JP6505961B2 - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP6505961B2
JP6505961B2 JP2013082778A JP2013082778A JP6505961B2 JP 6505961 B2 JP6505961 B2 JP 6505961B2 JP 2013082778 A JP2013082778 A JP 2013082778A JP 2013082778 A JP2013082778 A JP 2013082778A JP 6505961 B2 JP6505961 B2 JP 6505961B2
Authority
JP
Japan
Prior art keywords
inner ring
wheel
annular groove
small diameter
diameter step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013082778A
Other languages
Japanese (ja)
Other versions
JP2014206192A (en
Inventor
純一 佐仲
純一 佐仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2013082778A priority Critical patent/JP6505961B2/en
Publication of JP2014206192A publication Critical patent/JP2014206192A/en
Application granted granted Critical
Publication of JP6505961B2 publication Critical patent/JP6505961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/185Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with two raceways provided integrally on a part other than a race ring, e.g. a shaft or housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、自動車等の車輪を懸架装置に対して回転自在に支承する車輪用軸受装置、特に、ハブ輪の揺動加締によって内輪が固定されたセルフリテイン構造において、この加締加工に伴う内輪の変形を抑えると共に、ハブ輪の強度を高めて耐久性の向上を図った車輪用軸受装置に関するものである。   The present invention relates to a bearing device for a wheel rotatably supporting a wheel of an automobile or the like with respect to a suspension device, in particular, a self-retaining structure in which an inner ring is fixed by rocking and clamping a hub ring. The present invention relates to a bearing device for a wheel, which suppresses the deformation of the inner ring and enhances the strength of the hub wheel to improve the durability.

自動車等の車両の車輪用軸受装置には、駆動輪用のものと従動輪用のものとがある。構造上の理由から、駆動輪用では内輪回転方式が、従動輪用では内輪回転と外輪回転の両方式が一般的に採用されている。この車輪用軸受装置には、懸架装置を構成するナックルとハブ輪との間に複列アンギュラ玉軸受等からなる車輪用軸受を嵌合させた第1世代と称される構造から、外方部材の外周に直接車体取付フランジまたは車輪取付フランジが形成された第2世代構造、また、ハブ輪の外周に一方の内側転走面が直接形成された第3世代構造、あるいは、ハブ輪と等速自在継手の外側継手部材の外周にそれぞれ内側転走面が直接形成された第4世代構造とに大別されている。   There are two types of wheel bearing devices for vehicles such as automobiles, one for drive wheels and one for driven wheels. For structural reasons, the inner ring rotation method is generally adopted for drive wheels, and the inner ring rotation and outer ring rotation methods are generally adopted for driven wheels. In this wheel bearing device, the outer member is constructed from a structure called first generation in which a wheel bearing consisting of double-row angular contact ball bearings and the like is fitted between a knuckle constituting a suspension system and a hub wheel. A second generation structure in which a car body mounting flange or a wheel mounting flange is directly formed on the outer periphery of the wheel, or a third generation structure in which one inner raceway is directly formed on the outer periphery of the hub wheel It is roughly divided into the fourth generation structure in which the inner raceway is directly formed on the outer periphery of the outer joint member of the universal joint.

こうした車輪用軸受装置において、内輪回転タイプのものでは、ハブ輪に嵌合される内輪を軸方向に固定する方式として、ハブ輪のインナー側の端部を加締めて固定するセルフリテイン構造が採用されている。従来構造の代表的な一例として、図7に示すような駆動輪用の車輪用軸受装置が知られている。なお、以下の説明では、車両に組み付けた状態で車両の外側寄りとなる側をアウター側(図面左側)、中央寄り側をインナー側(図面右側)という。   In such a wheel bearing apparatus, the inner ring rotation type adopts a self-retaining structure in which the inner end of the hub wheel is crimped and fixed as a method of fixing the inner ring fitted to the hub ring in the axial direction. It is done. As a representative example of the conventional structure, a wheel bearing apparatus for a driving wheel as shown in FIG. 7 is known. In the following description, the side closer to the outside of the vehicle in a state of being assembled to the vehicle is referred to as the outer side (left side in the drawing), and the side closer to the center is referred to as the inner side (right side in the drawing).

この車輪用軸受装置は、ハブ輪51と、このハブ輪51に圧入された車輪用軸受とからなる。図7(a)に示すように、ハブ輪51は、外周に軸方向に延びる円筒状の小径段部51aが形成され、車輪用軸受を構成する内輪52が圧入されている。そして、内輪52は、小径段部51aの端部を径方向外方に塑性変形させて形成した加締部54によって予圧が付与された状態で固定されている。内輪52の内側転走面52aの大径側には円錐ころ53を案内するための大鍔52bが形成されている。   The wheel bearing device comprises a hub wheel 51 and a wheel bearing press-fit into the hub wheel 51. As shown in FIG. 7A, in the hub wheel 51, a cylindrical small-diameter stepped portion 51a extending in the axial direction is formed on the outer periphery, and an inner ring 52 constituting a wheel bearing is press-fitted. The inner ring 52 is fixed in a state in which a preload is applied by a crimped portion 54 formed by plastically deforming the end portion of the small diameter step portion 51a outward in the radial direction. On the large diameter side of the inner raceway surface 52a of the inner ring 52, a grommet 52b for guiding the tapered roller 53 is formed.

そして、加締前のハブ輪51における小径段部51aの端部に、所定の深さdを有する中空状の円筒部55が形成されている。この深さdが深いほど、加締加工による内輪52の径方向外方への変形量は小さくなるが、加締強度(内輪固定力)が減少する。   A hollow cylindrical portion 55 having a predetermined depth d is formed at the end of the small diameter step portion 51a of the hub wheel 51 before caulking. The deeper the depth d, the smaller the amount of radial outward deformation of the inner ring 52 due to caulking, but the caulking strength (inner ring fixing force) decreases.

一方、インナー側の内輪52の内径端部に所定の深さδの段差部56が形成されている。この段差部56は、内側転走面52aの大径端に対応する位置から大端面52dに亙って、深さδ=0.5〜1.0mmの範囲に形成されている。また、内輪52における内径端部の面取り部52cは、曲率半径r1がR1.0〜2.5の範囲の円弧面を有している。内輪52における面取り部52cの曲率半径r1を1.0mmよりも小さく設定すると、車両の運転中に曲げモーメント荷重が装置に負荷された時、加締部54の根元部分に応力集中が起こり、微小クラック等の損傷が発生する恐れがある。逆に、曲率半径r1が2.5mmを超えると、円筒部55を塑性変形する際、内輪52を径方向外方に押し広げることになり、内輪52の大鍔52bが傾斜すると共に、外径等にフープ応力が発生して好ましくない。   On the other hand, a step 56 with a predetermined depth δ is formed at the inner diameter end of the inner ring 52 on the inner side. The stepped portion 56 is formed in a range of depth δ = 0.5 to 1.0 mm from the position corresponding to the large diameter end of the inner raceway surface 52a to the large end face 52d. The chamfered portion 52c at the inner diameter end of the inner ring 52 has a circular arc surface with a curvature radius r1 in the range of R1.0 to 2.5. If the curvature radius r1 of the chamfered portion 52c in the inner ring 52 is set smaller than 1.0 mm, stress concentration occurs at the root portion of the crimped portion 54 when a bending moment load is applied to the device during operation of the vehicle. Damage such as cracks may occur. Conversely, when the radius of curvature r1 exceeds 2.5 mm, when plastic deformation of the cylindrical portion 55, the inner ring 52 is pushed outward in the radial direction, and the gutter 52b of the inner ring 52 is inclined and the outer diameter And hoop stress is generated.

このように、加締部54側の内輪52の内径端部に所定の段差部56を形成すると共に、面取り部52cの曲率半径r1を所定の範囲に設定することにより、加締荷重によって生じる内輪52の変形を抑制し、外径等に発生するフープ応力を軽減すると共に、加締部54に微小クラック等の損傷が発生するのを抑えることができる。   As described above, by forming the predetermined stepped portion 56 at the inner diameter end of the inner ring 52 on the caulking portion 54 side, and setting the curvature radius r1 of the chamfered portion 52c in the predetermined range, the inner ring generated by the caulking load The deformation of 52 can be suppressed, the hoop stress generated in the outer diameter and the like can be reduced, and the occurrence of damage such as a micro crack in the crimped portion 54 can be suppressed.

さらに内輪52だけでなく、図7(b)に示すように、小径段部51aの端部に環状溝57を形成し、揺動加締による内輪52、特に、大鍔52bの変形を防止している。この環状溝57は円筒部55の外周に、内輪52における内側転走面52aの大径端に対応する位置から内輪52の大端面52dを越えて形成され、深さn=0.5〜1.0mmの範囲に設定されると共に、両端部に所定の曲率半径Ri、Roからなる円弧面57a、57bが形成されている。インナー側の円弧面57aの曲率半径Riは、内輪52の面取り部52cの曲率半径r1よりも大きく、アウター側の円弧面57bの曲率半径Roよりも小さく設定され(r1≦Ri≦Ro)、RiがR1〜10の範囲に設定されている。   Furthermore, as shown in FIG. 7 (b), not only the inner ring 52 but also the annular groove 57 is formed at the end of the small diameter step portion 51 a to prevent deformation of the inner ring 52, particularly the girdle 52 b due to rocking and caulking. ing. The annular groove 57 is formed on the outer periphery of the cylindrical portion 55 from the position corresponding to the large diameter end of the inner raceway surface 52a of the inner ring 52 beyond the large end face 52d of the inner ring 52, depth n = 0.5 to 1 An arc surface 57a, 57b having a predetermined radius of curvature Ri, Ro is formed at both ends while being set in the range of 0. 0 mm. The curvature radius Ri of the inner side arc surface 57a is set larger than the curvature radius r1 of the chamfered portion 52c of the inner ring 52 and smaller than the curvature radius Ro of the outer side arc surface 57b (r1 ≦ Ri ≦ Ro). Is set in the range of R1-10.

このように、円筒部55の外周面に環状溝57を形成することにより、加締加工時に円筒部55が変形し易くなり、内輪52の変形を抑えることができる(例えば、特許文献1参照。)。   As described above, by forming the annular groove 57 on the outer peripheral surface of the cylindrical portion 55, the cylindrical portion 55 can be easily deformed at the time of caulking and deformation of the inner ring 52 can be suppressed (see, for example, Patent Document 1). ).

特開2007−232116号公報Japanese Patent Application Publication No. 2007-232116

この従来の車輪用軸受装置では、ハブ輪51における小径段部51aの端部を揺動加締する際、内輪52が径方向外方に押し広げられることになっても内輪52が変形するのを防止することができる。然しながら、内輪52の内側転走面52aの位置とハブ輪51の小径段部51aの端部に形成される環状溝57の位置関係によっては、内輪52のフープ応力による変形を抑えることができない恐れがある。特に、ハブ輪51の小径段部51aの外周面に高周波焼入れによる硬化層を形成する場合、その硬化層の範囲によって揺動加締による小径段部51aの変形部位が異なるため、内輪52の変形を防止できないだけでなく、加締部54に微小クラック等の損傷が発生する恐れがあった。   In this conventional wheel bearing device, when the end of the small diameter step portion 51a of the hub wheel 51 is rocked and caulked, the inner ring 52 is deformed even if the inner ring 52 is pushed outward in the radial direction. Can be prevented. However, depending on the position of the inner raceway surface 52a of the inner ring 52 and the positional relationship between the annular groove 57 formed at the end of the small diameter step portion 51a of the hub ring 51, the fear that the hoop stress of the inner ring 52 can not be suppressed. There is. In particular, when forming a hardened layer by induction hardening on the outer peripheral surface of the small diameter step portion 51a of the hub wheel 51, the deformation portion of the small diameter step portion 51a by swinging caulking differs depending on the range of the hardened layer. In addition, the caulking portion 54 may be damaged, such as a micro crack.

ここで、内輪52の幅寸法を長くして剛性を高めることもできるが、内輪52の幅が長くなれば軽量・コンパクト化が阻害されるだけでなく、コストアップの要因になって好ましくない。   Here, although the width dimension of the inner ring 52 can be lengthened to enhance the rigidity, if the width of the inner ring 52 is increased, not only the reduction in weight and compactness is hindered but it is not preferable because it causes a cost increase.

本発明は、このような従来の問題に鑑みてなされたもので、ハブ輪の揺動加締によって内輪が固定された第1乃至第3世代構造の車輪用軸受装置において、内輪の内側転走面の位置とハブ輪の小径段部の端部に形成される環状溝の位置関係に着眼し、加締加工に伴う内輪の変形を抑え、ハブ輪の強度を高めて耐久性の向上を図った車輪用軸受装置を提供することを目的とする。   The present invention has been made in view of such conventional problems, and in the first to third generation wheel bearing devices in which the inner ring is fixed by rocking and tightening the hub ring, the inner race of the inner ring is formed. Focusing on the position of the surface and the position of the annular groove formed at the end of the small diameter step of the hub ring, the deformation of the inner ring due to the caulking process is suppressed, and the strength of the hub ring is enhanced to improve the durability. It is an object of the present invention to provide a wheel bearing device.

係る目的を達成すべく、本発明のうち請求項1に記載の発明は、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、この車輪取付フランジから軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入された少なくとも一つの内輪からなり、外周に前記複列の外側転走面に対向する複列の内側転走面が形成された内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、前記小径段部の端部を径方向外方に塑性変形させて形成した加締部により前記内輪が軸方向に固定された車輪用軸受装置において、前記小径段部の端部の外周面に環状溝が形成され、前記環状溝のアウター側の縁部は前記内輪のインナー側の大端面よりアウター側に位置し、前記環状溝のインナー側の縁部は前記内輪のインナー側の大端面よりインナー側に位置しており、前記小径段部の外周面に高周波焼入れによって所定の硬化層が形成されると共に、この硬化層のインナー側の境界と前記環状溝のアウター側の縁部との間は非硬化層であって、前記非硬化層は軸方向距離が4.5mm以内に設定されており、かつ、前記内輪の前記内側転走面と前記転動体との前記接触位置は、前記硬化層のインナー側の境界と前記環状溝のアウター側の縁部との間に設けられている。 In order to achieve the above object, the invention according to claim 1 of the present invention is an outer member in which double rows of outer raceways are integrally formed on the inner periphery, and a wheel for attaching a wheel to one end. A hub ring integrally formed with a mounting flange and having a small diameter step portion extending in the axial direction from the wheel mounting flange, and at least one inner ring press-fit to the small diameter step portion of the hub ring through a predetermined mesh. And an inner member having a plurality of rows of inner rolling surfaces opposed to the outer row of the plurality of rows formed on the outer periphery, and a cage between the two rolling surfaces of the inner member and the outer member. The inner ring is axially fixed by a crimped portion formed by plastically deforming the end portion of the small diameter step portion outward in the radial direction; in the bearing device for a wheel, an annular groove formed on the outer peripheral surface of the end portion of the cylindrical portion, wherein Outer side edges of the shaped groove is located on the outer side of the large end face of the inner side of the inner ring, the inner side of the edge portion of the annular groove is located on the inner side of the large end face of the inner side of the inner ring A predetermined hardened layer is formed on the outer peripheral surface of the small diameter stepped portion by induction hardening, and a non-hardened layer is formed between the inner side boundary of the hardened layer and the outer side edge of the annular groove The axial distance of the non-hardened layer is set to 4.5 mm or less, and the contact position of the inner raceway surface of the inner ring and the rolling element is at the boundary of the inner side of the hardened layer It is provided between the outer edge of the annular groove and the outer edge.

このように、ハブ輪の小径段部に内輪が圧入され、小径段部の端部を径方向外方に塑性変形させて形成した加締部により、ハブ輪に対して内輪を軸方向に固定したセルフリテイン構造の車輪用軸受装置において、小径段部の端部の外周面に環状溝が形成され、環状溝のアウター側の縁部は内輪のインナー側の大端面よりアウター側に位置し、環状溝のインナー側の縁部は内輪のインナー側の大端面よりインナー側に位置しており、前記小径段部の外周面に高周波焼入れによって所定の硬化層が形成されると共に、この硬化層のインナー側の境界と環状溝のアウター側の縁部との間は非硬化層であって、非硬化層は軸方向距離が4.5mm以内に設定されており、かつ、内輪の内側転走面と転動体との接触位置は、硬化層のインナー側の境界と環状溝のアウター側の縁部との間に設けられているので、硬化層による加締加工に伴う内輪のフープ応力を抑え、ハブ輪の強度を高めて耐久性の向上を図ることができる。 Thus, the inner ring is press-fit into the small diameter step portion of the hub wheel, and the inner ring is axially fixed to the hub ring by the caulking portion formed by plastically deforming the end portion of the small diameter step outward in the radial direction. In the self bearing bearing device for wheels, an annular groove is formed on the outer peripheral surface of the end of the small diameter step portion, and the outer edge of the annular groove is located on the outer side from the large end surface of the inner side of the inner ring, The inner side edge of the annular groove is located on the inner side of the large end face on the inner side of the inner ring, and a predetermined hardened layer is formed on the outer peripheral surface of the small diameter step by induction hardening. A non-hardened layer is formed between the inner side boundary and the outer edge of the annular groove, and the non-hardened layer has an axial distance of 4.5 mm or less, and the inner raceway surface of the inner ring And the contact position of the rolling element with the boundary of the inner side of the hardened layer Since is provided between the outer side edge of the shaped groove, the inner ring of the hoop stress caused by caulking by hardening layer suppressed, it is possible to improve the durability by increasing the strength of the hub wheel.

好ましくは、請求項に記載の発明のように、前記環状溝のアウター側の縁部と前記小径段部の外周面上で、前記内輪の内側転走面のエッジ部に対応する軸方向位置との軸方向距離が2.5mm以上に設定されていても良い。 Preferably, as in the invention according to claim 2 , an axial position corresponding to the edge portion of the inner raceway surface of the inner ring on the outer edge of the annular groove and the outer peripheral surface of the small diameter step portion. The axial distance between and may be set to 2.5 mm or more.

また、請求項に記載の発明のように、前記内輪の外径部のインナー側に小径部が形成されていれば、軽量化を図りつつ、内輪のフープ応力を抑制することができると共に、内輪の大端面側の体積を調整して加締加工による軸受内部すきまへの影響を最小限に抑えることができる。 Further, as in the invention according to claim 3 , when the small diameter portion is formed on the inner side of the outer diameter portion of the inner ring, it is possible to suppress the hoop stress of the inner ring while achieving weight reduction. The volume on the large end face side of the inner ring can be adjusted to minimize the influence of the caulking on the bearing internal clearance.

また、請求項に記載の発明のように、前記環状溝におけるインナー側の円弧面の曲率半径Riが前記内輪における面取り部の曲率半径r1よりも大きく、かつアウター側の円弧面の曲率半径Roよりも小さく(r1≦Ri≦Ro)、当該曲率半径RiがR1〜10の範囲に設定されていれば、加締加工時に端部が変形し易くなると共に、内輪押込み量を確保して内輪の変形を抑えることができる。 Further, as in the invention according to claim 4 , the radius of curvature Ri of the arc surface on the inner side of the annular groove is larger than the radius of curvature r1 of the chamfered portion of the inner ring, and the radius of curvature Ro of the arc surface on the outer side If the curvature radius Ri is set in the range of R1 to R10, the end is easily deformed during caulking and the inner ring pressing amount is secured to make the inner ring The deformation can be suppressed.

また、請求項に記載の発明のように、前記内輪の加締部側の面取り部が、曲率半径r1がR1.0〜2.5からなる円弧面を備えていれば、加締荷重によって生じる内輪の外径の弾性変形を抑制して外径に発生するフープ応力を軽減すると共に、加締部に微小クラック等の損傷が発生するのを抑えることができる。 Further, as in the invention according to claim 5 , if the chamfer on the caulking part side of the inner ring is provided with a circular arc surface having a curvature radius r1 of R1.0 to 2.5, the caulking load may be generated. While suppressing the elastic deformation of the outer diameter of the inner ring which arises and reducing the hoop stress which generate | occur | produces in an outer diameter, it can suppress that damage, such as a micro crack, generate | occur | produces in a crimp part.

本発明に係る車輪用軸受装置は、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、この車輪取付フランジから軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入された少なくとも一つの内輪からなり、外周に前記複列の外側転走面に対向する複列の内側転走面が形成された内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、前記小径段部の端部を径方向外方に塑性変形させて形成した加締部により前記内輪が軸方向に固定された車輪用軸受装置において、前記小径段部の端部の外周面に環状溝が形成され、前記環状溝のアウター側の縁部は前記内輪のインナー側の大端面よりアウター側に位置し、前記環状溝のインナー側の縁部は前記内輪のインナー側の大端面よりインナー側に位置しており、前記小径段部の外周面上で、前記内輪の内側転走面のタッチ部に対応する軸方向位置との間は非硬化層であって、前記非硬化層は軸方向距離が4.5mm以内に設定されており、かつ、前記内輪の前記内側転走面と前記転動体との前記接触位置は、前記硬化層のインナー側の境界と前記環状溝のアウター側の縁部との間に設けられているので、加締加工に伴う内輪のフープ応力を抑え、ハブ輪の強度を高めて耐久性の向上を図った車輪用軸受装置を提供することができる。 The wheel bearing device according to the present invention integrally includes an outer member in which a plurality of rows of outer race surfaces are integrally formed on the inner periphery, and a wheel mounting flange for attaching a wheel to one end thereof. A hub ring formed with a small diameter step portion extending in the axial direction from a mounting flange, and at least one inner ring press-fit to the small diameter step portion of the hub ring via a predetermined meshing, An inner member formed with a plurality of rows of inner rolling surfaces opposed to the running surface, and a plurality of rollers housed rotatably between the rolling surfaces of the inner member and the outer member via a cage. A bearing apparatus for a wheel, comprising a row of rolling elements, wherein the inner ring is fixed in the axial direction by a caulking portion formed by plastically deforming the end of the small diameter step outward in the radial direction. is an annular groove on the outer peripheral surface of the end portion is formed, the outer side edge of the annular groove before Located on the outer side of the large end face of the inner ring of the inner side edges of the inner side of the annular groove is located on the inner side of the large end face of the inner side of the inner ring, on the said cylindrical portion outer peripheral surface of the The non-hardened layer is between the axial position corresponding to the touch portion of the inner raceway surface of the inner ring, and the non-hardened layer has an axial distance of 4.5 mm or less, and Since the contact position of the inner raceway surface of the inner ring and the rolling element is provided between the inner side boundary of the hardened layer and the outer side edge of the annular groove, the crimping process Accordingly, it is possible to provide a wheel bearing device in which the hoop stress of the inner ring is suppressed and the strength of the hub wheel is enhanced to improve the durability.

本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図である。1 is a longitudinal sectional view showing a first embodiment of a bearing device for a wheel according to the present invention. (a)は、図1の加締前のハブ輪と内輪の要部拡大を示す参考図、(b)は、図1の加締前のハブ輪と内輪を示す要部拡大図である。(A) is a reference view showing a main part enlarged of the wheel hub and the inner ring before caulking in FIG 1, (b) is an enlarged view showing a hub wheel and an inner ring before caulking in FIG. (a)は、図2の変形例を示す要部拡大図、(b)は、(a)の変形例を示す要部拡大図である。(A) is a fragmentary enlarged view showing a modification Katachirei in FIG 2, (b) is an enlarged view showing a modified example of (a). (a)は、図1の他の変形例を示す要部拡大図、(b)は、(a)の変形例を示す要部拡大図である。(A) is a principal part enlarged view which shows the other modification of FIG. 1, (b) is a principal part enlarged view which shows the modification of (a). 本発明に係る環状溝の位置によるハブ輪の膨張量の測定結果を示すグラフである。It is a graph which shows the measurement result of the expansion amount of the hub ring by the position of the annular groove which concerns on this invention. 本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the bearing apparatus for wheels which concerns on this invention. 従来の車輪用軸受装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional bearing apparatus for wheels.

外周に車体に取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、この車輪取付フランジから軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入され、外周に前記複列の外側転走面に対向する内側転走面が形成された一対の内輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、前記小径段部の端部を径方向外方に塑性変形させて形成した加締部により前記内輪が軸方向に固定された車輪用軸受装置において、前記小径段部の端部が加締前に中空状の円筒部として形成され、この円筒部の外周面に0.5〜1.0mmの深さの環状溝が形成されると共に、この環状溝が、前記内輪のインナー側の端部から大端面を越えて形成され、円筒面の両側に所定の曲率半径Ri、Roからなる円弧面が形成されると共に、前記小径段部の外周面に高周波焼入れによって所定の硬化層が形成され、前記環状溝のアウター側の縁部と、前記硬化層のインナー側の境界との軸方向距離が4.5mm以上に、かつ前記小径段部の外周面上で、前記内輪の内側転走面のタッチ部に対応する軸方向位置との軸方向距離が2.5mm以上に設定されている。   An outer member integrally provided with a vehicle body mounting flange for being attached to a vehicle body on the outer periphery, and an outer member having a double row of outer raceways integrally formed on the inner periphery, and a wheel mounting flange for attaching a wheel to one end A hub ring integrally formed and having a small diameter step portion extending in the axial direction from the wheel mounting flange, and press-fitted to the small diameter step portion of the hub ring through a predetermined shimmer, An inner member consisting of a pair of inner rings having an inner rolling surface opposed to the running surface, and rollably housed via a cage between both rolling surfaces of the inner member and the outer member In the wheel bearing device, the inner ring is fixed in the axial direction by a crimped portion formed by plastic deformation of the end portion of the small diameter step portion outward in the radial direction. The end of the step is formed as a hollow cylinder prior to crimping and this circle An annular groove having a depth of 0.5 to 1.0 mm is formed on the outer peripheral surface of the part, and the annular groove is formed from the end of the inner side of the inner ring beyond the large end face, and both sides of the cylindrical surface An arc surface having a predetermined curvature radius Ri, Ro is formed on the outer circumferential surface of the small diameter step portion, and a predetermined hardened layer is formed on the outer circumferential surface of the small diameter stepped portion. Axial distance to the inner side boundary of the layer is 4.5 mm or more, and axial distance to an axial position corresponding to the touch portion of the inner raceway surface of the inner ring on the outer peripheral surface of the small diameter step portion Is set to 2.5 mm or more.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図、図2(a)は、図1の加締前のハブ輪と内輪の要部拡大を示す参考図、(b)は、図1の加締前のハブ輪と内輪を示す要部拡大図、図3(a)は、図2の変形例を示す要部拡大図、(b)は、(a)の変形例を示す要部拡大図、図4(a)は、図1の他の変形例を示す要部拡大図、(b)は、(a)の変形例を示す要部拡大図、図5は、本発明に係る環状溝の位置によるハブ輪の膨張量の測定結果を示すグラフである。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
Figure 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing apparatus of the present invention, FIG. 2 (a), reference diagram showing a main portion of the hub wheel and the inner ring before caulking enlarged in FIG 1 , (b) is a fragmentary enlarged view showing a hub wheel and an inner ring before caulking in FIG. 1, FIG. 3 (a), enlarged view showing a modification Katachirei in FIG 2, (b), the ( FIG. 4A is a main part enlarged view showing another modification of FIG. 1, and FIG. 4B is a main part enlarged view showing a modification of FIG. FIG. 5 is a graph showing measurement results of the amount of expansion of the hub wheel according to the position of the annular groove according to the present invention.

この車輪用軸受装置は従動輪側の第2世代構造をなし、ハブ輪1と、このハブ輪1に圧入された車輪用軸受2とからなる。ハブ輪1は、アウター側の端部に径方向に複数突出して形成された車輪(図示せず)を取り付けるための車輪取付フランジ3を一体に有し、外周に肩部1aを介して軸方向に延びる小径段部1bが形成されている。なお、車輪取付フランジ3の周方向等配位置にはハブボルト3aが植設されている。   The wheel bearing device has a second generation structure on the driven wheel side, and includes a hub wheel 1 and a wheel bearing 2 press-fit into the hub wheel 1. The hub wheel 1 integrally has a wheel mounting flange 3 for attaching a plurality of radially projecting protruding wheels (not shown) to an end portion on the outer side, and an axial direction through a shoulder portion 1a on the outer periphery A small diameter step 1b is formed extending in In addition, the hub bolt 3a is implanted by the circumferential direction equidistant position of the wheel attachment flange 3. As shown in FIG.

ハブ輪1はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、車輪取付フランジ3の基部となる肩部1aから小径段部1bに亙って高周波焼入れによって50〜64HRCの範囲に表面が硬化処理されている。なお、後述する加締部8は鍛造後の表面硬さ25HRC以下の生のままとされている。これによりハブ輪1の強度が向上すると共に、後述する一対の内輪5、5の嵌合面におけるフレッティング摩耗が抑制されて耐久性が向上する。また、加締部8の加工性を向上させ、塑性変形によるクラック等の発生を防止することができる。   The hub wheel 1 is formed of medium-high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and 50 to 50 by the induction hardening from the shoulder 1a to the base of the wheel mounting flange 3 to the small diameter step 1b. The surface is hardened in the range of 64 HRC. In addition, the caulking part 8 mentioned later is taken as raw as surface hardness 25HRC or less after forging. As a result, the strength of the hub wheel 1 is improved, and fretting wear on the fitting surfaces of a pair of inner rings 5, 5 described later is suppressed, and the durability is improved. In addition, the processability of the crimped portion 8 can be improved, and the occurrence of cracks and the like due to plastic deformation can be prevented.

車輪用軸受2は、外周に車体(図示せず)に取り付けられるための車体取付フランジ4bを一体に有し、内周に複列の外側転走面4a、4aが一体に形成された外方部材4と、外周に複列の外側転走面4a、4aに対向する内側転走面5aが形成された一対の内輪5、5と、両転走面間に保持器6、6を介して転動自在に収容された複列の転動体(ボール)7、7とを備え、一対の内輪5、5の小径側の端面(正面側端面)が突き合された状態でセットされた背面合せタイプの複列のアンギュラ玉軸受を構成している。   The wheel bearing 2 integrally has a vehicle body mounting flange 4b for attaching to a vehicle body (not shown) on the outer periphery, and an outer side where the double row outer raceway surfaces 4a and 4a are integrally formed on the inner periphery. Member 4, a pair of inner rings 5, 5 on the outer periphery of which inner rolling surfaces 5a are formed opposite to the outer rolling surfaces 4a, 4a, and cages 6, 6 between both rolling surfaces A back-to-back set including a plurality of rows of rolling elements (balls) 7 accommodated rotatably and the end surfaces (front end surfaces) on the small diameter side of the pair of inner rings 5, 5 butt fitted together It constitutes a double-row angular contact ball bearing of the type.

外方部材4および内輪5、5はSUJ2等の高炭素クロム鋼で形成され、ズブ焼入れによって芯部まで58〜64HRCの範囲に硬化処理されている。なお、外方部材4は、高炭素クロム鋼に限らず、S53C等の炭素0.40〜0.80wt%を含む中高炭素鋼(JIS規格のSC系機械構造用炭素鋼)で形成し、少なくとも複列の外側転走面4a、4aを高周波焼入れによって58〜64HRCの範囲に表面を硬化処理しても良い。   The outer member 4 and the inner rings 5 and 5 are formed of high carbon chromium steel such as SUJ 2 and hardened by a quenching method in the range of 58 to 64 HRC to the core portion. The outer member 4 is not limited to high carbon chromium steel, but is formed of medium and high carbon steel (carbon steel for SC system mechanical structure according to JIS standard) containing 0.40 to 0.80 wt% of carbon such as S53C, The surface may be hardened to a range of 58 to 64 HRC by induction hardening of the double rows of outer raceway surfaces 4a, 4a.

車輪用軸受2は、ハブ輪1の肩部1aにアウター側の内輪5の大端面5dが衝合した状態で小径段部1bに所定のシメシロを介して圧入されている。そして、小径段部1bの端部を径方向外方に塑性変形させて形成した加締部8によって所定の軸受予圧が付与された状態で軸方向に固定されている。これにより、従来のように、固定ナットの締付トルク等を調整して予圧を管理することなく、長期間に亘って安定した予圧を維持できるセルフリテイン構造を提供することができる。   The wheel bearing 2 is press-fitted to the small diameter step 1b via a predetermined shimeshiro in a state where the large end face 5d of the inner ring 5 on the outer side abuts on the shoulder 1a of the hub wheel 1. And it is being fixed in the direction of an axis in the state where predetermined bearing pre-load was given by caulking part 8 which made the end of small diameter step 1b plastically deform outward, and was formed. As a result, it is possible to provide a self-retaining structure capable of maintaining a stable preload over a long period of time without adjusting the tightening torque and the like of the fixing nut and managing the preload as in the prior art.

外方部材4と内輪5、5との間に形成される環状空間の開口部にはシール9、9が装着されている。これらシール9、9は、断面が略L字状に形成されて互いに対向配置された環状のシール板10とスリンガ11とからなる、所謂パックシールで構成されている。これらシール9、9により、軸受内部に封入された潤滑グリースの外部への漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。   Seals 9 are attached to the opening of an annular space formed between the outer member 4 and the inner rings 5. These seals 9, 9 are so-called pack seals consisting of an annular seal plate 10 having a substantially L-shaped cross section and opposed to each other, and a slinger 11. The seals 9, 9 prevent the leakage of the lubricating grease sealed inside the bearing and the intrusion of rain water, dust and the like from the outside into the bearing interior.

なお、本実施形態では、転動体7にボールを使用した複列アンギュラ玉軸受で構成された車輪用軸受装置を例示したが、これに限らず、例えば、転動体7に円すいころを用いた複列の円すいころ軸受で構成されていても良い。   In addition, although the wheel bearing apparatus comprised with the double-row angular contact ball bearing which used the ball for the rolling element 7 was illustrated in this embodiment, it does not restrict to this, for example, the compound which used the tapered roller for the rolling element 7 It may consist of a row of tapered roller bearings.

本実施形態では、図2(a)、(b)に拡大して示すように、加締前のハブ輪1における小径段部1bの端部に、所定の深さdを有する中空状の円筒部12が形成されている。この深さdが深いほど、加締加工による内輪5の径方向外方への変形量は小さくなるが、加締強度(内輪固定力)が減少する。なお、加締部8を図中二点鎖線にて示す。 In this embodiment, as shown enlarged in FIGS. 2 (a) and 2 ( b) , a hollow cylinder having a predetermined depth d at the end of the small diameter step 1b of the hub wheel 1 before tightening. The part 12 is formed. The deeper the depth d, the smaller the amount of radial outward deformation of the inner ring 5 due to caulking, but the caulking strength (inner ring fixing force) decreases. The caulking portion 8 is indicated by a two-dot chain line in the drawing.

一方、加締側の内輪5における内径端部の面取り部5cは、曲率半径r1がR1.0〜2.5の範囲の円弧面を有している。この内輪5における面取り部5cの曲率半径r1を1.0mmよりも小さく設定すると、車両の運転中に曲げモーメント荷重が装置に負荷された時、加締部8の根元部分に応力集中が起こり、微小クラック等の損傷が発生する恐れがある。逆に、曲率半径r1が2.5mmを超えると、円筒部12を塑性変形する際、内輪5を径方向外方に押し広げることになり、内輪5の外径面5bが傾斜してフープ応力が発生して好ましくない。   On the other hand, the chamfered portion 5c of the inner diameter end of the crimped inner ring 5 has a circular arc surface with a radius of curvature r1 in the range of R1.0 to 2.5. If the curvature radius r1 of the chamfered portion 5c in the inner ring 5 is set smaller than 1.0 mm, stress concentration occurs at the root portion of the crimped portion 8 when a bending moment load is applied to the device during operation of the vehicle. Damage such as micro cracks may occur. Conversely, when the radius of curvature r1 exceeds 2.5 mm, when the cylindrical portion 12 is plastically deformed, the inner ring 5 is pushed outward in the radial direction, and the outer diameter surface 5b of the inner ring 5 is inclined and hoop stress is generated. Is not desirable.

このように、加締部8側の内輪5の内径端部の面取り部5cの曲率半径r1を所定の範囲に設定することにより、加締荷重によって生じる内輪5の変形を抑制し、外径面5bに発生するフープ応力を軽減すると共に、加締部8に微小クラック等の損傷が発生するのを抑えることができる。   Thus, by setting the curvature radius r1 of the chamfered portion 5c of the inner diameter end of the inner ring 5 on the caulking portion 8 side within a predetermined range, the deformation of the inner ring 5 caused by the caulking load is suppressed, and the outer diameter surface While reducing the hoop stress which generate | occur | produces to 5b, it can suppress that damage, such as a micro crack, generate | occur | produces in the crimping part 8. FIG.

さらに、小径段部1bの端部に環状溝(アンダーカット)13を形成し、揺動加締による内輪5の変形を防止している。この環状溝13は円筒部12の外周に形成されている。この環状溝13は、内輪5における内側転走面5aと転動体7との接触位置P(以下、タッチ部Pという)に対応する軸方向位置から内輪5の大端面5dを越えて形成され、深さn=0.5〜1.0mmの範囲に設定されると共に、円筒面13aの両端部に所定の曲率半径Ri、Roからなる円弧面13b、13cが形成されている。インナー側の円弧面13bの曲率半径Riは、内輪5の面取り部5cの曲率半径r1よりも大きく、アウター側の円弧面13cの曲率半径Roよりも小さく設定され(r1≦Ri≦Ro)、RiがR1〜10の範囲に設定されている。   Further, an annular groove (undercut) 13 is formed at the end of the small diameter step portion 1b to prevent the deformation of the inner ring 5 due to the swing and caulking. The annular groove 13 is formed on the outer periphery of the cylindrical portion 12. The annular groove 13 is formed from the axial position corresponding to the contact position P (hereinafter referred to as the touch portion P) between the inner raceway surface 5a of the inner ring 5 and the rolling element 7 beyond the large end face 5d of the inner ring 5. The depth n is set in the range of 0.5 to 1.0 mm, and arc surfaces 13b and 13c having predetermined curvature radii Ri and Ro are formed at both ends of the cylindrical surface 13a. The curvature radius Ri of the inner side arc surface 13b is set larger than the curvature radius r1 of the chamfered portion 5c of the inner ring 5 and smaller than the curvature radius Ro of the outer side arc surface 13c (r1 ≦ Ri ≦ Ro). Is set in the range of R1-10.

このように、円筒部12の外周面に環状溝13を形成することにより、加締加工時に円筒部12が変形し易くなり、内輪5の変形を抑えることができる。ただし、環状溝13の深さnが0.5mmよりも小さいとその効果が薄れ、また、深さnが1.0mmを超えると、内輪押込み量(加締力)が不足して所望の内輪5の固定力が得られない。   As described above, by forming the annular groove 13 on the outer peripheral surface of the cylindrical portion 12, the cylindrical portion 12 is easily deformed at the time of caulking and the deformation of the inner ring 5 can be suppressed. However, if the depth n of the annular groove 13 is smaller than 0.5 mm, the effect is weakened, and if the depth n exceeds 1.0 mm, the inner ring pushing amount (clamping force) is insufficient and the desired inner ring The fixing force of 5 is not obtained.

ここで、環状溝13のアウター側の縁部は、小径段部1bの外周面に形成された硬化層14のインナー側の境界から所定の軸方向距離aを隔てて設定されている。本出願人が実施した試験では、小径段部1bの外周面に硬化層14を形成しない場合、加締加工によって小径段部1bの膨張が環状溝13のアウター側の縁部から4.5mm付近で始まることが検証されている(図5参照)。   Here, the outer edge of the annular groove 13 is set at a predetermined axial distance a from the inner boundary of the hardened layer 14 formed on the outer peripheral surface of the small diameter step 1 b. In a test conducted by the present applicant, when the hardened layer 14 is not formed on the outer peripheral surface of the small diameter step portion 1b, the expansion of the small diameter step portion 1b is approximately 4.5 mm from the outer edge of the annular groove 13 by caulking It is verified that it starts with (see FIG. 5).

ここで、図3(a)に示すように、環状溝13のアウター側の縁部から4.5mm付近で小径段部1bの膨張が始まるため、小径段部1bの外周面上で、内輪5”の内側転走面5aのタッチ部Pに対応する軸方向位置と環状溝13のアウター側の縁部との軸方向距離b’を、b’≧4.5mmに設定することにより、加締加工に伴う内輪5”のタッチ部Pのフープ応力を抑えることができる。   Here, as shown in FIG. 3A, since the small diameter step 1b starts to expand around 4.5 mm from the outer edge of the annular groove 13, the inner ring 5 is formed on the outer peripheral surface of the small diameter step 1b. The axial distance b 'between the axial position corresponding to the touch portion P of the inner raceway surface 5a and the outer edge of the annular groove 13 is set to b'.gtoreq.4.5 mm. The hoop stress of the touch portion P of the inner ring 5 ′ ′ accompanying the processing can be suppressed.

ここで、内輪5”のエッジ部から大端面5dまでの幅寸法が拡大して重量が増加する場合、図3(b)に示すように、内輪15の外径部のインナー側を削除して小径部16を設け、前述した図2(a)に示す内輪15のエッジ部から大端面5dまでの重量と同等に設定することにより、軽量化を図りつつ、内輪15のフープ応力を抑制することができる。また、内輪15の大端面側の体積が同等なので、加締加工による軸受内部すきまへの影響を最小限に抑えることができる。   Here, when the width dimension from the edge portion of the inner ring 5 '' to the large end face 5d is expanded and the weight is increased, the inner side of the outer diameter portion of the inner ring 15 is deleted as shown in FIG. The hoop stress of the inner ring 15 is suppressed while achieving weight reduction by providing the small diameter portion 16 and setting the weight equal to the weight from the edge portion of the inner ring 15 to the large end face 5d shown in FIG. In addition, since the volume on the large end face side of the inner ring 15 is equal, the influence of the caulking on the bearing internal clearance can be minimized.

また、図4(a)に示すように、小径段部1bの外周面上で、内輪15’の内側転走面5aのエッジ部Qに対応する軸方向位置と環状溝13のアウター側の縁部との軸方向距離c’を、c’≧4.5mmに設定することにより、加締加工に伴う内輪15’の内側転走面5aのフープ応力を抑えることができる。   Further, as shown in FIG. 4A, the axial position corresponding to the edge portion Q of the inner raceway surface 5a of the inner ring 15 'and the outer edge of the annular groove 13 on the outer peripheral surface of the small diameter step 1b. By setting the axial distance c 'to the portion as c' ≧ 4.5 mm, it is possible to suppress the hoop stress of the inner raceway surface 5a of the inner ring 15 'accompanying the caulking process.

ここで、内輪15’のエッジ部から大端面5dまでの幅寸法が拡大して重量が増加する場合、図4(b)に示すように、内輪17の外径部のインナー側を削除して小径部16を設け、前述した図2(b)に示す内輪5’のエッジ部から大端面5dまでの重量と同等に設定することにより、軽量化を図りつつ、内輪17のフープ応力を抑制することができる。また、内輪17の大端面側の体積が同等なので、加締加工による軸受内部すきまへの影響を最小限に抑えることができる。   Here, when the width dimension from the edge portion of the inner ring 15 'to the large end face 5d is expanded and the weight is increased, the inner side of the outer diameter portion of the inner ring 17 is deleted as shown in FIG. The hoop stress of the inner ring 17 is suppressed while achieving weight reduction by providing the small diameter portion 16 and setting the weight equal to the weight from the edge portion of the inner ring 5 'to the large end face 5d shown in FIG. be able to. Further, since the volume on the large end face side of the inner ring 17 is equal, the influence of the caulking on the bearing internal clearance can be minimized.

次に、加締加工によって小径段部1bの膨張が環状溝13のアウター側の縁部から4.5mm付近で始まることが検証されているので、硬化層14の軸方向距離aを0<a<4.5mm、つまり、環状溝13のアウター側の縁部から4.5mm以内に設定することにより、硬化層14による加締加工に伴う内輪5のフープ応力を抑え、ハブ輪1の強度を高めて耐久性の向上を図った車輪用軸受装置を提供することができる。   Next, it is verified that the expansion of the small diameter step portion 1b starts around 4.5 mm from the outer edge of the annular groove 13 by caulking, so the axial distance a of the hardened layer 14 is 0 <a By setting it within <4.5 mm, that is, within 4.5 mm from the outer edge of the annular groove 13, the hoop stress of the inner ring 5 accompanying the caulking process by the hardened layer 14 is suppressed, and the strength of the hub ring 1 is reduced. It is possible to provide a bearing device for a wheel which is enhanced to improve the durability.

図5に示すグラフは本出願人が実施した試験結果で、(a)が、小径段部1bの外周面に高周波焼入れによる熱処理を施していない場合、(b)が、小径段部1bの外周面に高周波焼入れによる熱処理を施した場合である。ここで、横軸が環状溝(アンダーカット)13の軸方向位置を示し、縦軸はハブ輪1の小径段部1bの加締加工に伴う膨張量を示している。   The graph shown in FIG. 5 shows the test results conducted by the present applicant, and when (a) does not heat-treat the outer peripheral surface of the small diameter step portion 1b by induction hardening, (b) shows the outer periphery of the small diameter step portion 1b. It is a case where the surface is heat treated by induction hardening. Here, the horizontal axis indicates the axial position of the annular groove (undercut) 13, and the vertical axis indicates the amount of expansion associated with the caulking process of the small diameter step portion 1 b of the hub wheel 1.

また、熱処理を施しても、環状溝13のアウター側の縁部から2.5mm付近で小径段部1bの膨張が始まることが試験結果によって検証されているため、小径段部1bの外周面上で、内輪5の内側転走面5aのタッチ部Pに対応する軸方向位置と環状溝13のアウター側の縁部との軸方向距離bを、b≧2.5mmに設定することにより、加締加工に伴う内輪5のタッチ部Pのフープ応力を抑えることができる。   Further, even if heat treatment is performed, it is verified by the test results that expansion of the small diameter step portion 1b starts around 2.5 mm from the outer edge of the annular groove 13, so the outer peripheral surface of the small diameter step portion 1b The axial distance b between the axial position corresponding to the touch portion P of the inner raceway surface 5a of the inner ring 5 and the outer edge of the annular groove 13 is set by b ≧ 2.5 mm. The hoop stress of the touch portion P of the inner ring 5 accompanying the tightening process can be suppressed.

また、図2(b)に示すように、小径段部1bの外周面上で、内輪5’の内側転走面5aのエッジ部(内側転走面5aと外径面5bとの交点)Qに対応する軸方向位置と環状溝13のアウター側の縁部との軸方向距離cを、c≧2.5mmに設定することにより、加締加工に伴う内輪5’の内側転走面5aのフープ応力を抑えることができる。
Further, as shown in FIG. 2B, on the outer peripheral surface of the small diameter step portion 1b, the edge portion of the inner raceway surface 5a of the inner ring 5 '(the intersection of the inner raceway surface 5a and the outer diameter surface 5b) Q Of the inner raceway surface 5a of the inner ring 5 'associated with the caulking by setting the axial distance c between the axial position corresponding to and the outer edge of the annular groove 13 to c.gtoreq.2.5 mm. Hoop stress can be suppressed.

図6は、本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。なお、この実施形態は、前述した第1の実施形態(図1)と基本的にはハブ輪の構成が異なるだけで、その他同一部品同一部位あるいは同様の機能を有する部品や部位には同じ符号を付して詳細な説明を省略する。   FIG. 6 is a longitudinal sectional view showing a second embodiment of the wheel bearing apparatus according to the present invention. Note that this embodiment is basically the same as the first embodiment (FIG. 1) described above except that the configuration of the hub wheel is different, and other identical parts identical parts or parts or parts having similar functions have the same reference numerals. And a detailed description is omitted.

この車輪用軸受装置は従動輪側の第3世代構造をなし、内方部材18と外方部材4、および両部材18、4間に転動自在に収容された複列の転動体7、7とを備えている。内方部材18は、ハブ輪19と、このハブ輪19に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device has a third generation structure on the driven wheel side, and double rows of rolling elements 7, 7 accommodated rotatably between the inward member 18 and the outward member 4 and between both members 18 and 4 And have. The inward member 18 comprises a hub wheel 19 and an inner ring 5 press-fitted to the hub wheel 19 via a predetermined mesh.

ハブ輪19は、アウター側の端部に車輪取付フランジ3を一体に有し、外周に一方(アウター側)の内側転走面19aと、この内側転走面19aから軸方向に延びる小径段部19bが形成されている。   The hub wheel 19 integrally has a wheel mounting flange 3 at the end on the outer side, and on the outer periphery is one (outer side) inner raceway surface 19a and a small diameter step extending axially from the inner raceway surface 19a. 19b is formed.

ハブ輪18はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、内側転走面19aをはじめ、後述するシール20のシールランド部となる車輪取付フランジ3のインナー側の基部3bから小径段部19bに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。これにより、車輪取付フランジ3に負荷される回転曲げ荷重に対して充分な機械的強度を有し、内輪5の嵌合部となる小径段部19bの耐フレッティング性が向上すると共に、微小なクラック等の発生がなく加締部8の塑性加工をスムーズに行うことができる。   The hub wheel 18 is formed of medium-high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and includes the inner raceway surface 19a and the inner side of the wheel mounting flange 3 serving as a seal land portion of a seal 20 described later. The surface hardness is hardened to a range of 58 to 64 HRC by induction hardening from the base portion 3b of the small diameter step 19b. As a result, the mechanical strength sufficient for the rotational bending load applied to the wheel mounting flange 3 is obtained, and the fretting resistance of the small diameter step portion 19b serving as the fitting portion of the inner ring 5 is improved. It is possible to smoothly carry out the plastic working of the crimped portion 8 without the occurrence of cracks and the like.

外方部材4と内方部材18との間に形成される環状空間の両側開口部にシール20、9が装着され、軸受内部に封入されたグリースの外部への漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。アウター側のシール20は、外方部材4のアウター側の端部内周に圧入された芯金21と、この芯金21に加硫接着によって一体に接合されたシール部材22とからなる一体型シールで構成されている。   Seals 20 and 9 are attached to both side openings of the annular space formed between the outer member 4 and the inner member 18, and the grease sealed inside the bearing leaks to the outside, rain water and dust from the outside Etc. are prevented from entering the inside of the bearing. The seal 20 on the outer side is an integral seal comprising a core 21 pressed into the outer periphery of the outer side member 4 and a seal member 22 integrally joined to the core 21 by vulcanization and adhesion. It consists of

ここで、前述した実施形態と同様、加締前のハブ輪19の小径段部19bの端部に環状溝(アンダーカット)が形成され、この環状溝のアウター側の縁部と硬化層(図示せず)のインナー側の境界との軸方向距離および内輪5の内側転走面5aに対応する軸方向位置との距離が所定値に設定されているので、加締加工に伴う内輪5のフープ応力を抑えることができ、耐久性を向上させた車輪用軸受装置を提供することができる。   Here, as in the embodiment described above, an annular groove (undercut) is formed at the end of the small diameter step 19b of the hub wheel 19 before caulking, and the outer edge of the annular groove and the hardened layer (see FIG. Since the axial distance between the inner side boundary of the inner ring 5 and the axial position corresponding to the inner raceway surface 5a of the inner ring 5 is set to a predetermined value, the hoop of the inner ring 5 associated with the caulking process is not shown. It is possible to provide a bearing device for a wheel capable of suppressing stress and having improved durability.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments in any way, and is merely an example, and various modifications can be made without departing from the scope of the present invention. The scope of the present invention is, of course, indicated by the description of the claims, and the meaning of equivalents described in the claims, and all modifications within the scope. Including.

本発明に係る車輪用軸受装置は、ハブ輪の小径段部に内輪を圧入し、小径段部の端部を塑性変形させて形成した加締部によって内輪を固定した第1世代乃至第3世代のセルフリテイン構造の車輪用軸受装置に適用できる。   The wheel bearing device according to the present invention is a first generation to a third generation in which the inner ring is fixed by a caulking portion formed by press-fitting the inner ring into the small diameter step portion of the hub wheel and plastically deforming the end portion of the small diameter step portion. The invention can be applied to a wheel bearing device of a self-retaining structure.

1、19 ハブ輪
1a 肩部
1b、19b 小径段部
2 車輪用軸受
3 車輪取付フランジ
3a ハブボルト
3b 車輪取付フランジのインナー側の基部
4 外方部材
4a 外側転走面
4b 車体取付フランジ
5、5’、5”、15、15’、17 内輪
5a、19a 内側転走面
5b 内輪の外径面
5c 内輪の端部内径の面取り部
5d 内輪の大端面
6 保持器
7 転動体
8 加締部
9 シール
10 シール板
11 スリンガ
12 円筒部
13 環状溝
13a 円筒面
13b、13c 円弧面
14 硬化層
16 小径部
18 内方部材
20 アウター側のシール
21 芯金
22 シール部材
51 ハブ輪
51a 小径段部
52 内輪
52a 内側転走面
52b 大鍔
52c 面取り部
52d 大端面
53 円錐ころ
54 加締部
55 円筒部
56 段差部
57 環状溝
57a、57b 円弧面
a 環状溝のアウター側の縁部から硬化層の境界までの軸方向距離
b、b’ 内輪の内側転走面のタッチ部から環状溝のアウター側の縁部までの軸方向距離
c、c’ 内輪のエッジ部から環状溝のアウター側の縁部までの軸方向距離
d 円筒部の深さ
n 環状溝の深さ
P タッチ部
Q エッジ部
r1 内輪の面取り部の曲率半径
Ri、Ro 環状溝の円弧面の曲率半径
δ 段差部の深さ
1, 19 Hub wheel 1a Shoulder 1b, 19b Small diameter step 2 Bearing for wheel 3 Wheel mounting flange 3a Hub bolt 3b Inner base of wheel mounting flange 4 Outer member 4a Outer raceway surface 4b Body mounting flange 5, 5 ' , 5 '', 15, 15 ', 17 inner ring 5a, 19a inner raceway surface 5b outer diameter surface 5c of inner ring chamfered portion 5d of inner diameter of inner ring inner end of large diameter end surface 6 cage 7 rolling element 8 crimped portion 9 seal DESCRIPTION OF SYMBOLS 10 seal plate 11 slinger 12 cylindrical part 13 annular groove 13a cylindrical surface 13b, 13c circular arc surface 14 hardened layer 16 small diameter part 18 inner member 20 outer side seal 21 core metal 22 seal member 51 hub wheel 51a small diameter step 52 inner ring 52a Inner raceway surface 52b Large diameter 52c Chamfered portion 52d Large end surface 53 Conical roller 54 Crimped portion 55 Cylindrical portion 56 Stepped portion 57 Annular groove 57a, 57b Arc face a Ring groove Axial distance b, b 'from the edge of the outer side to the boundary of the hardened layer Axial distance c, c' from the touch part of the inner raceway surface of the inner ring to the outer edge of the annular groove Edge of the inner ring Axial distance d from the outer edge of the annular groove to the depth of the cylindrical portion n depth of the annular groove P touch portion Q edge portion r1 radius of curvature of the chamfer of the inner ring Ri, Ro curvature of the arc surface of the annular groove Radius δ Depth of step

Claims (5)

内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、この車輪取付フランジから軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入された少なくとも一つの内輪からなり、外周に前記複列の外側転走面に対向する複列の内側転走面が形成された内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、前記小径段部の端部を径方向外方に塑性変形させて形成した加締部により前記内輪が軸方向に固定された車輪用軸受装置において、前記小径段部の端部の外周面に環状溝が形成され、前記環状溝のアウター側の縁部は前記内輪のインナー側の大端面よりアウター側に位置し、前記環状溝のインナー側の縁部は前記内輪のインナー側の大端面よりインナー側に位置しており、前記小径段部の外周面に高周波焼入れによって所定の硬化層が形成されると共に、この硬化層のインナー側の境界と前記環状溝のアウター側の縁部との間は非硬化層であって、前記非硬化層は軸方向距離が4.5mm以内に設定されており、かつ、前記内輪の前記内側転走面と前記転動体との前記接触位置Pは、前記硬化層のインナー側の境界と前記環状溝のアウター側の縁部との間に設けられていることを特徴とする車輪用軸受装置。 A small diameter step portion integrally having an outer member integrally formed with a double row of outer race surfaces on the inner periphery and a wheel mounting flange for mounting a wheel at one end, and extending axially from the wheel mounting flange And at least one inner ring press-fit into a small diameter step portion of the hub ring via a predetermined mesh, and the outer circumference of the double row is provided on the outer circumference with double rows of inner rolling opposed to the outer rolling surface. An inner member having a running surface formed thereon, and a plurality of rows of rolling elements rotatably accommodated between the rolling members of the inner member and the outer member via a cage; In the wheel bearing device in which the inner ring is axially fixed by the caulking portion formed by radially deforming the end portion of the step portion radially outward, an annular groove is formed on the outer peripheral surface of the end portion of the small diameter step portion. The outer edge of the annular groove is formed from the large end face on the inner side of the inner ring Located in Sauter side, the inner side of the edge portion of the annular groove is located on the inner side of the large end face of the inner side of the inner ring, the predetermined hardened layer by induction hardening the outer peripheral surface of the cylindrical portion is formed Between the boundary on the inner side of the hardened layer and the edge on the outer side of the annular groove, and the non-hardened layer is set to have an axial distance of 4.5 mm or less And the contact position P between the inner raceway surface of the inner ring and the rolling elements is provided between the inner boundary of the hardened layer and the outer edge of the annular groove A bearing device for a wheel characterized in that. 前記環状溝のアウター側の縁部と前記小径段部の外周面上で、前記内輪の内側転走面のエッジ部に対応する軸方向位置との軸方向距離が2.5mm以上に設定されている請求項1に記載の車輪用軸受装置。   The axial distance between the outer edge of the annular groove and the axial position corresponding to the edge of the inner raceway surface of the inner ring on the outer peripheral surface of the small diameter step is set to 2.5 mm or more The wheel bearing apparatus according to claim 1. 前記内輪の外径部のインナー側に小径部が形成されている請求項1または2に記載の車輪用軸受装置。   The wheel bearing apparatus according to claim 1 or 2, wherein a small diameter portion is formed on the inner side of the outer diameter portion of the inner ring. 前記環状溝におけるインナー側の円弧面の曲率半径Riが前記内輪における面取り部の曲率半径r1よりも大きく、かつアウター側の円弧面の曲率半径Roよりも小さく(r1≦Ri≦Ro)、当該曲率半径RiがR1〜10の範囲に設定されている請求項1乃至3いずれかに記載の車輪用軸受装置。   The curvature radius Ri of the inner side arc surface in the annular groove is larger than the curvature radius r1 of the chamfered portion in the inner ring and smaller than the curvature radius Ro of the outer side arc surface (r1 ≦ Ri ≦ Ro), the curvature The wheel bearing apparatus according to any one of claims 1 to 3, wherein the radius Ri is set in the range of R1-10. 前記内輪の加締部側の面取り部が、曲率半径r1がR1.0〜2.5からなる円弧面を備えている請求項4に記載の車輪用軸受装置。   The wheel bearing apparatus according to claim 4, wherein the chamfered portion on the caulking portion side of the inner ring includes an arc surface having a curvature radius r1 of R1.0 to 2.5.
JP2013082778A 2013-04-11 2013-04-11 Wheel bearing device Active JP6505961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082778A JP6505961B2 (en) 2013-04-11 2013-04-11 Wheel bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082778A JP6505961B2 (en) 2013-04-11 2013-04-11 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2014206192A JP2014206192A (en) 2014-10-30
JP6505961B2 true JP6505961B2 (en) 2019-04-24

Family

ID=52119904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082778A Active JP6505961B2 (en) 2013-04-11 2013-04-11 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP6505961B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114658758A (en) * 2022-04-06 2022-06-24 韶关东南轴承有限公司 Structure for eliminating stress concentration of hub bearing spline spin riveting

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855315B2 (en) * 1996-09-25 2006-12-06 日本精工株式会社 Manufacturing method of wheel bearing rolling bearing unit
JP3622458B2 (en) * 1997-08-28 2005-02-23 日本精工株式会社 Rolling bearing unit for wheel support
JP4527440B2 (en) * 2004-05-13 2010-08-18 Ntn株式会社 Wheel bearing device and manufacturing method thereof
JP4697963B2 (en) * 2006-02-15 2011-06-08 Ntn株式会社 Wheel bearing device
JP2008116025A (en) * 2006-11-08 2008-05-22 Ntn Corp Bearing device for wheel
JP2010042733A (en) * 2008-08-11 2010-02-25 Ntn Corp Bearing device for driving wheel

Also Published As

Publication number Publication date
JP2014206192A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP2007085371A (en) Bearing device for wheel
JP5099872B2 (en) Wheel bearing device
JP2010241188A (en) Bearing device for wheel
JP6101004B2 (en) Wheel bearing device and manufacturing method thereof
JP5025137B2 (en) Wheel bearing device
JP6114556B2 (en) Wheel bearing device
JP4868891B2 (en) Wheel bearing device
JP2009287699A (en) Bearing device for wheel
JP5252834B2 (en) Manufacturing method of wheel bearing device
JP4462629B2 (en) Wheel bearing device
JP6505961B2 (en) Wheel bearing device
JP5147100B2 (en) Wheel bearing device
JP4780707B2 (en) Wheel bearing device
JP4697963B2 (en) Wheel bearing device
JP4807775B2 (en) Wheel bearing device
JP2009154601A (en) Wheel bearing device
JP2007153247A (en) Wheel bearing system and method for manufacturing the same
JP5024850B2 (en) Wheel bearing device
JP2006242257A (en) Bearing device for wheel
JP5236097B2 (en) Wheel bearing device
JP2009257375A (en) Bearing device for wheel
JP4521878B2 (en) Wheel bearing device
JP2010042763A (en) Bearing device for wheel
JP4034799B2 (en) Wheel bearing device
JP2009204064A (en) Wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6505961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250