JP6507782B2 - Magnetic fine particle and method of manufacturing dispersion thereof - Google Patents

Magnetic fine particle and method of manufacturing dispersion thereof Download PDF

Info

Publication number
JP6507782B2
JP6507782B2 JP2015064958A JP2015064958A JP6507782B2 JP 6507782 B2 JP6507782 B2 JP 6507782B2 JP 2015064958 A JP2015064958 A JP 2015064958A JP 2015064958 A JP2015064958 A JP 2015064958A JP 6507782 B2 JP6507782 B2 JP 6507782B2
Authority
JP
Japan
Prior art keywords
magnetic
fine particles
metal oxide
functional group
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015064958A
Other languages
Japanese (ja)
Other versions
JP2016184702A (en
Inventor
山田 雅士
雅士 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015064958A priority Critical patent/JP6507782B2/en
Publication of JP2016184702A publication Critical patent/JP2016184702A/en
Application granted granted Critical
Publication of JP6507782B2 publication Critical patent/JP6507782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、磁性微粒子及びその分散液の製造方法に関し、微粒子表面上の金属酸化物被覆に磁性体を導入させる、磁性微粒子及びその分散液の製造方法に関する。   The present invention relates to a method for producing magnetic fine particles and a dispersion thereof, in which a magnetic material is introduced to a metal oxide coating on the surface of the fine particles and to a method for producing magnetic fine particles and a dispersion thereof.

従来、微粒子を磁性化する際には、例えば高分子微粒子を多孔質にしてその孔に磁性体をイオン的もしくは物理的に吸着させる、もしくは高分子微粒子と磁性体を乾式回転方法によって物理的に高分子微粒子表面に磁性体をコーティングする方法が用いられていた(特許文献1)。多孔質高分子微粒子を使用する場合には、孔の奥深くまで磁性体が浸透することによる磁気応答性の低下や、磁気応答性確保のために過剰な磁性体添加を原因とする比重増大による分散安定性の低下が起こる。また、高分子微粒子と磁性体を乾式回転方式にて実施する際には、高価な装置を必要として汎用性に欠けるという問題があった。   Conventionally, when making fine particles magnetic, for example, the fine polymer particles are made porous and the magnetic substance is ionically or physically adsorbed in the pores, or the fine polymer particles and the magnetic substance are physically separated by a dry rotation method. A method of coating a magnetic material on the surface of polymer fine particles has been used (Patent Document 1). In the case of using porous polymer fine particles, dispersion due to specific gravity increase caused by the addition of the magnetic material due to the deterioration of the magnetic response due to the magnetic material permeating deep into the pores and securing the magnetic response. A loss of stability occurs. In addition, when the polymer fine particles and the magnetic substance are implemented by a dry rotation method, there is a problem that an expensive device is required and the versatility is lacking.

特許4273315号公報Patent No. 4273315

本発明は、微粒子に対して磁性化を行う際に、多孔質微粒子を用いなくても、また高価な装置を使わなくても磁性微粒子を製造することができる方法を提供するものである。   The present invention provides a method capable of producing magnetic fine particles without using porous fine particles and without using an expensive apparatus when magnetizing fine particles.

本発明者は、鋭意検討の結果、以下の方法をとることで、上記問題点を解決しうることを見出し、本発明を完成した。   The inventors of the present invention have found that the above problems can be solved by the following methods as a result of intensive studies, and completed the present invention.

即ち、本発明は以下のとおりである。
(1)金属酸化物被覆微粒子に、磁性体を導入させることを特徴とする、磁性微粒子分散液の製造方法。
(2)金属酸化物被覆微粒子に、磁性体を導入させることを特徴とする、磁性微粒子の製造方法。
(3)(1)または(2)に記載の方法において、磁性体表面にイオン性官能基がある方法。
(4)(1)乃至(3)いずれかに記載の方法において、磁性体表面にカチオン性官能基がある方法。
(5)(1)乃至(4)いずれかに記載の方法において、金属酸化物が酸化鉄である方法。
That is, the present invention is as follows.
(1) A method for producing a magnetic particle dispersion, which comprises introducing a magnetic substance into metal oxide-coated particles.
(2) A method for producing magnetic microparticles, which comprises introducing a magnetic substance into metal oxide-coated microparticles.
(3) The method according to (1) or (2), wherein the surface of the magnetic material has an ionic functional group.
(4) The method according to any one of (1) to (3), wherein the surface of the magnetic material has a cationic functional group.
(5) The method according to any one of (1) to (4), wherein the metal oxide is iron oxide.

以下に本発明を更に詳細に説明する。   The present invention will be described in more detail below.

本発明で用いられる微粒子とは、ガラス、金属、セラミツクス等の無機物であってもよく、また高分子ポリマー等の有機物であってもよい。またそれらの微粒子は磁性体を含むものであってもよい。微粒子の粒子径は0.1から50μmが好ましく、さらには1から10μmが好ましい。また微粒子は細孔を有しても有さなくてもよいが、細孔を有さない表面が平滑なものであっても本発明の方法は適用できる点に特徴がある。なお微粒子の表面とは、微粒子の外表面ばかりでなく、細孔を有する微粒子の場合は細孔内表面を含めてもよい。   The fine particles used in the present invention may be inorganic substances such as glass, metal and ceramics, or may be organic substances such as polymer. The fine particles may also contain a magnetic substance. The particle diameter of the fine particles is preferably 0.1 to 50 μm, and more preferably 1 to 10 μm. The fine particles may or may not have pores, but the method of the present invention is characterized in that the method of the present invention can be applied even if the surface without pores is smooth. In addition, with the surface of microparticles | fine-particles, not only the outer surface of microparticles | fine-particles but in the case of the microparticles | fine-particles which has a pore, you may include the surface in a pore.

本発明で用いられる微粒子表面は金属酸化物で被覆されている。この金属酸化物とは、FeO、Fe、Fe、CuO、CuO、AgO、AgO、Au、TiO、TiO、RuO、RuO等があげられ、微粒子表面の一部又は全部が金属酸化物で被覆されている。 The fine particle surface used in the present invention is coated with a metal oxide. The metal oxide, FeO, Fe 3 O 4, Fe 2 O 3, Cu 2 O, CuO, Ag 2 O, AgO, Au 2 O 3, Ti 2 O, TiO, RuO 2, RuO 4 , etc. is mentioned And part or all of the particle surface is coated with metal oxide.

微粒子表面上への金属酸化物被覆は、例えば微粒子を分散させた懸濁液へ金属塩化物などの溶液を添加した後に、アルカリ処理することによって形成される。アルカリを添加する前には過剰な金属塩化物などを洗浄によりを除去することが好ましい。   The metal oxide coating on the fine particle surface is formed, for example, by alkali treatment after adding a solution such as metal chloride to a suspension in which the fine particles are dispersed. It is preferable to remove excess metal chloride and the like by washing before adding the alkali.

一方、本発明に用いられる磁性体は、その組成に特に限定はなく、例えば、フェライト、マグネタイト、マグヘマイト等があげられる。その粒子径は1から100nmが好ましい。磁性体は細孔を有しても有さなくてもよい。磁性体の表面とは、微粒子の外表面ばかりでなく、細孔を有する磁性体の場合は細孔内表面を含めてもよい。磁性体表面には、イオン性官能基(アニオン性官能基、又はカチオン性官能基)や脂肪酸などがあってもよく、それによって磁性体の液体中での分散性が向上し、微粒子との反応性が向上する。ここでイオン性官能基とは、アミノ基、イミノ基等のカチオン性官能基、又はスルホニル基、カルボキシル基、フェノール性水酸基、アルコール性水酸基等のアニオン性官能基があげられる。   On the other hand, the composition of the magnetic substance used in the present invention is not particularly limited, and examples thereof include ferrite, magnetite, maghemite and the like. The particle size is preferably 1 to 100 nm. The magnetic body may or may not have pores. The surface of the magnetic substance may include not only the outer surface of the fine particle but also the inner surface of the pore in the case of a magnetic substance having pores. The surface of the magnetic substance may have an ionic functional group (anionic functional group or cationic functional group) or a fatty acid, thereby improving the dispersibility of the magnetic substance in the liquid and reacting with the fine particles. Improves the quality. Here, the ionic functional group includes a cationic functional group such as an amino group and an imino group, or an anionic functional group such as a sulfonyl group, a carboxyl group, a phenolic hydroxyl group, and an alcoholic hydroxyl group.

本発明では、このような金属酸化物被覆微粒子に磁性体を導入させて、磁性微粒子を製造する。このときの条件には特に限定はなく、例えば金属酸化物被覆微粒子に、磁性体を添加すればよい。この際に、磁性体が均一に分散(コロイド状分散状態を含む)する溶媒を用いることが好ましく、水溶液、有機溶媒から適宜選択したものを用いればよい。このようにして、磁性微粒子の分散液を得ることができ、そして磁性微粒子を得ることができる。   In the present invention, a magnetic substance is introduced into such metal oxide-coated fine particles to produce magnetic fine particles. There is no particular limitation on the conditions at this time, and for example, a magnetic substance may be added to the metal oxide-coated fine particles. At this time, it is preferable to use a solvent in which the magnetic substance is uniformly dispersed (including a colloidal dispersion state), and a solvent appropriately selected from an aqueous solution and an organic solvent may be used. In this way, a dispersion of magnetic particles can be obtained, and magnetic particles can be obtained.

なお磁性体表面にイオン性官能基がある場合には、そのイオン性官能基と微粒子を被覆している金属酸化物の電子の局在化又は電荷の偏りにより結合が生じると推測される。一方、磁性体表面にイオン性官能基がない場合や脂肪酸などがある場合は、物理的吸着により金属酸化物被覆微粒子と磁性体とが結合すると推測される。   When the ionizable functional group is present on the surface of the magnetic substance, it is presumed that the binding is caused by the localization of the electrons or the charge of the metal oxide coating the fine particle with the ionic functional group. On the other hand, in the case where there is no ionic functional group on the surface of the magnetic substance, or when there is a fatty acid etc., it is presumed that the metal oxide coated fine particles and the magnetic substance are bound by physical adsorption.

本発明ではこのようにして得られた磁性微粒子を金属酸化物で被覆し、再度本発明の原料微粒子として用いて、本発明の磁性微粒子の製造方法を繰り返して行うことができる。これは必要な回数繰り返して行うことができ、これによって微粒子の上に必要な量の磁性体をコートすることができる。   In the present invention, the magnetic fine particles thus obtained can be coated with a metal oxide and used again as the raw material fine particles of the present invention to repeat the method of manufacturing the magnetic fine particles of the present invention. This can be repeated as many times as necessary, whereby the necessary amount of magnetic material can be coated on the fine particles.

本発明により、磁性微粒子及びその分散液を製造することができ、従来法のように微粒子と磁性体を乾式回転方式にてコーティングする際に必要な高価な装置を必要としない。また、用いられる微粒子が多孔質でなく平滑な表面を有する場合は、過剰な磁性体を必要としない。   According to the present invention, magnetic fine particles and a dispersion thereof can be manufactured, and an expensive apparatus necessary for coating fine particles and a magnetic material by a dry rotation method as in the conventional method is not required. In addition, when the fine particles used are not porous but have a smooth surface, no excess magnetic material is required.

以下、実施例により本発明を詳細に説明する。しかし本発明はこれら実施例にのみ限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to only these examples.

(実施例1)
ポリジビニルベンゼン微粒子5.0g(粒子径2.5μm、白色)、ポリビニルピロリドン1.2g、1N−塩酸水溶液6mLを純水160mLに回転数180rpmで分散させた。窒素雰囲気下、80℃に昇温した後に、尿素6g、塩化鉄(II)四水和物2g、塩化鉄(III)六水和物3gを添加し5時間反応させた。この微粒子分散液をろ過にて微粒子と反応液を分離した後に、再度微粒子を純水200mLに回転数180rpmで分散させた。窒素雰囲気下、80℃に昇温した後に、0.2N−水酸化ナトリウム水溶液を滴下し15時間反応させた。純水にて洗浄し、黄土色の酸化鉄被覆された微粒子5.75gを得た。
Example 1
5.0 g of polydivinylbenzene fine particles (particle diameter: 2.5 μm, white), 1.2 g of polyvinyl pyrrolidone, and 6 mL of 1N aqueous hydrochloric acid solution were dispersed in 160 mL of pure water at a rotational speed of 180 rpm. After raising the temperature to 80 ° C. under a nitrogen atmosphere, 6 g of urea, 2 g of iron (II) chloride tetrahydrate and 3 g of iron (III) chloride hexahydrate were added and reacted for 5 hours. The fine particle dispersion was separated from the fine particles and the reaction liquid by filtration, and then the fine particles were dispersed again in 200 mL of pure water at a rotational speed of 180 rpm. After the temperature was raised to 80 ° C. under a nitrogen atmosphere, a 0.2 N aqueous sodium hydroxide solution was dropped and reacted for 15 hours. The resultant was washed with pure water to obtain 5.75 g of fine particles coated with yellowish iron oxide.

このようにして得られた黄土色の酸化鉄被覆された微粒子1gを純水50mLに室温にて回転数100rpmで分散させた。この微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.3gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄し、褐色の磁性化された微粒子懸濁液を12.6g得た(スラリー濃度10.1%、乾燥重量換算1.27g)。   Thus, 1 g of the fine particles covered with the yellowish iron oxide was dispersed in 50 mL of pure water at a rotational speed of 100 rpm at room temperature. To this fine particle dispersion, 0.3 g of a magnetic substance (material: magnetite, particle diameter: 10 nm, trade name: EMG 607, manufactured by Farotech Co., Ltd.) having a cationic dispersant on the surface is added, and the rotation speed is 100 rpm at room temperature. It was allowed to react for 2 hours. The solid was washed with pure water to obtain 12.6 g of a brown magnetized particle suspension (slurry concentration 10.1%, dry weight conversion 1.27 g).

(比較例1)
塩化鉄およびアルカリ処理による酸化鉄被覆化工程を行わなかった。即ち、ポリジビニルベンゼン微粒子1.0g(粒子径2.5μm、白色)を純水50mLに室温にて回転数100rpmで分散させた。この微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.5gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄したところ、磁性化はされておらず、原料のポリジビニルベンゼン微粒子(白色)1.0gを回収した。
(Comparative example 1)
There was no iron oxide coating step with iron chloride and alkali treatment. That is, 1.0 g of polydivinylbenzene fine particles (particle diameter: 2.5 μm, white) was dispersed in 50 mL of pure water at a rotational speed of 100 rpm at room temperature. A magnetic substance (material: magnetite, particle diameter: 10 nm, trade name: EMG 607, manufactured by Farotech Co., Ltd.) having a cationic dispersant on the surface is added to this fine particle dispersion, and rotation speed is 100 rpm at room temperature It was allowed to react for 2 hours. When washed with pure water, it was not magnetized, and 1.0 g of polydivinylbenzene fine particles (white) as a raw material was recovered.

Claims (4)

粒子径が1から10μmの金属酸化物被覆微粒子に、表面にイオン性官能基がある磁性体を導入させることを特徴とする、磁性微粒子分散液の製造方法。 A method for producing a magnetic particle dispersion, comprising introducing a magnetic material having an ionic functional group on the surface into metal oxide-coated particles having a particle diameter of 1 to 10 μm . 粒子径が1から10μmの金属酸化物被覆微粒子に、表面にイオン性官能基がある磁性体を導入させることを特徴とする、磁性微粒子の製造方法。 A method for producing magnetic microparticles, comprising introducing a magnetic substance having an ionic functional group on the surface into metal oxide-coated microparticles having a particle diameter of 1 to 10 μm . 請求項1または2に記載の方法において、磁性体表面にカチオン性官能基がある方法。 The method according to claim 1 or 2 , wherein the surface of the magnetic material has a cationic functional group. 請求項1乃至いずれかに記載の方法において、金属酸化物が酸化鉄である方法。 The method according to any one of claims 1 to 3 , wherein the metal oxide is iron oxide.
JP2015064958A 2015-03-26 2015-03-26 Magnetic fine particle and method of manufacturing dispersion thereof Active JP6507782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015064958A JP6507782B2 (en) 2015-03-26 2015-03-26 Magnetic fine particle and method of manufacturing dispersion thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064958A JP6507782B2 (en) 2015-03-26 2015-03-26 Magnetic fine particle and method of manufacturing dispersion thereof

Publications (2)

Publication Number Publication Date
JP2016184702A JP2016184702A (en) 2016-10-20
JP6507782B2 true JP6507782B2 (en) 2019-05-08

Family

ID=57243129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064958A Active JP6507782B2 (en) 2015-03-26 2015-03-26 Magnetic fine particle and method of manufacturing dispersion thereof

Country Status (1)

Country Link
JP (1) JP6507782B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360351B2 (en) * 1993-04-23 2002-12-24 ジェイエスアール株式会社 Method for producing ferromagnetic composite particles
JP5419199B2 (en) * 2008-12-08 2014-02-19 積水化学工業株式会社 Magnetic inclusion particles, method for producing magnetic inclusion particles, immunoassay particles, and immunochromatography method
JP2010208875A (en) * 2009-03-09 2010-09-24 Tokyo Institute Of Technology Magnetic hollow particle and method for producing the same
JP2015192995A (en) * 2014-03-27 2015-11-05 東ソー株式会社 Method of producing magnetic fine particle and dispersion of the same

Also Published As

Publication number Publication date
JP2016184702A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
Otitoju et al. Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending
KR100464870B1 (en) Silica Adsorbent on Magnetic Substrate
Wang et al. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin
EP1836239B1 (en) Composite materials containing carbon nanoparticles
CN103920473B (en) The preparation method of carbon modifying titanium dioxide composite magnetic nano adsorber
Hassan et al. Sulfanilic acid-functionalized magnetic GO as a robust adsorbent for the efficient adsorption of methylene blue from aqueous solution
JP2005263550A (en) High dispersion silica nano hollow particle and its producing method
Siddeeg et al. Application of functionalized nanomaterials as effective adsorbents for the removal of heavy metals from wastewater: a review
Dyab et al. Fabrication and characterisation of novel natural Lycopodium clavatum sporopollenin microcapsules loaded in-situ with nano-magnetic humic acid-metal complexes
CN109718738B (en) Zirconia spherical adsorbent and preparation method and application thereof
US20030031783A1 (en) Silica adsorbent on magnetic substrate
JP6507782B2 (en) Magnetic fine particle and method of manufacturing dispersion thereof
CN103331141B (en) The preparation method of heavy metal ion adsorbed porous ferric oxide
FR2931145A1 (en) NEW COMPOSITE MATERIALS, PROCESS FOR PREPARING THEM AND USES THEREOF
KR102188846B1 (en) Manufacturing method of magnetic nanoparticles having yolk-shell structrure
CN110665506A (en) Tetracycline photocatalytic degradation material and preparation method thereof
JP2015192995A (en) Method of producing magnetic fine particle and dispersion of the same
JP6550836B2 (en) Method for producing magnetic fine particles
CN111229188B (en) Glycopeptide antibiotic functionalized magnetic composite material and preparation method and application thereof
TWI448300B (en) Method for preparing porousantimicrobial composite materials with nano silver
Rabajczyk et al. The effect of time on the stability of iron oxide nanoparticles in environmental acids
KR101445120B1 (en) Magnetic substance coating method of ceramic particle
CN107486154B (en) Preparation method and application of nano zero-valent iron mesoporous carbon asymmetric structure material for removing persistent organic pollutants in water
JP2005082746A5 (en)
NL2017064B1 (en) Cross-linked enzyme aggregate comprising magnetizable particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6507782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151