JP6510521B2 - リソグラフィメトロロジのための方法、装置及び基板 - Google Patents

リソグラフィメトロロジのための方法、装置及び基板 Download PDF

Info

Publication number
JP6510521B2
JP6510521B2 JP2016533540A JP2016533540A JP6510521B2 JP 6510521 B2 JP6510521 B2 JP 6510521B2 JP 2016533540 A JP2016533540 A JP 2016533540A JP 2016533540 A JP2016533540 A JP 2016533540A JP 6510521 B2 JP6510521 B2 JP 6510521B2
Authority
JP
Japan
Prior art keywords
overlay
target
bias
asymmetry
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016533540A
Other languages
English (en)
Other versions
JP2016539370A (ja
Inventor
スミルデ,ヘンドリク,ジャン,ヒデ
ボーフ,アリー,ジェフリー デン
ボーフ,アリー,ジェフリー デン
アダム,オマル,アブバケール,オマル
ヤク,マーティン,ヤコブス,ヨハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2016539370A publication Critical patent/JP2016539370A/ja
Application granted granted Critical
Publication of JP6510521B2 publication Critical patent/JP6510521B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

[関連出願の相互参照]
[0001] 本出願は、2013年11月26日出願の欧州出願EP13194522号の利益を主張し、その全体が参照により本明細書に組み込まれる。
[0002] 本発明は、例えば、リソグラフィ技術によるデバイスの製造において使用可能なメトロロジ方法及び装置、並びにリソグラフィ技術を使用してデバイスを製造する方法に関する。
[0003] リソグラフィ装置は、所望のパターンを基板上、通常、基板のターゲット部分上に付与する機械である。リソグラフィ装置は、例えば、集積回路(IC)の製造に用いることができる。その場合、ICの個々の層上に形成される回路パターンを生成するために、マスク又はレチクルとも呼ばれるパターニングデバイスを用いることができる。このパターンは、基板(例えば、シリコンウェーハ)上のターゲット部分(例えば、ダイの一部、又は1つ以上のダイを含む)に転写することができる。通常、パターンの転写は、基板上に設けられた放射感応性材料(レジスト)層上への結像によって行われる。一般には、単一の基板が、連続的にパターニングされる隣接したターゲット部分のネットワークを含んでいる。リソグラフィプロセスにおいては、例えば、プロセス制御及び検証のために、作り出した構造を測定することがしばしば望まれる。そのような測定のためのさまざまなツールが知られており、クリティカルディメンジョン(CD)を測定するためにしばしば使用される走査電子顕微鏡や、デバイス内の2つの層のアライメント精度であるオーバーレイを測定するための専用ツールが含まれる。近年、リソグラフィ分野での使用のためにさまざまな形態のスキャトロメータが開発されている。これらのデバイスは、放射ビームをターゲット上に誘導し、散乱放射の1以上の特性、例えば、波長の関数としての単一反射角での強度、反射角の関数としての1以上の波長での強度、又は、反射角の関数としての偏光を測定して、ターゲットの対象となっている特性を決定することができる「スペクトル」を取得する。対象となっている特性の決定は、さまざまな技術、例えば、厳密結合波分析又は有限要素法のような反復的アプローチによるターゲット構造の再構築、ライブラリ検索、主成分分析といった技術により行ってよい。
[0004] 従来のスキャトロメータによって使用されるターゲットは比較的大きな、例えば、40μm×40μmの格子であり、測定ビームはこの格子より小さいスポットを生成する(すなわち、格子はアンダーフィルされる(underfilled))。これにより、ターゲットを無限とみなすことができるためターゲットの数学的再構築が単純化される。しかしながら、ターゲットのサイズを、例えば、スクライブライン内ではなく製品フィーチャの間に位置決めできるように、例えば、10μm×10μm以下に縮小するため、格子を測定スポットより小さくした(すなわち、格子はオーバーフィルされる(overfilled))メトロロジが提案されている。典型的には、そのようなターゲットは、(鏡面反射に相当する)ゼロ次回折を遮断し、これより高次のもののみを処理する暗視野スキャトロメトリを使用して測定される。暗視野メトロロジの例は、参照によりその文書全体がここに組み込まれる国際特許出願WO2009/078708号及びWO2009/106279号に見ることができる。この技術をさらに発展させたものは、公開米国特許出願US20110027704A号、US20110043791A号、及びUS20120242970号に記載されている。これらすべての出願の内容も参照により本明細書に組み込まれる。回折次数の暗視野検出を使用した回折ベースのオーバーレイによって、より小さいターゲットのオーバーレイ測定が可能になる。これらのターゲットは照明スポットより小さくすることができ、ウェーハ上の製品構造で包囲されていてもよい。1つのイメージ内で多数のターゲットを測定することが可能である。
[0005] 公知のメトロロジ技術において、オーバーレイ測定結果は、ターゲットを回転するか、あるいは、照明モード又は結像モードを変更して−1次及び+1次回折次数強度を別個に取得しながら、一定の条件下でターゲットを2回測定することで取得される。任意の格子に関するこれらの強度を比較することで、この格子における非対称性測定値が求められ、オーバーレイ格子における非対称性は、オーバーレイエラーの指標として用いることができる。
[0006] 公知の暗視野イメージベースのオーバーレイ測定は、高速、かつ(いったん較正されると)計算上非常に単純であるが、この測定は、オーバーレイがターゲット構造における非対称性の唯一の原因であるとの仮定に依拠している。スタック中のいかなるその他の非対称性、例えば、重ね合わせられた格子の一方又は双方の中のフィーチャの非対称性も、1次における非対称性の原因となる。オーバーレイに関連しないこの非対称性は、明らかにオーバーレイ測定を乱し、不正確なオーバーレイ結果を与える。オーバーレイ格子の下部格子における非対称性は、一般的な形態のフィーチャ非対称性である。これは、例えば、下部格子が当初形成された後に行われる、化学機械研磨(CMP)などのウェーハ処理工程において生じ得る。
[0007] したがって、現状では、当業者は、一方の、オーバーレイ測定値を与える単純かつ高速な測定プロセスであるが、非対称性の他の原因が存在する場合に不正確になりやすい測定プロセスと、他方の、計算集約的であって、かつ瞳イメージがオーバーレイ格子の環境からの信号によって汚染され、これに基づく再構築が阻害されることを回避するために、通常、大型でアンダーフィルされた格子を複数回測定することを必要とする、より伝統的な技術との間で選択をしなければならない。
[0008] そのため、オーバーレイ及びその他の影響によって生じる、ターゲット構造非対称性に対する寄与をより直接的かつ単純な方法で区別することが望まれる。
[0009] 先行の公開された技術と比較してスループット及び精度を改善することができる、ターゲット構造を使用したオーバーレイメトロロジ方法及び装置を提供することが望ましい。さらに、本発明がこれに限定されるわけではないが、暗視野イメージベースの技術で読み取ることのできる小さなターゲット構造に適用可能なものであれば、大いに有利である。
[0010] 本発明は、第一の態様において、リソグラフィプロセスのパラメータを測定する方法を提供し、この方法は、
(a)基板上に複数のターゲット構造を設けるステップであって、各ターゲット構造は、重ね合わせられた周期構造を備え、かつ各ターゲット構造は既知のオーバーレイバイアスを有する、ステップと、
(b)ターゲットを照明し、各ターゲット構造により散乱させられた放射を検出して、そのターゲット構造に関して、(i)前記既知のオーバーレイバイアスと、(ii)ターゲット構造の形成に使用されるリソグラフィプロセスのオーバーレイ精度と、(iii)前記周期構造の1つ又は複数の内部のフィーチャ非対称性と、に起因する寄与を含む全体的な非対称性を表す測定値を取得するステップと、
(c)3つ以上のターゲット構造に関する前記全体的な非対称性測定値を用いて、前記オーバーレイエラーの測定値を計算するステップであって、前記計算は、既知のオーバーレイバイアス値、及びオーバーレイエラーと非対称性との間の仮定の非線形周期関係を用いて行われ、それによりフィーチャ非対称性に起因する寄与を排除する、ステップと、を含み、前記3つ以上のターゲット構造に関する既知のオーバーレイバイアス値は、前記周期関係の第1の領域内に入る少なくとも2つの値と、前記周期関係の第2の領域内に入る少なくとも1つの値と、を含み、第1及び第2の領域における周期関係は、逆符号の勾配を有する。
[0011] 開示される実施形態においては、前記周期関係の第1の領域はゼロバイアスを中心とする半周期であり、第2の領域はP/2を中心とする半周期であり、Pは周期関係のピッチである。
[0012] いくつかの開示される実施形態においては、4つ以上の異なるオーバーレイバイアス値が用いられ、このオーバーレイバイアス値は周期関係の前記第1及び第2の領域のそれぞれの内部に少なくとも2つのバイアス値を含む。その場合における計算は、前記勾配が周期関係の第1及び第2の領域内で異なる大きさを有することを可能にしながら行われる。これにより、ターゲット内の一定のタイプのプロセス誘起非対称性に対してよりロバストなオーバーレイ測定値を得ることができる。
[0013] 計算は、ステップ(c)の性能及び/又は他の基板上のリソグラフィプロセスの性能を制御するために用いられ得るその他の性能パラメータを出力し得る。
[0014] 本発明は、リソグラフィプロセスのパラメータを測定する検査装置をさらに提供し、この装置は、
複数のターゲット構造をその上に有する基板用のサポートであって、各ターゲット構造は重ね合わせられた周期構造を備え、各ターゲット構造は既知のオーバーレイバイアスを有する、サポートと、
ターゲットを照明し、各ターゲット構造により散乱させられた放射を検出して、そのターゲット構造に関して、(i)前記既知のオーバーレイバイアスと、(ii)前記リソグラフィプロセスのオーバーレイ精度と、(iii)前記周期構造の1つ又は複数の内部のフィーチャ非対称性と、に起因する寄与を含む全体的な非対称性を表す測定値を取得する光学システムと、
3つ以上の異なるオーバーレイバイアス値を有する3つ以上のターゲット構造に関する前記全体的な非対称性測定値を用いて、オーバーレイ精度の測定値を計算するように配置されるプロセッサであって、前記計算は、既知のオーバーレイバイアス値、及びオーバーレイとターゲット非対称性との間の仮定の非線形関係を用いて行われ、それによりフィーチャ非対称性に起因する寄与を排除する、プロセッサと、を備え、
前記3つ以上のターゲット構造に関する既知のオーバーレイバイアス値は、前記周期関係の第1の領域内に入る少なくとも2つの値と、前記周期関係の第2の領域内に入る少なくとも1つの値と、を含み、第1及び第2の領域内の周期関係は、逆符号の勾配を有する。
[0015] 本発明は、上記の発明による方法又は装置において使用するための基板をさらに提供し、この基板はリソグラフィプロセスによってその上に形成された複数のターゲット構造を有し、各ターゲット構造は重ね合わせられた周期構造を備え、かつ各ターゲット構造は特定のオーバーレイバイアスを有する、基板であって、前記3つ以上のターゲット構造に関するオーバーレイバイアス値は、ゼロバイアスを中心とする半周期内に入る少なくとも2つの値と、P/2を中心とする半周期内に入る少なくとも1つの値と、を含み、Pは前記周期構造の周期である。
[0016] 一実施形態では、少なくとも4つのターゲット構造が設けられ、かつ前記3つ以上のターゲット構造に関するオーバーレイバイアス値が、ゼロバイアスを中心とする半周期内に入る少なくとも2つの値と、P/2を中心とする半周期内に入る少なくとも2つの値と、を含み、Pは前記周期構造の周期である。
[0017] 本発明は、上記の発明のいずれかの態様による基板を形成する際に使用するための1対のパターニングデバイスをさらに提供し、このパターニングデバイスは、少なくとも3つのオーバーレイバイアスを有する前記ターゲット構造を形成する際に使用するために共に適合される。
[0018] 本発明は、プロセッサに上記の発明による方法の処理ステップ(c)を実施させるための機械可読命令を備える、コンピュータプログラム製品をさらに提供する。
[0019] 本発明は、リソグラフィシステムをさらに提供し、このリソグラフィシステムは、
重ね合わせる形で、パターニングデバイスから基板上に一連のパターンを転写するように配置されたリソグラフィ装置と、
上記の発明による検査装置と、
を備え、リソグラフィ装置は、さらなる基板に前記一連のパターンを付与する際に検査装置によって計算された1つ又は複数のパラメータを用いる。
[0020] 本発明は、リソグラフィプロセスを用いて一連の基板に一連のデバイスパターンを付与するデバイス製造方法をさらに提供し、この方法は、上記の発明による方法を用いて、前記基板の少なくとも1つ上の前記デバイスパターンの一部として形成されるか、又はそのパターンに加えて形成される少なくとも1つの周期構造を検査することと、その方法のステップ(c)において計算された1つ又は複数のパラメータに従って後の基板に関してリソグラフィプロセスを制御することと、を含む。
[0021] 本発明のさらなる特徴及び利点は、本発明のさまざまな実施形態の構造及び作用とともに、添付の図面を参照して以下に詳細に説明される。本発明は、本明細書に記載される特定の実施形態に限定されないことに留意されたい。かかる実施形態は、単に例示の目的で本明細書に提示されている。本明細書に含まれる教示に基づいて、当業者には追加の実施形態が明らかとなるであろう。
[0022] 本発明のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
本発明の一実施形態によるリソグラフィ装置を示す。 本発明の一実施形態によるリソグラフィックセル又はクラスタを示す。 (a)は、本発明の実施形態によるターゲットを第1の照明アパーチャ対を用いて測定する際に使用される暗視野スキャトロメータの概略図、(b)は、任意の方向の照明に対するターゲット格子の回折スペクトルの詳細図、(c)は、回折ベースのオーバーレイ測定にスキャトロメータを使用する際に別の照明モードを提供する第2の照明アパーチャ対を示す図、(d)は、第1及び第2のアパーチャ対を組み合わせた第3の照明アパーチャ対を示す図、である。 複数格子ターゲットの公知の形態及び基板上の測定スポットの輪郭を示す。 図3のスキャトロメータで取得される図4のターゲットのイメージを示す。 図3のスキャトロメータを使用し、かつ本発明の実施形態の形成に適応可能である、オーバーレイ測定方法のステップを示す流れ図である。 (a)〜(c)は、ゼロの領域において異なるオーバーレイ値を有するオーバーレイ格子の概略断面図、(d)は、処理の影響により下部格子内にフィーチャ非対称性を有するオーバーレイ格子の概略断面図、(e)〜(g)は、本発明の実施形態において使用される、ハーフ・ピッチの領域において異なるバイアス値を有するオーバーレイ格子の概略断面図、である。 フィーチャ非対称性の影響を受けない理想的なターゲット構造におけるオーバーレイ測定の公知の原理を示す図である。 WO2013143814A1において開示される、フィーチャ非対称性の補正を伴う、非理想的なターゲット構造におけるオーバーレイ測定の公知の原理を示す図である。 本発明の第1の実施形態によるバイアススキームを有する複合格子ターゲットを示す図である。 図10のターゲットを使用する、フィーチャ非対称性の補正を伴うオーバーレイ測定の原理を示す図である。 本発明の第2の実施形態によるバイアススキームを有する複合格子ターゲットを示す図である。 図12のターゲットを使用する、フィーチャ非対称性及び高次高調波により生じるモデルエラーの補正を伴うオーバーレイ測定の原理を示す図である。 (a)は、公知の方法のシミュレーション性能を示す図であり、(b)は、図12のターゲット及び図13の原理を使用する方法のシミュレーション性能を示す図である。 増大するフィーチャ非対称性の存在下における異なる方法の性能を示す図である。 図3の装置において波長及び偏光のさまざまな組み合わせを使用した測定に対するフィーチャ非対称性の影響を示す図である。 フィーチャ非対称性測定値を使用して検査装置及び/又はリソグラフィプロセスの性能を制御する方法を示す図である。 第2の実施形態のバイアススキームを有する複合格子ターゲットの3つの代替的な設計を示す図である。
[0023] 本発明の実施形態を詳細に説明する前に、本発明の実施形態が実施され得る例示的な環境を提示することが有益である。
[0024] 図1は、リソグラフィ装置LAを概略的に示している。このリソグラフィ装置は、放射ビームB(例えば紫外線又はDUV放射)を調整するように構成された照明システム(イルミネータ)IL、パターニングデバイス(例えば、マスク)MAを支持するように構築され、かつ特定のパラメータに従ってパターニングデバイスを正確に位置決めするように構成された第1ポジショナPMに連結されたパターニングデバイスサポート又はサポート構造(例えば、マスクテーブル)MT、基板(例えば、レジストコートウェーハ)Wを保持するように構築され、かつ特定のパラメータに従って基板を正確に位置決めするように構成された第2ポジショナPWに連結された基板テーブル(例えば、ウェーハテーブル)WT、及びパターニングデバイスMAによって放射ビームBに付けられたパターンを基板Wのターゲット部分C(例えば、1つ以上のダイを含む)上に投影するように構成された投影システム(例えば、屈折投影レンズシステム)PSを含む。
[0025] 照明システムとしては、放射を誘導し、整形し、又は制御するために、屈折型、反射型、磁気型、電磁型、静電型、又はその他のタイプの光コンポーネント、あるいはそれらのあらゆる組合せなどのさまざまなタイプの光コンポーネントを含むことができる。
[0026] パターニングデバイスサポートは、パターニングデバイスの向き、リソグラフィ装置の設計、及び、パターニングデバイスが真空環境内で保持されているか否かなどの他の条件に応じた態様で、パターニングデバイスを保持する。パターニングデバイスサポートは、機械式、真空式、静電式又はその他のクランプ技術を使って、パターニングデバイスを保持することができる。パターニングデバイスサポートは、例えば、必要に応じて固定又は可動式にすることができるフレーム又はテーブルであってもよい。パターニングデバイスサポートは、パターニングデバイスを、例えば、投影システムに対して所望の位置に確実に置くことができる。本明細書において使用される「レチクル」又は「マスク」という用語はすべて、より一般的な「パターニングデバイス」という用語と同義であると考えるとよい。
[0027] 本明細書において使用される「パターニングデバイス」という用語は、基板のターゲット部分内にパターンを作り出すように、放射ビームの断面にパターンを与えるために使用できるあらゆるデバイスを指していると、広く解釈されるべきである。なお、留意すべき点として、放射ビームに付与されたパターンは、例えば、そのパターンが位相シフトフィーチャ又はいわゆるアシストフィーチャを含む場合、基板のターゲット部分内の所望のパターンに正確に一致しない場合もある。通常、放射ビームに付けたパターンは、集積回路などのターゲット部分内に作り出されるデバイス内の特定の機能層に対応することになる。
[0028] パターニングデバイスは、透過型であっても、反射型であってもよい。パターニングデバイスの例としては、マスク、プログラマブルミラーアレイ、及びプログラマブルLCDパネルが含まれる。マスクは、リソグラフィでは公知であり、バイナリ、レべゼンソン型(alternating)位相シフト、及びハーフトーン型(attenuated)位相シフトなどのマスク型、並びに種々のハイブリッドマスク型を含む。プログラマブルミラーアレイの一例では、小型ミラーのマトリックス配列が用いられており、各小型ミラーは、入射する放射ビームをさまざまな方向に反射させるように、個別に傾斜させることができる。傾斜されたミラーは、ミラーマトリックスによって反射される放射ビームにパターンを付ける。
[0029] 本明細書に示されているとおり、リソグラフィ装置は、透過型のもの(例えば、透過型マスクを採用しているもの)である。また、リソグラフィ装置は、反射型のもの(例えば、上述のプログラマブルミラーアレイを採用しているもの、又は反射型マスクを採用しているもの)であってもよい。
[0030] また、リソグラフィ装置は、投影システムと基板との間の空間を満たすように、比較的高屈折率を有する液体(例えば水)によって基板の少なくとも一部を覆うことができるタイプのものであってもよい。また、リソグラフィ装置内の別の空間(例えば、マスクと投影システムとの間)に液浸液を加えてもよい。液浸技術は、投影システムの開口数を増加させることで当技術分野において周知である。本明細書において使用される「液浸」という用語は、基板のような構造物を液体内に沈めなければならないという意味ではなく、単に、露光中、投影システムと基板との間に液体があるということを意味するものである。
[0031] 図1を参照すると、イルミネータILは、放射源SOから放射ビームを受ける。例えば、放射源がエキシマレーザである場合、放射源とリソグラフィ装置は、別個の構成要素であってもよい。そのような場合には、放射源は、リソグラフィ装置の一部を形成しているとはみなされず、また放射ビームは、放射源SOからイルミネータILへ、例えば、適切な誘導ミラー及び/又はビームエキスパンダを含むビームデリバリシステムBDを使って送られる。その他の場合においては、例えば、放射源が水銀ランプである場合、放射源は、リソグラフィ装置の一体部分とすることもできる。放射源SO及びイルミネータILは、必要ならばビームデリバリシステムBDとともに、放射システムと呼んでもよい。
[0032] イルミネータILは、放射ビームの角度強度分布を調節するアジャスタADを含むことができる。一般に、イルミネータの瞳面内の強度分布の少なくとも外側及び/又は内側半径範囲(通常、それぞれσ-outer及びσ-innerと呼ばれる)を調節することができる。さらに、イルミネータILは、インテグレータIN及びコンデンサCOといったさまざまな他のコンポーネントを含むことができる。イルミネータを使って放射ビームを調整すれば、放射ビームの断面に所望の均一性及び強度分布をもたせることができる。
[0033] 放射ビームBは、パターニングデバイスサポート(例えば、マスクテーブルMT)上に保持されているパターニングデバイス(例えば、マスク)MA上に入射して、パターニングデバイスによってパターン形成される。パターニングデバイス(例えば、マスク)MAを通り抜けた後、放射ビームBは投影システムPSを通過し、投影システムPSは、基板Wのターゲット部分C上にビームの焦点をあわせる。第2ポジショナPW及び位置センサIF(例えば、干渉計デバイス、リニアエンコーダ、2‐Dエンコーダ、又は静電容量センサ)を使って、例えば、さまざまなターゲット部分Cを放射ビームBの経路内に位置決めするように、基板テーブルWTを正確に動かすことができる。同様に、第1ポジショナPM及び別の位置センサ(図1には明示的に示されていない)を使い、例えば、マスクライブラリから機械的に取り出した後又はスキャン中に、パターニングデバイス(例えば、マスク)MAを放射ビームBの経路に対して正確に位置決めすることもできる。
[0034] パターニングデバイス(例えば、マスク)MA及び基板Wは、マスクアライメントマークM1及びM2と、基板アライメントマークP1及びP2とを使って、位置合わせされてもよい。例示では基板アライメントマークが専用ターゲット部分を占めているが、基板アライメントマークをターゲット部分とターゲット部分との間の空間内に置くこともできる(これらは、スクライブラインアライメントマークとして公知である)。同様に、複数のダイがパターニングデバイス(例えば、マスク)MA上に設けられている場合、マスクアライメントマークは、ダイとダイの間に置かれてもよい。小型のアライメントマーカを、デバイスフィーチャの中の、ダイの内部に含むこともでき、その場合、マーカは可能な限り小型であり、かつ隣接するフィーチャと異なる結像又はプロセス条件を必要としないことが望ましい。アライメントマーカを検出するアライメントシステムは、以下でさらに説明する。
[0035] この例におけるリソグラフィ装置LAは、2つの基板テーブルWTa、WTbと、相互に基板テーブルを交換することができる露光ステーションと測定ステーションという2つのステーションとを有する、いわゆるデュアルステージ型の装置である。一方の基板テーブル上の1つの基板を露光ステーションで露光している間、測定ステーションで他方の基板テーブル上に別の基板を装填して、多様な予備工程を行うことができる。予備工程は、レベルセンサLSを使用して基板の表面制御をマッピングすること、及びアライメントセンサASを使用して基板上のアライメントマーカの位置を測定することを含んでよい。これにより、装置のスループットの大幅な上昇が可能となる。
[0036] 示されている装置は、例えばステップモード又はスキャンモードを含む、多様なモードで使用することができる。リソグラフィ装置の構築及び動作は、当業者に周知であり、本発明の理解のためにさらに説明する必要はない。
[0037] 図2に示すように、リソグラフィ装置LAは、リソセル又はクラスタとも呼ばれることのあるリソグラフィックセルLCの一部を形成し、リソグラフィックセルLCは、基板上で露光前及び露光後プロセスを実施する装置も含む。従来、これらにはレジスト層を堆積させるためのスピンコータSC、露光されたレジストを現像するためのデベロッパDE、冷却プレートCH、及びベークプレートBEが含まれる。基板ハンドラ又はロボットROは、入力/出力ポートI/O1、I/O2から基板を取り上げ、それらをさまざまなプロセス装置間で移動させ、その後リソグラフィ装置のローディングベイLBへと搬送する。これらのデバイスは、しばしばトラックと総称され、トラック制御ユニットTCUの制御下にある。トラック制御ユニットTCU自体は監視制御システムSCSにより制御され、監視制御システムSCSはリソグラフィ制御ユニットLACUを介してリソグラフィ装置も制御する。このようにして、スループット及び処理効率を最大化するようにさまざまな装置を動作させることができる。
[0038] 本発明の実施形態における使用に適した暗視野メトロロジ装置を、図3(a)に示す。図3(b)には、ターゲット格子T及び回折光線をより詳細に示す。暗視野メトロロジ装置は、独立型デバイスであってもよく、あるいはリソグラフィ装置LA内、例えば測定ステーションに、又はリソグラフィックセルLC内に組み込まれていてもよい。装置全体にわたりいくつかの分岐を有する光軸は、点線Oで表される。この装置において、放射源11(例えば、キセノンランプ)によって放出される光は、レンズ12、14及び対物レンズ16を備える光学システムにより、ビームスプリッタ15を介して基板W上に誘導される。これらのレンズは、4F構成の2重シーケンスに配置される。異なるレンズ配置も、それがディテクタ上に基板イメージを提供し、それと同時に空間周波数フィルタリングのための中間瞳面のアクセスを可能にする限りにおいて、使用することができる。したがって、本明細書において(共役)瞳面と呼ぶ、基板面の空間スペクトルを提示する面における空間強度分布を規定することによって、放射が基板上に入射する角度範囲を選択することができる。特に、これは、レンズ12及び14の間の、対物レンズ瞳面の後方投影イメージである面内に適切な形状のアパーチャプレート13を挿入することによって行うことができる。図示される例において、アパーチャプレート13は、13N及び13Sと標示された異なる形状を有し、異なる照明モードの選択を可能にする。本例における照明システムは、オフアクシス照明モードを形成する。第1の照明モードでは、アパーチャプレート13Nは、単に説明する目的で「北」と印される方向からのオフアクシスを提供する。第2の照明モードでは、アパーチャプレート13Sを使用して、「南」と標示された反対の方向からではあるが、同様の照明を提供する。異なるアパーチャを使用することで、他の照明モードも可能である。所望の照明モード外の不要な光は所望の測定信号と干渉することとなるため、瞳面の残りの部分は暗いことが望ましい。
[0039] 図3(b)に示すように、ターゲット格子Tは、基板Wと共に、対物レンズ16の光軸Oに対して垂直に配置される。軸Oを外れた角度から格子T上に衝突する照明光線Iは、ゼロ次光線(実線0)及び2つの1次光線(一点鎖線+1及び二点鎖線−1)を生じさせる。オーバーフィルされた小さいターゲット格子では、これらの光線は、メトロロジターゲット格子T及びその他のフィーチャを含む基板のエリアに及ぶ多くの平行光線の1つに過ぎないことに注意されたい。プレート13内のアパーチャは(有用量の光を入り込ませるために必要な)有限の幅を有するため、実際には、入射光線Iはある角度範囲を占め、回折光線0及び+1/−1は多少拡散することとなる。小さいターゲットの点像分布関数によると、+1及び1の各次数は、図示されるような単一の理想的な光線ではなく、ある角度範囲にわたって更に拡散することとなる。なお、格子ピッチ及び照明角度は、対物レンズに入る1次光線が中心光軸と近接して位置合わせされるように設計又は調節することができる。図3(a)及び図3(b)に示される光線は、多少オフアクシスに示されているが、これは単にこれらを図中でより容易に区別できるようにするためである。
[0040] 基板W上のターゲットによって回折された少なくとも0次及び+1次は、対物レンズ16によって集光され、ビームスプリッタ15を通って戻るように誘導される。図3(a)に戻ると、北(N)及び南(S)と標示された、直径方向に反対の位置にあるアパーチャを印すことで、第1及び第2の照明モードの両方が示されている。入射光線Iが光軸の北側から来る場合、すなわち、アパーチャプレート13Nを使用して第1の照明モードが適用される場合、+1(N)と標示された+1回折光線が、対物レンズ16に入る。対照的に、アパーチャプレート13Sを使用して第2の照明モードが適用される場合は、(−1(S)と標示された)−1回折光線が、レンズ16に入る光線である。
[0041] 第2のビームスプリッタ17は、回折ビームを2つの測定分岐へと分割する。第1の測定分岐では、光学システム18は、ゼロ次及び1次回折ビームを用いて、第1のセンサ19(例えば、CCD又はCMOSセンサ)上にターゲットの回折スペクトル(瞳面イメージ)を形成する。各回折次数がセンサ上の異なる点に当たるため、画像処理で次数を比較及び対比することができる。センサ19によって捕捉された瞳面イメージは、メトロロジ装置の焦点を合わせるため、及び/又は1次ビームの強度測定値を正規化するために使用することができる。瞳面イメージは、再構築などの多くの測定目的で用いることもできるが、これらは本開示の主題ではない。
[0042] 第2の測定分岐では、光学システム20、22は、基板W上のターゲットのイメージをセンサ23(例えば、CCD又はCMOSセンサ)上に形成する。第2の測定分岐では、瞳面と共役である面内にアパーチャ絞り21が設けられる。アパーチャ絞り21は、ゼロ次回折ビームを遮断し、それによりセンサ23上に形成されるターゲットのイメージが−1及び+1の1次ビームのみから形成されるように機能する。センサ19及び23により捕捉されたイメージは、イメージプロセッサ・コントローラPUに出力される。イメージプロセッサ・コントローラPUの機能は、実施される個々の測定の種類に依存する。本明細書において、「イメージ」という用語は広い意味で用いられていることに留意されたい。格子線のイメージそのものは、−1次及び+1次のいずれか一方しか存在しない場合、形成されない。
[0043] 図3に示されるアパーチャプレート13及び視野絞り21の特定の形態は、単なる例である。本発明の別の実施形態においては、ターゲットのオンアクシス照明を使用し、かつオフアクシスアパーチャを有するアパーチャ絞りを使用して、実質的に1つの1次回折光のみをセンサに通す。さらに別の実施形態では、(図3には示されない)2次、3次、及びより高次のビームを、1次ビームの代わりに、又は1次ビームに加えて、測定に用いることができる。
[0044] 照明をこれらの異なる種類の測定に適合可能にするために、アパーチャプレート13は、ディスクの周りに形成された多数のアパーチャパターンを備えてよく、このディスクが回転することで所望のパターンが適所にもたらされる。なお、アパーチャプレート13N又は13Sは、(設定に応じてX又はYの)一方向に向けられた格子を測定するためにのみ使用可能であることに留意されたい。直交格子の測定のために、ターゲットの90°及び270°の回転を実施してもよい。異なるアパーチャプレートを、図3(c)及び(d)に示す。これらの使用、並びに装置の多数の他のバリエーション及び用途は、上述した先行の公開された出願で説明されている。
[0045] 図4に、公知の手法にしたがって基板上に形成された複合ターゲットを示す。複合ターゲットは、メトロロジ装置の照明ビームによって形成される測定スポット31内にすべてが入るように互いに近接して位置決めされた4つの格子32〜35を含む。こうして4つのターゲットは、すべて同時に照明され、かつ同時にセンサ19及び23上に結像される。オーバーレイ測定に特化した例では、格子32〜35は、それら自体が、基板W上に形成された半導体デバイスの異なる層においてパターン付与された格子を重ね合わせることで形成された複合格子である。複合格子の異なる部分が形成された層の間のオーバーレイの測定を容易にするために、格子32〜35は、異なるバイアスをかけられたオーバーレイオフセットを有してもよい。オーバーレイバイアスの意味は、以下で図7を参照して説明する。また、入射する放射をX及びY方向に回折するように、格子32〜35は、図示されるように向きが異なっていてもよい。一例では、格子32及び34は、それぞれ+d、−dのバイアスを有するX方向格子である。格子33及び35は、それぞれ+d、−dのオフセットを有するY方向格子である。これらの格子の別個のイメージは、センサ23により捕捉されるイメージにおいて特定することができる。
[0046] 図5に、図3の装置において図4のターゲットを使用し、図3(d)のアパーチャプレート13NW又は13SEを使用することで、センサ23上に形成され、かつセンサ23によって検出され得るイメージの一例を示す。瞳面イメージセンサ19は異なる個々の格子32〜35を分解することができないが、イメージセンサ23は分解することができる。暗い四角形はセンサ上のイメージフィールドを表し、この中で、基板上の照明されたスポット31は、対応する円形エリア41内に結像されている。この中で、四角形エリア42〜45は、小さいターゲット格子32〜35のイメージを表す。格子が製品エリア内に位置している場合、製品フィーチャもこのイメージフィールドの周辺部に視認し得る。イメージプロセッサ・コントローラPUは、パターン認識を用いてこれらのイメージを処理し、格子32〜35の別個のイメージ42〜45を特定する。このようにすると、センサフレーム内の特定の位置に極めて正確にイメージを位置合わせする必要がなく、測定装置全体のスループットが大きく向上する。
[0047] 一旦格子の別個のイメージが特定されると、例えば特定されたエリア内の選択されたピクセル強度値を平均又は合計することによって、それらの個々のイメージの強度を測定することができる。イメージの強度及び/又はその他の特性は、互いに比較することができる。これらの結果を組み合わせて、リソグラフィプロセスのさまざまなパラメータを測定することができる。オーバーレイ精度は、そのようなパラメータの1つの重要な例である。
[0048] 図6に、例えば国際出願WO2011/012624号に記載される方法を用いて、+1次及び1次の暗視野イメージにおける成分格子32〜35の強度を比較することで明らかとなるこれらの格子の非対称性から、これらの格子を含む2つの層の間のオーバーレイエラーを測定する方法を示す。ステップS1では、基板、例えば半導体ウェーハが、図2のリソグラフィックセルにより1回又は複数回処理され、オーバーレイターゲット32〜35を含む構造が作り出される。S2では、図3のメトロロジ装置を使用して、1次回折ビームのうちの一方(例えば−1)のみを用いて格子32〜35のイメージを取得する。その後、照明モードを変更する、又は結像モードを変更することにより、あるいはメトロロジ装置の視野内で基板Wを180°回転することにより、他方の1次回折ビーム(+1)を用いて格子の第2のイメージを取得することができる(ステップS3)。その結果、第2のイメージにおいて、+1回折放射が捕捉される。
[0049] 各イメージに1次回折放射のうちの半分のみを含めることにより、本明細書で述べる「イメージ」が従来の暗視野顕微鏡イメージではないことに留意されたい。個々の格子線は分解されない。各格子は、単に一定の強度レベルのエリアによって表されることとなる。ステップS4において、各成分格子のイメージ内で関心領域(ROI)が特定され、そこから強度レベルが測定される。
[0050] 各個別の格子に関してROIが特定され、その強度が測定された後、格子構造の非対称性を決定することができ、したがってオーバーレイエラーを決定することができる。これは、ステップS5において、イメージプロセッサ・コントローラPUが、各格子32〜35の+1次及び1次に関して取得される強度値を比較して、それらの強度の差を特定することでなされる。「差」という用語は、減算のみを指すことを意図していない。差は、比の形式で計算してもよい。ステップS6において、多くの格子に関する測定された非対称性を、それらの格子のオーバーレイバイアスに関する知識と共に用いて、ターゲットT近傍におけるリソグラフィプロセスの1つ又は複数の性能パラメータを計算する。重要な性能パラメータは、オーバーレイである。後ほど説明されるように、新規な方法は、リソグラフィプロセスの性能の他のパラメータの計算も可能にする。これらは、リソグラフィプロセスの改善のためにフィードバックすることができ、かつ/又は図6の測定及び計算プロセス自体の改善のために用いることができる。
[0051] 上述の先行出願においては、上述した基本的方法を用いたオーバーレイ測定の質を改善するための多様な技術が開示されている。これらの技術については、本明細書ではさらに詳細な説明は行わないこととする。これらの技術は、以下で説明される、本願において新たに開示される技術と組み合わせて使用してよい。
[0052] 図7に、さまざまなバイアスを有するオーバーレイ格子の概略断面図を示す。これらは、図3及び4で示されるような、基板W上のターゲットTとして用いることができる。X方向において周期性を有する格子を、単に例示の目的で示す。異なるバイアス及び異なる向きを有するこうした格子のさまざまな組み合わせは、別個に、又は複合ターゲットの一部として提供することができる。
[0053] 図7(a)以降に、L1及びL2と標示された2つの層に形成されたオーバーレイ格子600が確認できる。下層L1において、格子は、基板606上のライン602及びスペース604によって形成される。層L2において、第2の格子は、ライン608及びスペース610によって形成される(断面図は、ライン602、608がページ内へと延在するように描かれている)。格子パターンは、両方の層において、ピッチPで繰り返す。ライン602及び608は、単に例示の目的で挙げられており、点、ブロック、及びビアホールなど他の種類のフィーチャもすべて使用することができる。(a)で示される状況では、オーバーレイエラーもバイアスも存在しないため、各マーク608は、下層格子内のマーク602の真上に位置する。
[0054] (b)では、バイアス+dを有し、上部格子のマーク608が下部格子のマークに対して距離dだけ右にシフトする、同様のターゲットが確認できる。バイアス距離dは、実際には数ナノメートル、例えば10nm、20nmであってよく、一方ピッチPは、例えば300〜1000nmの範囲内、例えば500nm又は600nmである。(c)では、バイアス−dを有し、608のマークが左にシフトする別のマークが確認できる。(a)から(c)に示すバイアスのかかったこの種類のターゲットは当技術分野では周知であり、かつ上述の先行出願においても使用されている。
[0055] 図7(d)に、下部格子非対称性の現象を概略的に示す。(a)〜(c)の格子におけるフィーチャは完全に正方形の側面を有するものとして示されているが、現実のフィーチャは、側面に多少の傾き及び一定のラフネスを有し得る。しかしながら、それらは、少なくともプロファイルにおいては対称となるように意図される。(d)の下部格子内のマーク602及び/又はスペース604は、もはや対称的な形状を全く有さず、むしろ処理工程によって変形している。そのため、例えば、各スペースの下部表面は傾斜している。ラインとスペースの側壁角もまた非対称になっている。バイアスのかかった格子2つのみを使用して図6の方法によりオーバーレイを測定した場合、プロセス誘起非対称性をオーバーレイから区別することはできず、結果としてオーバーレイ測定は信頼性のないものとなる。
[0056] 上述のWO2013143814A1において、3つ以上の成分格子を使用して、図6の方法の修正版によってオーバーレイを測定することを提案した。図7(a)〜(c)に示す種類の3つ以上の格子を使用して、ターゲット格子内のフィーチャ非対称性、例えば実際のリソグラフィプロセスにおいて下部格子非対称性によって引き起こされるフィーチャ非対称性に関して、ある程度補正されているオーバーレイ測定値を取得する。しかし、信号にノイズがある場合、この補正を行うことは困難となる。さらに、計算の基礎として用いられる周期関係が現実のターゲットにおいて存在する高次高調波を正確にモデル化しない場合、オーバーレイ測定結果において更なる誤差が生じることとなる。
[0057] 図7(e)に、P/2(すなわち、ピッチの半分)のプログラムされたバイアスを有し、上部格子内の各ライン608が下部格子内のスペース604の真上に位置するマークを示す。(f)では、同様の格子であるが、P/2バイアスに対して右への小さいバイアス(+d)が加えられた格子が確認できる。(g)では、同様のマークであるが、バイアスP/2に対して左へのバイアスが加えられたマークを参照する。P/2の領域においてバイアスを有するオーバーレイ格子自体は、公知である。それらは「ラインオントレンチ(line on trench)」ターゲットと呼ばれることがあり、一方でゼロの領域においてバイアスを有する格子は「ラインオンライン(line on line)」ターゲットと呼ばれる。
[0058] 下記で説明される本発明の実施形態においては、(e)、(f)及び(g)で示すようなP/2バイアスのかかった1つ又は複数の格子をさらに使用して、公知技術よりも優れた耐ノイズ性により、プロセス誘起非対称性に対するオーバーレイ測定のロバスト性を向上する。本発明の特定の実施形態は、ターゲットにおける測定された非対称性とオーバーレイエラーとの間の周期関係における高次高調波に対して、更にロバストである。図8及び9を使用して先行技術を説明した後、図10以降で、本明細書で開示する技術を示す。
[0059] 図8において、曲線702は、オフセットがゼロであり、オーバーレイ格子を形成する個々の格子内にフィーチャ非対称性を有さない「理想的」なターゲットに関する、オーバーレイエラーOVと測定された非対称性Aとの間の関係を示す。これらのグラフは、本発明の原理を図示することのみを目的としており、各グラフにおいて、測定された非対称性A及びオーバーレイエラーOVの単位は任意のものでよい。実際の大きさの例は以下でさらに説明される。
[0060] 図7の「理想的」な状態において、曲線702は、測定された非対称性Aがオーバーレイと正弦関係を有することを示している。正弦変化の周期Pは、格子の周期(ピッチ)に対応し、当然ながら適切な縮尺に変更されている。この例では正弦波形状は純粋であるが、現実の環境においては高調波を含む可能性がある。単純化するために、この例においては、(a)ターゲットからの1次回折放射のみがイメージセンサ23(又は任意の実施形態におけるその等価物)に到達し、かつ(b)試験的ターゲット設計は、これらの1次数において、強度と、上部格子と下部格子との間のオーバーレイとの間に純粋なサイン関係が存在するようなものであると仮定する。これが実際に真であるかどうかには、光学システム設計、照明放射の波長及び格子のピッチP、並びにターゲットの設計及びスタックが関係する。2次、3次、又はより高い次数もセンサ23によって測定される強度に寄与する実施形態において、説明される新規な技術は、正確なオーバーレイ測定値の取得に役立つであろう。
[0061] 上述の通り、1回の測定に依拠するのではなく、バイアスのかかった格子を使用してオーバーレイを測定することができる。このバイアスは、それが作られたパターニングデバイス(例えば、レチクル)において規定された、測定信号に対応するオーバーレイのオン・ウェーハ(on-wafer)較正として機能する既知の値を有する。図中、計算は図によって示されている。ステップS1〜S5において、(例えば、図7(b)及び(c)に示されるような)それぞれバイアス+d及びバイアス−dを有する成分格子に関して、非対称性測定値A(+d)及びA(−d)が取得される。これらの測定値を正弦曲線に当てはめると、図示されるように、点704及び706が得られる。バイアスが既知であるため、真のオーバーレイエラーOVを計算することができる。正弦曲線のピッチPは、ターゲットの設計から既知である。曲線702の縦軸目盛は、当初は未知であるが、1次高調波比例定数K1と呼ぶことができる未知の要素である。
[0062] 等式の観点からは、オーバーレイと非対称性との間の関係を、
と仮定する。ここで、OVは、格子ピッチPが角度2πラジアンに対応するようなスケールで表現される。異なる既知のバイアスを有する格子の2つの測定値を用いることで、未知数であるK1及びオーバーレイOVを計算するための2つの等式を解くことができる。
[0063] 図9(WO2013143814A1より取得)に、フィーチャ非対称性、例えば図7(d)において示す下部格子非対称性を導入することの、第1の影響を示す。「理想的な」正弦曲線702は、もはや当てはまらない。しかし、少なくとも概算では、下部格子非対称性又はその他のフィーチャ非対称性は、非対称性値Aに対してオフセットを加える影響を有し、これはすべてのオーバーレイ値にわたり比較的一定である。結果として生じる曲線は図中で712として示されており、標示ABGAはフィーチャ非対称性に起因するオフセットを示している。等式の観点からは、ステップS6における計算に用いられる関係は、
となる。
[0064] 3つ以上の異なるバイアス値を有するバイアススキームで複数の格子を設けることで、先行出願は、測定値をオフセット正弦曲線712に当てはめ、定数を消去することで、正確なオーバーレイ測定値を取得しようとする。
[0065] 多種多様なバイアススキームに関して、修正された測定及び計算の詳細な例が先行出願において提供されている。原理を示すための単純な例として、図9は、曲線712に当てはめられた3つの測定点714、716、及び718を示す。点714及び716は、図8における点704及び706と同様に、バイアス+d及びdを有する格子から測定される。(この例においては)バイアスゼロの格子からの第3の非対称性測定値は、718にプロットされる。3点に曲線を当てはめることで、フィーチャ非対称性に起因する一定の非対称性値ABGAを、オーバーレイエラーに起因する正弦寄与AOVから分離することが可能となり、そのため、オーバーレイエラーをより正確に計算することができる。
[0066] 既に述べたように、修正されたステップS6のオーバーレイ計算は、ある仮定に依拠する。第1に、フィーチャ非対称性(例えば、BGA)に起因する1次強度非対称性は、関心のあるオーバーレイ範囲に関してオーバーレイと無関係であり、結果として、一定のオフセットK0で説明することができると仮定する。別の仮定は、強度非対称性は、オーバーレイの正弦関数として振る舞い、周期Pは格子のピッチに対応するというものである。小さいピッチ−波長比は、格子からの少数の回析次数の伝搬のみを可能とするため、高調波数が少なくなるように設計することができる。しかし、実際は、強度非対称性に対するオーバーレイの寄与は、正弦的のみではないこともあり得、かつOV=0に対して対称ではないこともあり得る。
[0067] 3つだけでなく、例えば4つの格子も含むことができる新規な複合ターゲット設計について説明する。各例は、提案される複合ターゲットのレイアウトを示す。各複合ターゲットレイアウトは、複数のコンポーネント格子を備え、各コンポーネント格子は、イントロダクション及び特許請求の範囲において言及されるターゲット構造の1つを形成する。公知のターゲットのバイアススキームと比較すると、新規のターゲットは、P/2の領域における格子バイアス、及びゼロの領域における格子バイアスを有することにより区別される。図7を参照すると、新規のターゲットは、少なくとも3つの格子を備え、そのうちの少なくとも1つはラインオンライン状(a)〜(c)から選択され、かつ少なくとも1つはラインオントレンチ状(e)〜(g)から選択される。
[0068] 図10に、耐ノイズ性が向上したオーバーレイ測定を実施するために使用することができる第1のターゲット例800を示す。K0、K1、及びオーバーレイという3つの未知数があるため、オーバーレイの値を求めるために少なくとも3つの格子が再度必要とされる。図10のターゲットは、Xにおいて周期的である3つの格子、及びYにおいて周期的である3つの格子を有するため、両方の方向におけるオーバーレイを測定することができる。この例において、バイアスは、先行出願においてそうであったようにすべてがゼロオーバーレイを中心とするわけではない。むしろ、ゼロの周囲を中心とする2つのバイアス(+d及びd)と、P/2にある第3のバイアスとが存在する。図7の観点からは、複合格子は、(b)、(c)及び(e)の形状を有する。ターゲットは、(f)又は(g)の形状である第3の格子を伴って形成することもできる。
[0069] 図11に、図10の新たなバイアススキームと、オーバーレイと非対称性との間の周期関係との間の関係を図示する。前と同様、フィーチャ非対称性(BGA)は、(未知の)垂直偏移項K0を導入し、曲線712をもたらす。等式
を再度参照すると、格子から得られる非対称性測定値A(+d)、A(−d)及びA(P/2)を使用して、K0、K1、及びOVの値を求めることができる。測定値は、図11において、それぞれ814、816、及び818にプロットされている。これらの点は、曲線712を、図9における点714〜718よりもさらにロバストに規定する。結果として、この場合におけるオーバーレイ測定の正確性は、図9のバイアススキームを用いる場合よりロバストである。しかし、このモデルは、依然として周期関係が対称的であるという仮定に基づいており、P/2における傾きの絶対値は0周囲の勾配の絶対値と異なる。結果として、ある一定の高調波成分に起因して真の関係が対称ではない場合、オーバーレイ結果は不正確なものとなる。
[0070] 図12に、耐ノイズ性が向上したオーバーレイ測定を実施するために使用することができ、また現実の周期関係において高調波が存在する場合にも使用することができる、第2のターゲット例900を示す。図12のターゲットは、Xにおいて周期的である4つの格子、及びYにおいて周期的である4つの格子を有するため、両方の方向でのオーバーレイを測定することができる。この例において、バイアスは、先行出願においてそうであったようにすべてがゼロオーバーレイを中心とするわけではない。むしろ、ハーフ・ピッチP/2の周囲を中心とする、ゼロ及び2つのバイアス(P/2+d及びP/2−d)が存在する。図7の観点からは、複合格子は2対になっており、(b)、(c)及び(f)、(g)の形状を有する。
[0071] 理解されるように、4つのバイアスにより、4つの未知数について等式を解く潜在性が与えられる。4つのバイアスの特定の選択は、ノイズのみならず高調波に対してもロバストであるオーバーレイ測定値を取得するために、ステップS6の特定の修正版におけるものとすることができる。
[0072] 図13に、図12の新たなバイアススキームと、オーバーレイと非対称性との間の周期関係との間の関係を図示する。高調波の存在を概略的に示すために、オーバーレイOVと観察された非対称性Aとの間の周期関係は、純粋な正弦ではない曲線902によって表される。さらに、曲線902は、もはやOV=0に対して対称ではない。前と同様、フィーチャ非対称性(BGA)により(未知の)垂直偏移項K0が導入され、曲線912がもたらされる。非対称性測定値A(+d)、A(−d)、A(P/2+d)及びA(P/2+d)は、格子から取得される。測定値は、図13において、それぞれ914、916、920、及び922にプロットされている。
[0073] 先行出願におけるように単一の正弦等式を用いて3つの未知数の値を求めるために4つの点を用いるのではなく、この例の方法におけるステップS6は、4つの未知数の値を求める。これはさまざまに構成することができる。本例においては、上記等式内のK1の値が全体的に同一であるとはもはや仮定されず、局所的にOV=0の領域内で、及び局所的にOV=P/2の領域内で異なることができるように、計算が行われる。これは、2つの等式
により表すことができ、K1はもはや単一の値を取るように制約されず、オーバーレイがゼロ付近である領域内では値K1’を有し、オーバーレイがハーフ・ピッチP/2付近である領域内ではK1”を有するという意味を持つ。事実上、先行のモデルは、OV=0の領域内の曲線702の傾きは、OV=P/2の領域内とは符号が逆であり、大きさは等しいものでなければならないと仮定していたのに対し、新たなモデルは、これらの領域における傾きの大きさは、等しくても等しくなくてもよいものとする。
[0074] この新たなモデルを、各領域内において2つ以上のバイアス値を有する格子を含むターゲットと組み合わせることで、等式を解いて、非対称性測定値A(+d)、A(−d)を用いてK1’の値を求めることができ、かつA(P/2+d)及びA(P/2+d)の組を用いてK1” 値を求めることができる。このモデルにおけるさらなる自由度のために、この場合のオーバーレイ測定の正確性は、ノイズに関してだけではなく、真の関係が高調波成分を含む場合にも、図9のバイアススキームによるものよりもロバストである。構造が有意の高調波を含まない場合は、図10/11の方法の正確性は、図12/13の方法の正確性と等しくなる。
[0075] 追加の格子バイアスの提供により、ターゲットのサイズ及び測定の回数は増大する。サイズに関しては、各複合ターゲット800、900は、周期性の方向に対して横切る基本寸法αを有する複合格子を有し、そのため、図示されるように、複合ターゲットは全体として、3a、2a等の全体寸法を有する。図示されるように、X方向格子とY方向格子の両方を組み合わせる複合格子ターゲットを提供することができ、あるいは、X方向及びY方向について、別個のターゲットを提供することができる。単に示すための例として、ターゲットは、a=4μm又は5μmの寸法を有する。そのようなターゲットはすべて、上述の先行特許出願から公知であって、図4及び5に示す、暗視野イメージベースの技術を用いても、オーバーレイに関して読み出すことができる。これにより、スタック再構築を伴わない小さいターゲットでのBGA補正オーバーレイが可能となる。修正されたステップS6の計算を、当業者のために詳細に示す必要はない。計算時に、OV=0又はOV=P/2に対して対称であるバイアス値を使用することは便利であるが、示されているバイアススキームのみが唯一可能なものというわけではない。バイアスdの大きさは、状況に適するように選択される。実施形態例においては、各領域内の異なるオーバーレイバイアス値は、上記周期構造のピッチの1%、2%、又は5%より大きい範囲(すなわち、2d/P>0.01、0.02、又は0.05)にわたる。
[0076] 事前に既知である限り、任意のバイアス値を用いて計算を行うことができる。バイアス値とサブバイアス値との間の区別は、表記法の便宜上の事項である。4つの格子に関するバイアスは、それらが+d、−d、P/2+d及びP/2−dの値を有しようと、又は何か他の値を有しようと、d1、d2、d3、d4と書き換えることができる。所望により、各領域において、2回より多くの測定を行うことができる。先行の国際出願WO2013143814A1は、3つの変数の値を求めるために4つの格子を適用する方法を示す。
[0077] 図示するターゲット例において、各バイアス値を有するX格子及びY格子は隣り合っているが、これは必須ではない。X格子及びY格子は、異なるX格子が互いに隣り合うようにではなく対角線上に離間し、かつY格子が互いに隣り合うようにではなく対角線上に離間するように、交互のパターンで互いに点在する。この配置は、異なるバイアスをかけられた格子の回折信号間のクロストークの低減に役立ち得る。このように、全体の配置は、良好な性能なしに、コンパクトなターゲット設計を可能にする。図10及び12の成分格子はそれぞれ正方形であるが、X成分格子及びY成分格子を有する複合格子ターゲットは、細長の格子で作製することもできる。例は、例えば、公開米国特許出願US20120044470号に記載されている。
[結果及び適用]
[0078] 本明細書で開示する新規のターゲット及び計算を用いて、現在の2‐バイアスターゲット設計の高調波ロバスト性を保ちながら、オーバーレイメトロロジターゲットにおける、例えばウェーハ処理からの望まれない非対称性に対して有意によりロバストである、オーバーレイ測定を行うことができる。この方法は、既存のメトロロジ装置を使用し、かついかなるセンサハードウェアの変更もない製造現場で用いることができる。ターゲットの創出も単純である。図4に示す現在のターゲットと比較すると、例えばターゲット900は、ターゲット設計に変更を加えることなく作製することができ、現在の設計を有するが、ハーフ・ピッチ(half-a-pitch)の追加のバイアスを有する第2のターゲットのみが追加される。選択により、この追加のターゲットは、例えば、処理感応性層に対してのみ追加することができる。
[0079] 図14に、図12及び13に示す種類の(a)2‐バイアスターゲット及び(b)4‐バイアスターゲットに関するオーバーレイ測定のシミュレーション性能を比較する2つのグラフを示す。各グラフにおいて、水平軸は、ナノメートル単位での照明放射の波長である。現実の機器は、その中から選択される、いくつかの波長を提供し得る。垂直軸は、オーバーレイOVを示す。線OV(act)は、シミュレーションされたターゲットの実際のオーバーレイを示す。曲線930、932、及びその他の曲線は、異なる偏光の放射、及び異なる種類のマークを用いてステップS6において計算された、オーバーレイを示す。シミュレーションは、プロセス誘起フィーチャ非対称性の例として、下部格子においてフロアチルト(floor tilt)を含む。見て分かるように、ほとんどの波長で、計算された値は実際のオーバーレイOV(act)から大きく隔たっている。さらに、計算されたオーバーレイは、波長及び偏光に極めて大きく依存しており、したがって、測定レシピの選択は重要である。
[0080] これに対して、(b)のグラフは、広い範囲の波長及び偏光にわたり、計算されたオーバーレイ値940、942が実際のオーバーレイ値OV(act)に極めて近いことを示す。したがって、新たな方法は、適切なレシピを選択した場合により正確であるだけでなく、レシピの選択はより容易であり、かつより重要性が低い。
[0081] フィーチャ非対称性は一様でないため、図15に、多様なバイアススキームの性能を示す。この場合における水平軸は、任意の単位でフロアチルトFTを表す。実際のオーバーレイは、再度OV(act)と示す。曲線T2は、現在の2‐バイアススキームによって計算されたオーバーレイを示し、一方で曲線T30は、先行の国際出願WO2013143814A1のバイアススキームによって計算されたオーバーレイを示す。これらの公知のスキームの双方において、計算されたオーバーレイがフィーチャ非対称性からいかに大きく影響を受けるかが分かる。曲線T30は、非対称性における高調波によって特に影響を受けている。曲線T3πは、図10及び11の3‐バイアススキームを用いて計算されたオーバーレイを示し、曲線T4は、図12及び13の4‐バイアススキームを用いて計算されたオーバーレイを示す。フィーチャひずみが小さい場合には両方の測定値は正確である一方で、フィーチャ非対称性(フロアチルト)が増大するにつれて4‐バイアス方法はよりよく正確性を維持することが分かる。
[0082] 図16に、計算された値K0を、メトロロジ装置内のオーバーレイを測定するための最良のレシピ(波長と偏光の組み合わせ)を選択するための指標としてどのように使用することができるかを示す。再度、水平軸はフロアチルトを表し、一方で垂直軸は、ステップS6において計算されたK0の値を示す。曲線950は、さまざまなレシピに関する計算結果を示す。曲線952で表されるレシピは、最小のK0値を有し、そのため処理に対する感度が最も低い。このレシピは、最も正確なオーバーレイ測定を行うために選択される。なお、他のターゲット設計と比較して、オーバーレイ結果は、望まれないフィーチャ非対称性の存在下においてでさえ、現在の2‐バイアスターゲットと比較して、波長から波長へのより小さい分布を示すことにも留意されたい。このため、どのレシピが最もオーバーレイに対する感度が高いかに基づき、レシピ選択を行う余地がある。
[0083] 図17に、K0を、性能を監視するために用い、かつメトロロジ及び/又は生産プロセスの制御のための基礎として用いる製造プロセスを示す流れ図を示す。ステップS11において、ウェーハを処理し、上述の新規のバイアススキームを有するオーバーレイ格子を備える製品フィーチャ及びメトロロジターゲットを生産する。ステップS12では、図6の方法を用いてオーバーレイ及び/又はフィーチャ非対称性(K0)値が測定及び計算される。ステップS13では、測定されたK0を(利用可能であり得るその他の情報と共に)用いて、メトロロジレシピを更新する。更新されたメトロロジレシピは、オーバーレイの再測定のために、及び/又は後に処理されるウェーハのオーバーレイの測定のために用いられる。このようにして、計算されるオーバーレイ測定値は、正確性において向上する。更新プロセスは、所望により自動化することができる。
[0084] 述べたように、K0は、オーバーレイ測定に関してのみでなく、一般に、処理の影響の存在及び重要性に関する指標として用いることもできる。したがって、K0を、生産設備内で所謂「フラギングファンクション(flagging function)」として用いて、特定のウェーハに関していつ処理の影響が顕著になるかを示すことができる。基板全体にわたるK0のマップも生成することができ、またK0/K1の相対値を計算することができる。ステップS14において、K0の計算によって得られたプロセス非対称性の知識を用いて、再加工及び/又はさらなるウェーハの処理のために、デバイス製造プロセスにおけるリソグラフィパターニング工程及び/又はプロセス工程を制御するレシピを更新する。この更新もまた、所望により自動化することができる。
[0085] K1(及び/又はK1’及びK1”)の算出値も、ウェーハ全体にわたりスタック内の対称的な変化に関する情報を取得するためにマップすることができる。K1’とK1”との間の(絶対値又は比のいずれかによる)差は、スタック内で高調波がどれほど大きいかについて何かを示す場合があり、それ自体がデバイス生産における性能を監視するパラメータとして使用され得る。
[0086] 4‐バイアススキームは、公知のスキームよりも多くの測定及び多くのターゲットを必要とすることが理解されよう。複合ターゲット全体が放射スポット内に収まらない場合、追加の測定はスループットに影響を及ぼし得る。これが懸念される場合、より大きな均一照明スポット及び適切なターゲットレイアウトを用いるメトロロジ装置であって、ターゲット900内で、方向毎に、4つの格子すべての単一ショット読み出しを可能にするメトロロジ装置を採用することができる。スポットが図3及び4におけるものよりも大きくない場合、ターゲットは二等分されて測定されることとなり、測定時間は2倍にまで増大することとなる。二等分されたターゲットは、互いに同一のレシピ条件(波長、偏光、露光時間等)を必要とするが、そのため波長切替/アパーチャ切替に関して時間的な犠牲はない。時間が2倍かかる最悪のケースは、測定時間が完全にイメージ取得制限的(image-acquisition limited)である場合にのみ生じる。他の工程がレート制限工程(rate-limiting steps)である場合、スループットに対する影響はより小さくなる。ターゲット900は、図4の2‐バイアスターゲットと比較して、より大きな「不動産」を占める。しかし、多くの理由から、結果はウェーハ処理に対してよりロバストである。
[0087] 図18に、いくつかの代替的なターゲットの設計を示すが、すべて図12を参照して説明される4‐バイアススキームに基づく。(a)では、上述の構成であって、2つの4‐格子ターゲット900a、900bが、従来の態様で隣り合わせに形成される構成が確認できる。各ターゲット900a、900bは、図3のスキャトロメータによって1ショットで読み取ることができる。単位寸法aは、例えば5μmであってよい。(b)及び(c)では、8つの細長のターゲットが4対で形成され、各対が正方形のエリアを占める、代替的な設計が確認できる。バイアス値及び周期性の方向は、前と同様に図面上に示される。これらのターゲットのサイズは、各細長のターゲットが、例えば4×8μm(b=8μm)のサイズを有し得るように、わずかに大きい単位寸法bに基づいてよい。スキャトロメータが、正方形全体(2b×2b=16×16μm)の暗視野イメージを捕捉することができる限り、X方向及びY方向の双方におけるバイアスは、単一ショットで測定することができる。格子の上層内にバイアスがかかった位置を有する1対の細長の格子がある場合、下層を作製するためには、寸法b×bを有する4つの正方形格子を形成するだけでよいことに留意する。
[0088] さらに、本明細書で開示する、オーバーレイ方向毎に3つ、4つ、又はそれ以上の複合格子を用いる技術は、大型のスキャトロメータターゲットに適用することができ、このスキャトロメータターゲットはスタンダードターゲットとも呼ばれ、バイアスがかかった1つ又は2つの追加の格子をオーバーレイ方向毎に組み込むように修正される。例えば、図3の装置を用いて、これらのより大きいターゲットにおけるオーバーレイを、暗視野結像分岐及びセンサ23において行われる測定の代わりに、又はそのような測定に加えて、瞳イメージセンサ19を用いて、角度分解スキャトロメトリによって測定することができる。
[実施]
[0089] これまで説明したターゲット構造は、測定目的で特に設計及び形成されたメトロロジターゲットであるが、他の実施形態において、基板上に形成されるデバイスの機能部分であるターゲットについて特性を測定してもよい。多くのデバイスは、規則的な、格子状の構造を有する。本明細書において使用される「ターゲット格子」及び「ターゲット構造」という用語は、構造が、実施される測定用に特に設けられていることを必要とするものではない。さらに、メトロロジターゲットのピッチPは、スキャトロメータの光学システムの限界解像度に近いが、リソグラフィプロセスによってターゲット部分C内に作られる典型的な製品フィーチャの寸法よりもかなり大きくてよい。実際には、オーバーレイ格子のライン及び/又はスペースは、製品フィーチャと同様の寸法の、より小さい構造を含むように作られてよい。
[0090] 基板及びパターニングデバイス上に実現されるターゲットの物理的格子構造と関連して、一実施形態は、基板上にターゲットを生成し、基板上のターゲットを測定し、かつ/又は測定値を分析してリソグラフィプロセスに関する情報を取得する方法を記述する機械可読命令の1つ又は複数のシーケンスを含むコンピュータプログラムを含んでよい。このコンピュータプログラムは、例えば、図3の装置内のユニットPU内で、及び/又は図2の制御ユニットLACU内で実行してよい。また、そのようなコンピュータプログラムが中に記憶されたデータ記録媒体(例えば、半導体メモリ、磁気又は光ディスク)を設けてもよい。例えば図3に示す種類の既存のメトロロジ装置が既に製造中及び/又は使用中である場合、プロセッサに修正されたステップS6を実施させて、フィーチャ非対称性に対する感度が低減したオーバーレイエラー又はその他のパラメータを計算するための、更新されたコンピュータプログラム製品を設けることで、本発明を実施することができる。
[0091] プログラムは、任意で、適切な複数のターゲット構造の非対称性を測定するためにステップS2〜S5を実行するように、光学システム、基板サポート等を制御するように配置されてもよい。プログラムは、さらなる基板の測定のためにメトロロジレシピを更新することができる(S13)。プログラムは、さらなる基板のパターニング及び処理のために、リソグラフィ装置を(直接的又は間接的に)制御するように配置されてもよい(S14)。
[0092] 光リソグラフィの関連での本発明の実施形態の使用について上述のとおり具体的な言及がなされたが、当然のことながら、本発明は、他の用途、例えば、インプリントリソグラフィに使われてもよく、さらに状況が許すのであれば、光リソグラフィに限定されることはない。インプリントリソグラフィにおいては、パターニングデバイス内のトポグラフィによって、基板上に創出されるパターンが定義される。パターニングデバイスのトポグラフィは、基板に供給されたレジスト層の中にプレス加工され、基板上では、電磁放射、熱、圧力、又はそれらの組合せによってレジストは硬化される。パターニングデバイスは、レジストが硬化した後、レジスト内にパターンを残してレジストの外へ移動される。
[0093] 本明細書で使用される「放射」及び「ビーム」という用語は、紫外線(UV)(例えば、365nm、355nm、248nm、193nm、157nm、又は126nmの波長、又はおよそこれらの値の波長を有する)、及び極端紫外線(EUV)(例えば、5〜20nmの範囲の波長を有する)、並びにイオンビームや電子ビームなどの微粒子ビームを含むあらゆる種類の電磁放射を包含している。
[0094] 「レンズ」という用語は、文脈によっては、屈折、反射、磁気、電磁気、及び静電型光コンポーネントを含むさまざまな種類の光コンポーネントのいずれか1つ又はこれらの組合せを指すことができる。
[0095] 特定の実施形態の以上の説明は、本発明の一般的性質を完全に明らかにしているため、当該分野の技術の範囲内の知識を適用することにより、他の者が、過度の実験を行うことなく、かつ本発明の一般的概念を逸脱することなく、かかる特定の実施形態を、さまざまな用途のために容易に変形及び/又は適合させることができる。したがって、そのような適合及び変形は、本明細書に提示された教示及び手引きに基づき、開示された実施形態の等価物の意味及び範囲内であることが意図される。本明細書中の表現又は用語は、限定ではなく例示による説明を目的とするものであり、本明細書の用語又は表現は、当業者により教示及び手引きに照らして解釈されるべきであることを理解すべきである。
[0096] 本発明の広さ及び範囲は、上述の例示的な実施形態のいずれによっても限定されるべきではなく、以下の特許請求の範囲及びその等価物に従ってのみ画定されるべきである。

Claims (16)

  1. リソグラフィプロセスのパラメータを測定する方法であって、
    (a)基板上に複数のターゲット構造を設けるステップであって、各ターゲット構造は、重ね合わせられた周期構造を備えるとともに既知のオーバーレイバイアスを有するステップと、
    (b)前記ターゲットを照明し、各ターゲット構造により散乱させられた放射を検出して、そのターゲット構造に関して、(i)前記既知のオーバーレイバイアスと、(ii)前記ターゲット構造の形成に使用されるリソグラフィプロセスのオーバーレイ精度と、(iii)前記周期構造の1つ又は複数の内部のフィーチャ非対称と、に起因する寄与を含む全体的な非対称性を表す測定値を取得するステップと、
    (c)3つ以上のターゲット構造に関する前記全体的な非対称性測定値を用いて、オーバーレイエラーの測定値を計算するステップであって、前記計算は、既知のオーバーレイバイアス値、及びオーバーレイエラーと非対称性との間の仮定の非線形周期関係を用いて行われ、それによりフィーチャ非対称性に起因する寄与を排除するステップと、を含み、
    前記3つ以上のターゲット構造に関する前記既知のオーバーレイバイアス値は、前記周期関係の第1の領域内に入る少なくとも2つの値と、前記周期関係の第2の領域内に入る少なくとも1つの値と、を含み、前記第1及び第2の領域における前記周期関係は、逆符号の勾配を有する、方法。
  2. 前記周期関係の前記第1の領域がゼロバイアスを中心とする半周期であり、前記第2の領域がP/2を中心とする半周期であり、Pが前記周期関係のピッチである、請求項1に記載の方法。
  3. 4つ以上の異なるオーバーレイバイアス値が用いられ、このオーバーレイバイアス値が前記周期関係の前記第1及び第2の領域のそれぞれの内部に少なくとも2つのバイアス値を含む、請求項1又は2に記載の方法。
  4. 少なくとも4つの異なるオーバーレイバイアス値が用いられ、このオーバーレイバイアス値が、ゼロバイアスを中心とする半周期内に入る少なくとも2つのバイアス値と、P/2を中心とする半周期内に入る少なくとも2つのバイアス値と、を含み、Pが前記周期関係のピッチである、請求項1に記載の方法。
  5. 前記ステップ(c)において、前記勾配が前記周期関係の前記第1及び第2の領域内で異なる大きさを有することを可能にするように前記計算が行われる、請求項3又は4に記載の方法。
  6. ステップ(c)において取得された前記フィーチャ非対称性の測定値を用いて、前記方法のその後の実施においてステップ(b)の性能を制御するステップ(d)をさらに含む、請求項1〜5のいずれか一項に記載の方法。
  7. ステップ(c)において取得された前記フィーチャ非対称性の測定値を用いて、別の基板に適用されるリソグラフィプロセスを制御するステップ(e)をさらに含む、請求項1〜6のいずれか一項に記載の方法。
  8. ステップ(c)において取得された1つ又は複数の勾配値を用いて、前記方法のその後の実施においてステップ(b)の性能を制御するステップ(d)をさらに含む、請求項1〜7のいずれか一項に記載の方法。
  9. ステップ(c)において取得された1つ又は複数の勾配値を用いて、別の基板に適用されるリソグラフィプロセスを制御するステップ(e)をさらに含む、請求項1〜8のいずれか一項に記載の方法。
  10. リソグラフィプロセスのパラメータを測定する検査装置であって、
    複数のターゲット構造をその上に有する基板用のサポートであって、各ターゲット構造は、重ね合わせられた周期構造を備えるとともに既知のオーバーレイバイアスを有する、サポートと、
    前記ターゲットを照明し、各ターゲット構造により散乱させられた放射を検出し、そのターゲット構造に関して、(i)前記既知のオーバーレイバイアスと、(ii)前記リソグラフィプロセスのオーバーレイ精度と、(iii)前記周期構造の1つ又は複数の内部のフィーチャ非対称と、に起因する寄与を含む全体的な非対称性を表す測定値を取得する光学システムと、
    3つ以上の異なるオーバーレイバイアス値を有する3つ以上のターゲット構造に関する前記全体的な非対称性測定値を用いて、オーバーレイ精度の測定値を計算するプロセッサであって、前記計算は、前記既知のオーバーレイバイアス値、及びオーバーレイとターゲット非対称性との間の仮定の非線形周期関係を用いて行われ、それによりフィーチャ非対称性に起因する前記寄与を排除する、プロセッサと、を備え、
    前記3つ以上のターゲット構造に関する前記既知のオーバーレイバイアス値は、前記周期関係の第1の領域内に入る少なくとも2つの値と、前記周期関係の第2の領域内に入る少なくとも1つの値と、を含み、前記第1及び第2の領域内の前記周期関係は、逆符号の勾配を有する、装置。
  11. 少なくとも4つの異なるオーバーレイバイアス値が用いられ、このオーバーレイバイアス値が、ゼロバイアスを中心とする半周期内に入る少なくとも2つのバイアス値と、P/2を中心とする半周期内に入る少なくとも2つのバイアス値と、を含み、Pは前記周期構造の周期である、請求項10に記載の装置。
  12. 前記光学システムが、イメージセンサを含み、かつ前記異なるターゲット構造から散乱された放射を、前記イメージセンサの異なる部分上で同時に捕捉するように動作可能である、請求項10又は11に記載の装置
  13. プロセッサに、請求項1〜9のいずれか一項に記載の方法の前記処理ステップ(c)を実施させるための機械可読命令を備える、コンピュータプログラム製品。
  14. プロセッサに、請求項6又は8に記載の方法の前記処理ステップ(c)を実施させるための機械可読命令と、
    プロセッサに、請求項6又は8に記載の方法の前記ステップ(d)を実施させるための機械可読命令と、を備える、コンピュータプログラム製品。
  15. リソグラフィ装置を備えるリソグラフィシステムであって、
    前記リソグラフィ装置は、
    パターンを照明する照明光学システムと、
    基板上に前記パターンのイメージを投影する投影光学システムと、
    請求項10〜12のいずれか一項に記載の検査装置と、を備え、
    前記リソグラフィ装置は、さらなる基板に前記パターンを付与する際に前記検査装置によって計算された1つ又は複数のパラメータを用いる、リソグラフィシステム。
  16. リソグラフィプロセスを用いて一連の基板にデバイスパターンを付与するデバイス製造方法であって、
    請求項1〜9のいずれか一項に記載の方法を用いて、前記基板の少なくとも1つ上の前記デバイスパターンの一部として形成されるか、又はそのパターンに加えて形成される少なくとも1つの周期構造を検査することと、
    前記検査方法の結果に従って後の基板に関してリソグラフィプロセスを制御することと、を含む、方法。
JP2016533540A 2013-11-26 2014-11-04 リソグラフィメトロロジのための方法、装置及び基板 Active JP6510521B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13194522 2013-11-26
EP13194522.2 2013-11-26
PCT/EP2014/073701 WO2015078669A1 (en) 2013-11-26 2014-11-04 Method, apparatus and substrates for lithographic metrology

Publications (2)

Publication Number Publication Date
JP2016539370A JP2016539370A (ja) 2016-12-15
JP6510521B2 true JP6510521B2 (ja) 2019-05-08

Family

ID=49639796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016533540A Active JP6510521B2 (ja) 2013-11-26 2014-11-04 リソグラフィメトロロジのための方法、装置及び基板

Country Status (8)

Country Link
US (1) US10042268B2 (ja)
JP (1) JP6510521B2 (ja)
KR (1) KR101890783B1 (ja)
CN (1) CN105900015B (ja)
IL (1) IL245795B (ja)
NL (1) NL2013737A (ja)
TW (1) TWI556065B (ja)
WO (1) WO2015078669A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062972A1 (en) 2012-10-18 2014-04-24 Kla-Tencor Corporation Symmetric target design in scatterometry overlay metrology
EP3224676A1 (en) 2014-11-26 2017-10-04 ASML Netherlands B.V. Metrology method, computer product and system
CN107430350B (zh) 2015-02-04 2019-10-18 Asml荷兰有限公司 计量方法和设备、计算机程序和光刻***
JP6524256B2 (ja) 2015-04-21 2019-06-05 エーエスエムエル ネザーランズ ビー.ブイ. メトロロジ方法及び装置、コンピュータプログラム、並びにリソグラフィシステム
US10324379B2 (en) * 2015-06-23 2019-06-18 Asml Netherlands B.V. Lithographic apparatus and method
WO2017029110A1 (en) 2015-08-20 2017-02-23 Asml Netherlands B.V. Metrology method and apparatus, substrates for use in such methods, lithographic system and device manufacturing method
NL2017300A (en) 2015-08-27 2017-03-01 Asml Netherlands Bv Method and apparatus for measuring a parameter of a lithographic process, substrate and patterning devices for use in the method
CN108292108B (zh) * 2015-11-27 2020-06-26 Asml荷兰有限公司 计量目标、方法和设备、计算机程序和光刻***
US11016397B2 (en) 2015-12-17 2021-05-25 Asml Netherlands B.V. Source separation from metrology data
JP6839720B2 (ja) * 2016-04-22 2021-03-10 エーエスエムエル ネザーランズ ビー.ブイ. スタック差の決定及びスタック差を用いた補正
WO2017186491A1 (en) * 2016-04-28 2017-11-02 Asml Netherlands B.V. Hhg source, inspection apparatus and method for performing a measurement
CN109313402B (zh) * 2016-06-03 2020-08-28 Asml控股股份有限公司 对准***晶片堆叠光束分析器
IL263765B2 (en) * 2016-07-15 2023-04-01 Asml Netherlands Bv Method and device for designing a target field for metrology
CN109564391A (zh) * 2016-07-21 2019-04-02 Asml荷兰有限公司 测量目标的方法、衬底、量测设备以及光刻设备
WO2018089190A1 (en) * 2016-11-09 2018-05-17 Kla-Tencor Corporation Target location in semiconductor manufacturing
JP6880184B2 (ja) * 2016-11-10 2021-06-02 エーエスエムエル ネザーランズ ビー.ブイ. スタック差を使用した設計及び補正
EP3333633A1 (en) * 2016-12-09 2018-06-13 ASML Netherlands B.V. Methods and apparatus for predicting performance of a measurement method, measurement method and apparatus
US10983005B2 (en) * 2016-12-15 2021-04-20 Taiwan Semiconductor Manufacturing Co., Ltd. Spectroscopic overlay metrology
US10824079B2 (en) * 2017-01-03 2020-11-03 Kla-Tencor Corporation Diffraction based overlay scatterometry
JP2020519928A (ja) * 2017-05-08 2020-07-02 エーエスエムエル ネザーランズ ビー.ブイ. 構造を測定する方法、検査装置、リソグラフィシステム、及びデバイス製造方法
CN108962776B (zh) * 2017-05-26 2021-05-18 台湾积体电路制造股份有限公司 半导体装置及其制造方法和覆盖误差的测量方法
US11112369B2 (en) * 2017-06-19 2021-09-07 Kla-Tencor Corporation Hybrid overlay target design for imaging-based overlay and scatterometry-based overlay
US10817999B2 (en) 2017-07-18 2020-10-27 Kla Corporation Image-based overlay metrology and monitoring using through-focus imaging
EP3454126A1 (en) * 2017-09-08 2019-03-13 ASML Netherlands B.V. Method for estimating overlay
TW201923332A (zh) 2017-10-10 2019-06-16 荷蘭商Asml荷蘭公司 度量衡方法和設備、電腦程式及微影系統
EP3489756A1 (en) * 2017-11-23 2019-05-29 ASML Netherlands B.V. Method and apparatus to determine a patterning process parameter
WO2019166190A1 (en) 2018-02-27 2019-09-06 Stichting Vu Metrology apparatus and method for determining a characteristic of one or more structures on a substrate
EP3575874A1 (en) * 2018-05-29 2019-12-04 ASML Netherlands B.V. Metrology method, apparatus and computer program
CN108899288B (zh) * 2018-07-20 2020-11-13 上海华虹宏力半导体制造有限公司 晶圆标记的监控方法和激光刻号机台对准位置的判定方法
US10996570B2 (en) 2018-10-08 2021-05-04 Asml Netherlands B.V. Metrology method, patterning device, apparatus and computer program
EP3931865A4 (en) * 2019-02-14 2023-02-15 KLA Corporation SYSTEM AND METHOD FOR MEASUREMENT OF MISREGISTRATION OF SEMICONDUCTOR DEVICE WAFERS USING INDUCED TOPOGRAPHY
CN111504210B (zh) * 2020-04-01 2021-07-20 武汉大学 一种用于节距移动的测量基底及其制备方法、测量方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267211A (ja) 2000-03-16 2001-09-28 Nikon Corp 位置検出方法及び装置、並びに前記位置検出方法を用いた露光方法及び装置
US7317531B2 (en) * 2002-12-05 2008-01-08 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
KR100439472B1 (ko) * 2001-11-13 2004-07-09 삼성전자주식회사 공정 에러 측정 방법 및 장치와 이를 이용한 오버레이측정 방법 및 장치
US7170604B2 (en) 2002-07-03 2007-01-30 Tokyo Electron Limited Overlay metrology method and apparatus using more than one grating per measurement direction
US7230703B2 (en) * 2003-07-17 2007-06-12 Tokyo Electron Limited Apparatus and method for measuring overlay by diffraction gratings
JP4734261B2 (ja) 2004-02-18 2011-07-27 ケーエルエー−テンカー コーポレイション 連続変化するオフセットマークと、オーバレイ決定方法
US20080144036A1 (en) * 2006-12-19 2008-06-19 Asml Netherlands B.V. Method of measurement, an inspection apparatus and a lithographic apparatus
US7277172B2 (en) 2005-06-06 2007-10-02 Kla-Tencor Technologies, Corporation Measuring overlay and profile asymmetry using symmetric and anti-symmetric scatterometry signals
US7391513B2 (en) 2006-03-29 2008-06-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using overlay measurement quality indication
NL1036245A1 (nl) 2007-12-17 2009-06-18 Asml Netherlands Bv Diffraction based overlay metrology tool and method of diffraction based overlay metrology.
NL1036597A1 (nl) 2008-02-29 2009-09-01 Asml Netherlands Bv Metrology method and apparatus, lithographic apparatus, and device manufacturing method.
JP5277348B2 (ja) * 2009-05-11 2013-08-28 エーエスエムエル ネザーランズ ビー.ブイ. オーバーレイエラーを決定する方法
NL2004995A (en) 2009-07-21 2011-01-24 Asml Netherlands Bv Method of determining overlay error and a device manufacturing method.
CN102498441B (zh) 2009-07-31 2015-09-16 Asml荷兰有限公司 量测方法和设备、光刻***以及光刻处理单元
SG178368A1 (en) * 2009-08-24 2012-04-27 Asml Netherlands Bv Metrology method and apparatus, lithographic apparatus, lithographic processing cell and substrate comprising metrology targets
WO2012022584A1 (en) 2010-08-18 2012-02-23 Asml Netherlands B.V. Substrate for use in metrology, metrology method and device manufacturing method
CN103201682B (zh) * 2010-11-12 2015-06-17 Asml荷兰有限公司 量测方法和设备、光刻***和器件制造方法
NL2007425A (en) 2010-11-12 2012-05-15 Asml Netherlands Bv Metrology method and apparatus, and device manufacturing method.
US8539394B2 (en) 2011-03-02 2013-09-17 Carl Zeiss Sms Ltd. Method and apparatus for minimizing overlay errors in lithography
NL2009294A (en) 2011-08-30 2013-03-04 Asml Netherlands Bv Method and apparatus for determining an overlay error.
WO2013143814A1 (en) 2012-03-27 2013-10-03 Asml Netherlands B.V. Metrology method and apparatus, lithographic system and device manufacturing method
WO2014005828A1 (en) 2012-07-05 2014-01-09 Asml Netherlands B.V. Metrology for lithography

Also Published As

Publication number Publication date
IL245795B (en) 2020-05-31
NL2013737A (en) 2015-05-27
CN105900015A (zh) 2016-08-24
TW201523168A (zh) 2015-06-16
KR20160088408A (ko) 2016-07-25
IL245795A0 (en) 2016-07-31
KR101890783B1 (ko) 2018-08-22
TWI556065B (zh) 2016-11-01
JP2016539370A (ja) 2016-12-15
WO2015078669A1 (en) 2015-06-04
US20160291481A1 (en) 2016-10-06
CN105900015B (zh) 2019-07-05
US10042268B2 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
JP6510521B2 (ja) リソグラフィメトロロジのための方法、装置及び基板
US10845707B2 (en) Determination of stack difference and correction using stack difference
JP6377187B2 (ja) リソグラフィのためのメトロロジ
JP6524256B2 (ja) メトロロジ方法及び装置、コンピュータプログラム、並びにリソグラフィシステム
JP6880184B2 (ja) スタック差を使用した設計及び補正
KR102294349B1 (ko) 계측 방법, 컴퓨터 제품 및 시스템
JP6510658B2 (ja) メトロロジの方法及び装置、コンピュータプログラム、並びにリソグラフィシステム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190404

R150 Certificate of patent or registration of utility model

Ref document number: 6510521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250