JP6504962B2 - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP6504962B2
JP6504962B2 JP2015154098A JP2015154098A JP6504962B2 JP 6504962 B2 JP6504962 B2 JP 6504962B2 JP 2015154098 A JP2015154098 A JP 2015154098A JP 2015154098 A JP2015154098 A JP 2015154098A JP 6504962 B2 JP6504962 B2 JP 6504962B2
Authority
JP
Japan
Prior art keywords
power semiconductor
semiconductor device
intermediate plate
fixing surface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015154098A
Other languages
Japanese (ja)
Other versions
JP2017034152A (en
Inventor
藤野 純司
純司 藤野
菊池 正雄
正雄 菊池
功 大島
功 大島
井本 裕児
裕児 井本
三紀夫 石原
三紀夫 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015154098A priority Critical patent/JP6504962B2/en
Publication of JP2017034152A publication Critical patent/JP2017034152A/en
Application granted granted Critical
Publication of JP6504962B2 publication Critical patent/JP6504962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、発電・送電から効率的なエネルギーの利用・再生まであらゆる場面で利用される電力用半導体装置に関する。   The present invention relates to a power semiconductor device used in all situations from power generation / transmission to efficient energy utilization / regeneration.

産業機器から家電・情報端末まであらゆる製品にパワーモジュール(電力用半導体装置)が普及しつつあり、自動車や電鉄など輸送機器に搭載されるモジュールについては、高い信頼性が求められ、小型化を実現するために高い放熱性が求められる。また、動作温度が高く、効率に優れている点で、今後の主流となる可能性の高いSiC半導体などワイドバンドギャップ半導体に適用できるパッケージ形態であることも同時に求められている。   Power modules (power semiconductor devices) are spreading to all products from industrial equipment to home appliances and information terminals, and high reliability is required for modules mounted on transportation equipment such as automobiles and railways, achieving miniaturization In order to do so, high heat dissipation is required. At the same time, it is also required to be a package form that can be applied to wide band gap semiconductors such as SiC semiconductors that are likely to become mainstream in the future, in terms of high operating temperature and excellent efficiency.

電力用半導体装置は、高電圧・大電流を扱うために発熱が大きく、効率的に排熱する目的で熱伝導率に優れたセラミック基板を絶縁基板として用いる場合が多い。セラミック基板はアルミナやAlN等の基材に、導体層を両面に張り付ける構造となっており、自動車など輸送機器に用いるパワーモジュールとしては、軽量化のためにアルミ導体層を用いることが多い。しかし、アルミは200℃前後で再結晶を生じるため、高温動作を行うことでアルミ結晶の粗大化や粒界の割れなどが生じやすいという問題がある。このアルミの熱変形によってダイボンド部のはんだにボイドを生じさせたり、電力用半導体素子自体の変形や割れを起こす可能性があった。   A power semiconductor device generates a large amount of heat to handle a high voltage and a large current, and often uses a ceramic substrate excellent in thermal conductivity as an insulating substrate for the purpose of efficiently discharging heat. The ceramic substrate has a structure in which a conductor layer is attached to both sides of a base material such as alumina or AlN, and an aluminum conductor layer is often used for weight reduction as a power module used for transportation equipment such as automobiles. However, since aluminum causes recrystallization at around 200 ° C., there is a problem that coarsening of the aluminum crystal and cracking of grain boundaries are likely to occur by high temperature operation. The thermal deformation of the aluminum may cause voids in the solder of the die bonding portion, or may cause deformation or cracking of the power semiconductor element itself.

特許文献1には、突起を有する中間板を電力用半導体素子のダイボンド部のはんだに埋め込み、ダイボンド部のはんだの厚さを確保し、熱応力に伴う電力用半導体素子への影響を抑制しようとする手法が提案されている。   In Patent Document 1, an intermediate plate having a protrusion is embedded in the solder of the die bonding portion of the power semiconductor device to secure the thickness of the solder of the die bonding portion to suppress the influence on the power semiconductor device due to the thermal stress. Methods have been proposed.

特開2002−217364号公報Unexamined-Japanese-Patent No. 2002-217364

特許文献1に記載された方法によると、突起を有する中間板を挟み込むことで、アルミ導体層の熱変形の影響を抑制することが可能であるが、はんだ付けの際に生じる気泡が抜けにくくなってボイドとして残存し、熱抵抗となって熱暴走する可能性があった。   According to the method described in Patent Document 1, it is possible to suppress the influence of thermal deformation of the aluminum conductor layer by sandwiching the intermediate plate having the projections, but it becomes difficult for air bubbles generated during soldering to come off As a result, it remains as a void, which may cause thermal runaway due to thermal resistance.

この発明は、上記のような問題点を解決するためになされたものであり、はんだなど接合材中に残存するボイドが抑制された電力用半導体装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain a power semiconductor device in which voids remaining in a bonding material such as solder are suppressed.

本発明は、半導体素子の一面である素子固着面が基板の一面である基板固着面に接合材により固着された電力用半導体装置において、接合材中に、基板固着面に対向する面が基板固着面に対して傾斜し、素子固着面に対向する面が素子固着面に対して傾斜した中間板が挿入されているようにした。   The present invention relates to a power semiconductor device in which an element fixing surface which is one surface of a semiconductor element is fixed to a substrate fixing surface which is one surface of a substrate by a bonding material. The intermediate plate is inserted such that the intermediate plate is inclined with respect to the surface and the surface facing the element fixing surface is inclined with respect to the element fixing surface.

この発明によれば、傾斜した中間板を挿入することで、中間板の上下の接合材層の厚さが外周に向かって徐々に厚くなるようになり、接合材中に発生した気泡が排出されやすくなり、ボイドの発生を抑制できる。   According to the present invention, by inserting the inclined intermediate plate, the thickness of the upper and lower bonding material layers of the intermediate plate becomes gradually thicker toward the outer periphery, and the air bubbles generated in the bonding material are discharged. It becomes easy and can suppress generation | occurrence | production of a void.

本発明の実施の形態1による電力用半導体装置の概略構成を示す側面断面図である。FIG. 1 is a side sectional view showing a schematic configuration of a power semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1による電力用半導体装置の概略構成をダイレクトポッティング封止樹脂を取り去って示す上面図である。FIG. 1 is a top view showing a schematic configuration of a power semiconductor device according to a first embodiment of the present invention from which a direct potting sealing resin is removed. 本発明の実施の形態1による電力用半導体装置の中間板の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of an intermediate plate of a power semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1による電力用半導体装置の中間板の構成を示す上面図である。FIG. 1 is a top view showing a configuration of an intermediate plate of a power semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1による電力用半導体装置の製造プロセスを示す第1の図である。FIG. 7 is a first view showing a manufacturing process of the power semiconductor device according to the first embodiment of the present invention. 本発明の実施の形態1による電力用半導体装置の製造プロセスを示す第2の図である。FIG. 7 is a second view showing the manufacturing process of the power semiconductor device according to the first embodiment of the present invention. 本発明の実施の形態1による電力用半導体装置の製造プロセスを示す第3の図である。FIG. 7 is a third diagram illustrating the manufacturing process of the power semiconductor device according to the first embodiment of the present invention. 本発明の実施の形態1による電力用半導体装置の製造プロセスを示す第4の図である。FIG. 14 is a fourth diagram showing the manufacturing process of the power semiconductor device according to the first embodiment of the present invention. 本発明の実施の形態1による電力用半導体装置の製造プロセスを示す第5の図である。FIG. 14 is a fifth diagram illustrating the manufacturing process of the power semiconductor device according to the first embodiment of the present invention. 本発明の電力用半導体装置の中間板の効果を説明するための断面図である。It is sectional drawing for demonstrating the effect of the middle plate of the semiconductor device for electric power of this invention. 本発明の実施の形態2による電力用半導体装置の中間板の構成を示す斜視図である。It is a perspective view which shows the structure of the intermediate plate of the semiconductor device for electric power by Embodiment 2 of this invention. 本発明の実施の形態2による電力用半導体装置の中間板の構成を示す上面図である。FIG. 10 is a top view showing a configuration of an intermediate plate of the power semiconductor device according to Embodiment 2 of the present invention. 本発明の実施の形態2による電力用半導体装置の要部の概略構成を示す図12のC−C位置に対応した側面断面図である。It is side surface sectional drawing corresponding to CC position of FIG. 12 which shows schematic structure of the principal part of the semiconductor device for electric power by Embodiment 2 of this invention. 本発明の実施の形態2による電力用半導体装置の要部の概略構成を示す図12のD−D位置に対応した側面断面図である。It is side surface sectional drawing corresponding to the DD position of FIG. 12 which shows schematic structure of the principal part of the semiconductor device for electric power by Embodiment 2 of this invention. 本発明の実施の形態2による電力用半導体装置の概略構成を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of the semiconductor device for electric power by Embodiment 2 of this invention. 本発明の実施の形態3による電力用半導体装置の概略構成を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of the semiconductor device for electric power by Embodiment 3 of this invention.

実施の形態1.
図1は本発明の実施の形態1による電力用半導体装置の構成を示す側面断面図、図2は後述のダイレクトポッティング封止樹脂を取り去って示す上面図である。表面に回路導体層13、裏面に裏面導体層12(いずれもアルミニウム、パターン厚さ0.4mm)が形成された基板11(AlN製、40mm×25mm×厚さ0.635mm、以降セラミック基板11とも称する。)の回路導体層13に、電力用半導体素子としてダイオード21(15mm×15mm×厚さ0.3mm)とIGBT(Insulated Gate Bipolar Transistor)22がダイボンド部31によって接合されている。回路導体層13の、電力用半導体素子が固着される面を基板固着面と称する。また、電力用半導体素子の、回路導体層13と接合される面を素子固着面と称する。ダイボンド部31は接合材であるはんだに中間板90が挿入された構成となっている。セラミック基板11にはケース51(PPS樹脂製、48mm×28mm×高さ12mm)が接着剤8(シリコーン製)を用いて固定されており、ケース51内部はダイレクトポッティング封止樹脂7により全体が封止されている。
Embodiment 1
FIG. 1 is a side sectional view showing a configuration of a power semiconductor device according to a first embodiment of the present invention, and FIG. 2 is a top view showing a direct potting sealing resin to be described later. Substrate 11 (made of AlN, 40 mm x 25 mm x thickness 0.635 mm, hereinafter also referred to as ceramic substrate 11) on which circuit conductor layer 13 is formed on the front surface and back surface conductor layer 12 (both aluminum and pattern thickness 0.4 mm) is formed on the rear surface. A diode 21 (15 mm × 15 mm × 0.3 mm thickness) and an IGBT (Insulated Gate Bipolar Transistor) 22 are bonded to the circuit conductor layer 13 of the circuit conductor layer 13 by a die bonding portion 31. The surface of the circuit conductor layer 13 to which the power semiconductor element is fixed is referred to as a substrate fixing surface. Further, the surface of the power semiconductor element to be bonded to the circuit conductor layer 13 is referred to as an element fixing surface. The die bonding portion 31 has a configuration in which an intermediate plate 90 is inserted into solder which is a bonding material. A case 51 (made of PPS resin, 48 mm × 28 mm × 12 mm high) is fixed to the ceramic substrate 11 using an adhesive 8 (made of silicone), and the inside of the case 51 is entirely sealed with a direct potting sealing resin 7 It has been stopped.

ケース51には、外部への接続のための主端子(ケース上部のネジ止め端子部分の幅は10mm)が2個配置され、一方の主端子61の先端はケース中でセラミック基板11から2mm程度浮いており、ダイオードの主回路電極211およびIGBTの主回路電極221(ソース電極)とはんだ32で接続される。他方の主端子であるネジ止め端子612はセラミック基板11の回路導体層13に直接はんだ付けされ、IGBT22のドレイン電極と接続される。ケース51に設けられた信号端子62(幅1.5mm)は、IGBT22の制御電極222(ゲート電極、温度センサー電極など)と、ワイヤ4で接続される。   In the case 51, two main terminals for connection to the outside (the width of the screw terminal portion at the top of the case is 10 mm) are arranged, and the tip of one main terminal 61 is about 2 mm from the ceramic substrate 11 in the case. It floats and is connected to the main circuit electrode 211 of the diode and the main circuit electrode 221 (source electrode) of the IGBT by the solder 32. The screw terminal 612, which is the other main terminal, is directly soldered to the circuit conductor layer 13 of the ceramic substrate 11 and connected to the drain electrode of the IGBT 22. The signal terminal 62 (width 1.5 mm) provided in the case 51 is connected to the control electrode 222 (gate electrode, temperature sensor electrode, etc.) of the IGBT 22 by the wire 4.

図3および図4は本発明の実施の形態1による中間板90の概念図である。図3は断面図であり、図4は上面図である。図3および図4に示すように、中間板90は銅製の板材(無酸素銅C1020、15mm×15mm×0.2mm)であり、プレス加工によって突起91および92が形成されている。上面突起91は高さが0.2mmの91Hと、高さが0.1mmの91Lとからなり、右側に91Hが並び、左側に91Lが並んでいる。逆に下面突起92は、左側に高さが0.2mmの92Hが並び、右側に高さ0.1mmの92Lが並んでいる。このように片面に高さが異なる複数の突起が形成され、他面にも高さが異なる複数の突起が形成された中間板90が、電力用半導体素子であるダイオード21やIGBT22の主回路電極とセラミック基板11とを接合する接合材中に挿入されることにより、中間板90は、セラミック基板11の基板固着面や電力用半導体素子の素子固着面に対して傾斜して設置されることになる。   3 and 4 are conceptual views of the intermediate plate 90 according to Embodiment 1 of the present invention. FIG. 3 is a cross-sectional view, and FIG. 4 is a top view. As shown in FIGS. 3 and 4, the intermediate plate 90 is a copper plate material (oxygen-free copper C1020, 15 mm × 15 mm × 0.2 mm), and the protrusions 91 and 92 are formed by pressing. The upper surface projection 91 is composed of 91H having a height of 0.2 mm and 91 L having a height of 0.1 mm, 91H being arranged on the right side and 91L being arranged on the left side. On the other hand, in the lower surface protrusion 92, 92H having a height of 0.2 mm is arranged on the left side, and 92L having a height of 0.1 mm is arranged on the right side. As described above, the intermediate plate 90 having a plurality of projections of different heights formed on one side and a plurality of projections of different heights formed on the other side is the main circuit electrode of the diode 21 or IGBT 22 which is a power semiconductor element. The intermediate plate 90 is installed obliquely to the substrate fixing surface of the ceramic substrate 11 and the element fixing surface of the power semiconductor element by being inserted into the bonding material for bonding the electrode and the ceramic substrate 11. Become.

図5〜9は実施の形態1によるパワーモジュールのプロセスを説明する図である。図5に示すように、セラミック基板11(AlN製、40mm×25mm×厚さ0.635m、裏面導体層12および回路導体層13のパターン厚さ0.4mm)上に、ダイオード21(15mm×15mm×厚さ0.3mm)と、IGBT(Insulated Gate Bipolar Transistor)22がはんだによって搭載される。その際、厚さ0.15mmのはんだ30を2枚用い、中間板90を挟むようにして搭載し、リフロー炉を用いてはんだ付けすることで図6に示すように、はんだダイボンド部31を形成する。このようにして、はんだダイボンド部31は、接合材であるはんだ中に中間板90が、基板固着面に対向する面が基板固着面に対して傾斜し、素子固着面に対向する面が素子固着面に対して傾斜して挿入された構成となる。   5-9 is a figure explaining the process of the power module by Embodiment 1. FIG. As shown in FIG. 5, a diode 21 (15 mm × 15 mm × thickness) is formed on a ceramic substrate 11 (made of AlN, 40 mm × 25 mm × 0.635 m thickness, 0.4 mm thick for the back surface conductor layer 12 and the circuit conductor layer 13). And an IGBT (Insulated Gate Bipolar Transistor) 22 is mounted by soldering. At this time, two pieces of solder 30 having a thickness of 0.15 mm are mounted on both sides of the intermediate plate 90 and soldered using a reflow furnace to form a solder die bonding portion 31 as shown in FIG. In this manner, in the solder die bond portion 31, in the solder which is the bonding material, the surface facing the substrate fixing surface of the intermediate plate 90 is inclined to the substrate fixing surface, and the surface facing the element fixing surface is device fixing The structure is inserted at an angle to the surface.

次に図7に示すように、ケース51(PPS樹脂製、48mm×28mm×高さ12mm)を接着剤8(シリコーン製)を用いてセラミック基板11に固定し、隙間を埋めることでダイレクトポッティング封止樹脂7の漏れを防止している。図8に示すように、ケース51にはネジ止め端子611がケース外周部に形成された主端子61がインサートモールドされており、ダイオード21やIGBT22など電力用半導体素子のソース電極およびドレイン電極といった大電流が流れる電極とはんだ32で接続される。また、ケースに形成された信号端子62には、IGBT22のゲート電極や温度センサー電極などと、ワイヤ(アルミ製φ0.15mm)4でそれぞれ電気的に接続される。最後に図9に示すように、ダイレクトポッティング封止樹脂7を60℃に加熱した状態で流し込み、真空脱泡して加熱(100℃、1.5時間→140℃、1.5時間)して硬化させて封止を完了し、パワーモジュールが完成する。   Next, as shown in FIG. 7, the case 51 (made of PPS resin, 48 mm × 28 mm × 12 mm in height) is fixed to the ceramic substrate 11 using the adhesive 8 (made of silicone), and the gap is filled to seal the direct potting seal. Leakage of the stop resin 7 is prevented. As shown in FIG. 8, a main terminal 61 having a screw terminal 611 formed on the outer periphery of the case is insert molded in the case 51, and is used as a source electrode and a drain electrode of a power semiconductor device such as a diode 21 or IGBT 22. It is connected by a solder 32 to an electrode through which current flows. Further, the signal electrode 62 formed in the case is electrically connected to the gate electrode of the IGBT 22, temperature sensor electrode, etc. by a wire (φ 0.15 mm made of aluminum) 4 respectively. Finally, as shown in FIG. 9, direct potting sealing resin 7 is poured in a heated state at 60 ° C., vacuum degassing and heating (100 ° C., 1.5 hours → 140 ° C., 1.5 hours) It is cured to complete the sealing, and the power module is completed.

図6に示すように、中間板90は、高さの異なる突起の効果によって傾斜をもってはんだダイボンド部31中に存在している。電力用半導体素子と中間板の間のはんだは、図6においては、左の方が薄く、右の方が厚い。一方、中間板とセラミック基板の間のはんだについては、左の方が厚く、右の方が薄い。このように、はんだの厚さが連続的に変化していて、かつ厚い方が外部に接している状態においては、はんだ中に発生した気泡が外部に排出されやすいと考えられる。   As shown in FIG. 6, the intermediate plate 90 is present in the solder die bond portion 31 with a slope due to the effect of the protrusions having different heights. In FIG. 6, the solder between the power semiconductor element and the middle plate is thinner on the left and thicker on the right. On the other hand, the solder between the middle plate and the ceramic substrate is thicker on the left and thinner on the right. As described above, it is considered that when the thickness of the solder is continuously changing and the thicker one is in contact with the outside, air bubbles generated in the solder are easily discharged to the outside.

排出機構、すなわち、はんだ中のボイドの移動原理について説明する。文献”水平の狭い矩形流路内の気泡挙動に関する実験”(日本機械学会論文集(B編)、 vol.61, No.581、1995、pp.201-207)によれば、平板間に挟まれた液体中の気体は、表面張力の働きにより液体の断面積の大きな方へ移動するとある。図10は、厚さが変化するはんだ中のボイドの挙動を示す図であり、中間板90とセラミック基板11の回路導体層13との間のはんだ30を示す。はんだ30は、厚さが右から左に漸増的に大きくなっており、はんだや電力用半導体素子のメタライズ層から気化成分が出てボイドが発生して複数のボイドがつながって大きくなると、中間板90と回路導体層13に挟まれてボイド390は扁平した形状となる。やがてボイド390は、表面積の小さな球に近い形状を取ることができるように、はんだ厚さの大きい方へ移動して、球形に近いボイド391となる。ボイド391は複数個集まるとやがて扁平した形状となり、やがて移動する。それを繰り返してボイドが外部に排出されることによって、ボイドの低減が可能となる。この際、減圧リフロー炉を用いることで、復圧時にボイドが小さくなることはもちろん、減圧時にボイドが大きくなることで上記の移動が容易となる。電力用半導体素子と中間板90の間では左右が逆転するものの同じことが起こり、ボイドは右側へ排出されることとなる。   The discharge mechanism, that is, the movement principle of the void in the solder will be described. According to the literature “Experiment on bubble behavior in a horizontal narrow rectangular flow path” (The Proceedings of the Japan Society of Mechanical Engineers, Volume B, vol. 61, No. 581, 1995, pp. 201-207) The gas in the liquid may move to the larger cross section of the liquid by the action of surface tension. FIG. 10 is a diagram showing the behavior of voids in the solder of varying thickness, showing the solder 30 between the intermediate plate 90 and the circuit conductor layer 13 of the ceramic substrate 11. The solder 30 has a thickness gradually increasing from the right to the left, and when the vaporization component is released from the solder or the metallized layer of the power semiconductor element, a void is generated and a plurality of voids are connected to increase the intermediate plate The void 390 has a flat shape by being sandwiched between 90 and the circuit conductor layer 13. Eventually, the void 390 moves to a larger solder thickness to become a near spherical void 391 so that it can be shaped close to a small surface area sphere. When a plurality of voids 391 gather, they become flat in the end and eventually move. It is possible to reduce the void by repeatedly discharging the void to the outside. At this time, by using the reduced pressure reflow furnace, not only the void becomes smaller at the time of pressure recovery but also the above movement becomes easy because the void becomes larger at the time of pressure reduction. The same thing happens between the power semiconductor element and the intermediate plate 90, although the right and left are reversed, and the void is discharged to the right.

ここでは中間板90として銅を用いたが、基板固着面である回路導体層13の材料がアルミニウムの場合、アルミニウムより融点が高く、硬度が高く、はんだぬれ性が確保できれば、ニッケルや鉄などの金属、あるいはコバールや42アロイなどの合金、またはニッケル金めっきを施したチタンやセラミック板でも同様の効果が得られる。回路導体層13の材料が銅の場合は、中間板90の材料として、より融点が高く、硬度が高い材料を用いることでさらなる耐熱性の改善が可能であるが、回路導体層13と同じ銅であってもボイドを低減する効果は得られる。また、基板固着面と半導体素子との間で生じる熱応力が小さくなるよう、中間板90の線膨張係数は、基板固着面の材料よりも小さい線膨張係数を有する材料が好ましい。   Here, copper is used as the intermediate plate 90, but when the material of the circuit conductor layer 13 which is the substrate fixing surface is aluminum, the melting point is higher than that of aluminum, the hardness is high, and solderability can be ensured. The same effect can be obtained with metals, alloys such as Kovar or 42 alloy, or titanium and ceramic plates plated with nickel and gold. When the material of the circuit conductor layer 13 is copper, the heat resistance can be further improved by using a material having a higher melting point and a higher hardness as the material of the intermediate plate 90, but the same copper as the circuit conductor layer 13 Even in the case, the effect of reducing the void can be obtained. Further, in order to reduce the thermal stress generated between the substrate fixing surface and the semiconductor element, the linear expansion coefficient of the intermediate plate 90 is preferably a material having a smaller linear expansion coefficient than the material of the substrate fixing surface.

突起91、突起92の形成方法は、プレス加工に限らず、ワイヤボンドによって突起を形成したり、中間板の一部を折り曲げるなどして突起を形成しても同様の効果が得られる。   The method of forming the projections 91 and the projections 92 is not limited to the press processing, and the same effect can be obtained even if the projections are formed by forming the projections by wire bonding or bending a part of the intermediate plate.

セラミック基板の材料は、AlNに限らず、アルミナやSiNなどのセラミック材料であっても同様の効果が得られる。さらに放熱性の必要があまりない場合には、ガラスエポキシ基板などを用いることも可能である。また、基板として、ベース板とセラミック基板の機能を併せ持つ金属基板を用いることで部品点数の削減が可能となり、軽量化や小型化が可能となる。ケースの材料はPPSに限らず、LCP(液晶ポリマー)などを用いることができる。また、ダイオードとIGBTが1対の1in1でのモジュール構成のものを示したが、2対の2in1や6対の6in1であっても、主端子となる金属板上に信号端子を配置することで同様の効果が得られる。また、銅板の主端子61を用いて電力用半導体素子との間をはんだを用いて接続するものを示したが、ワイヤボンドによってネジ止め端子611と電力用半導体素子間を接続しても同様の効果が得られる。また、ここではアルミ製のワイヤボンドを用いたが、銅製ワイヤやアルミ被覆銅ワイヤ、または金ワイヤを用いても同様の効果が得られる。また、リボンボンドを用いたり、金属板を超音波接合するバスバーなどを用いても同様の効果が得られる。また、ダイレクトポッティング封止樹脂については、流し込んで常温硬化させる種類のものでも同様の効果が得られる。例えば、シリコンゲルやエポキシ樹脂等を用いることができる。   The material of the ceramic substrate is not limited to AlN, and the same effect can be obtained with ceramic materials such as alumina and SiN. Furthermore, when heat dissipation is not required to a large extent, it is also possible to use a glass epoxy substrate or the like. In addition, by using a metal substrate having both functions of a base plate and a ceramic substrate as the substrate, the number of parts can be reduced, and weight reduction and miniaturization can be achieved. The material of the case is not limited to PPS, and LCP (liquid crystal polymer) or the like can be used. In addition, although the diode and IGBT have been shown to have a module configuration with one pair of 1 in 1, even if there are two pairs of 2 in 1 and 6 pairs of 6 in 1, by arranging the signal terminal on the metal plate to be the main terminal The same effect is obtained. In addition, although the main terminal 61 of the copper plate is used to connect to the power semiconductor element using solder, the same is true even if the screw terminal 611 and the power semiconductor element are connected by wire bonding. An effect is obtained. Further, although a wire bond made of aluminum is used here, the same effect can be obtained by using a copper wire, an aluminum-coated copper wire, or a gold wire. The same effect can be obtained by using a ribbon bond or by using a bus bar or the like for ultrasonically bonding a metal plate. Further, as to the direct potting sealing resin, the same effect can be obtained even if it is of a type in which it is poured and cured at room temperature. For example, silicone gel or epoxy resin can be used.

以上では、電力用半導体素子とセラミック基板の接続を行う接合材としてはんだを用いたものを説明したが、Agフィラーをエポキシ樹脂に分散させた導電性接着剤や、ナノ粒子を低温焼成させるAgナノパウダやCuナノパウダなどを用いた場合でも、ボイドが生じた場合にはんだと同様の効果が期待できる。   In the above, although the thing using solder as a joining material which connects a semiconductor element for electric power and a ceramic substrate was explained, the conductive adhesive which made Ag filler disperse in an epoxy resin, and Ag nano powder which carries out low temperature baking of nanoparticles. Even in the case of using Cu nanopowder or the like, the same effect as that of the solder can be expected when a void occurs.

実施の形態2.
図11〜図14は実施の形態2による電力用半導体装置の中間板の構成を示す概念図である。図11は斜視図であり、図12は上面図である。図11、図12に示すように、中間板95は銅製の板材(無酸素銅C1020、15mm×15mm×0.2mm)であり、プレス加工によって山折(対角線)と谷折(各辺の中心を結ぶ)が45度毎に交互に形成されている。山折と谷折は交互に形成する必要があるが、必ずしも45度毎に形成する必要は無く、例えば30度毎にするなど、山折と谷折の数を4つよりも多く形成しても良い。
Second Embodiment
11 to 14 are conceptual diagrams showing the configuration of the intermediate plate of the power semiconductor device according to the second embodiment. FIG. 11 is a perspective view, and FIG. 12 is a top view. As shown in FIGS. 11 and 12, the intermediate plate 95 is a copper plate material (oxygen-free copper C1020, 15 mm × 15 mm × 0.2 mm), and is pressed to connect the center of the mountain fold (diagonal) and valley fold (each side) ) Are alternately formed every 45 degrees. Mountain folds and valley folds need to be formed alternately, but they need not necessarily be formed every 45 degrees; for example, they may be formed more than four, such as every 30 degrees .

図13、図14は実施の形態2によるパワーモジュールのはんだダイボンド部の拡大図である。図13は、図12のC−C断面を示し、図14はD−D断面を示す。図11〜図14に示すように、本実施の形態2による中間板95は、板材の中央部から周辺部に向かって放射状に山折と谷折が交互に形成されて、基板固着面に対して傾斜した複数の平面を有する形状となっている。また、図13、図14に示すように、本実施の形態2の中間板95も、実施の形態1の中間板90と同様、基板固着面に対向する面が基板固着面に対して傾斜し、素子固着面に対向する面が素子固着面に対して傾斜するよう接合材中に挿入されることになる。   13 and 14 are enlarged views of a solder die bonding portion of the power module according to the second embodiment. 13 shows a C-C cross section of FIG. 12, and FIG. 14 shows a D-D cross section. As shown in FIGS. 11 to 14, in the intermediate plate 95 according to the second embodiment, mountain folds and valley folds are alternately formed radially from the central portion to the peripheral portion of the plate material, and It has a shape having a plurality of inclined planes. Further, as shown in FIGS. 13 and 14, in the intermediate plate 95 of the second embodiment, as in the intermediate plate 90 of the first embodiment, the surface facing the substrate fixing surface is inclined relative to the substrate fixing surface. The element is inserted into the bonding material so that the surface facing the element fixing surface is inclined with respect to the element fixing surface.

図13の断面において、電力用半導体素子21と中間板95の間に発生した気泡は、はんだ厚さの大きな外周部に移動して排出される。一方、中間板95とセラミック基板11の間に発生した気泡は一旦中央に集まってくるが、図14の断面に示すように45度回転した断面では中間板95とセラミック基板11の間は外周部の方がはんだ厚さが大きいため、中央に集まった気泡はほどなく外部に排出される。つまり、中間板の上下のはんだ層において発生した気泡は、いずれかの経路で外部に排出されることとなる。わずかに小さな気泡が、中間板の下部の中心に残る可能性はあるが、発熱元である電力用半導体素子21表面からは離れているため、熱抵抗としてはほとんど無視できると考えられる。   In the cross section of FIG. 13, the air bubbles generated between the power semiconductor element 21 and the intermediate plate 95 move to the outer peripheral portion with a large solder thickness and are discharged. On the other hand, air bubbles generated between the intermediate plate 95 and the ceramic substrate 11 once gather at the center, but in the cross section rotated 45 degrees as shown in the cross section of FIG. Because the thickness of the solder is larger, the bubbles collected in the center are discharged to the outside soon. That is, air bubbles generated in the upper and lower solder layers of the intermediate plate are discharged to the outside through one of the paths. Slightly small air bubbles may remain in the center of the lower part of the intermediate plate, but they are considered to be almost negligible as thermal resistance because they are far from the surface of the power semiconductor element 21 from which heat is generated.

ここでは中間板95として銅を用いたが、基板固着面である回路導体層13の材料がアルミニウムの場合、アルミニウムより融点が高く、硬度が高く、はんだぬれ性が確保できれば、ニッケルや鉄などの金属、あるいはコバールや42アロイなどの合金、またはニッケル金めっきを施したチタンやセラミック板でも同様の効果が得られる。回路導体層13の材料が銅の場合は、中間板90の材料として、より融点が高く、硬度が高い材料を用いることでさらなる耐熱性の改善が可能であるが、回路導体層13と同じ銅であってもボイドを低減する効果は得られる。また、基板固着面と半導体素子との間で生じる熱応力が小さくなるよう、中間板の線膨張係数は、基板固着面の材料よりも小さい線膨張係数を有する材料が好ましい。   Here, copper is used as the intermediate plate 95, but if the material of the circuit conductor layer 13 which is the substrate fixing surface is aluminum, the melting point is higher than that of aluminum, the hardness is high, and solderability can be ensured. The same effect can be obtained with metals, alloys such as Kovar or 42 alloy, or titanium and ceramic plates plated with nickel and gold. When the material of the circuit conductor layer 13 is copper, the heat resistance can be further improved by using a material having a higher melting point and a higher hardness as the material of the intermediate plate 90, but the same copper as the circuit conductor layer 13 Even in the case, the effect of reducing the void can be obtained. Further, in order to reduce the thermal stress generated between the substrate fixing surface and the semiconductor element, it is preferable that the intermediate plate have a linear expansion coefficient smaller than that of the material of the substrate fixing surface.

図15は実施の形態2による電力用半導体装置の構成を示す断面図である。実施の形態2による電力用半導体装置の製造方法は、実施の形態1による電力用半導体装置の製造方法と同じである。セラミック基板11(AlN製、40mm×25mm×厚さ0.635m、裏面導体層12および回路導体層13のパターン厚さ0.4mm)上に、ダイオード21(15mm×15mm×厚さ0.3mm)と、IGBT22がはんだによって搭載される。その際、厚さ0.15mmのはんだを2枚用い、中間板95を挟むようにして搭載し、リフロー炉を用いてはんだ付けすることで、はんだダイボンド部31を形成する。   FIG. 15 is a cross-sectional view showing the configuration of the power semiconductor device according to the second embodiment. The method of manufacturing the power semiconductor device according to the second embodiment is the same as the method of manufacturing the power semiconductor device according to the first embodiment. A diode 21 (15 mm × 15 mm × 0.3 mm thickness) and an IGBT 22 on a ceramic substrate 11 (AIN 40 mm × 25 mm × 0.635 m thickness, 0.4 mm thick pattern of the back surface conductor layer 12 and the circuit conductor layer 13) Is mounted by solder. At this time, two pieces of solder having a thickness of 0.15 mm are mounted so as to sandwich the intermediate plate 95, and soldered using a reflow furnace to form the solder die bonding portion 31.

次に、ケース51(PPS樹脂製、48mm×28mm×高さ12mm)を接着剤8(シリコーン製)を用いてセラミック基板11に固定し、隙間を埋めることでダイレクトポッティング封止樹脂7の漏れを防止している。ケース51には、ネジ止め端子611がケース外周部に形成された主端子61がインサートモールドされており、ダイオード21やIGBT22などの電力用半導体素子のソース電極およびドレイン電極といった大電流が流れる電極とはんだ32で接続されている。また、ケース51に形成された信号端子62は、IGBTのゲート電極や温度センサー電極などと、ワイヤ(アルミ製φ0.15mm)4でそれぞれ電気的に接続されている。最後に、ダイレクトポッティング封止樹脂7を60℃に加熱した状態で流し込み、真空脱泡して加熱(100℃、1.5時間→140℃、1.5時間)して硬化させて封止を完了し、パワーモジュールが完成する。   Next, the case 51 (made of PPS resin, 48 mm × 28 mm × 12 mm high) is fixed to the ceramic substrate 11 using the adhesive 8 (made of silicone), and the gap is filled to leak the direct potting sealing resin 7. It is preventing. In the case 51, a main terminal 61 having a screw terminal 611 formed on the outer periphery of the case is insert-molded, and an electrode through which a large current flows such as a source electrode and a drain electrode of a power semiconductor element such as a diode 21 or IGBT 22 It is connected by solder 32. Further, the signal terminal 62 formed in the case 51 is electrically connected to the gate electrode of the IGBT, the temperature sensor electrode, and the like by a wire (φ 0.15 mm made of aluminum) 4. Finally, direct potting sealing resin 7 is poured in a heated state at 60 ° C., vacuum degassing and heating (100 ° C., 1.5 hours → 140 ° C., 1.5 hours) to cure and seal Complete and complete the power module.

セラミック基板の材料は、AlNに限らず、アルミナやSiNなどのセラミック材料でも同様の効果が得られる。さらに放熱性の必要があまりない場合には、ガラスエポキシ基板などを用いることも可能である。また、基板として、ベース板とセラミック基板の機能を併せ持つ金属基板を用いることで部品点数の削減が可能となり、軽量化や小型化が可能となる。ケースの材料はPPSに限らず、LCP(液晶ポリマー)などを用いることができる。また、ダイオードとIGBTが1対の1in1でのモジュール構成を示したが、2対の2in1や6対の6in1であっても、主端子となる金属板上に信号端子を配置することで同様の効果が得られる。また、銅板の主端子61を用いて電力用半導体素子との間をはんだを用いて接続したが、ワイヤボンドによってネジ止め端子611と電力用半導体素子間を接続しても同様の効果が得られる。また、ここではアルミ製のワイヤボンドを用いたが、銅製ワイヤやアルミ被服銅ワイヤ、または金ワイヤを用いても同様の効果が得られる。また、リボンボンドを用いたり、金属板を超音波接合するバスバーなどを用いても同様の効果が得られる。また、ダイレクトポッティング封止樹脂については、流し込んで常温硬化させる種類のものでも同様の効果が得られる。   The material of the ceramic substrate is not limited to AlN, and the same effect can be obtained with ceramic materials such as alumina and SiN. Furthermore, when heat dissipation is not required to a large extent, it is also possible to use a glass epoxy substrate or the like. In addition, by using a metal substrate having both functions of a base plate and a ceramic substrate as the substrate, the number of parts can be reduced, and weight reduction and miniaturization can be achieved. The material of the case is not limited to PPS, and LCP (liquid crystal polymer) or the like can be used. Also, although the module configuration in which the diode and the IGBT are 1 pair of 1 in 1 is shown, even if it is 2 pairs of 2 in 1 and 6 pairs of 6 in 1, similar signal can be arranged by arranging the signal terminal on the metal plate as the main terminal. An effect is obtained. In addition, although the main terminal 61 of the copper plate is used to connect to the power semiconductor element using solder, the same effect can be obtained by connecting the screw terminal 611 and the power semiconductor element by wire bonding. . Further, although a wire bond made of aluminum is used here, the same effect can be obtained by using a copper wire, an aluminum-coated copper wire, or a gold wire. The same effect can be obtained by using a ribbon bond or by using a bus bar or the like for ultrasonically bonding a metal plate. Further, as to the direct potting sealing resin, the same effect can be obtained even if it is of a type in which it is poured and cured at room temperature.

以上では、電力用半導体素子とセラミック基板の接続を行う接合材にはんだを用いたものを説明したが、Agフィラーをエポキシ樹脂に分散させた導電性接着剤や、ナノ粒子を低温焼成させるAgナノパウダやCuナノパウダなどを用いた場合でも、ボイドが生じた場合にはんだと同様の効果が期待できる。   In the above, although the thing which used the solder for the joining material which connects the semiconductor element for electric powers and a ceramic substrate was demonstrated, the conductive adhesive which disperse | distributed Ag filler to the epoxy resin, Ag nano powder which carries out low temperature baking of nanoparticles. Even in the case of using Cu nanopowder or the like, the same effect as that of the solder can be expected when a void occurs.

実施の形態3.
図16は実施の形態3による電力用半導体装置の概略構成を示す断面図である。セラミック基板11(AlN製、40mm×25mm×厚さ0.635mm、裏面導体層12および回路導体層13のパターン厚さ0.4mm)上に、ダイオード21(15mm×15mm×厚さ0.3mm)と、IGBT22がはんだによって搭載される。その際、厚さ0.15mmのはんだ30を2枚用い、中間板90を挟むようにして搭載し、リフロー炉を用いてはんだ付けすることで、はんだダイボンド部31を形成する。ここで、中間板は実施の形態2で示した中間板95を用いても良いのは言うまでもない。
Third Embodiment
FIG. 16 is a cross sectional view showing a schematic configuration of the power semiconductor device according to the third embodiment. A diode 21 (15 mm × 15 mm × 0.3 mm thickness) and an IGBT 22 on a ceramic substrate 11 (made of AlN, 40 mm × 25 mm × 0.635 mm thickness, 0.4 mm thickness pattern of the back surface conductor layer 12 and the circuit conductor layer 13) Is mounted by solder. At this time, two pieces of solder 30 having a thickness of 0.15 mm are mounted so as to sandwich the intermediate plate 90, and soldered using a reflow furnace to form the solder die bonding portion 31. Here, it goes without saying that the intermediate plate may be the intermediate plate 95 shown in the second embodiment.

次に、メインリードフレーム63および信号端子リードフレーム64がセラミック基板上に位置決めされ、メインリードフレーム63はダイオード21やIGBT22など電力用半導体素子のソース電極およびドレイン電極といった大電流が流れる電極とはんだ32で接続される。また、信号端子リードフレーム64は、IGBTのゲート電極や温度センサー電極などと、ワイヤ(アルミ製φ0.15mm)4でそれぞれ電気的に接続されている。   Next, the main lead frame 63 and the signal terminal lead frame 64 are positioned on the ceramic substrate, and the main lead frame 63 is an electrode and solder 32 through which a large current flows such as a source electrode and a drain electrode of a power semiconductor element such as a diode 21 or IGBT 22. Connected by Further, the signal terminal lead frame 64 is electrically connected to the gate electrode of the IGBT, the temperature sensor electrode, etc. by the wire (φ 0.15 mm made of aluminum) 4 respectively.

最後に、トランスファモールド封止樹脂74を金型に流し込み、硬化させて封止を完了し、パワーモジュールが完成する。ここでは封止樹脂としてトランスファモールド樹脂を用いたが、低圧形成用樹脂を用いても同様の効果が得られる。   Finally, transfer mold sealing resin 74 is poured into a mold and cured to complete sealing, and the power module is completed. Although a transfer mold resin is used as the sealing resin here, the same effect can be obtained by using a low pressure forming resin.

以上のように、実施の形態1および実施の形態2で説明した中間板は、ケースを用いず、トランスファモールド封止樹脂や低圧形成用樹脂により絶縁封止した電力用半導体装置に適用することができる。実施の形態1や実施の形態2と同様、接合材中に発生した気泡が排出されやすくなり、ボイドの発生を抑制できるという効果を奏するのは言うまでもない。   As described above, the intermediate plate described in the first and second embodiments may be applied to a power semiconductor device insulated and sealed by a transfer mold sealing resin or a low voltage forming resin without using a case. it can. It goes without saying that the air bubbles generated in the bonding material are easily discharged as in the first embodiment and the second embodiment, and the generation of the void can be suppressed.

なお、本発明は、電力用半導体素子として、例えば高温動作も可能なワイドバンドギャップ半導体材料である炭化珪素(SiC)等を用いた電力用半導体素子を実装する電力用半導体装置に適用すると、高い電流密度の回路を形成することができるため特に効果がある。ワイドバンドギャップ半導体材料としては、他に、窒化ガリウム系材料、ダイアモンドなどがある。   The present invention is high when applied to a power semiconductor device for mounting a power semiconductor device using, for example, silicon carbide (SiC), which is a wide band gap semiconductor material capable of high temperature operation, as a power semiconductor device. This is particularly effective because a circuit of current density can be formed. Other wide band gap semiconductor materials include gallium nitride-based materials and diamond.

以上に説明した各実施の形態の構成、動作に限定されることはなく、本発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。   The present invention is not limited to the configurations and operations of the respective embodiments described above, and the respective embodiments may be combined or the respective embodiments may be appropriately modified or omitted within the scope of the present invention. It is possible.

11 セラミック基板(基板)、12 裏面導体層、13 回路導体層、21 ダイオード(電力用半導体素子)、22 IGBT(電力用半導体素子)、30 はんだ、31 はんだダイボンド部、32 はんだ接合部、4 アルミワイヤボンド、51 ケース、61 主端子、611、612 ネジ止め端子、62 信号端子、63 メインリードフレーム、64 信号端子リードフレーム、7 ダイレクトポッティング封止樹脂、74 トランスファモールド封止樹脂、8 接着剤、90、95 中間板 11 ceramic substrate (substrate), 12 back conductor layer, 13 circuit conductor layer, 21 diode (power semiconductor element), 22 IGBT (power semiconductor element), 30 solder, 31 solder die bond portion, 32 solder joint portion, 4 aluminum Wire bond, 51 case, 61 main terminal, 611, 612 screw terminal, 62 signal terminal, 63 main lead frame, 64 signal terminal lead frame, 7 direct potting sealing resin, 74 transfer mold sealing resin, 8 adhesive, 90, 95 Intermediate plate

Claims (9)

電力用半導体素子の一面である素子固着面が基板の一面である基板固着面に接合材により固着された電力用半導体装置において、
前記接合材中に、片面に複数の異なる高さの突起が形成され、他面にも複数の異なる高さの突起が形成されている中間板が挿入され、前記中間板の前記基板固着面に対向するが面が前記基板固着面に対して傾斜するとともに、前記中間板の前記素子固着面に対向する面が前記素子固着面に対して傾斜していることを特徴とする電力用半導体装置。
In a power semiconductor device in which an element fixing surface which is one surface of a power semiconductor element is fixed to a substrate fixing surface which is one surface of a substrate by a bonding material,
A plurality of projections of different heights are formed on one side of the bonding material, and an intermediate plate having a plurality of projections of different heights formed on the other side is inserted, and the intermediate plate is fixed to the substrate fixing surface A power semiconductor device characterized in that the facing surface is inclined with respect to the substrate fixing surface, and the surface of the intermediate plate facing the element fixing surface is inclined with respect to the element fixing surface.
電力用半導体素子の一面である素子固着面が基板の一面である基板固着面に接合材により固着された電力用半導体装置において、
前記接合材中に、板材の中央部から周辺部に向かって放射状に山折と谷折が交互に形成されて、前記基板固着面に対して傾斜した複数の平面を有する形状の中間板が挿入され、前記中間板の前記基板固着面に対向するが面が前記基板固着面に対して傾斜するとともに、前記中間板の前記素子固着面に対向する面が前記素子固着面に対して傾斜していることを特徴とする電力用半導体装置。
In a power semiconductor device in which an element fixing surface which is one surface of a power semiconductor element is fixed to a substrate fixing surface which is one surface of a substrate by a bonding material,
In the bonding material , mountain folds and valley folds are alternately formed radially from the central portion to the peripheral portion of the plate material, and an intermediate plate having a shape having a plurality of planes inclined with respect to the substrate fixing surface is inserted. A surface of the intermediate plate facing the substrate fixing surface is inclined with respect to the substrate fixing surface, and a surface of the intermediate plate facing the element fixing surface is inclined with respect to the element fixing surface. Power semiconductor device characterized in that.
前記接合材がはんだであることを特徴とする請求項1または2に記載の電力用半導体装置。 The power semiconductor device according to claim 1 or 2, wherein the bonding material is solder. 前記中間板は少なくとも表面が金属材料で形成されていることを特徴とする請求項1からのいずれか1項に記載の電力用半導体装置。 The power semiconductor device according to any one of claims 1 to 3 , wherein at least a surface of the intermediate plate is formed of a metal material. 前記基板固着面の材料がアルミニウムであり、前記中間板はアルミニウムよりも高い融点を有する材料で形成されていることを特徴とする請求項に記載の電力用半導体装置。 The power semiconductor device according to claim 4 , wherein a material of the substrate fixing surface is aluminum, and the intermediate plate is formed of a material having a melting point higher than that of aluminum. 前記基板固着面の材料がアルミニウムであり、前記中間板はアルミニウムよりも高い硬度を有する材料で形成されていることを特徴とする請求項に記載の電力用半導体装置。 The power semiconductor device according to claim 4 , wherein a material of the substrate fixing surface is aluminum, and the intermediate plate is formed of a material having a hardness higher than that of aluminum. 前記中間板は前記基板固着面の材料よりも小さい線膨張係数を有する材料で形成されていることを特徴とする請求項に記載の電力用半導体装置。 5. The power semiconductor device according to claim 4 , wherein the intermediate plate is formed of a material having a smaller linear expansion coefficient than a material of the substrate fixing surface. 前記電力用半導体素子はワイドバンドギャップ半導体により形成されていることを特徴とする請求項1からのいずれか1項に記載の電力用半導体装置。 The power semiconductor device according to any one of claims 1 to 7 , wherein the power semiconductor element is formed of a wide band gap semiconductor. 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料またはダイアモンドの半導体であることを特徴とする請求項に記載の電力用半導体装置。 9. The power semiconductor device according to claim 8 , wherein the wide band gap semiconductor is a semiconductor of silicon carbide, gallium nitride based material or diamond.
JP2015154098A 2015-08-04 2015-08-04 Power semiconductor device Active JP6504962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015154098A JP6504962B2 (en) 2015-08-04 2015-08-04 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015154098A JP6504962B2 (en) 2015-08-04 2015-08-04 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2017034152A JP2017034152A (en) 2017-02-09
JP6504962B2 true JP6504962B2 (en) 2019-04-24

Family

ID=57987192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154098A Active JP6504962B2 (en) 2015-08-04 2015-08-04 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP6504962B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066142B (en) 2017-08-25 2023-08-25 三菱电机株式会社 Power semiconductor device and method for manufacturing power semiconductor device
KR102048478B1 (en) 2018-03-20 2019-11-25 엘지전자 주식회사 Power module of double-faced cooling and method for manufacturing thereof
US11562979B2 (en) 2018-06-27 2023-01-24 Mitsubishi Electric Corporation Power module and method of manufacturing the same, and power conversion apparatus
WO2020021642A1 (en) * 2018-07-24 2020-01-30 日立化成株式会社 Circuit-package manufacturing method and circuit package
WO2020208739A1 (en) * 2019-04-10 2020-10-15 新電元工業株式会社 Semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521624Y2 (en) * 1991-03-07 1996-12-25 新電元工業株式会社 Semiconductor device
JPH10270614A (en) * 1997-03-25 1998-10-09 Oki Electric Ind Co Ltd Heat sink and semiconductor device
JPH10322010A (en) * 1997-05-16 1998-12-04 Toyota Motor Corp Component bonding method and component used in the method
JP2002217364A (en) * 2001-01-15 2002-08-02 Nissan Motor Co Ltd Semiconductor mounting structure
JP2003031718A (en) * 2001-07-11 2003-01-31 Mitsubishi Electric Corp Power semiconductor device
JP4594237B2 (en) * 2003-09-04 2010-12-08 パナソニック株式会社 Semiconductor device
JP2006269848A (en) * 2005-03-25 2006-10-05 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2017034152A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP5656907B2 (en) Power module
JP6234630B2 (en) Power module
JP6504962B2 (en) Power semiconductor device
JP6120704B2 (en) Semiconductor device
JP6300633B2 (en) Power module
JP5863602B2 (en) Power semiconductor device
JP6265693B2 (en) Semiconductor device and manufacturing method thereof
JP2007311441A (en) Power semiconductor module
JP6337957B2 (en) Semiconductor module unit and semiconductor module
JP2016018866A (en) Power module
JP6287789B2 (en) Power module and manufacturing method thereof
WO2011040313A1 (en) Semiconductor module, process for production thereof
JP2016134540A (en) Power semiconductor device
JP6308780B2 (en) Power module
JP7196047B2 (en) ELECTRICAL CIRCUIT, POWER CONVERTER, AND METHOD OF MANUFACTURING ELECTRICAL CIRCUIT
JP6124810B2 (en) Power module
JP2015130457A (en) Semiconductor device
JP2012142466A (en) Semiconductor device
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP2015115471A (en) Power semiconductor device
JP6643481B2 (en) Semiconductor module and method of manufacturing semiconductor module
JP6129090B2 (en) Power module and method for manufacturing power module
JP6881304B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2013120866A (en) Semiconductor device
JP2015026667A (en) Semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190326

R151 Written notification of patent or utility model registration

Ref document number: 6504962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250