ブレーキ液圧制御装置
JP6521222B2 (ja) リザーバタンクおよびこれを備えた車両用ブレーキシステム
JP6529006B2 (ja) シリンダ装置およびブレーキシステム
JP7010728B2 (ja) ブレーキ液圧制御装置
JP6261078B2 (ja) ブレーキ液圧発生装置
JP4283755B2 (ja) 車両用ブレーキ液圧制御装置
CN114423652A (zh) 车辆用制动装置
JP2006021580A (ja) 制動装置
JP2002145043A (ja) 液圧ブレーキ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6512695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250