JP6308780B2 - Power module - Google Patents

Power module Download PDF

Info

Publication number
JP6308780B2
JP6308780B2 JP2013271029A JP2013271029A JP6308780B2 JP 6308780 B2 JP6308780 B2 JP 6308780B2 JP 2013271029 A JP2013271029 A JP 2013271029A JP 2013271029 A JP2013271029 A JP 2013271029A JP 6308780 B2 JP6308780 B2 JP 6308780B2
Authority
JP
Japan
Prior art keywords
insulating substrate
semiconductor element
power semiconductor
heat
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013271029A
Other languages
Japanese (ja)
Other versions
JP2015126168A (en
Inventor
藤野 純司
純司 藤野
三紀夫 石原
三紀夫 石原
宮本 昇
宮本  昇
祐介 石山
祐介 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013271029A priority Critical patent/JP6308780B2/en
Publication of JP2015126168A publication Critical patent/JP2015126168A/en
Application granted granted Critical
Publication of JP6308780B2 publication Critical patent/JP6308780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Description

本発明は、発電及び送電から効率的なエネルギーの利用及び再生まであらゆる場面で利用されるパワーモジュールに関する。   The present invention relates to a power module used in every situation from power generation and transmission to efficient use and regeneration of energy.

産業機器から家電や情報端末まであらゆる製品にパワーモジュールが普及しつつあり、自動車用機器については、小型軽量化とともに高い信頼性が求められる。また、パワーモジュールに搭載されるパワー半導体素子として、動作温度が高く、効率に優れているSiC(炭化ケイ素)半導体素子が、今後の主流となる可能性の高い。このため、パワーモジュールは、SiC半導体素子に適用できるパッケ−ジ形態であることも同時に求められている。   Power modules are becoming widespread in various products from industrial equipment to home appliances and information terminals, and automotive equipment is required to have high reliability as well as to be smaller and lighter. Further, as a power semiconductor element mounted on the power module, a SiC (silicon carbide) semiconductor element having a high operating temperature and excellent efficiency is likely to become a mainstream in the future. For this reason, the power module is also required to be in a package form applicable to SiC semiconductor elements.

特許文献1には、半導体素子が搭載された絶縁基板(絶縁回路基板)とヒートシンクとの間に応力緩和部材が設けられるとともに、絶縁基板とヒートシンクとが熱伝導可能に結合された半導体装置が記載されている。応力緩和部材は、アルミニウムからなり、半導体素子が搭載された部分以外に、厚み方向のみに貫通する複数の貫通孔、又は厚み方向に開口を有する有底穴が形成されている。   Patent Document 1 describes a semiconductor device in which a stress relaxation member is provided between an insulating substrate (insulating circuit substrate) on which a semiconductor element is mounted and a heat sink, and the insulating substrate and the heat sink are coupled so as to be able to conduct heat. Has been. The stress relaxation member is made of aluminum, and a plurality of through-holes penetrating only in the thickness direction or bottomed holes having openings in the thickness direction are formed in addition to the portion where the semiconductor element is mounted.

特許第5114323号公報(0008段、0023段〜0026段、図1、図2)Japanese Patent No. 5114323 (0008, 0023 to 0026, FIGS. 1 and 2)

パワーモジュールは、高電圧及び大電流を扱うパワー半導体素子を搭載しているという特徴があり、生じた熱を効率的に廃熱する必要がある。自動車用機器としては、軽量化の要求からアルミニウム製の冷却器への接続が必須となっている。パワー半導体素子を搭載するセラミック基板等の絶縁回路基板は、一般的にその表面及び裏面に銅の導電体が形成されている。アルミニウムは熱膨張係数が銅に比較して大きく、パワー半導体素子やセラミック基板との膨張係数差が大きいため、アルミニウム製の冷却器(放熱部材)とセラミック基板との界面の接合部には熱応力に伴う剥離など長期信頼性面での懸念があった。   The power module is characterized by mounting a power semiconductor element that handles high voltage and large current, and it is necessary to efficiently dissipate the generated heat. As a device for automobiles, connection to an aluminum cooler is indispensable because of the demand for weight reduction. Insulating circuit boards such as ceramic boards on which power semiconductor elements are mounted generally have copper conductors formed on the front and back surfaces. Aluminum has a larger thermal expansion coefficient than copper and a large difference in expansion coefficient between the power semiconductor element and the ceramic substrate. Therefore, thermal stress is applied to the joint at the interface between the aluminum cooler (heat radiating member) and the ceramic substrate. There were concerns about long-term reliability such as peeling.

特許文献1の半導体装置では、絶縁基板とヒートシンクとの間に設けられた応力緩和部材に貫通孔や有底穴等の開口部を形成することで、応力緩和部材に柔軟性をもたせ、伸縮差に追従させているが、この開口部は絶縁基板とヒートシンクとの接合後に空隙となり、この空隙のために熱伝導を阻害すると考えられる。また、特許文献1の応力緩和部材は、半導体素子が搭載された部分の直下には開口部が形成されないので、応力緩和部材の面積は大きく、半導体装置が大きくなる問題があった。   In the semiconductor device of Patent Document 1, by forming an opening such as a through hole or a bottomed hole in a stress relaxation member provided between an insulating substrate and a heat sink, the stress relaxation member has flexibility, and an expansion / contraction difference However, it is considered that this opening becomes a gap after the insulating substrate and the heat sink are joined, and this conduction hinders heat conduction. In addition, the stress relaxation member of Patent Document 1 has a problem that since the opening is not formed immediately below the portion where the semiconductor element is mounted, the area of the stress relaxation member is large and the semiconductor device becomes large.

本発明は、上記のような問題点を解決するためになされたものであり、絶縁回路基板と放熱部材との応力を低減し、放熱性及び信頼性が向上した小型のパワーモジュールを得ることを目的とする。   The present invention has been made to solve the above-described problems, and it is possible to reduce the stress between the insulating circuit board and the heat radiating member, and to obtain a small power module with improved heat dissipation and reliability. Objective.

本発明のパワーモジュールは、表側にパワー半導体素子が搭載された絶縁基板と、冷却フィンが設けられるとともに絶縁基板の裏側に接合された放熱部材と、パワー半導体素子の電極に接続部材を用いて接続されたリードフレームと、を備え、放熱部材は、絶縁基板と対向する側に、外周部に連通し、かつ互いに交わる複数のスリットによって分割された接合ブロックと、冷却フィンが設けられた冷却フィン部とを有し、放熱部材は、空気よりも伝熱性の高い高伝熱性充填部材が、スリットに充填されており、絶縁基板は、接合ブロックにおける当該絶縁基板との対向する面に接合されており、パワー半導体素子は少なくとも1つのスリットの上方に配置されており、リードフレームは、高伝熱性充填部材により放熱部材に接着され、パワー半導体素子、接続部材、リードフレームの一部、絶縁基板、接合ブロックは、トランスファモールド樹脂により封止されたことを特徴とする。 The power module of the present invention is connected using an insulating substrate having a power semiconductor element mounted on the front side, a heat dissipating member provided with a cooling fin and bonded to the back side of the insulating substrate, and an electrode of the power semiconductor element using a connecting member. And a cooling fin portion provided with a cooling block provided on the side facing the insulating substrate, the joining block divided by a plurality of slits communicating with the outer peripheral portion and intersecting each other The heat dissipating member is filled with a high heat transfer filling member having higher heat transfer than air, and the insulating substrate is bonded to the surface of the bonding block facing the insulating substrate. the power semiconductor elements are disposed above the at least one slit, the lead frame is bonded to the heat radiation member by high thermal conductivity filling member, the power Conductive element, connecting members, part of the lead frame, the insulating substrate, the bonding block is characterized by sealed by transfer molding resin.

本発明のパワーモジュールによれば、放熱部材が絶縁基板と対向する側に外周部に連通し、かつ互いに交わる複数のスリットによって分割された接合ブロックを有し、放熱部材は、空気よりも伝熱性の高い高伝熱性充填部材が、スリットに充填されており、パワー半導体素子が少なくとも1つのスリットの上方に配置されており、リードフレームは、高伝熱性充填部材により放熱部材に接着され、パワー半導体素子、接続部材、リードフレームの一部、絶縁基板、接合ブロックは、トランスファモールド樹脂により封止されたので、絶縁回路基板と放熱部材との応力が低減し、小型であっても放熱性及信頼性を向上せることができる。
According to the power module of the present invention, the heat dissipating member has a joining block that is divided by a plurality of slits that communicate with the outer peripheral portion and intersect each other on the side facing the insulating substrate, and the heat dissipating member is more thermally conductive than air. A high heat transfer filling member with high heat conductivity is filled in the slit, the power semiconductor element is disposed above at least one slit, and the lead frame is bonded to the heat dissipation member by the high heat transfer filling member. Since the elements, connection members, part of the lead frame, insulating substrate, and bonding block are sealed with transfer mold resin , the stress between the insulating circuit substrate and the heat radiating member is reduced, and heat dissipation and reliability can be achieved even if it is small. Can be improved.

本発明の実施の形態1によるパワーモジュールの断面模式図である。It is a cross-sectional schematic diagram of the power module by Embodiment 1 of this invention. 本発明の実施の形態1による放熱部材の斜視図である。It is a perspective view of the heat radiating member by Embodiment 1 of this invention. 図2の放熱部材の上面図である。It is a top view of the heat radiating member of FIG. 図1のパワーモジュールの製造過程を示す図である。It is a figure which shows the manufacture process of the power module of FIG. 図1のパワーモジュールの製造過程を示す図である。It is a figure which shows the manufacture process of the power module of FIG. 図1のパワーモジュールの製造過程を示す図である。It is a figure which shows the manufacture process of the power module of FIG. 本発明の実施の形態1による他のパワーモジュールの断面模式図である。It is a cross-sectional schematic diagram of the other power module by Embodiment 1 of this invention. 本発明の実施の形態2によるパワーモジュールの断面模式図である。It is a cross-sectional schematic diagram of the power module by Embodiment 2 of this invention. 図8のパワーモジュールの製造過程を示す図である。It is a figure which shows the manufacture process of the power module of FIG. 図8のパワーモジュールの製造過程を示す図である。It is a figure which shows the manufacture process of the power module of FIG. 本発明の実施の形態2による第2のパワーモジュールの断面模式図である。It is a cross-sectional schematic diagram of the 2nd power module by Embodiment 2 of this invention. 本発明の実施の形態2による第3のパワーモジュールの断面模式図である。It is a cross-sectional schematic diagram of the 3rd power module by Embodiment 2 of this invention. 本発明の実施の形態2による第4のパワーモジュールの断面模式図である。It is a cross-sectional schematic diagram of the 4th power module by Embodiment 2 of this invention.

実施の形態1.
図1は本発明の実施の形態1によるパワーモジュールの断面模式図である。図2は本発明の実施の形態1による放熱部材の斜視図であり、図3は図2の放熱部材の上面図である。パワーモジュール100は、パワー半導体素子91、92と、パワー半導体素子91、92が搭載されたセラミック基板2と、ろう材3にてセラミック基板2に接続された放熱部材1と、外部端子6、7と、ケース5と、絶縁性高放熱性のペースト71と、パワー半導体素子91、92を封止する封止樹脂であるポッティング封止樹脂72と、ウォータージャケット4とを備える。パワー半導体素子91は、パワー半導体素子92及び外部端子7に接続部材であるボンディングワイヤ81により接続され、パワー半導体素子92は、外部端子6に接続部材であるボンディングワイヤ82により接続される。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of a power module according to Embodiment 1 of the present invention. 2 is a perspective view of the heat dissipation member according to Embodiment 1 of the present invention, and FIG. 3 is a top view of the heat dissipation member of FIG. The power module 100 includes power semiconductor elements 91 and 92, a ceramic substrate 2 on which the power semiconductor elements 91 and 92 are mounted, a heat radiation member 1 connected to the ceramic substrate 2 with a brazing material 3, and external terminals 6 and 7 A case 5, an insulating high heat dissipation paste 71, a potting sealing resin 72 that is a sealing resin for sealing the power semiconductor elements 91 and 92, and the water jacket 4. The power semiconductor element 91 is connected to the power semiconductor element 92 and the external terminal 7 by a bonding wire 81 that is a connecting member, and the power semiconductor element 92 is connected to the external terminal 6 by a bonding wire 82 that is a connecting member.

放熱部材1は、複数の冷却フィン11を有する冷却フィン部15と、複数のスリット13で分割された複数の小ブロック14を有する接合ブロック12とを備える。放熱部材1はアルミニウム製であり、その外形寸法は例えば、100mm×70mm、厚さ20mmである。冷却フィン11の1本は、例えば2mm角で高さ10mmである。冷却フィン11の数は、例えば400本である。接合ブロック12は、例えば9個の小ブロック14a、14b、14c、14d、14e、14f、14g、14h、14iを有し、接合ブロック12の外形寸法は例えば、60mm×60mm、厚さ5mmである。接合ブロック12は、幅1mmの4本のスリット13a、13b、13c、13dで分割されている。なお、小ブロックの符号は、総括的に14を用い、区別して説明する場合に14a、14b、14c、14d、14e、14f、14g、14h、14iを用いる。スリットの符号は、総括的に13を用い、区別して説明する場合に13a、13b、13c、13dを用いる。   The heat radiating member 1 includes a cooling fin portion 15 having a plurality of cooling fins 11 and a joining block 12 having a plurality of small blocks 14 divided by a plurality of slits 13. The heat radiating member 1 is made of aluminum, and its outer dimensions are, for example, 100 mm × 70 mm and a thickness of 20 mm. One of the cooling fins 11 is, for example, 2 mm square and 10 mm high. The number of cooling fins 11 is 400, for example. The joining block 12 has, for example, nine small blocks 14a, 14b, 14c, 14d, 14e, 14f, 14g, 14h, and 14i. The outer dimensions of the joining block 12 are, for example, 60 mm × 60 mm and a thickness of 5 mm. . The joining block 12 is divided by four slits 13a, 13b, 13c, and 13d having a width of 1 mm. In addition, the code | symbol of a small block uses 14 as a whole, and uses 14a, 14b, 14c, 14d, 14e, 14f, 14g, 14h, and 14i when demonstrating and distinguishing. The code | symbol of a slit uses 13 as a whole and uses 13a, 13b, 13c, and 13d when distinguishing and explaining.

セラミック基板2は、絶縁回路基板であり、AlN(窒化アルミニウム)製のセラミック基材23の両面に、厚さ0.4mmのアルミニウムの導体層21及び導体層22が積層されている。セラミック基材23は、その外形寸法は例えば、65mm×65mm、厚さ0.635mmである。   The ceramic substrate 2 is an insulating circuit substrate, and an aluminum conductor layer 21 and a conductor layer 22 having a thickness of 0.4 mm are laminated on both surfaces of a ceramic base material 23 made of AlN (aluminum nitride). The ceramic substrate 23 has outer dimensions of, for example, 65 mm × 65 mm and a thickness of 0.635 mm.

パワーモジュール100の製造方法について、図1、図4〜図6を用いて説明する。図4、図5、図6は、それぞれ図1のパワーモジュールの製造過程を示す図である。パワーモジュール100は、図4、図5、図6の中間状態を経て、図6の最終形になる。セラミック基板2を、図4に示すように、ろう材3を用いて放熱部材1に位置決めして接合する。ろう材3の材料は、例えばAl−Si(アルミニウム−シリコン)である。   A method for manufacturing the power module 100 will be described with reference to FIGS. 1 and 4 to 6. 4, FIG. 5, and FIG. 6 are diagrams showing a manufacturing process of the power module of FIG. The power module 100 becomes the final shape of FIG. 6 through the intermediate state of FIGS. 4, 5, and 6. As shown in FIG. 4, the ceramic substrate 2 is positioned and joined to the heat dissipating member 1 using a brazing material 3. The material of the brazing material 3 is, for example, Al—Si (aluminum-silicon).

次に、図5に示すように、外部端子6及び外部端子7が形成されたケース5を、放熱部材1の外周部16に搭載する。その後、絶縁性高放熱性のペースト71を、スリット13の内部に、かつ放熱部材1及びセラミック基板2とケース5との隙間に、充填されるように流し込み、オ−ブンでキュアして硬化させる。冷却フィン部15の外周部16とケース5との隙間、接合ブロック12の外周部及びセラミック基板2の外周部とケース5との隙間に充填されたペースト71が硬化することで、ケース5が放熱部材1に固定される。外部端子6、7は、例えばNi(ニッケル)めっきCu(銅)フレ−ムである。ケース5は、例えばPPS(ポリフェニレンサルファイド樹脂)製のインサートモールド形成品である。絶縁性高放熱性のペースト71は、空気よりも放熱性を高めることができるペースト部材であり、かつ放熱部材1よりも弾性係数の低いペースト部材である。   Next, as shown in FIG. 5, the case 5 in which the external terminals 6 and the external terminals 7 are formed is mounted on the outer peripheral portion 16 of the heat radiating member 1. Thereafter, an insulating high heat dissipation paste 71 is poured into the slits 13 and into the gaps between the heat dissipation member 1 and the ceramic substrate 2 and the case 5 so as to be filled, cured by oven and cured. . The paste 5 filled in the gap between the outer peripheral portion 16 of the cooling fin portion 15 and the case 5, the outer peripheral portion of the joining block 12, and the gap between the outer peripheral portion of the ceramic substrate 2 and the case 5 is cured, so that the case 5 radiates heat. It is fixed to the member 1. The external terminals 6 and 7 are, for example, Ni (nickel) plated Cu (copper) frames. The case 5 is an insert mold-formed product made of, for example, PPS (polyphenylene sulfide resin). The insulating high heat dissipation paste 71 is a paste member that can improve heat dissipation more than air, and is a paste member that has a lower elastic coefficient than the heat dissipation member 1.

次に、図6に示すように、Si製ダイオードであるパワー半導体素子91及びSi製IGBT(Insulated Gate Bipolar Transistor)であるパワー半導体素子92を、はんだを用いてセラミック基板2の導体層21にダイボンドし、ボンディングワイヤ81及びボンディングワイヤ82を用いて、パワー半導体素子91、92における主電極及び信号電極をケース5の外部端子6、7に接続して電気回路を形成する。パワー半導体素子91及びパワー半導体素子92の外形寸法は、いずれも例えば、15mm×15mm、厚さ0.3mmである。はんだは、例えば住金属製M705(Sn(錫)−Ag(銀)−Cu)である。ボンディングワイヤ81は、例えばアルミニウム製で、φ0.4mmであり、ボンディングワイヤ82は、例えばアルミニウム製、φ0.15mmである。   Next, as shown in FIG. 6, a power semiconductor element 91 which is a Si diode and a power semiconductor element 92 which is an Si IGBT (Insulated Gate Bipolar Transistor) are die-bonded to the conductor layer 21 of the ceramic substrate 2 using solder. Then, the main electrode and the signal electrode in the power semiconductor elements 91 and 92 are connected to the external terminals 6 and 7 of the case 5 using the bonding wire 81 and the bonding wire 82 to form an electric circuit. The external dimensions of the power semiconductor element 91 and the power semiconductor element 92 are, for example, 15 mm × 15 mm and a thickness of 0.3 mm. The solder is, for example, M705 (Sn (tin) -Ag (silver) -Cu) manufactured by Sumitomo Metals. The bonding wire 81 is made of, for example, aluminum and has a diameter of 0.4 mm, and the bonding wire 82 is made of, for example, aluminum and has a diameter of 0.15 mm.

最後に、図1に示すように、ポッティング封止樹脂72を用いて、パワー半導体素子91、92やボンディングワイヤ81、82を覆うように絶縁封止し、ウォータージャケット4を放熱部材1に水密接着剤を用いて接着して、放熱部材1とウォータージャケット4を備えた冷却器とすることで、パワーモジュール100が完成する。ウォータージャケット4は、例えばABS樹脂(アクリロニトリル、ブタジエン、スチレン共重合合成樹脂)製である。   Finally, as shown in FIG. 1, the potting sealing resin 72 is used to insulate and seal the power semiconductor elements 91 and 92 and the bonding wires 81 and 82, and the water jacket 4 is watertightly bonded to the heat radiating member 1. The power module 100 is completed by bonding using an agent to form a cooler including the heat radiating member 1 and the water jacket 4. The water jacket 4 is made of, for example, ABS resin (acrylonitrile, butadiene, styrene copolymer synthetic resin).

実施の形態1のパワーモジュール100は、放熱部材1におけるセラミック基板2と対向する側に、外周部に連通したスリット13によって分割された接合ブロック12を備え、この接合ブロック12とセラミック基板2を接合するので、開口部による空隙のために熱伝導を阻害したり、応力緩和部材の面積が大きいために半導体装置が大きくなったりする従来とは異なり、放熱部材1とセラミック基板2との接合部における熱応力を低減し、小型であっても放熱性及信頼性を向上せることができる。   The power module 100 according to the first embodiment includes a joining block 12 divided by a slit 13 communicating with the outer peripheral portion on the side facing the ceramic substrate 2 in the heat radiating member 1, and joining the joining block 12 and the ceramic substrate 2 together. Therefore, unlike the conventional case where the heat conduction is hindered due to the gap by the opening, or the semiconductor device becomes larger due to the large area of the stress relaxation member, in the joint portion between the heat radiation member 1 and the ceramic substrate 2. Thermal stress can be reduced, and heat dissipation and reliability can be improved even with a small size.

放熱部材1は、接合ブロック12から冷却フィン11まで接合界面のない一体放熱部材とするのが好適である。放熱部材1は、アルミニウム部材から、切削によって冷却フィン11やスリット13が形成される。放熱部材1を一体放熱部材とすることで、接合ブロック12と冷却フィン部15との間の接合界面をなくすことができ、接合界面を含む結合部の大きな熱抵抗をなくすことができ、放熱部材1を製造する際のプロセスの簡略化と剥離等の不具合の発生要因を減らすことが可能となる。   The heat dissipating member 1 is preferably an integral heat dissipating member having no joint interface from the joint block 12 to the cooling fin 11. The heat dissipating member 1 is formed of an aluminum member, and cooling fins 11 and slits 13 are formed by cutting. By using the heat radiating member 1 as an integral heat radiating member, the joining interface between the joining block 12 and the cooling fin portion 15 can be eliminated, and the large thermal resistance of the joint including the joining interface can be eliminated. It becomes possible to simplify the process when manufacturing 1 and to reduce the cause of defects such as peeling.

特許文献1の半導体装置では、その製造工程で、絶縁基板と応力緩和部材との接合界面及び応力緩和部材とヒートシンクとの接合界面が増えるため、生造上のプロセス増加や不具合発生要因の増大を招く可能性があった。しかし、上述したように、実施の形態1の放熱部材1は、一体放熱部材とすることで、接合ブロック12と冷却フィン部15との間の接合界面をなくすことができ、接合界面を含む結合部の大きな熱抵抗をなくすことができ、放熱部材1を製造する際のプロセスの簡略化と不具合の発生要因を減らすことが可能となる。   In the semiconductor device of Patent Document 1, the manufacturing process increases the bonding interface between the insulating substrate and the stress relaxation member and the bonding interface between the stress relaxation member and the heat sink. There was a possibility of inviting. However, as described above, the heat dissipating member 1 according to the first embodiment can eliminate the joining interface between the joining block 12 and the cooling fin portion 15 by being an integral heat dissipating member, and includes a joining interface. It is possible to eliminate the large thermal resistance of the part, simplifying the process when manufacturing the heat radiating member 1, and reducing the cause of occurrence of problems.

実施の形態1のパワーモジュール100は、外周部に連通したスリット13に、空気よりも放熱性を高めることができる部材である絶縁性高放熱性のペースト71を充填することで、放熱部材1とセラミック基板2との接合部の熱応力を低減しつつ、スリット13の放熱性の改善を図ることが可能となる。また、実施の形態1のパワーモジュール100は、絶縁性高放熱性のペースト71を流し込んだ後に硬化させることで、放熱性と信頼性の向上を図ることが可能となる。   The power module 100 according to the first embodiment fills the heat dissipation member 1 by filling the slit 13 communicating with the outer peripheral portion with an insulating high heat dissipation paste 71, which is a member capable of improving heat dissipation compared to air. It is possible to improve the heat dissipation of the slit 13 while reducing the thermal stress at the joint with the ceramic substrate 2. Further, the power module 100 according to the first embodiment can be improved in heat dissipation and reliability by being cured after pouring the insulating high heat dissipation paste 71.

実施の形態1のパワーモジュール100は、外周部に連通したスリット13に、放熱部材1よりも弾性係数の低い部材である絶縁性高放熱性のペースト71を充填することで、放熱部材1とセラミック基板2との接合部の熱応力を低減しつつ、界面のひずみに対する追従性を高めて高信頼化を図ることが可能となる。   The power module 100 according to the first embodiment fills the slit 13 communicating with the outer peripheral portion with an insulating high heat dissipation paste 71 which is a member having a lower elastic coefficient than the heat dissipation member 1, so that the heat dissipation member 1 and the ceramic While reducing the thermal stress at the joint with the substrate 2, it is possible to improve the followability to the strain at the interface and to achieve high reliability.

なお、放熱部材1の製造方法は、アルミニウム部材から切削する方法に限定されない。例えば、鍛造や鋳造などの工法で冷却フィン11やスリット13が形成されても同様の効果が得られる。   In addition, the manufacturing method of the heat radiating member 1 is not limited to the method of cutting from an aluminum member. For example, even if the cooling fins 11 and the slits 13 are formed by a method such as forging or casting, the same effect can be obtained.

また、アルミニウムの素材としては、純アルミニウム(JIS1050)のほかに、JIS5052やJIS6063などのアルミニウム合金でも同様の効果が得られ、アルミニウムに限らず切削や鋳造などの加工が可能であれば銅や鉄系金属や合金でも同様の効果が得られる。   In addition to pure aluminum (JIS1050), aluminum alloys such as JIS5052 and JIS6063 can provide the same effect as the aluminum material, and not only aluminum but also copper or iron as long as processing such as cutting and casting is possible. The same effect can be obtained with a system metal or alloy.

さらに、図7に示すように、接合ブロック121のみを銅とした銅アルミニウムクラッド材を元に、切削加工して放熱部材1を製造しても構わない。図7は、本発明の実施の形態1による他のパワーモジュールの断面模式図である。図7のパワーモジュール100における放熱部材1は、接合ブロック121のみを銅とした銅アルミニウムクラッド材を元に、切削加工して放熱部材1を製造したものである。このように、スリット13を形成した接合界面部分である接合ブロック121が、放熱部材1とセラミック基板2の中間の熱膨張係数を有する別の部材で構成されることで、セラミック基板2に近い部分である接合ブロック121は、熱膨張係数がアルミニウムに比べて小さくなるので接合ブロック121とセラミック基板2との接合部の熱応力を低減する。   Further, as shown in FIG. 7, the heat radiation member 1 may be manufactured by cutting based on a copper aluminum clad material in which only the joining block 121 is copper. FIG. 7 is a schematic cross-sectional view of another power module according to Embodiment 1 of the present invention. The heat radiating member 1 in the power module 100 of FIG. 7 is manufactured by cutting the heat radiating member 1 based on a copper aluminum clad material in which only the joining block 121 is copper. As described above, the bonding block 121 which is the bonding interface portion in which the slit 13 is formed is configured by another member having a thermal expansion coefficient intermediate between the heat dissipation member 1 and the ceramic substrate 2, thereby being a portion close to the ceramic substrate 2. Since the thermal expansion coefficient of the joining block 121 is smaller than that of aluminum, the thermal stress at the joint between the joining block 121 and the ceramic substrate 2 is reduced.

また、図7の放熱部材1は、全体を銅で製造するのに比べると大幅に軽量化が可能となる。図7の放熱部材1の場合は、界面抵抗が十分に小さい接合方法であれば、後から銅製の接合ブロック121をアルミニウム製の冷却フィン部15に対して接合を行っても同様の効果が得られる。この場合、接合ブロック121は一体物として、スリット13は浅めに形成するように加工することで、生産性の確保が容易となる。   Further, the heat dissipating member 1 of FIG. 7 can be significantly reduced in weight as compared with the case where the whole is made of copper. In the case of the heat dissipating member 1 of FIG. 7, if the joining method has a sufficiently small interface resistance, the same effect can be obtained even if the copper joining block 121 is joined to the aluminum cooling fin portion 15 later. It is done. In this case, it is easy to ensure the productivity by processing the joining block 121 as an integrated object and forming the slit 13 shallowly.

ここでは、ボンディングワイヤ81、82としてアルミニウムを用いたが、銅ワイヤやアルミニウム被覆銅ワイヤを用いることで、さらなる信頼性の向上を得ることが可能となる。また、ワイヤボンディング工法に替えてリボンボンディングによっても電気回路の形成が可能であり、バスバーを用いた主電極回路の形成も可能である。   Here, aluminum is used as the bonding wires 81 and 82, but it is possible to further improve reliability by using a copper wire or an aluminum-coated copper wire. Further, an electric circuit can be formed by ribbon bonding instead of the wire bonding method, and a main electrode circuit using a bus bar can also be formed.

また、ウォータージャケット4を用いた水冷パワーモジュールに限らず、冷却フィン11を空冷フィンとして用いても同様の効果が得られる。ケース5と放熱部材1との間には、絶縁性高放熱性のペースト71の流れを止める接着剤を塗布することで、漏れを防止することも可能である。   Further, not only the water cooling power module using the water jacket 4 but also using the cooling fins 11 as air cooling fins, the same effect can be obtained. It is also possible to prevent leakage by applying an adhesive that stops the flow of the insulating and high heat dissipation paste 71 between the case 5 and the heat dissipation member 1.

セラミック基板2は、基材がAlNである例で説明したが、アルミナやSiC、SiN(Si3N4、窒化ケイ素)などの絶縁基板基材を用いても同様の効果が得られる。導体層21、22はアルミニウムを用いたが、銅やニッケルでも同様の効果が得られる。また、ポッティング封止による絶縁封止に替えて、液状ゲルや耐熱ゴムを用いた封止によっても同様の効果が得られる。ここで用いた絶縁性高放熱性のペースト71については、導電性タイプを用いることでさらなる高熱伝導を期待することが可能となる。   Although the ceramic substrate 2 has been described as an example in which the base material is AlN, the same effect can be obtained by using an insulating substrate base material such as alumina, SiC, or SiN (Si3N4, silicon nitride). The conductor layers 21 and 22 are made of aluminum, but the same effect can be obtained with copper or nickel. The same effect can be obtained by sealing with liquid gel or heat-resistant rubber instead of insulating sealing by potting sealing. About the insulating high heat dissipation paste 71 used here, it becomes possible to expect further high heat conduction by using a conductive type.

パワー半導体素子91、パワー半導体素子92は、シリコンウエハを基材とした一般的な素子でもよいが、本発明においては炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を適用できる。パワー半導体素子92は、IGBTに限らず、MOSFET(Metal Oxide Semiconductor Field-Effect-Transistor)のようなスイッチング素子を搭載することができる。例えば、スイッチング素子として機能するパワー半導体素子92と、整流素子として機能するパワー半導体素子91に、炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料又はダイヤモンドを用いた場合、従来から用いられてきたシリコン(Si)で形成された素子よりも電力損失が低いため、パワーモジュール100の高効率化が可能となる。また、耐電圧性が高く、許容電流密度も高いため、パワーモジュール100の小型化が可能となる。さらにワイドバンドギャップ半導体素子は、耐熱性が高いので、高温動作が可能であり、冷却フィンの小型化や、水冷部の空冷化も可能となるので、冷却フィンを備えたパワーモジュール100の一層の小型化が可能になる。   The power semiconductor element 91 and the power semiconductor element 92 may be general elements based on a silicon wafer, but in the present invention, compared with silicon such as silicon carbide (SiC), gallium nitride (GaN) -based material, or silicon. A so-called wide band gap semiconductor material having a wide band gap can be applied. The power semiconductor element 92 is not limited to an IGBT, and a switching element such as a MOSFET (Metal Oxide Semiconductor Field-Effect-Transistor) can be mounted. For example, when silicon carbide (SiC), gallium nitride (GaN) -based material or diamond is used for the power semiconductor element 92 functioning as a switching element and the power semiconductor element 91 functioning as a rectifying element, it has been conventionally used. Since the power loss is lower than that of an element formed of silicon (Si), the power module 100 can be highly efficient. In addition, since the withstand voltage is high and the allowable current density is high, the power module 100 can be downsized. Furthermore, since the wide band gap semiconductor element has high heat resistance, it can operate at high temperature, and the cooling fins can be downsized and the water cooling part can be cooled by air. Miniaturization is possible.

以上のように、実施の形態1のパワーモジュール100は、表側にパワー半導体素子91、92が搭載された絶縁基板(セラミック基板2)と、冷却フィン11が設けられるとともに絶縁基板(セラミック基板2)の裏側に接合された放熱部材1と、を備え、放熱部材1は、絶縁基板(セラミック基板2)と対向する側に、外周部に連通したスリット13によって分割された接合ブロック12と、冷却フィン11が設けられた冷却フィン部15とを有し、絶縁基板(セラミック基板2)は、接合ブロック12における当該絶縁基板(セラミック基板2)との対向する面に接合されたことを特徴とするので、外周部に連通したスリット13によって分割された接合ブロックにより、絶縁回路基板(セラミック基板2)と放熱部材1との応力が低減し、小型であっても放熱性及信頼性を向上せることができる。   As described above, the power module 100 of the first embodiment includes the insulating substrate (ceramic substrate 2) on which the power semiconductor elements 91 and 92 are mounted on the front side, the cooling fins 11, and the insulating substrate (ceramic substrate 2). A heat dissipating member 1 bonded to the back side of the heat dissipating member 1, the heat dissipating member 1 on the side facing the insulating substrate (ceramic substrate 2), a joining block 12 divided by a slit 13 communicating with the outer periphery, and a cooling fin 11 is provided, and the insulating substrate (ceramic substrate 2) is bonded to the surface of the bonding block 12 facing the insulating substrate (ceramic substrate 2). The stress between the insulating circuit substrate (ceramic substrate 2) and the heat dissipation member 1 is low due to the joining block divided by the slit 13 communicating with the outer peripheral portion. And it can be a small to improve heat dissipation 及 reliability.

実施の形態2.
図8は本発明の実施の形態2によるパワーモジュールの断面模式図である。実施の形態2のパワーモジュール100は、封止樹脂であるトランスファモールド樹脂65で封止されたパワーモジュールである。実施の形態2のパワーモジュール100は、図1のケース5、外部端子6、7が、それぞれトランスファモールド樹脂65、リードフレーム61、62に変更された点で異なる。実施の形態2のパワーモジュール100は、パワー半導体素子91、92と、パワー半導体素子91、92が搭載されたセラミック基板2と、ろう材3にてセラミック基板2に接続された放熱部材1と、リードフレーム61、62と、絶縁性高放熱性のペースト71と、パワー半導体素子91、92を封止するトランスファモールド樹脂65と、ウォータージャケット4とを備える。パワー半導体素子91は、パワー半導体素子92及びリードフレーム62にボンディングワイヤ81により接続され、パワー半導体素子92は、リードフレーム61にボンディングワイヤ82により接続される。放熱部材1、セラミック基板2は、実施の形態1で説明したものである。
Embodiment 2. FIG.
FIG. 8 is a schematic cross-sectional view of a power module according to Embodiment 2 of the present invention. The power module 100 according to the second embodiment is a power module sealed with a transfer mold resin 65 that is a sealing resin. The power module 100 of the second embodiment is different in that the case 5 and the external terminals 6 and 7 in FIG. 1 are changed to transfer mold resin 65 and lead frames 61 and 62, respectively. The power module 100 according to the second embodiment includes power semiconductor elements 91 and 92, a ceramic substrate 2 on which the power semiconductor elements 91 and 92 are mounted, a heat dissipation member 1 connected to the ceramic substrate 2 with a brazing material 3, Lead frames 61 and 62, an insulating high heat dissipation paste 71, a transfer mold resin 65 for sealing the power semiconductor elements 91 and 92, and a water jacket 4 are provided. The power semiconductor element 91 is connected to the power semiconductor element 92 and the lead frame 62 by a bonding wire 81, and the power semiconductor element 92 is connected to the lead frame 61 by a bonding wire 82. The heat radiating member 1 and the ceramic substrate 2 are those described in the first embodiment.

実施の形態2のパワーモジュール100の製造方法について、図4、図8〜図10を用いて説明する。図9、図10は、それぞれ図8のパワーモジュールの製造過程を示す図である。パワーモジュール100は、図4、図9、図10の中間状態を経て、図8の最終形になる。セラミック基板2を、図4に示すように、ろう材3を用いて放熱部材1に位置決めして接合する。ろう材3の材料は、例えばAl−Siである。便宜上、放熱部材1にセラミック基板2が接合された製造中間物を、製造中間物Aとする。   A method for manufacturing power module 100 of the second embodiment will be described with reference to FIGS. 4 and 8 to 10. 9 and 10 are diagrams showing a manufacturing process of the power module shown in FIG. The power module 100 becomes the final shape of FIG. 8 through the intermediate state of FIGS. 4, 9, and 10. As shown in FIG. 4, the ceramic substrate 2 is positioned and joined to the heat dissipating member 1 using a brazing material 3. The material of the brazing material 3 is, for example, Al—Si. For convenience, a production intermediate in which the ceramic substrate 2 is bonded to the heat radiating member 1 is referred to as a production intermediate A.

次に、図9に示すように、図示しない治具を用いて、製造中間物Aをリードフレーム61及びリードフレーム62に対して位置決めし、絶縁性高放熱性のペースト71を、スリット13の内部に、かつ冷却フィン部15の外周部16、接合ブロック12の外周部及びセラミック基板2の外周部とリードフレーム61、62との隙間に充填されるように流し込み、ペースト71によりリードフレーム61、62も接着し、オーブンでキュアして硬化させる。冷却フィン部15の外周部16、接合ブロック12の外周部及びセラミック基板2の外周部とリードフレーム61、62との隙間に充填されたペースト71が硬化することで、リードフレーム61、62が製造中間物Aに固定される。リードフレーム61及びリードフレーム62は、例えばNiめっきCuフレ−ムであり、その厚さは0.6mmである。   Next, as shown in FIG. 9, the manufacturing intermediate A is positioned with respect to the lead frame 61 and the lead frame 62 using a jig (not shown), and the insulating high heat dissipation paste 71 is placed inside the slit 13. Then, the outer peripheral portion 16 of the cooling fin portion 15, the outer peripheral portion of the joining block 12, and the outer peripheral portion of the ceramic substrate 2 are poured so as to fill the gaps between the lead frames 61 and 62. Also glue and cure in an oven to cure. The lead frames 61 and 62 are manufactured by curing the paste 71 filled in the gap between the outer peripheral portion 16 of the cooling fin portion 15, the outer peripheral portion of the joining block 12, and the outer peripheral portion of the ceramic substrate 2 and the lead frames 61 and 62. Fixed to intermediate A. The lead frame 61 and the lead frame 62 are, for example, Ni-plated Cu frames, and the thickness thereof is 0.6 mm.

次に、実施の形態1で説明したのと同様に、パワー半導体素子91及びパワー半導体素子92を、はんだを用いてセラミック基板2の導体層21にダイボンドし、ボンディングワイヤ81及びボンディングワイヤ82を用いて、パワー半導体素子91、92における主電極および信号電極をリードフレーム61、62に接続して電気回路を形成する。パワー半導体素子91、92、はんだ、ボンディングワイヤ81、82は、実施の形態1で説明したものである。   Next, as described in the first embodiment, the power semiconductor element 91 and the power semiconductor element 92 are die-bonded to the conductor layer 21 of the ceramic substrate 2 using solder, and the bonding wire 81 and the bonding wire 82 are used. Then, the main electrodes and signal electrodes in the power semiconductor elements 91 and 92 are connected to the lead frames 61 and 62 to form an electric circuit. Power semiconductor elements 91 and 92, solder, and bonding wires 81 and 82 are the same as those described in the first embodiment.

次に、図10に示すように、トランスファモ−ルド封止用の金型63及び金型64で、図9の製造中間物のリードフレーム61、62を保持する。その後、図8のように、トランスファモールド樹脂65によってパワー半導体素子91、92やボンディングワイヤ81、82を覆うように絶縁封止し、ウォータージャケット4を放熱部材1に水密接着剤を用いて接着して、放熱部材1とウォータージャケット4を備えた冷却器とすることで、パワーモジュール100が完成する。ウォータージャケット4は、実施の形態1で説明したものである。   Next, as shown in FIG. 10, the lead frames 61 and 62 of the intermediate product of FIG. 9 are held by the mold 63 and the mold 64 for sealing the transfer mold. Thereafter, as shown in FIG. 8, the power semiconductor elements 91 and 92 and the bonding wires 81 and 82 are insulated and sealed with the transfer mold resin 65, and the water jacket 4 is bonded to the heat radiating member 1 using a watertight adhesive. Thus, the power module 100 is completed by using the cooler including the heat radiating member 1 and the water jacket 4. The water jacket 4 has been described in the first embodiment.

実施の形態2のパワーモジュール100は、実施の形態1と同様に、放熱部材1におけるセラミック基板2と対向する側に、外周部に連通したスリット13によって分割された接合ブロック12を備え、この接合ブロック12とセラミック基板2を接合するので、放熱部材1とセラミック基板2との接合部における熱応力を低減し、小型であっても放熱性及信頼性を向上せることができる。   Similarly to the first embodiment, the power module 100 according to the second embodiment includes the joining block 12 divided by the slit 13 communicating with the outer peripheral portion on the side facing the ceramic substrate 2 in the heat radiating member 1. Since the block 12 and the ceramic substrate 2 are joined, the thermal stress at the joined portion between the heat radiating member 1 and the ceramic substrate 2 can be reduced, and the heat radiation performance and reliability can be improved even if the size is small.

実施の形態2においても放熱部材1は、接合ブロック12から冷却フィン11まで接合界面のない一体放熱部材とするのが好適である。放熱部材1は、アルミニウム部材から、切削によって冷却フィン11やスリット13が形成される。放熱部材1を一体放熱部材とすることで、接合ブロック12と冷却フィン部15との間の接合界面をなくすことができ、接合界面を含む結合部の大きな熱抵抗をなくすことができ、放熱部材1を製造する際のプロセスの簡略化と剥離等の不具合の発生要因を減らすことが可能となる。   Also in the second embodiment, the heat radiating member 1 is preferably an integral heat radiating member having no joint interface from the joint block 12 to the cooling fin 11. The heat dissipating member 1 is formed of an aluminum member, and cooling fins 11 and slits 13 are formed by cutting. By using the heat radiating member 1 as an integral heat radiating member, the joining interface between the joining block 12 and the cooling fin portion 15 can be eliminated, and the large thermal resistance of the joint including the joining interface can be eliminated. It becomes possible to simplify the process when manufacturing 1 and to reduce the cause of defects such as peeling.

上述したように、実施の形態2の放熱部材1は、一体放熱部材とすることで、接合ブロック12と冷却フィン部15との間の接合界面をなくすことができ、接合界面を含む結合部の大きな熱抵抗をなくすことができ、放熱部材1を製造する際のプロセスの簡略化と不具合の発生要因を減らすことが可能となる。   As described above, the heat dissipating member 1 of the second embodiment is an integral heat dissipating member, so that the joining interface between the joining block 12 and the cooling fin portion 15 can be eliminated, and the joining portion including the joining interface can be eliminated. A large thermal resistance can be eliminated, and it becomes possible to simplify the process when manufacturing the heat radiating member 1 and to reduce the cause of malfunction.

実施の形態2のパワーモジュール100は、外周部に連通したスリット13に、空気よりも放熱性を高めることができる部材である絶縁性高放熱性のペースト71を充填することで、放熱部材1とセラミック基板2との接合部の熱応力を低減しつつ、スリット13の放熱性の改善を図ることが可能となる。また、実施の形態2のパワーモジュール100は、絶縁性高放熱性のペースト71を流し込んだ後に硬化させることで、放熱性と信頼性の向上を図ることが可能となる。   The power module 100 according to the second embodiment fills the slit 13 communicating with the outer peripheral portion with an insulating high heat dissipation paste 71 that is a member capable of improving heat dissipation more than air, so that the heat dissipation member 1 It is possible to improve the heat dissipation of the slit 13 while reducing the thermal stress at the joint with the ceramic substrate 2. In addition, the power module 100 according to the second embodiment can be improved in heat dissipation and reliability by being cured after pouring the insulating high heat dissipation paste 71.

実施の形態2のパワーモジュール100は、外周部に連通したスリット13に、放熱部材1よりも弾性係数の低い部材である絶縁性高放熱性のペースト71を充填することで、放熱部材1とセラミック基板2との接合部の熱応力を低減しつつ、界面のひずみに対する追従性を高めて高信頼化を図ることが可能となる。   In the power module 100 according to the second embodiment, the slit 13 communicating with the outer peripheral portion is filled with the insulating heat-radiating paste 71 which is a member having a lower elastic coefficient than that of the heat radiating member 1, so that the heat radiating member 1 and the ceramic While reducing the thermal stress at the joint with the substrate 2, it is possible to improve the followability to the strain at the interface and to achieve high reliability.

なお、放熱部材1の製造方法は、アルミニウム部材から切削する方法に限定されない。例えば、鍛造や鋳造などの工法で冷却フィン11やスリット13が形成されても同様の効果が得られる。   In addition, the manufacturing method of the heat radiating member 1 is not limited to the method of cutting from an aluminum member. For example, even if the cooling fins 11 and the slits 13 are formed by a method such as forging or casting, the same effect can be obtained.

また、アルミニウムの素材としては、純アルミニウム(JIS1050)のほかに、JIS5052やJIS6063などのアルミニウム合金でも同様の効果が得られ、アルミニウムに限らず切削や鋳造などの加工が可能であれば銅や鉄系金属や合金でも同様の効果が得られる。   In addition to pure aluminum (JIS1050), aluminum alloys such as JIS5052 and JIS6063 can provide the same effect as the aluminum material, and not only aluminum but also copper or iron as long as processing such as cutting and casting is possible. The same effect can be obtained with a system metal or alloy.

さらに、図11に示すように、接合ブロック121のみを銅とした銅アルミニウムクラッド材を元に、切削加工して放熱部材1を製造しても構わない。図11は、本発明の実施の形態2による第2のパワーモジュールの断面模式図である。図11のパワーモジュール100における放熱部材1は、接合ブロック121のみを銅とした銅アルミニウムクラッド材を元に、切削加工して放熱部材1を製造したものである。このように、スリット13を形成した接合界面部分である接合ブロック121が、放熱部材1とセラミック基板2の中間の熱膨張係数を有する別の部材で構成されることで、セラミック基板2に近い部分である接合ブロック121は、熱膨張係数がアルミニウムに比べて小さくなるので接合ブロック121とセラミック基板2との接合部の熱応力を低減する。   Furthermore, as shown in FIG. 11, the heat radiating member 1 may be manufactured by cutting based on a copper aluminum clad material in which only the joining block 121 is copper. FIG. 11 is a schematic cross-sectional view of a second power module according to Embodiment 2 of the present invention. The heat radiating member 1 in the power module 100 of FIG. 11 is manufactured by cutting the heat radiating member 1 based on a copper aluminum clad material in which only the joining block 121 is copper. As described above, the bonding block 121 which is the bonding interface portion in which the slit 13 is formed is configured by another member having a thermal expansion coefficient intermediate between the heat dissipation member 1 and the ceramic substrate 2, thereby being a portion close to the ceramic substrate 2. Since the thermal expansion coefficient of the joining block 121 is smaller than that of aluminum, the thermal stress at the joint between the joining block 121 and the ceramic substrate 2 is reduced.

また、図11の放熱部材1は、全体を銅で製造するのに比べると大幅に軽量化が可能となる。図11の放熱部材1の場合は、界面抵抗が十分に小さい接合方法であれば、後から銅製の接合ブロック121をアルミニウム製の冷却フィン部15に対して接合を行っても同様の効果が得られる。この場合、接合ブロック121は一体物として、スリット13は浅めに形成するように加工することで、生産性の確保が容易となる。   Further, the heat dissipating member 1 of FIG. 11 can be significantly reduced in weight as compared with the case where the whole is made of copper. In the case of the heat radiating member 1 of FIG. 11, if the joining method has a sufficiently small interface resistance, the same effect can be obtained even if the copper joining block 121 is joined to the aluminum cooling fin portion 15 later. It is done. In this case, it is easy to ensure the productivity by processing the joining block 121 as an integrated object and forming the slit 13 shallowly.

ここでは、ボンディングワイヤ81、82としてアルミニウムを用いたが、銅ワイヤやアルミニウム被覆銅ワイヤを用いることで、さらなる信頼性の向上を得ることが可能となる。また、ワイヤボンディング工法に替えてリボンボンディングによっても電気回路の形成が可能であり、バスバーを用いた主電極回路の形成も可能である。   Here, aluminum is used as the bonding wires 81 and 82, but it is possible to further improve reliability by using a copper wire or an aluminum-coated copper wire. Further, an electric circuit can be formed by ribbon bonding instead of the wire bonding method, and a main electrode circuit using a bus bar can also be formed.

また、ウォータージャケット4を用いた水冷パワーモジュールに限らず、冷却フィン11を空冷フィンとして用いても同様の効果が得られる。   Further, not only the water cooling power module using the water jacket 4 but also using the cooling fins 11 as air cooling fins, the same effect can be obtained.

セラミック基板2は、基材がAlNである例で説明したが、アルミナやSiC、SiN(Si3N4)などの絶縁基板基材を用いても同様の効果が得られる。導体層21、22はアルミニウムを用いたが、銅やニッケルでも同様の効果が得られる。   Although the ceramic substrate 2 has been described as an example in which the base material is AlN, the same effect can be obtained even when an insulating substrate base material such as alumina, SiC, or SiN (Si3N4) is used. The conductor layers 21 and 22 are made of aluminum, but the same effect can be obtained with copper or nickel.

なお、絶縁性高放熱性のペースト71を用いてリードフレーム61、62を位置決め固定した例で説明したが、図12、図13に示すように、ペースト73をセラミック基板2と放熱部材1の固定とスリット13の隙間充填のみに使用して、リードフレーム61、62がトランスファモールド樹脂65で固定されるようにすることも可能である。図12は本発明の実施の形態2による第3のパワーモジュールの断面模式図であり、図14は本発明の実施の形態2による第4のパワーモジュールの断面模式図である。ペースト73は、セラミック基板2のセラミック基材21及び接合ブロック12に対向する導体層22の外周部や、接合ブロック12の外周部、冷却フィン部15の外周部16に充填される。この場合、リードフレーム61、62の位置決め固定を、治具を用いて行い、ペースト73をセラミック基板2と放熱部材1の固定とスリット13の隙間充填のみに使用することで、ペースト73として導電性タイプを用いることが可能となり、セラミック基板2と放熱部材1との熱伝導に関して、さらなる高熱伝導を期待することが可能となる。図12のパワーモジュールは図8の放熱部材1にペースト73を適用した例であり、図13のパワーモジュールは図11の放熱部材1にペースト73を適用した例である。   Although the example in which the lead frames 61 and 62 are positioned and fixed using the insulating high heat dissipation paste 71 has been described, the paste 73 is fixed to the ceramic substrate 2 and the heat dissipation member 1 as shown in FIGS. It is also possible to fix the lead frames 61 and 62 with the transfer mold resin 65 only for filling the gap between the slit 13 and the slit 13. FIG. 12 is a schematic cross-sectional view of a third power module according to Embodiment 2 of the present invention, and FIG. 14 is a schematic cross-sectional view of a fourth power module according to Embodiment 2 of the present invention. The paste 73 is filled in the outer peripheral portion of the conductor layer 22 facing the ceramic base 21 and the bonding block 12 of the ceramic substrate 2, the outer peripheral portion of the bonding block 12, and the outer peripheral portion 16 of the cooling fin portion 15. In this case, the lead frames 61 and 62 are positioned and fixed using a jig, and the paste 73 is used only for fixing the ceramic substrate 2 and the heat radiating member 1 and filling the gaps between the slits 13. It is possible to use a type, and it is possible to expect higher heat conduction with respect to the heat conduction between the ceramic substrate 2 and the heat radiating member 1. The power module in FIG. 12 is an example in which the paste 73 is applied to the heat dissipation member 1 in FIG. 8, and the power module in FIG. 13 is an example in which the paste 73 is applied to the heat dissipation member 1 in FIG.

なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be combined with each other within the scope of the invention, and each embodiment can be modified or omitted as appropriate.

1…放熱部材、2…セラミック基板(絶縁基板)、5…ケ−ス、11…冷却フィン、12…接合ブロック、13、13a、13b、13c、13d…スリット、15…冷却フィン部、16…外周部、61…リードフレーム、62…リードフレーム、65…トランスファモールド樹脂(封止樹脂)、71…ペースト、72…ポッティング封止樹脂(封止樹脂)、73…ペースト、81…ボンディングワイヤ(接続部材)、82…ボンディングワイヤ(接続部材)、91…パワー半導体素子、92…パワー半導体素子、100…パワーモジュール。   DESCRIPTION OF SYMBOLS 1 ... Heat dissipation member, 2 ... Ceramic substrate (insulating substrate), 5 ... Case, 11 ... Cooling fin, 12 ... Joining block, 13, 13a, 13b, 13c, 13d ... Slit, 15 ... Cooling fin part, 16 ... Peripheral part, 61 ... lead frame, 62 ... lead frame, 65 ... transfer molding resin (sealing resin), 71 ... paste, 72 ... potting sealing resin (sealing resin), 73 ... paste, 81 ... bonding wire (connection) Member), 82 ... bonding wire (connection member), 91 ... power semiconductor element, 92 ... power semiconductor element, 100 ... power module.

Claims (8)

表側にパワー半導体素子が搭載された絶縁基板と、冷却フィンが設けられるとともに前記絶縁基板の裏側に接合された放熱部材と、前記パワー半導体素子の電極に接続部材を用いて接続されたリードフレームと、を備えたパワーモジュールであって、
前記放熱部材は、前記絶縁基板と対向する側に、外周部に連通し、かつ互いに交わる複数のスリットによって分割された接合ブロックと、前記冷却フィンが設けられた冷却フィン部とを有し、
前記放熱部材は、空気よりも伝熱性の高い高伝熱性充填部材が、前記スリットに充填されており、
前記絶縁基板は、前記接合ブロックにおける当該絶縁基板との対向する面に接合されており、
前記パワー半導体素子は少なくとも1つの前記スリットの上方に配置されており、
前記リードフレームは、前記高伝熱性充填部材により前記放熱部材に接着され、
前記パワー半導体素子、前記接続部材、前記リードフレームの一部、前記絶縁基板、前記接合ブロックは、トランスファモールド樹脂により封止されたことを特徴とするパワーモジュール。
An insulating substrate having a power semiconductor element mounted on the front side, a heat dissipating member provided with cooling fins and bonded to the back side of the insulating substrate, and a lead frame connected to the electrode of the power semiconductor element using a connecting member; , a power module with a,
The heat dissipating member has, on the side facing the insulating substrate, a joining block that is divided by a plurality of slits that communicate with the outer peripheral portion and intersect each other, and a cooling fin portion provided with the cooling fin,
The heat radiating member has a high heat transfer filling member having higher heat transfer than air, and the slit is filled,
The insulating substrate is bonded to a surface of the bonding block facing the insulating substrate,
The power semiconductor element is disposed above the at least one slit ;
The lead frame is bonded to the heat radiating member by the highly heat conductive filling member,
The power module , wherein the power semiconductor element, the connection member, a part of the lead frame, the insulating substrate, and the joining block are sealed with a transfer mold resin .
表側にパワー半導体素子が搭載された絶縁基板と、冷却フィンが設けられるとともに前記絶縁基板の裏側に接合された放熱部材と、前記パワー半導体素子の電極に接続部材を用いて接続されたリードフレームと、を備えたパワーモジュールであって、
前記放熱部材は、前記絶縁基板と対向する側に、外周部に連通し、かつ互いに交わる複数のスリットによって分割された接合ブロックと、前記冷却フィンが設けられた冷却フィン部とを有し
前記放熱部材は、空気よりも伝熱性の高い高伝熱性充填部材が、前記スリットに充填されており、
前記絶縁基板は、前記接合ブロックにおける当該絶縁基板との対向する面に接合されており、
前記パワー半導体素子は少なくとも1つの前記スリットの上方に配置されており、
前記絶縁基板における前記放熱部材に対向する側と前記接合ブロックの側面は、前記高伝熱性充填部材により覆われ、
前記パワー半導体素子、前記接続部材、前記リードフレームの一部、前記絶縁基板、前記接合ブロックは、トランスファモールド樹脂により封止され、
前記高伝熱性充填部材は、導電性を有することを特徴とするパワーモジュール。
An insulating substrate having a power semiconductor element mounted on the front side, a heat dissipating member provided with cooling fins and bonded to the back side of the insulating substrate, and a lead frame connected to the electrode of the power semiconductor element using a connecting member; A power module comprising:
The heat dissipating member has, on the side facing the insulating substrate, a joining block that is divided by a plurality of slits that communicate with the outer peripheral portion and intersect each other, and a cooling fin portion provided with the cooling fin ,
The heat radiating member has a high heat transfer filling member having higher heat transfer than air, and the slit is filled ,
The insulating substrate is bonded to a surface of the bonding block facing the insulating substrate,
The power semiconductor element is disposed above the at least one slit;
The side of the insulating substrate facing the heat radiating member and the side surface of the joining block are covered with the highly heat conductive filling member,
The power semiconductor element, the connection member, a part of the lead frame, the insulating substrate, and the joining block are sealed with a transfer mold resin,
The high thermally conductive filler member characteristics and to Rupa word module that has conductivity.
表側にパワー半導体素子が搭載された絶縁基板と、冷却フィンが設けられるとともに前記絶縁基板の裏側に接合された放熱部材と、前記パワー半導体素子の電極に接続部材を用いて接続されたリードフレームと、を備えたパワーモジュールであって、
前記放熱部材は、前記絶縁基板と対向する側に、外周部に連通し、かつ互いに交わる複数のスリットによって分割された接合ブロックと、前記冷却フィンが設けられた冷却フィン部とを有し
前記放熱部材は、前記放熱部材よりも弾性係数の低い充填部材が、前記スリットに充填されており、
前記絶縁基板は、前記接合ブロックにおける当該絶縁基板との対向する面に接合されており、
前記パワー半導体素子は少なくとも1つの前記スリットの上方に配置されており、
前記リードフレームは、前記充填部材により前記放熱部材に接着され、
前記パワー半導体素子、前記接続部材、前記リードフレームの一部、前記絶縁基板、前記接合ブロックは、トランスファモールド樹脂により封止されたことを特徴とするパワーモジュール。
An insulating substrate having a power semiconductor element mounted on the front side, a heat dissipating member provided with cooling fins and bonded to the back side of the insulating substrate, and a lead frame connected to the electrode of the power semiconductor element using a connecting member; A power module comprising:
The heat dissipating member has, on the side facing the insulating substrate, a joining block that is divided by a plurality of slits that communicate with the outer peripheral portion and intersect each other, and a cooling fin portion provided with the cooling fin ,
The heat radiating member has a filling member having a lower elastic coefficient than the heat radiating member, and the slit is filled .
The insulating substrate is bonded to a surface of the bonding block facing the insulating substrate,
The power semiconductor element is disposed above the at least one slit;
The lead frame is bonded to the heat dissipation member by the filling member,
Said power semiconductor element, the connection member, a part of the lead frame, said insulating substrate, said bonding block characteristics and to Rupa word module that has been sealed with a transfer mold resin.
表側にパワー半導体素子が搭載された絶縁基板と、冷却フィンが設けられるとともに前記絶縁基板の裏側に接合された放熱部材と、前記パワー半導体素子の電極に接続部材を用いて接続されたリードフレームと、を備たパワーモジュールであって
前記放熱部材は、前記絶縁基板と対向する側に、外周部に連通し、かつ互いに交わる複数のスリットによって分割された接合ブロックと、前記冷却フィンが設けられた冷却フィン部とを有し
前記放熱部材は、前記放熱部材よりも弾性係数の低い充填部材が、前記スリットに充填されており、
前記絶縁基板は、前記接合ブロックにおける当該絶縁基板との対向する面に接合されており、
前記パワー半導体素子は少なくとも1つの前記スリットの上方に配置されており、
前記絶縁基板における前記放熱部材に対向する側と前記接合ブロックの側面は、前記充填部材により覆われ、
前記パワー半導体素子、前記接続部材、前記リードフレームの一部、前記絶縁基板、前記接合ブロックは、トランスファモールド樹脂により封止され、
前記充填部材は、導電性を有することを特徴とするパワーモジュール。
An insulating substrate having a power semiconductor element mounted on the front side, a heat dissipating member provided with cooling fins and bonded to the back side of the insulating substrate, and a lead frame connected to the electrode of the power semiconductor element using a connecting member ; , a power module example Bei a,
The heat dissipating member has, on the side facing the insulating substrate, a joining block that is divided by a plurality of slits that communicate with the outer peripheral portion and intersect each other, and a cooling fin portion provided with the cooling fin ,
The heat radiating member has a filling member having a lower elastic coefficient than the heat radiating member, and the slit is filled.
The insulating substrate is bonded to a surface of the bonding block facing the insulating substrate,
The power semiconductor element is disposed above the at least one slit;
The side of the insulating substrate facing the heat dissipation member and the side surface of the joining block are covered with the filling member,
The power semiconductor element, the connection member, a part of the lead frame, the insulating substrate, and the joining block are sealed with a transfer mold resin,
The filler member characteristics and to Rupa word module that has conductivity.
前記放熱部材は、前記冷却フィンから前記接合ブロックにおける前記絶縁基板との対向する面まで同一部材で構成されたことを特徴とする請求項1からのいずれか1項に記載のパワーモジュール。 The heat dissipation member, the power module according to claim 1, any one of 4, characterized in that from the cooling fins are made of the same member to the opposite surfaces of said insulating substrate in the junction block. 前記接合ブロックは、その熱膨張係数が、前記冷却フィン部の熱膨張係数と前記絶縁基板の熱膨張係数との間の値であることを特徴とする請求項1からのいずれか1項に記載のパワーモジュール。 Said joining block has its thermal expansion coefficient, to any one of claims 1 4, characterized in that the values between the coefficient of thermal expansion of the insulating substrate and the thermal expansion coefficient of the cooling fin unit The described power module. 前記パワー半導体素子は、ワイドバンドギャップ半導体材料により形成されていることを特徴とする請求項1からのいずれか1項に記載のパワーモジュール。 The power module according to any one of claims 1 to 6 , wherein the power semiconductor element is made of a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム系材料、またはダイヤモンドのうちのいずれかであることを特徴とする請求項記載のパワーモジュール。 The power module according to claim 7, wherein the wide band gap semiconductor material is any one of silicon carbide, gallium nitride-based material, and diamond.
JP2013271029A 2013-12-27 2013-12-27 Power module Active JP6308780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013271029A JP6308780B2 (en) 2013-12-27 2013-12-27 Power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013271029A JP6308780B2 (en) 2013-12-27 2013-12-27 Power module

Publications (2)

Publication Number Publication Date
JP2015126168A JP2015126168A (en) 2015-07-06
JP6308780B2 true JP6308780B2 (en) 2018-04-11

Family

ID=53536660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271029A Active JP6308780B2 (en) 2013-12-27 2013-12-27 Power module

Country Status (1)

Country Link
JP (1) JP6308780B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357917B2 (en) * 2014-06-27 2018-07-18 三菱マテリアル株式会社 Power module substrate with heat sink, method for manufacturing the same, and power module
JP6700119B2 (en) * 2016-06-24 2020-05-27 三菱電機株式会社 Power semiconductor device and method of manufacturing power semiconductor device
CN108738368B (en) * 2017-02-13 2022-06-17 新电元工业株式会社 Electronic device
JP7014012B2 (en) * 2018-03-30 2022-02-01 三菱電機株式会社 Semiconductor devices, manufacturing methods for semiconductor devices, and power conversion devices
JP2020009868A (en) * 2018-07-06 2020-01-16 日立オートモティブシステムズ株式会社 Semiconductor module
KR102431492B1 (en) * 2022-04-21 2022-08-11 주식회사 엠디엠 Electronic device module and multi-faceted heat dissipation packaging module including same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130971U (en) * 1977-03-25 1978-10-17
JPH0333074Y2 (en) * 1985-10-24 1991-07-12
JPH0247895A (en) * 1988-08-09 1990-02-16 Fujitsu Ltd Heat dissipation plate
JP3094768B2 (en) * 1994-01-11 2000-10-03 富士電機株式会社 Semiconductor device
JP3180621B2 (en) * 1995-06-09 2001-06-25 三菱マテリアル株式会社 Power module substrate
JPH09275170A (en) * 1996-04-03 1997-10-21 Fuji Electric Co Ltd Semiconductor device
JPH09298259A (en) * 1996-05-09 1997-11-18 Sumitomo Metal Ind Ltd Heat sink and manufacture thereof
JPH10163383A (en) * 1996-11-29 1998-06-19 Oki Electric Ind Co Ltd Resin sealed type semiconductor device and its manufacture
JP3449285B2 (en) * 1999-03-18 2003-09-22 三菱電機株式会社 Thermal strain absorber and power semiconductor device using the same
JP2001058253A (en) * 1999-08-20 2001-03-06 Showa Alum Corp Production of copper-cladded aluminum formed product
JP2004048084A (en) * 2003-11-12 2004-02-12 Mitsubishi Electric Corp Semiconductor power module
JP2005223083A (en) * 2004-02-04 2005-08-18 Sony Corp Semiconductor device
JP5257229B2 (en) * 2004-04-14 2013-08-07 株式会社デンソー Semiconductor device and heat sink
JP4617209B2 (en) * 2005-07-07 2011-01-19 株式会社豊田自動織機 Heat dissipation device
JP2007299798A (en) * 2006-04-27 2007-11-15 Furukawa Sky Kk Ceramic substrate having heat sink
DE102007019885B4 (en) * 2007-04-27 2010-11-25 Wieland-Werke Ag Heatsink with matrix-structured surface
JP2008294280A (en) * 2007-05-25 2008-12-04 Showa Denko Kk Semiconductor device
JP5018355B2 (en) * 2007-09-05 2012-09-05 株式会社デンソー Mold package
JP5716637B2 (en) * 2011-11-04 2015-05-13 住友電気工業株式会社 Semiconductor module and method for manufacturing semiconductor module
JP6003109B2 (en) * 2012-03-08 2016-10-05 ダイキン工業株式会社 Power module

Also Published As

Publication number Publication date
JP2015126168A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP6300633B2 (en) Power module
JP6234630B2 (en) Power module
JP6308780B2 (en) Power module
JP4569473B2 (en) Resin-encapsulated power semiconductor module
JP4438489B2 (en) Semiconductor device
US9196604B2 (en) Power semiconductor module having pattern laminated region
JP5656907B2 (en) Power module
JP6020731B2 (en) Semiconductor module, semiconductor device, and automobile
WO2007145303A1 (en) Semiconductor module and method for manufacturing same
TWI470748B (en) Wireless semiconductor package for efficient heat dissipation
US8610263B2 (en) Semiconductor device module
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2010129867A (en) Power semiconductor device
WO2014097798A1 (en) Semiconductor device
JP5895220B2 (en) Manufacturing method of semiconductor device
JP2016018866A (en) Power module
JP2011243839A (en) Power semiconductor device
JP2015076562A (en) Power module
JP5954409B2 (en) Semiconductor module with heat dissipation fins
WO2013118275A1 (en) Semiconductor device
JP6337954B2 (en) Insulating substrate and semiconductor device
JP2009070934A (en) Power semiconductor module, and manufacturing method thereof
JP2017092056A (en) Power semiconductor device
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
KR20140130862A (en) Power module having improved cooling performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180313

R151 Written notification of patent or utility model registration

Ref document number: 6308780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250