JP2015192995A - Method of producing magnetic fine particle and dispersion of the same - Google Patents

Method of producing magnetic fine particle and dispersion of the same Download PDF

Info

Publication number
JP2015192995A
JP2015192995A JP2015042066A JP2015042066A JP2015192995A JP 2015192995 A JP2015192995 A JP 2015192995A JP 2015042066 A JP2015042066 A JP 2015042066A JP 2015042066 A JP2015042066 A JP 2015042066A JP 2015192995 A JP2015192995 A JP 2015192995A
Authority
JP
Japan
Prior art keywords
functional group
fine particles
fine particle
magnetic
ionic functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015042066A
Other languages
Japanese (ja)
Inventor
山田 雅士
Masashi Yamada
雅士 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015042066A priority Critical patent/JP2015192995A/en
Publication of JP2015192995A publication Critical patent/JP2015192995A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method which enables production of a magnetic fine particle and its dispersion, without use of a porous fine particle or an expensive apparatus, in magnetizing a fine particle.SOLUTION: A method of producing a magnetic fine particle and its dispersion comprises reacting ionic functional groups, e.g. carboxyl groups serving as an anionic functional group, on the surface of a fine particle with ionic functional groups, e.g. amino groups serving as a cationic functional group, on a magnetic material having an electric charge opposite to that of the ionic functional groups on the surface of the fine particle.

Description

本発明は、磁性微粒子及びその分散液の製造方法に関し、特にイオン的性質を利用した磁性微粒子の製造方法に関する。   The present invention relates to a method for producing magnetic fine particles and a dispersion thereof, and more particularly to a method for producing magnetic fine particles utilizing ionic properties.

従来、微粒子を磁性化する際には、例えば高分子微粒子を多孔質にしてその孔に磁性体をイオン的もしくは物理的に吸着させる、もしくは高分子微粒子と磁性体を乾式回転方法によって物理的に高分子微粒子表面に磁性体をコーティングする方法が用いられていた。多孔質高分子微粒子を使用する場合には、孔の奥深くまで磁性体が浸透することによる磁気応答性の低下や、磁気応答性確保のために過剰な磁性体添加を原因とする比重増大による分散安定性の低下が起こる。また、高分子微粒子と磁性体を乾式回転方式にて実施する際には、高価な装置を必要として汎用性に欠けるという問題があった。   Conventionally, when magnetizing fine particles, for example, the fine polymer particles are made porous and the magnetic material is adsorbed ionically or physically in the pores, or the fine polymer particles and the magnetic material are physically separated by a dry rotation method. A method of coating the surface of polymer fine particles with a magnetic material has been used. When using porous polymer fine particles, dispersion due to decrease in magnetic response due to penetration of magnetic material deep into the hole and increase in specific gravity due to excessive addition of magnetic material to ensure magnetic response A decrease in stability occurs. Further, when the polymer fine particles and the magnetic material are carried out by a dry rotation method, there is a problem that an expensive apparatus is required and lacks versatility.

本発明は、微粒子に対して磁性化を行う際に、多孔質微粒子を用いなくても、また高価な装置を使わなくても磁性微粒子を製造することができる方法を提供するものである。   The present invention provides a method for producing magnetic fine particles without using porous fine particles or using an expensive apparatus when magnetizing fine particles.

本発明者は、鋭意検討の結果、以下の方法をとることで、上記問題点を解決しうることを見出し、本発明を完成した。   As a result of intensive studies, the present inventor has found that the above problems can be solved by taking the following method, and has completed the present invention.

即ち、本発明は以下のとおりである。
(1)微粒子表面にあるイオン性官能基と、
磁性体表面にあり、微粒子表面にあるイオン性官能基とは反対の電荷を有するイオン性官能基と
を反応させることを特徴とする、磁性微粒子分散液の製造方法。
(2)微粒子表面にあるイオン性官能基と、
磁性体表面にあり、微粒子表面にあるイオン性官能基とは反対の電荷を有するイオン性官能基と
を反応させることを特徴とする、磁性微粒子の製造方法。
(3)上述の(1)又は(2)に記載の方法において、微粒子表面にアニオン性官能基があり、磁性体表面にカチオン性官能基がある方法。
(4)上述の(1)又は(2)に記載の方法において、微粒子表面にカチオン性官能基があり、磁性体表面にアニオン性官能基がある方法。
That is, the present invention is as follows.
(1) an ionic functional group on the surface of the fine particles;
A method of producing a magnetic fine particle dispersion, comprising reacting an ionic functional group on the surface of a magnetic material and having an electric charge opposite to the ionic functional group on the surface of the fine particle.
(2) an ionic functional group on the surface of the fine particles;
A method for producing magnetic fine particles, comprising reacting an ionic functional group on the surface of a magnetic material and having an electric charge opposite to the ionic functional group on the surface of the fine particle.
(3) The method according to (1) or (2) above, wherein the fine particle surface has an anionic functional group and the magnetic material surface has a cationic functional group.
(4) The method according to the above (1) or (2), wherein the fine particle surface has a cationic functional group and the magnetic material surface has an anionic functional group.

以下に本発明を更に詳細に説明する。   The present invention is described in further detail below.

本発明で用いられる微粒子とは、ガラス、金属、セラミツクス等の無機物であってもよく、また高分子ポリマー等の有機物であってもよい。またそれらの微粒子は磁性体を含むものであってもよい。微粒子の粒子径は0.1から50μmが好ましく、さらには1から10μmが好ましい。また微粒子は細孔を有しても有さなくてもよいが、細孔を有さない表面が平滑なものであっても本発明の方法は適用できる点に特徴がある。なお微粒子の表面とは、微粒子の外表面ばかりでなく、細孔を有する微粒子の場合は細孔内表面を含めてもよい。   The fine particles used in the present invention may be inorganic substances such as glass, metal, ceramics, etc., and may be organic substances such as polymer polymers. The fine particles may contain a magnetic material. The particle diameter of the fine particles is preferably from 0.1 to 50 μm, more preferably from 1 to 10 μm. The fine particles may or may not have pores, but are characterized in that the method of the present invention can be applied even if the surface having no pores is smooth. The surface of the fine particles may include not only the outer surface of the fine particles, but also the inner surface of the fine pores in the case of fine particles having pores.

また本発明でイオン性官能基とは、アミノ基、イミノ基等のカチオン性官能基、スルホニル基、カルボキシル基、フェノール性水酸基、アルコール性水酸基等のアニオン性官能基があげられる。イオン性官能基は、微粒子が既にそのような官能基を表面に有している場合(例えばイオン性官能基を有する高分子ポリマー微粒子)は、それをそのまま利用すればよい。一方、そのような官能基を有していない微粒子の場合(例えばイオン性官能基を有さない高分子ポリマーやガラス、金属、セラミツクス等の微粒子)は、その微粒子表面に官能基を導入すればよい。   In the present invention, examples of the ionic functional group include cationic functional groups such as amino group and imino group, and anionic functional groups such as sulfonyl group, carboxyl group, phenolic hydroxyl group and alcoholic hydroxyl group. As for the ionic functional group, when the fine particle already has such a functional group on the surface (for example, polymer polymer fine particle having an ionic functional group), it may be used as it is. On the other hand, in the case of fine particles not having such a functional group (for example, a polymer polymer having no ionic functional group, fine particles of glass, metal, ceramics, etc.), if a functional group is introduced on the surface of the fine particles, Good.

その方法としては特に限定されるものではないが、例えば微粒子とイオン性化合物とを反応させ、微粒子表面上にイオン性官能基を導入すればよい。このとき用いられるイオン性化合物には特に限定はないが、例えばスルホン酸、カルボン酸などの酸性化合物もしくはアンモニウム塩、フェノール性水酸基塩、アルコール性水酸基塩などが好ましい。反応条件にも特に限定はなく、例えばイオン性化合物を含む溶液に高分子微粒子を分散・反応させることにより、イオン性官能基を導入すればよい。この際に水溶性の無機もしくは有機イオン性化合物を用いる場合には溶媒として水を用いることが好ましい。有機イオン性化合物が水および有機溶媒に溶解する場合には、どちらを用いても構わない。なお、イオン性官能基を導入したのちは、十分な洗浄を行い、過剰なイオン性化合物を除去することが好ましい。   The method is not particularly limited. For example, the ionic functional group may be introduced onto the surface of the fine particles by reacting the fine particles with an ionic compound. The ionic compound used at this time is not particularly limited, but for example, acidic compounds such as sulfonic acid and carboxylic acid or ammonium salts, phenolic hydroxyl salts, alcoholic hydroxyl salts and the like are preferable. The reaction conditions are not particularly limited, and for example, ionic functional groups may be introduced by dispersing and reacting polymer fine particles in a solution containing an ionic compound. In this case, when a water-soluble inorganic or organic ionic compound is used, it is preferable to use water as a solvent. When the organic ionic compound is dissolved in water and an organic solvent, either of them may be used. In addition, after introducing an ionic functional group, it is preferable to perform sufficient washing to remove excess ionic compounds.

一方、本発明に用いられる磁性体は、その組成に特に限定はなく、例えば、フェライト、マグネタイト、マグヘマイト等があげられる。その粒子径は1から100nmが好ましい。磁性体は細孔を有しても有さなくてもよい。磁性体の表面とは、微粒子の外表面ばかりでなく、細孔を有する磁性体の場合は細孔内表面を含めてもよい。   On the other hand, the composition of the magnetic material used in the present invention is not particularly limited, and examples thereof include ferrite, magnetite, and maghemite. The particle diameter is preferably 1 to 100 nm. The magnetic body may or may not have pores. The surface of the magnetic body may include not only the outer surface of the fine particles but also the inner surface of the pore in the case of a magnetic body having pores.

磁性体表面にある、微粒子表面のイオン性官能基とは反対の電荷を有するイオン性官能基とは、微粒子表面のイオン性官能基がアニオン性官能基の場合はカチオン性官能基であり、また微粒子表面のイオン性官能基がカチオン性官能基の場合はアニオン性官能基である。この磁性体表面のイオン性官能基としては、前述の微粒子表面のイオン性官能基と同様のものが例示できる。このイオン性官能基は、微粒子表面にイオン性官能基を導入するのと同様の方法で磁性体表面に導入することができる。   An ionic functional group having a charge opposite to the ionic functional group on the surface of the fine particle on the magnetic surface is a cationic functional group when the ionic functional group on the surface of the fine particle is an anionic functional group, and When the ionic functional group on the surface of the fine particle is a cationic functional group, it is an anionic functional group. Examples of the ionic functional group on the surface of the magnetic material include those similar to the ionic functional group on the surface of the fine particles described above. This ionic functional group can be introduced onto the surface of the magnetic material in the same manner as the ionic functional group is introduced onto the surface of the fine particles.

本発明では、このような微粒子表面のイオン性官能基と磁性体表面のイオン性官能基とを反応させて、磁性微粒子を製造する。このときの反応条件には特に限定はなく、例えばイオン性官能基を有する微粒子に、イオン性官能基を有する磁性体を添加すればよい。この際に、磁性体が均一に分散(コロイド状分散状態を含む)する溶媒を用いることが好ましく、水溶液、有機溶媒から適宜選択したものを用いればよい。このようにして、磁性微粒子の分散液を得ることができ、そして磁性微粒子を得ることができる。   In the present invention, such ionic functional groups on the surface of the fine particles and ionic functional groups on the surface of the magnetic material are reacted to produce magnetic fine particles. The reaction conditions at this time are not particularly limited. For example, a magnetic substance having an ionic functional group may be added to fine particles having an ionic functional group. At this time, it is preferable to use a solvent in which the magnetic substance is uniformly dispersed (including a colloidal dispersion state), and a solvent appropriately selected from aqueous solutions and organic solvents may be used. In this way, a dispersion of magnetic fine particles can be obtained, and magnetic fine particles can be obtained.

本発明ではこのようにして得られた磁性微粒子を再度本発明の原料微粒子として用いて、本発明の磁性微粒子の製造方法を繰り返して行うことができる。これは必要な回数繰り返して行うことができ、これによって微粒子の上に必要な量の磁性体をコートすることができる。   In the present invention, the method for producing magnetic fine particles of the present invention can be repeated by using the magnetic fine particles thus obtained again as the raw material fine particles of the present invention. This can be repeated as many times as necessary, whereby the required amount of magnetic material can be coated on the microparticles.

本発明により、磁性微粒子及びその分散液を製造することができ、従来法のように微粒子と磁性体を乾式回転方式にてコーティングする際に必要な高価な装置を必要としない。また、用いられる微粒子が多孔質でなく平滑な表面を有する場合は、過剰な磁性体を必要としない。   According to the present invention, magnetic fine particles and a dispersion thereof can be produced, and an expensive apparatus required for coating fine particles and a magnetic material by a dry rotation method as in the conventional method is not required. Further, when the fine particles used are not porous and have a smooth surface, an excessive magnetic material is not required.

以下、実施例により本発明を詳細に説明する。しかし本発明はこれら実施例にのみ限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited only to these examples.

(実施例1)
1,4−ジオキサン50mLに、ポリジビニルベンゼン微粒子1.0g(粒子径2.5μm、白色)を回転数100rpmにて分散させた。グリシジルメタクリレート1.35g、エチレングリコールジメタクリレート0.15g、V−65 0.03gを添加し、60℃に加熱し、この状態を維持したまま15時間反応させた。反応終了後、1,4−ジオキサンおよび純水にて洗浄した後に、純水50mLに回転数100rpmにて分散させた。この微粒子分散液に亜硫酸ナトリウム2.0gを添加し、60℃に加熱し、この状態を維持したまま15時間反応させた。反応終了後、純水にて洗浄し、表面がスルホン化された微粒子を得た。
(Example 1)
In 50 mL of 1,4-dioxane, 1.0 g of polydivinylbenzene fine particles (particle diameter: 2.5 μm, white) was dispersed at a rotation speed of 100 rpm. 1.35 g of glycidyl methacrylate, 0.15 g of ethylene glycol dimethacrylate and 0.03 g of V-65 were added, heated to 60 ° C., and allowed to react for 15 hours while maintaining this state. After completion of the reaction, it was washed with 1,4-dioxane and pure water, and then dispersed in 50 mL of pure water at a rotation speed of 100 rpm. To this fine particle dispersion, 2.0 g of sodium sulfite was added, heated to 60 ° C., and allowed to react for 15 hours while maintaining this state. After completion of the reaction, it was washed with pure water to obtain fine particles whose surface was sulfonated.

この微粒子1gを純水50mLに室温にて回転数100rpmで分散させた。この微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.5gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄し、褐色の磁性化された微粒子1.45gを得た。   1 g of the fine particles was dispersed in 50 mL of pure water at room temperature at a rotation speed of 100 rpm. To this fine particle dispersion, 0.5 g of a magnetic material having a cationic dispersant on its surface (material: magnetite, particle size: 10 nm, trade name: EMG607, manufactured by Ferrotec Co., Ltd.) is added, and the rotational speed is 100 rpm at room temperature. The reaction was performed for 2 hours. Washing with pure water gave 1.45 g of brown magnetized fine particles.

(実施例2)
エタノール50mLに、ポリジビニルベンゼン微粒子1g(粒子径2.5μm、白色)を回転数100rpmにて分散させた。この微粒子分散液にポリアクリル酸2gを添加し、室温にて1時間反応させた。反応終了後、エタノールおよび純水にて洗浄し、表面にカルボン酸を有する微粒子を得た。この微粒子1gを純水50mLに室温にて回転数100rpmで分散させた。この微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.5gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄し、褐色の磁性化された微粒子(1)を1.41g得た。
(Example 2)
In 50 mL of ethanol, 1 g of polydivinylbenzene fine particles (particle diameter: 2.5 μm, white) was dispersed at a rotation speed of 100 rpm. 2 g of polyacrylic acid was added to the fine particle dispersion and reacted at room temperature for 1 hour. After completion of the reaction, the mixture was washed with ethanol and pure water to obtain fine particles having carboxylic acid on the surface. 1 g of the fine particles was dispersed in 50 mL of pure water at room temperature at a rotation speed of 100 rpm. To this fine particle dispersion, 0.5 g of a magnetic material having a cationic dispersant on its surface (material: magnetite, particle size: 10 nm, trade name: EMG607, manufactured by Ferrotec Co., Ltd.) is added, and the rotational speed is 100 rpm at room temperature. The reaction was performed for 2 hours. Washing with pure water gave 1.41 g of brown magnetized fine particles (1).

(比較例1)
亜硫酸ナトリウムもしくはポリアクリル酸によるイオン化工程を行わなかった。即ち、ポリジビニルベンゼン微粒子1.0g(粒子径2.5μm、白色)を純水50mLに室温にて回転数100rpmで分散させた。この微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.5gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄したところ、磁性化はされておらず、原料のポリジビニルベンゼン微粒子(白色)1.0gを回収した。
(Comparative Example 1)
No ionization step with sodium sulfite or polyacrylic acid was performed. That is, 1.0 g of polydivinylbenzene fine particles (particle diameter 2.5 μm, white) was dispersed in 50 mL of pure water at room temperature at a rotation speed of 100 rpm. To this fine particle dispersion, 0.5 g of a magnetic material having a cationic dispersant on its surface (material: magnetite, particle size: 10 nm, trade name: EMG607, manufactured by Ferrotec Co., Ltd.) is added, and the rotational speed is 100 rpm at room temperature. The reaction was performed for 2 hours. When washed with pure water, it was not magnetized and 1.0 g of polydivinylbenzene fine particles (white) as a raw material was recovered.

(実施例3)
エタノール50mLに、実施例2で得られた磁性微粒子(1)を1.0g、回転数100rpmにて分散させた。この磁性微粒子分散液にポリアクリル酸2gを添加し、室温にて1時間反応させた。反応終了後、エタノールおよび純水にて洗浄し、表面にカルボン酸を有する磁性微粒子を得た。この磁性微粒子1gを純水50mLに室温にて回転数100rpmで分散させた。この磁性微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.5gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄し、濃褐色の磁性化された微粒子(2)を1.48g得た。これは磁性体との反応が合計で2回行われた微粒子である。
(Example 3)
In 50 mL of ethanol, 1.0 g of the magnetic fine particles (1) obtained in Example 2 were dispersed at a rotation speed of 100 rpm. 2 g of polyacrylic acid was added to this magnetic fine particle dispersion and reacted at room temperature for 1 hour. After completion of the reaction, washing with ethanol and pure water gave magnetic fine particles having carboxylic acid on the surface. 1 g of the magnetic fine particles was dispersed in 50 mL of pure water at room temperature at a rotation speed of 100 rpm. To this magnetic fine particle dispersion, 0.5 g of a magnetic material having a cationic dispersant on its surface (material: magnetite, particle size: 10 nm, trade name: EMG607, manufactured by Ferrotec Co., Ltd.) is added, and the rotational speed is 100 rpm at room temperature. For 2 hours. Washing with pure water gave 1.48 g of dark brown magnetized fine particles (2). This is a fine particle in which the reaction with the magnetic material has been performed twice in total.

Claims (4)

微粒子表面にあるイオン性官能基と、
磁性体表面にあり、微粒子表面にあるイオン性官能基とは反対の電荷を有するイオン性官能基と
を反応させることを特徴とする、磁性微粒子分散液の製造方法。
An ionic functional group on the surface of the fine particles;
A method of producing a magnetic fine particle dispersion, comprising reacting an ionic functional group on the surface of a magnetic material and having an electric charge opposite to the ionic functional group on the surface of the fine particle.
微粒子表面にあるイオン性官能基と、
磁性体表面にあり、微粒子表面にあるイオン性官能基とは反対の電荷を有するイオン性官能基と
を反応させることを特徴とする、磁性微粒子の製造方法。
An ionic functional group on the surface of the fine particles;
A method for producing magnetic fine particles, comprising reacting an ionic functional group on the surface of a magnetic material and having an electric charge opposite to the ionic functional group on the surface of the fine particle.
請求項1または2に記載の方法において、微粒子表面にアニオン性官能基があり、磁性体表面にカチオン性官能基がある方法。   The method according to claim 1 or 2, wherein the fine particle surface has an anionic functional group and the magnetic material surface has a cationic functional group. 請求項1または2に記載の方法において、微粒子表面にカチオン性官能基があり、磁性体表面にアニオン性官能基がある方法。   3. The method according to claim 1 or 2, wherein the fine particle surface has a cationic functional group and the magnetic material surface has an anionic functional group.
JP2015042066A 2014-03-27 2015-03-04 Method of producing magnetic fine particle and dispersion of the same Pending JP2015192995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015042066A JP2015192995A (en) 2014-03-27 2015-03-04 Method of producing magnetic fine particle and dispersion of the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014066726 2014-03-27
JP2014066726 2014-03-27
JP2015042066A JP2015192995A (en) 2014-03-27 2015-03-04 Method of producing magnetic fine particle and dispersion of the same

Publications (1)

Publication Number Publication Date
JP2015192995A true JP2015192995A (en) 2015-11-05

Family

ID=54432560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042066A Pending JP2015192995A (en) 2014-03-27 2015-03-04 Method of producing magnetic fine particle and dispersion of the same

Country Status (1)

Country Link
JP (1) JP2015192995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184703A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Method for producing magnetic fine particle
JP2016184702A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Magnetic fine particle and method for producing dispersion liquid thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190466A (en) * 1985-12-20 1987-08-20 シンテツクス(ユ−・エス・エイ)インコ−ポレイテツド Method of separating particle
US5648124A (en) * 1993-07-09 1997-07-15 Seradyn, Inc. Process for preparing magnetically responsive microparticles
JP2001342377A (en) * 2000-05-30 2001-12-14 Nippon Shokubai Co Ltd Composite particles and manufacturing method therefor
JP2006275600A (en) * 2005-03-28 2006-10-12 Jsr Corp Magnetic particle, manufacturing method thereof, and carrier for biochemistry
JP2010208875A (en) * 2009-03-09 2010-09-24 Tokyo Institute Of Technology Magnetic hollow particle and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190466A (en) * 1985-12-20 1987-08-20 シンテツクス(ユ−・エス・エイ)インコ−ポレイテツド Method of separating particle
US5648124A (en) * 1993-07-09 1997-07-15 Seradyn, Inc. Process for preparing magnetically responsive microparticles
JP2001342377A (en) * 2000-05-30 2001-12-14 Nippon Shokubai Co Ltd Composite particles and manufacturing method therefor
JP2006275600A (en) * 2005-03-28 2006-10-12 Jsr Corp Magnetic particle, manufacturing method thereof, and carrier for biochemistry
JP2010208875A (en) * 2009-03-09 2010-09-24 Tokyo Institute Of Technology Magnetic hollow particle and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184703A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Method for producing magnetic fine particle
JP2016184702A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Magnetic fine particle and method for producing dispersion liquid thereof

Similar Documents

Publication Publication Date Title
Yan et al. Facile synthesis of Ti 4+-immobilized Fe 3 O 4@ polydopamine core–shell microspheres for highly selective enrichment of phosphopeptides
Zhang et al. Magnetic silica‐coated sub‐microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood
CN105214579A (en) Realize the processing method of micron or nanoscale porous material functionalization
JP2016194692A5 (en)
CN102443187B (en) Method for preparing porous membrane by using hydrophilic modified inorganic filler as porogenic agent
CN103920473B (en) The preparation method of carbon modifying titanium dioxide composite magnetic nano adsorber
WO2018003702A1 (en) Silver chloride paste
CN108671859B (en) Method for preparing Janus particles based on lysozyme nano-film
JP2015192995A (en) Method of producing magnetic fine particle and dispersion of the same
CN103055819A (en) Heavy metal ion adsorbent as well as preparation and application thereof
JP6555483B2 (en) Acicular strontium carbonate fine particles and dispersions thereof
JP2017111460A5 (en)
Song et al. Thermo-responsive adsorption and separation of amino acid enantiomers using smart polymer-brush-modified magnetic nanoparticles
CN107057611A (en) A kind of preparation method of polyacrylic hydrogels binder
US5864025A (en) Method of making magnetic, crosslinked chitosan support materials and products thereof
CN109718738B (en) Zirconia spherical adsorbent and preparation method and application thereof
CN107175064B (en) Magnetic microsphere silica gel and preparation method thereof
CN108314868A (en) A kind of lignin composite hydrogel and preparation method thereof
CN105061821B (en) A kind of preparation method of solution processable lotus positive electrical polyelectrolyte complex compound
JP6550836B2 (en) Method for producing magnetic fine particles
WO2018003698A1 (en) Electrode material
JP6578698B2 (en) Manufacturing method of magnetic fine particles
JP6507782B2 (en) Magnetic fine particle and method of manufacturing dispersion thereof
KR101328495B1 (en) Anionic polymer surface-treated ceramic particle and method thereof
CN106566308A (en) Cross-linked polyethyleneimine-modified calcium carbonate powder for waterborne paint and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190416