JP6500872B2 - 駆動装置および自動車 - Google Patents

駆動装置および自動車 Download PDF

Info

Publication number
JP6500872B2
JP6500872B2 JP2016205427A JP2016205427A JP6500872B2 JP 6500872 B2 JP6500872 B2 JP 6500872B2 JP 2016205427 A JP2016205427 A JP 2016205427A JP 2016205427 A JP2016205427 A JP 2016205427A JP 6500872 B2 JP6500872 B2 JP 6500872B2
Authority
JP
Japan
Prior art keywords
motor
control
inverter
pwm control
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016205427A
Other languages
English (en)
Other versions
JP2018068037A (ja
Inventor
清隆 松原
清隆 松原
山田 堅滋
堅滋 山田
敏洋 山本
敏洋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016205427A priority Critical patent/JP6500872B2/ja
Priority to US15/724,520 priority patent/US11358476B2/en
Priority to CN201710966171.3A priority patent/CN107962980B/zh
Publication of JP2018068037A publication Critical patent/JP2018068037A/ja
Application granted granted Critical
Publication of JP6500872B2 publication Critical patent/JP6500872B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/006Starting of engines by means of electric motors using a plurality of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/104Control of the starter motor torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、駆動装置および自動車に関し、詳しくは、モータとインバータと蓄電装置とを備える駆動装置および駆動装置を搭載する自動車に関する。
従来、この種の駆動装置としては、電動機と、複数のスイッチング素子のスイッチングによって電動機を駆動するインバータ回路を有する電力変換装置と、を備えるものにおいて、電動機の電気1周期のパルス数と、電動機のトルク指令に基づく電圧の変調率および電圧位相と、に基づいて複数のスイッチング素子のパルス信号を生成して複数のスイッチング素子のスイッチングを行なうものが提案されている(例えば、特許文献1参照)。この駆動装置では、パルス数と変調率と電圧位相とに基づいて電力変換装置および電動機の電力損失が最小となるようにパルス信号を生成することにより、駆動装置全体の損失の低減を図っている。
特開2013−162660号公報
上述の駆動装置におけるパルス信号を生成して電力変換装置に出力する手法では、電動機の各相の電圧指令と搬送波電圧との比較によってパルス信号を生成して電力変換装置に出力する手法に比して、複数のスイッチング素子のスイッチング回数を少なくすることが考えられる。しかし、複数のスイッチング素子のスイッチング回数を少なくする場合、電動機の制御性が低くなりやすい。このため、何らかの事情により、電動機の制御性がより低下する懸念があったり電動機の制御性をより高くする要請があったりして電動機の高制御性が要求されているときに、その要求を満たせない可能性がある。
本発明の駆動装置および自動車は、制御性の要求をより十分に満たすことを主目的とする。
本発明の駆動装置および自動車は、上述の主目的を達成するために以下の手段を採った。
本発明の駆動装置は、
走行用のモータと、
複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
前記インバータを介して前記モータと電力をやりとりする蓄電装置と、
を備える駆動装置であって、
前記インバータの制御として、前記モータのトルク指令に基づく各相の電圧指令と搬送波電圧との比較によって前記複数のスイッチング素子の第1PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう第1PWM制御と、前記トルク指令に基づく電圧の変調率および電圧位相と前記モータの電気角の単位周期当たりのパルス数とに基づいて前記複数のスイッチング素子の第2PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう制御であって前記第1PWM制御に比して前記複数のスイッチング素子のスイッチング回数を少なくする第2PWM制御と、を切り替えて実行する制御装置を備え、
前記制御装置は、前記モータの高制御性が要求されているときには、前記高制御性が要求されていないときに比して、前記インバータの制御として前記第2PWM制御の実行を制限する、
ことを要旨とする。
この本発明の駆動装置では、インバータの制御として、第1PWM制御と第2PWM制御とを切り替えて実行する。ここで、第1PWM制御は、モータのトルク指令に基づく各相の電圧指令と搬送波電圧との比較によって複数のスイッチング素子の第1PWM信号を生成して複数のスイッチング素子のスイッチングを行なう制御である。第2PWM制御は、トルク指令に基づく電圧の変調率および電圧位相とモータの電気角の単位周期当たりのパルス数とに基づいて複数のスイッチング素子の第2PWM信号を生成して複数のスイッチング素子のスイッチングを行なう制御であって、第1PWM制御に比して複数のスイッチング素子のスイッチング回数を少なくする制御である。そして、モータの高制御性が要求されているときには、高制御性が要求されていないときに比して、インバータの制御として第2PWM制御の実行を制限する。第2PWM制御は、第1PWM制御に比して、複数のスイッチング素子のスイッチング回数を少なくするから、モータの制御性が低くなりやすい。したがって、モータの高制御性が要求されているときには、高制御性が要求されていないときに比して、インバータの制御として第2PWM制御の実行を制限することにより、モータの高制御性の要求をより十分に満たすことができる。ここで、「第2PWM制御の実行の制限」としては、第2PWM制御の実行領域の縮小や第2PWM制御の実行の禁止などを挙げることができる。
こうした本発明の駆動装置において、前記制御装置は、前記高制御性が要求されていないときには、前記インバータの制御として前記第2PWM制御の実行を許可し、前記高制御性が要求されているときには、前記インバータの制御として前記第2PWM制御の実行を禁止する、ものとしてもよい。こうすれば、モータの高制御性が要求されているか否かに応じて、第2PWM制御の実行または禁止を判定することができる。この場合、前記制御装置は、前記インバータの制御として前記第2PWM制御の実行を許可すると共に前記モータの目標動作点が所定領域内のときには、前記インバータの制御として前記第2PWM制御を実行し、前記インバータの制御として前記第2PWM制御の実行を許可すると共に前記目標動作点が前記所定領域外のときおよび前記インバータの制御として前記第2PWM制御の実行を禁止するときには、前記インバータの制御として前記第1PWM制御を実行する、ものとしてもよい。こうすれば、インバータの制御として、第2PWM制御の実行を許可したか禁止したかおよびモータの目標動作点に応じて第1PWM制御および第2PWM制御のうちの何れを実行するかを決定することができる。
また、本発明の駆動装置において、前記第2PWM制御は、前記第1PWM制御に比して、所望の次数の高調波成分が低減されると共に前記モータの損失と前記インバータの損失との合計損失が低減されるように前記複数のスイッチング素子の第2PWM信号を生成する制御である、ものとしてもよい。こうすれば、第2PWM制御を実行する際には、第1PWM制御を実行する際に比して、所望の次数の高調波成分の低減や合計損失の低減を図ることができる。なお、「所望の次数」は、特定の次数であってもよいし、低次数から高次数までの比較的広範囲の次数であってもよい。
本発明の駆動装置において、前記モータの回転子の回転位置を検出する回転位置検出センサと、前記モータに流れる電流を検出する電流センサと、を備え、前記制御装置は、前記回転位置検出センサおよび前記電流センサのうちの少なくとも1つのゼロ点学習が完了していないときには、前記高制御性が要求されていると判定する、ものとしてもよい。回転位置検出センサや電流センサのゼロ点学習が完了していないときには、モータの制御性がより低下する懸念がある。したがって、回転位置検出センサおよび前記電流センサのうちの少なくとも1つのゼロ点学習が完了していないときには、高制御性が要求されていると判定し、インバータの制御として第2PWM制御の実行を制限することにより、モータの高制御性の要求をより十分に満たすことができる。
本発明の駆動装置において、前記モータの回転子の回転位置を検出する回転位置検出センサと、前記モータに流れる電流を検出する電流センサと、を備え、前記制御装置は、前記回転位置検出センサおよび前記電流センサのうちの少なくとも1つに異常が生じているときには、前記高制御性が要求されていると判定する、ものとしてもよい。回転位置検出センサや電流センサに異常が生じているときには、モータの制御性がより低下する懸念がある。したがって、回転位置検出センサおよび電流センサのうちの少なくとも1つに異常が生じているときには、高制御性が要求されていると判定し、インバータの制御として第2PWM制御の実行を制限することにより、モータの高制御性の要求をより十分に満たすことができる。
本発明の駆動装置において、前記制御装置は、前記モータのトルク指令,前記モータの回転数,前記インバータの電圧,前記蓄電装置の電圧のうちの少なくとも1つの単位時間当たりの変化量がそれぞれの閾値よりも大きいときには、前記高制御性が要求されていると判定する、ものとしてもよい。モータのトルク指令や回転数,インバータの電圧,蓄電装置の電圧の急変時(モータの駆動状態の急変時)には、モータの制御性がより低下する懸念がある。したがって、モータのトルク指令や回転数,インバータの電圧,蓄電装置の電圧が急変したときには、高制御性が要求されていると判定し、インバータの制御として第2PWM制御の実行を制限することにより、モータの高制御性の要求をより十分に満たすことができる。
本発明の駆動装置において、前記制御装置は、前記モータによる制振制御を行なっているときには、前記高制御性が要求されていると判定する、ものとしてもよい。モータによる制振制御を行なっているときには、制振性能を十分に発揮させるために、モータの制御性をより高くするのが好ましい(より高くするように要請される)。したがって、モータによる制振制御を行なっているときには、高制御性が要求されていると判定し、インバータの制御として第2PWM制御の実行を制限することにより、モータの高制御性の要求をより十分に満たすことができる。
本発明の駆動装置において、前記蓄電装置からの電力を昇圧して前記インバータに供給する昇圧コンバータと、前記昇圧コンバータのリアクトルに流れる電流を検出する電流センサと、前記昇圧コンバータよりも前記インバータ側の電圧を検出する電圧センサと、を備え、前記制御装置は、前記電流センサと前記電圧センサとのうちの少なくとも1つに異常が生じているときには、前記高制御性が要求されていると判定する、ものとしてもよい。電流センサや電圧センサに異常が生じているときには、モータの制御性がより低下する懸念がある。したがって、電流センサおよび電圧センサのうちの少なくとも1つに異常が生じているときには、高制御性が要求されていると判定し、インバータの制御として第2PWM制御の実行を制限することにより、モータの高制御性の要求をより十分に満たすことができる。
本発明の第1の自動車は、上述のいずれかの態様の本発明の駆動装置を搭載し、前記モータからの動力を用いて走行する自動車であって、エンジンと、前記エンジンからの動力を用いて発電する発電機と、複数の第2スイッチング素子のスイッチングによって前記発電機を駆動する発電機用インバータと、前記インバータおよび前記発電機用インバータと前記蓄電装置との接続および接続の解除を行なうリレーと、を備え、前記制御装置は、前記インバータの制御として、前記第1PWM制御と前記第2PWM制御とを切り替えて実行すると共に前記モータの前記高制御性が要求されているときには前記高制御性が要求されていないときに比して前記第2PWM制御の実行を制限するのに加えて、前記発電機用インバータの制御として、前記第1PWM制御と前記第2PWM制御とを切り替えて実行すると共に前記発電機の前記高制御性が要求されているときには前記高制御性が要求されていないときに比して前記第2PWM制御の実行を制限し、更に、前記制御装置は、前記リレーにより前記インバータおよび前記発電機用インバータと前記蓄電装置との接続を解除して走行する際には、前記モータおよび前記発電機の前記高制御性が要求されていると判定する、ことを要旨とする。リレーによりインバータおよび発電機用インバータと蓄電装置との接続を解除して走行する際には、モータおよび発電機の消費電力(発電電力)の和を蓄電装置で吸収することができないから、モータおよび発電機の消費電力の和をより精度よく調節する必要があり、モータおよび発電機の制御性をより高くする必要がある(より高くするように要請される)。したがって、リレーによりインバータおよび発電機用インバータと蓄電装置との接続を解除して走行する際には、モータおよび発電機の高制御性が要求されていると判定し、インバータの制御として第2PWM制御の実行を制限することにより、モータの高制御性の要求をより十分に満たすことができる。
本発明の第2の自動車は、上述のいずれかの態様の本発明の駆動装置を搭載し、前記モータからの動力を用いて走行する自動車であって、エンジンと、発電電動機と、前記エンジンの出力軸と前記発電電動機の回転軸と車軸に連結された駆動軸との3軸に3つの回転要素が接続されたプラネタリギヤと、複数の第2スイッチング素子のスイッチングによって前記発電電動機を駆動する発電電動機用インバータと、を備え、前記蓄電装置は、前記インバータおよび前記発電電動機用インバータを介して前記モータおよび前記発電電動機と電力をやりとりし、前記制御装置は、前記インバータの制御として、前記第1PWM制御と前記第2PWM制御とを切り替えて実行すると共に前記モータの前記高制御性が要求されているときには前記高制御性が要求されていないときに比して前記第2PWM制御の実行を制限するのに加えて、前記発電電動機用インバータの制御として、前記第1PWM制御と前記第2PWM制御とを切り替えて実行すると共に前記発電電動機の前記高制御性が要求されているときには前記高制御性が要求されていないときに比して前記第2PWM制御の実行を制限し、更に、前記制御装置は、前記発電電動機によって前記エンジンをクランキングして始動する際には、前記モータおよび前記発電電動機の前記高制御性が要求されていると判定する、ことを要旨とする。発電電動機によってエンジンをクランキングして始動する際には、発電電動機の回転数やトルクが比較的大きく変化したり、発電電動機から出力されてプラネタリギヤを介して駆動軸に作用するトルクの急変によって走行用のトルクを担保するためにモータのトルクが急変したりするから、モータや発電電動機の制御性がより低下する懸念がある。したがって、発電電動機によってエンジンをクランキングして始動する際には、高制御性が要求されていると判定し、インバータの制御として第2PWM制御の実行を制限することにより、モータの高制御性の要求をより十分に満たすことができる。
実施例の駆動装置を搭載するハイブリッド自動車20の構成の概略を示す構成図である。 モータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。 第1PWM制御および第2PWM制御におけるパルス数Np1とモータMG1の損失Lmg1およびインバータ41の損失Linv1および合計損失Lsum1との関係の一例を示す説明図である。 モータECU40により実行される実行用制御設定ルーチンの一例を示すフローチャートである。 モータMG1の目標動作点P1と第1PWM制御の領域および第2PWM制御の領域との関係の一例を示す説明図である。 モータECU40により実行される許可フラグ設定ルーチンの一例を示す説明図である。 変形例の許可フラグ設定ルーチンの一例を示す説明図である。 変形例の許可フラグ設定ルーチンの一例を示す説明図である。 変形例の許可フラグ設定ルーチンの一例を示す説明図である。 変形例の許可フラグ設定ルーチンの一例を示す説明図である。 変形例の許可フラグ設定ルーチンの一例を示す説明図である。 変形例の許可フラグ設定ルーチンの一例を示す説明図である。 変形例のハイブリッド自動車120の構成の概略を示す構成図である。 変形例のハイブリッド自動車220の構成の概略を示す構成図である。 変形例の電気自動車320の構成の概略を示す構成図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の実施例としての駆動装置を搭載するハイブリッド自動車20の構成の概略を示す構成図であり、図2は、モータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図1に示すように、エンジン22と、プラネタリギヤ30と、モータMG1,MG2と、インバータ41,42と、蓄電装置としてのバッテリ50と、昇圧コンバータ55と、システムメインリレー56と、ハイブリッド用電子制御ユニット(以下、「HVECU」という)70と、を備える。
エンジン22は、ガソリンや軽油などを燃料として動力を出力する内燃機関として構成されている。このエンジン22は、エンジン用電子制御ユニット(以下、「エンジンECU」という)24によって運転制御されている。
エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM,データを一時的に記憶するRAM,入出力ポート,通信ポートを備える。エンジンECU24には、エンジン22を運転制御するのに必要な各種センサからの信号、例えば、エンジン22のクランクシャフト26の回転位置を検出するクランクポジションセンサ23からのクランク角θcrなどが入力ポートから入力されている。エンジンECU24からは、エンジン22を運転制御するための各種制御信号が出力ポートを介して出力されている。エンジンECU24は、HVECU70と通信ポートを介して接続されている。エンジンECU24は、クランクポジションセンサ23からのクランク角θcrに基づいてエンジン22の回転数Neを演算している。
プラネタリギヤ30は、シングルピニオン式の遊星歯車機構として構成されている。プラネタリギヤ30のサンギヤには、モータMG1の回転子が接続されている。プラネタリギヤ30のリングギヤには、駆動輪39a,39bにデファレンシャルギヤ38を介して連結された駆動軸36が接続されている。プラネタリギヤ30のキャリヤには、ダンパ28を介してエンジン22のクランクシャフト26が接続されている。
モータMG1は、永久磁石が埋め込まれた回転子と三相コイルが巻回された固定子とを有する同期発電電動機として構成されており、上述したように、回転子がプラネタリギヤ30のサンギヤに接続されている。モータMG2は、モータMG1と同様に、永久磁石が埋め込まれた回転子と三相コイルが巻回された固定子とを有する同期発電電動機として構成されており、回転子が駆動軸36に接続されている。
図2に示すように、インバータ41は、高電圧側電力ライン54aに接続されている。このインバータ41は、6つのトランジスタT11〜T16と、トランジスタT11〜T16に逆方向に並列接続された6つのダイオードD11〜D16と、を有する。トランジスタT11〜T16は、それぞれ高電圧側電力ライン54aの正極側ラインと負極側ラインとに対してソース側とシンク側になるように2個ずつペアで配置されている。また、トランジスタT11〜T16の対となるトランジスタ同士の接続点の各々には、モータMG1の三相コイル(U相,V相,W相)の各々が接続されている。したがって、インバータ41に電圧が作用しているときに、モータ用電子制御ユニット(以下、「モータECU」という)40によって、対となるトランジスタT11〜T16のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータMG1が回転駆動される。インバータ42は、インバータ41と同様に、高電圧側電力ライン54aに接続されており、6つのトランジスタT21〜T26と6つのダイオードD21〜D26とを有する。そして、インバータ42に電圧が作用しているときに、モータECU40によって、対となるトランジスタT21〜T26のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータMG2が回転駆動される。
昇圧コンバータ55は、インバータ41,42が接続された高電圧側電力ライン54aと、バッテリ50が接続された低電圧側電力ライン54bと、に接続されている。この昇圧コンバータ55は、2つのトランジスタT31,T32と、トランジスタT31,T32に逆方向に並列接続された2つのダイオードD31,D32と、リアクトルLと、を有する。トランジスタT31は、高電圧側電力ライン54aの正極側ラインに接続されている。トランジスタT32は、トランジスタT31と、高電圧側電力ライン54aおよび低電圧側電力ライン54bの負極側ラインと、に接続されている。リアクトルLは、トランジスタT31,T32同士の接続点と、低電圧側電力ライン54bの正極側ラインと、に接続されている。昇圧コンバータ55は、モータECU40によってトランジスタT31,T32のオン時間の割合が調節されることにより、低電圧側電力ライン54bの電力を昇圧して高電圧側電力ライン54aに供給したり、高電圧側電力ライン54aの電力を降圧して低電圧側電力ライン54bに供給したりする。高電圧側電力ライン54aの正極側ラインと負極側ラインとには、平滑用のコンデンサ57が取り付けられており、低電圧側電力ライン54bの正極側ラインと負極側ラインとには、平滑用のコンデンサ58が取り付けられている。
モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM,データを一時的に記憶するRAM,入出力ポート,通信ポートを備える。図1に示すように、モータECU40には、モータMG1,MG2や昇圧コンバータ55を駆動制御するのに必要な各種センサからの信号が入力ポートを介して入力されている。モータECU40に入力される信号としては、例えば、モータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ(例えばレゾルバ)43,44からの回転位置θm1,θm2や、モータMG1,MG2の各相に流れる電流を検出する電流センサ45u,45v,46u,46vからの相電流Iu1,Iv1,Iu2,Iv2を挙げることができる。また、コンデンサ57の端子間に取り付けられた電圧センサ57aからのコンデンサ57の電圧(高電圧側電力ライン54aの電圧)VHやコンデンサ58の端子間に取り付けられた電圧センサ58aからのコンデンサ58の電圧(低電圧側電力ライン54bの電圧)VL,リアクトルLの端子に取り付けられた電流センサ55aからのリアクトルLに流れる電流ILも挙げることができる。モータECU40からは、インバータ41,42のトランジスタT11〜T16,T21〜T26へのスイッチング制御信号や昇圧コンバータ55のトランジスタT31,T32へのスイッチング制御信号などが出力ポートを介して出力されている。モータECU40は、HVECU70と通信ポートを介して接続されている。モータECU40は、回転位置検出センサ43,44からのモータMG1,MG2の回転子の回転位置θm1,θm2に基づいてモータMG1,MG2の電気角θe1,θe2や角速度ωm1,ωm2,回転数Nm1,Nm2を演算している。
バッテリ50は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、低電圧側電力ライン54bに接続されている。このバッテリ50は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)52によって管理されている。
バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM,データを一時的に記憶するRAM,入出力ポート,通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な各種センサからの信号が入力ポートを介して入力されている。バッテリECU52に入力される信号としては、例えば、バッテリ50の端子間に設置された電圧センサ51aからの電圧Vbやバッテリ50の出力端子に取り付けられた電流センサ51bからの電流Ib,バッテリ50に取り付けられた温度センサ51cからの温度Tbを挙げることができる。バッテリECU52は、HVECU70と通信ポートを介して接続されている。バッテリECU52は、電流センサ51bからの電池電流Ibの積算値に基づいて蓄電割合SOCを演算している。蓄電割合SOCは、バッテリ50の全容量に対するバッテリ50から放電可能な電力の容量の割合である。
システムメインリレー56は、低電圧側電力ライン54bにおけるコンデンサ58よりもバッテリ50側に設けられている。このシステムメインリレー56は、HVECU70によってオンオフ制御されることにより、バッテリ50と昇圧コンバータ55との接続および接続の解除を行なう。
HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM,データを一時的に記憶するRAM,入出力ポート,通信ポートを備える。HVECU70には、各種センサからの信号が入力ポートを介して入力されている。HVECU70に入力される信号としては、例えば、イグニッションスイッチ80からのイグニッション信号や、シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSPを挙げることができる。また、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Accや、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vも挙げることができる。なお、シフトポジションSPとしては、駐車ポジション(Pポジション)、後進ポジション(Rポジション)、ニュートラルポジション(Nポジション)、前進ポジション(Dポジション)などがある。HVECU70は、上述したように、エンジンECU24,モータECU40,バッテリECU52と通信ポートを介して接続されている。
こうして構成された実施例のハイブリッド自動車20では、エンジン22の運転を伴って走行するハイブリッド走行(HV走行)モードや、エンジン22の運転を伴わずに走行する電動走行(EV走行)モードで走行する。
HV走行モードでは、HVECU70は、アクセル開度Accと車速Vとに基づいて走行に要求される(駆動軸36に要求される)要求トルクTd*を設定し、設定した要求トルクTd*に駆動軸36の回転数Nd(モータMG2の回転数Nm2)を乗じて走行に要求される(駆動軸36に要求される)要求パワーPd*を計算する。続いて、要求パワーPd*からバッテリ50の蓄電割合SOCに基づく充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じて車両に要求される(エンジン22に要求される)要求パワーPe*を設定する。次に、要求パワーPe*がエンジン22から出力されると共に要求トルクTd*が駆動軸36に出力されるように、エンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定する。続いて、モータMG1,MG2のトルク指令Tm1*,Tm2*や回転数Nm1,Nm2に基づいて高電圧側電力ライン54a(コンデンサ57)の目標電圧VH*を設定する。そして、エンジン22の目標回転数Ne*や目標トルクTe*をエンジンECU24に送信すると共に、モータMG1,MG2のトルク指令Tm1*,Tm2*や高電圧側電力ライン54aの目標電圧VH*をモータECU40に送信する。エンジンECU24は、目標回転数Ne*と目標トルクTe*とに基づいてエンジン22が運転されるように、エンジン22の吸入空気量制御や燃料噴射制御,点火制御などを行なう。モータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようにインバータ41,42のトランジスタT11〜T16,T21〜T26のスイッチング制御を行なうと共に高電圧側電力ライン54aの電圧VHが目標電圧VH*となるように昇圧コンバータ55のトランジスタT31,T32のスイッチング制御を行なう。このHV走行モードでは、要求パワーPe*が停止用閾値Pstop以下に至ったときなどエンジン22の停止条件が成立したときに、エンジン22の運転を停止して、EV走行モードに移行する。
EV走行モードでは、HVECU70は、アクセル開度Accと車速Vとに基づいて要求トルクTd*を設定し、モータMG1のトルク指令Tm1*に値0を設定すると共に要求トルクTd*が駆動軸36に出力されるようにモータMG2のトルク指令Tm2*を設定し、モータMG1,MG2のトルク指令Tm1*,Tm2*や回転数Nm1,Nm2に基づいて高電圧側電力ライン54aの目標電圧VH*を設定する。そして、モータMG1,MG2のトルク指令Tm1*,Tm2*や高電圧側電力ライン54aの目標電圧VH*をモータECU40に送信する。モータECU40によるインバータ41,42や昇圧コンバータ55の制御については上述した。このEV走行モードでは、HV走行モードのときと同様に計算した要求パワーPe*が停止用閾値Pstopよりも大きい始動用閾値Pstart以上に至ったときなどエンジン22の始動条件が成立したときに、エンジン22を始動して、HV走行モードに移行する。
エンジン22の始動は、HVECU70とエンジンECU24とモータECU40との協調制御により、以下のように行なわれる。まず、エンジン22をクランキングするためのクランキングトルクをモータMG1から出力すると共にこのクランキングトルクの出力に伴って駆動軸36に作用するトルクをキャンセルするためのキャンセルトルクと要求トルクTd*との和のトルクをモータMG2から出力することによってエンジン22をクランキングする。そして、エンジン22の回転数Neが所定回転数(例えば、500rpm,600rpm,700rpmなど)以上に至ったときに、エンジン22の運転(燃料噴射制御や点火制御など)を開始する。
ここで、インバータ41,42の制御について説明する。インバータ41,42は、実施例では、それぞれ第1PWM制御と第2PWM制御とを切り替えて(何れかを実行用制御に設定して)実行するものとした。第1PWM制御は、モータMG1,MG2の各相の電圧指令と搬送波電圧(三角波電圧)との比較によってトランジスタT11〜T16,T21〜T26の第1PWM信号を生成してトランジスタT11〜T16,T21〜T26のスイッチングを行なう制御である。第2PWM制御は、電圧の変調率Rm1,Rm2および電圧位相θp1,θp2と単位周期(例えば、モータMG1,MG2の電気角の半周期や1周期など)のパルス数Np1,Np2とに基づいてトランジスタT11〜T16,T21〜T26の第2PWM信号を生成してトランジスタT11〜T16,T21〜T26のスイッチングを行なう制御である。ここで、第2PWM制御では、第1PWM制御に比してトランジスタT11〜T16,T21〜T26のスイッチング回数が少なくなるようにパルス数Np1,Np2を設定するものとした。また、第1PWM制御では、搬送波電圧(周波数が3kHz〜5kHz程度の三角波電圧)の半周期や1周期などに相当する間隔Δt1で第1PWM信号を生成し、第2PWM制御では、間隔Δt1よりも長い間隔Δt2で第2PWM信号を生成するものとした。
ここで、インバータ41についての第2PWM制御におけるトランジスタT11〜T16の第2PWM信号を生成方法について説明する。第2PWM信号の生成方法としては、例えば、以下の第1手法や第2手法,第3手法を挙げることができる。なお、インバータ42についての第2PWM制御におけるトランジスタT21〜T26の第2PWM信号を生成方法については、これと同様に考えることができる。
第1手法としては、第1PWM制御に比して、低次高調波成分が低減されるように第2PWM信号を生成する手法を挙げることができる。この手法では、低次高調波成分を考慮して、半波対称性[f(ωm1・t)=−f(ωm1・t+π)]および奇対称性[f(ωm1・t)=f(π−ωm1・t)]を有するパルス波形(スイッチングパターン)の第2PWM信号を生成する。ここで、「ωm1」は、モータMG1の回転角速度であり、「t」は時刻である。これにより、低次高調波成分を低減しつつ、モータMG1の損失を低減することができる。なお、第1手法では、モータMG1が低回転で低負荷(低トルク)のときには、低次高調波成分の抑制によるモータMG1の損失の低減効果が小さく、さらに、低次高調波成分を抑制することによって対象外の高調波成分が大きくなってモータの鉄損が大きくなることがある。
第2手法としては、第1PWM制御に比して、モータMG1の渦電流損失が低減されるように第2PWM信号を生成する手法を挙げることができる。この手法では、低次高調波成分だけでなく高次高調波成分も考慮して、半波対称性[f(ωm1・t)=−f(ωm1・t+π)]を有するパルス波形(スイッチングパターン)の第2PWM信号を生成する。このようなパルス波形を採用する利点は、第1手法で用いられるパルス波形よりもパルス波形の選択幅が広く、第2PWM信号に含まれる周波数成分の振幅および位相の両者の制御性の向上が見込めるためである。
この第2手法における第2PWM信号のパルス波形は、フーリエ級数展開を用いると、式(1)として表すことができる。式(1)中、「θel,m」は、モータMG1のm回目のスイッチング位置であり、「a0」は、直流成分であり、「n」は、1,5,7,11,13,・・・(奇数の整数)であり、「M」は、モータMG1の電気角θe1の単位周期におけるトランジスタT11〜T16のスイッチング回数であり、スイッチング回数Mとパルス数Np1との関係は「M=Np1−1」となる。この式(1)における係数anおよび係数bnを用いて、各次数の振幅Cnおよび位相αnを式(2)により求めることができる。第2手法では、この各次数の振幅Cnや位相αnなどを用いて、モータMG1の渦電流損失が低減されるように第2PWM信号を生成する。ところで、モータMG1の鉄損Wiは、スタインメッツの実験式として式(3)により表すことができる。式(3)中、「Wh」はモータMG1のヒステリシス損失であり、「We」はモータMG1の渦電流損失であり、「Kh」はヒステリシス損失係数であり、「Bm」は磁束密度であり、「fm1」はモータMG1の回転磁束周波数であり、「Ke」はモータMG1の渦電流損失係数である。これを踏まえて、第2手法では、より詳細には、モータMG1の鉄損において割合の大きい渦電流損失について着目し、渦電流損失を評価関数としてこの評価関数が最小となるように(モータMG1の鉄損における渦電流損失が最小となるように)第2PWM信号を生成する。これにより、低次高調波から高次高調波までの各高調波成分を低減しつつ、モータMG1の損失をより低減することができる。
Figure 0006500872
Figure 0006500872
Figure 0006500872
第3手法としては、モータMG1の損失Lmg1とインバータ41の損失Linv1との合計損失Lsum1が低減されるように第2PWM信号を生成する手法を挙げることができる。図3は、第1PWM制御および第2PWM制御におけるパルス数Np1とモータMG1の損失Lmg1およびインバータ41の損失Linv1および合計損失Lsum1との関係の一例を示す説明図である。図中、点Aは、第1PWM制御における合計損失Lsum1が最小となるパルス数Np1であり、点Bは、第2PWM制御における合計損失Lsum1が最小となるパルス数Np1である。発明者らは、実験や解析により、第1手法や第2手法に比して合計損失Lsum1をより低減するためには、図3に示すように、第1PWM制御の場合よりもインバータ41のトランジスタT11〜T16のスイッチング回数が少なくなるようなパルス数Np1を用いればよいことを見出した。したがって、第3手法では、このように定めたパルス数Np1を用いて、第1PWM制御に比して、低次高調波から高次高調波までの各高調波成分が低減されると共に合計損失Lsum1が低減されるように第2PWM信号を生成する。これにより、低次高調波から高次高調波までの各高調波成分を低減しつつ、合計損失Lsum1をより低減することができる。
実施例では、インバータ41についての第2PWM制御におけるトランジスタT11〜T16の第2PWM信号を生成方法として、上述の第1手法や第2手法,第3手法のうち第3手法を用いるものとした。なお、第1手法や第2手法を用いるものとしてもよい。
第1PWM制御を実行する場合、第2PWM制御を実行する場合に比して、トランジスタT11〜T16,T21〜T26のスイッチング回数が多くなるようにすると共にPWM信号の生成周期を短くするから、トランジスタT21〜T26のスイッチングに起因する騒音(電磁騒音)が大きくなるのを抑制したりモータMG1,MG2の制御性を高くしたりすることができる。また、第2PWM制御を実行する場合、第1PWM制御を実行する場合に比して、電磁騒音が大きくなったりモータMG1,MG2の制御性が低くなったりしやすいものの、低次高調波から高次高調波までの各高調波成分を低減しつつ、合計損失Lsum1をより低減することができる。
次に、こうして構成された実施例のハイブリッド自動車20の動作、特に、インバータ41,42の実行用制御をそれぞれ第1PWM制御または第2PWM制御から設定する際の動作について説明する。図4は、モータECU40により実行される実行用制御設定ルーチンの一例を示すフローチャートである。このルーチンは、繰り返し実行される。
実行用制御設定ルーチンが実行されると、モータECU40は、まず、許可フラグF1,F2,モータMG1の目標動作点(回転数Nm1およびトルク指令Tm1*)P1,モータMG2の目標動作点(回転数Nm2およびトルク指令Tm2*)P2などのデータを入力する(ステップS100)。ここで、許可フラグF1,F2は、それぞれ、インバータ41,42の制御として第2PWM制御の実行を許可するときには値1が設定されると共に禁止するときには値0が設定されるフラグであり、本ルーチンと並行して繰り返し実行される図6の許可フラグ設定ルーチンにより設定されたものを入力するものとした。モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44からのモータMG1,MG2の回転子の回転位置θm2に基づいて演算された値を入力するものとした。モータMG1,MG2のトルク指令Tm1*,Tm2*は、上述の駆動制御で設定された値を入力するものとした。
こうしてデータを入力すると、入力した許可フラグF1の値を調べると共に(ステップS110)、モータMG1の目標動作点P1が第1PWM制御の領域および第2PWM制御の領域の何れに属するかを判定する(ステップS120)。図5は、モータMG1の目標動作点P1と第1PWM制御の領域および第2PWM制御の領域との関係の一例を示す説明図である。モータMG1の目標動作点P1についての第1PWM制御の領域および第2PWM制御の領域は、実施例では、モータMG1の各目標動作点P1に対して第1PWM制御や第2PWM制御を実行した実験結果や解析結果に基づいて、第2PWM制御を実行することによる効果がある程度見込める領域については第2PWM制御の領域として定め、その効果があまり見込めない領域については第1PWM制御の領域として定めるものとした。図5の例では、モータMG1の目標動作点P1について、以下のエリア1〜5が第2PWM制御の領域として設定されており、第2PWM制御の領域以外の領域が第1PWM制御の領域として設定されている。エリア1としては、モータMG1の回転数Nm1が1000rpm〜3500rpmでトルク指令Tm1*が10Nm以上の領域および回転数Nm1が1000rpm〜3500rpmでトルク指令Tm1*が−100Nm〜−10Nmの領域が設定されている。エリア2としては、モータMG1の回転数Nm1が3500rpm〜6000rpmでトルク指令Tm1*が10Nm〜150Nmの領域および回転数Nm1が3500rpm〜6000rpmでトルク指令Tm1*が−100Nm〜−10Nmの領域が設定されている。エリア3としては、モータMG1の回転数Nm1が3500rpm〜6000rpmでトルク指令Tm1*が150Nm以上の領域が設定されている。エリア4としては、モータMG1の回転数Nm1が6000rpm〜9000rpmでトルク指令Tm1*が10Nm〜100Nmの領域および回転数Nm1が6000rpm〜9000rpmでトルク指令Tm1*が−50Nm〜−10Nmの領域が設定されている。エリア5としては、モータMG1の回転数Nm1が6000rpm〜9000rpmでトルク指令Tm1*が100Nm〜150Nmの領域および回転数Nm1が6000rpm〜9000rpmでトルク指令Tm1*が−100Nm〜−50Nmの領域が設定されている。なお、図5において、モータMG1の回転数Nm1やトルク指令Tm1*についての各値,第1PWM制御の領域と第2PWM制御の領域との区分,第2PWM制御の領域におけるエリアの区分(エリアの数を含む)については、例示しただけであり、モータMG1やインバータ41などの仕様に応じて適宜設定される。
ステップS110で許可フラグF1が値1のとき即ちインバータ41の制御として第2PWM制御の実行を許可するときで且つステップS120でモータMG1の目標動作点P1が第2PWM制御の領域に属するときには、インバータ41の実行用制御に第2PWM制御を設定する(ステップ130)。一方、ステップS110で許可フラグF1が値0のとき即ちインバータ41の制御として第2PWM制御の実行を禁止するときや、ステップS110で許可フラグF1が値1のとき即ちインバータ41の制御として第2PWM制御の実行を許可するときで且つステップS120でモータMG1の目標動作点P1が第1PWM制御の領域に属するときには、インバータ41の実行用制御に第1PWM制御を設定する(ステップS140)。
次に、許可フラグF2の値を調べると共に(ステップS150)、モータMG2の目標動作点P2が第1PWM制御の領域および第2PWM制御の領域の何れに属するかを判定する(ステップS160)。ここで、モータMG2の目標動作点P2についての第1PWM制御の領域および第2PWM制御の領域は、モータMG1の目標動作点P1についての第1PWM制御の領域および第2PWM制御の領域と同様に設定される。
ステップS150で許可フラグF2が値1のとき即ちインバータ42の制御として第2PWM制御の実行を許可するときで且つステップS160でモータMG2の目標動作点P2が第2PWM制御の領域に属するときには、インバータ42の実行用制御に第2PWM制御を設定して(ステップ170)、本ルーチンを終了する。一方、ステップS150で許可フラグF2が値0のとき即ちインバータ42の制御として第2PWM制御の実行を禁止するときや、ステップS150で許可フラグF2が値1のとき即ちインバータ42の制御として第2PWM制御の実行を許可するときで且つステップS160でモータMG2の目標動作点P2が第1PWM制御の領域に属するときには、インバータ42の実行用制御に第1PWM制御を設定して(ステップS180)、本ルーチンを終了する。
次に、図6の許可フラグ設定ルーチンについて説明する。このルーチンは、モータECU40により、図4の実行用制御設定ルーチンと並行して繰り返し実行される。許可フラグ設定ルーチンが実行されると、モータECU40は、まず、モータMG1の回転子の回転位置θm1を検出する回転位置検出センサ43やモータMG1に流れる相電流Iu1,Iv1を検出する電流センサ45u,45vのゼロ点学習が完了しているか否かを判定する(ステップS200)。
ここで、回転位置検出センサ43のゼロ点学習(オフセット量の学習)は、例えば、モータMG1の回転中にd軸,q軸の電流指令を値0として、そのときのd軸電圧指令が値0となるように回転位置検出センサ43からのモータMG1の回転子の回転位置θm1のオフセット量を調節し、調節したオフセット量を図示しないRAMやフラッシュメモリなどに記憶させることにより行なうことができる。電流センサ45u,45vのゼロ点学習(オフセット量の学習)は、例えば、モータMG1が停止している(モータMG1の三相コイルに電流が流れていない)ときの電流センサ45u,45vからのモータMG1の相電流Iu1,Iv1のオフセット量を図示しないRAMやフラッシュメモリなどに記憶させることにより行なうことができる。回転位置検出センサ43や電流センサ45u,45vのゼロ点学習は、例えば、1トリップや数トリップに1回の頻度で行なうものとしたり、回転位置検出センサ43や電流センサ45u,45vが交換された直後のトリップで行なうものとしたりすることができる。
また、ステップS200の処理は、例えば、図示しないルーチンにより回転位置検出センサ43や電流センサ45u,45vのそれぞれのゼロ点学習の有無が判定されて図示しないRAMに書き込まれたものを読み込むことにより行なうことができる。このステップS200の処理は、モータMG1の高制御性が要求されているか否かを判断する処理である。回転位置検出センサ43や電流センサ45u,45vのゼロ点学習が完了していないときには、回転位置検出センサ43からのモータMG1の回転子の回転位置θm1や電流センサ45u,45vからのモータMG1の相電流Iu1,Iv1が正しい値でない可能性があり、モータMG1の制御性がより低下する懸念がある。実施例では、これを踏まえて、回転位置検出センサ43や電流センサ45u,45vのゼロ点学習が完了しているか否かを判定することにより、モータMG1の高制御性が要求されているか否かを判断するものとした。
ステップS200で回転位置検出センサ43および電流センサ45u,45vのゼロ点学習が完了しているときには、モータMG1の高制御性が要求されていない(必要程度に担保されている)と判断し、許可フラグF1に値1を設定する、即ち、インバータ41の制御として第2PWM制御の実行を許可する(ステップS210)。この場合、図4の実行用制御設定ルーチンで、モータMG1の目標動作点P1に応じて、インバータ41の実行用制御に第1PWM制御または第2PWM制御を設定する。
一方、回転位置検出センサ43および電流センサ45u,45vのうちの少なくとも1つのゼロ点学習が完了していないときには、モータMG1の高制御性が要求されている(モータMG1の制御性がより低下する懸念がある)と判断し、許可フラグF1に値0を設定する、即ち、インバータ41の制御として第2PWM制御の実行を禁止する(ステップS220)。この場合、図4の実行用制御設定ルーチンで、モータMG1の目標動作点P1に拘わらずに、インバータ41の実行用制御に第1PWM制御を設定する。
こうして許可フラグF1を設定すると、続いて、モータMG2の回転子の回転位置θm2を検出する回転位置検出センサ44やモータMG2に流れる相電流Iu2,Iv2を検出する電流センサ46u,46vのゼロ点学習が完了しているか否かを判定する(ステップS230)。ここで、回転位置検出センサ44や電流センサ46u,46vのゼロ点学習(オフセット量の学習)は、回転位置検出センサ43や電流センサ45u,45vのゼロ点学習と同様に行なうことができる。また、ステップS230の処理は、モータMG1ではなくモータMG2の高制御性が要求されているか否かを判断する処理である点を除いて、ステップS200の処理と同様に行なう(判断する)ことができる。
ステップS230で回転位置検出センサ44および電流センサ46u,46vのゼロ点学習が完了しているときには、モータMG2の高制御性が要求されていない(必要程度に担保されている)と判断し、許可フラグF2に値1を設定して、即ち、インバータ42の制御として第2PWM制御の実行を許可して(ステップS240)、本ルーチンを終了する。この場合、図4の実行用制御設定ルーチンで、モータMG2の目標動作点P2に応じて、インバータ42の実行用制御に第1PWM制御または第2PWM制御を設定する。
一方、回転位置検出センサ44および電流センサ46u,46vのうちの少なくとも1つのゼロ点学習が完了していないときには、モータMG2の高制御性が要求されている(モータMG2の制御性がより低下する懸念がある)と判断し、許可フラグF2に値0を設定して、即ち、インバータ42の制御として第2PWM制御の実行を禁止して(ステップS250)、本ルーチンを終了する。この場合、図4の実行用制御設定ルーチンで、モータMG2の目標動作点P2に拘わらずに、インバータ42の実行用制御に第1PWM制御を設定する。
上述したように、インバータ41の制御として、第2PWM制御を実行する場合、第1PWM制御を実行する場合に比して、モータMG1の制御性が低くなりやすい。このため、回転位置検出センサ43および電流センサ45u,45vのうちの少なくとも1つのゼロ点学習が完了していないときにインバータ41の制御として第2PWM制御を実行すると、モータMG1の制御性がより低下し、インバータ41に過電流や過電圧が生じる懸念がある。実施例では、回転位置検出センサ43および電流センサ45u,45vのうちの少なくとも1つのゼロ点学習が完了していないときには、モータMG1の高制御性が要求されている(モータMG1の制御性がより低下する懸念がある)と判断し、インバータ41の制御として第2PWM制御の実行を禁止して第1PWM制御を実行することにより、モータMG1の高制御性の要求をより十分に満たすことができる。具体的には、インバータ41に過電流や過電圧が生じるのを抑制することができる。なお、インバータ42の制御についても同様に考えることができる。
以上説明した実施例のハイブリッド自動車20では、回転位置検出センサ43および電流センサ45u,45vのうちの少なくとも1つのゼロ点学習が完了していないときには、モータMG1の高制御性が要求されていると判断し、インバータ41の制御として第2PWM制御の実行を禁止して第1PWM制御を実行する。同様に、回転位置検出センサ44および電流センサ46u,46vのうちの少なくとも1つのゼロ点学習が完了していないときには、モータMG2の高制御性が要求されていると判断し、インバータ42の制御として第2PWM制御の実行を禁止して第1PWM制御を実行する。これらより、モータMG1,MG2の高制御性の要求をより十分に満たすことができる。
実施例のハイブリッド自動車20では、モータECU40は、図6の許可フラグ設定ルーチンにより許可フラグFを設定するものとしたが、これに代えて、図7〜図12の許可フラグ設定ルーチンの何れかにより許可フラグFを設定するものとしてもよい。以下、順に説明する。
まず、図7の許可フラグ設定ルーチンについて説明する。図7の許可フラグ設定ルーチンが実行されると、モータECU40は、まず、モータMG1の回転子の回転位置θm1を検出する回転位置検出センサ43やモータMG1に流れる相電流Iu1,Iv1を検出する電流センサ45u,45vに異常が生じているか否かを判定する(ステップS300)。ここで、ステップS300の処理は、例えば、図示しないルーチンにより回転位置検出センサ43や電流センサ45u,45vのそれぞれの異常の有無が判定されて図示しないRAMに書き込まれたものを読み込むことにより行なうことができる。このステップS300の処理は、図6の許可ルーチンのステップS200の処理と同様に、モータMG1の高制御性が要求されているか否かを判断する処理である。回転位置検出センサ43や電流センサ45u,45vに異常が生じているときには、回転位置検出センサ43からのモータMG1の回転子の回転位置θm1や電流センサ45u,45vからのモータMG1の相電流Iu1,Iv1が正しい値でなかったり入力されなかったりする可能性があり、モータMG1の制御性がより低下する懸念がある。この変形例では、これを踏まえて、回転位置検出センサ43や電流センサ45u,45vに異常が生じているか否かを判定することにより、モータMG1の高制御性が要求されているか否かを判断するものとした。
ステップS300で回転位置検出センサ43および電流センサ45u,45vの何れにも異常が生じていないときには、モータMG1の高制御性が要求されていない(必要程度に担保されている)と判断し、許可フラグF1に値1を設定する、即ち、インバータ41の制御として第2PWM制御の実行を許可する(ステップS310)。一方、回転位置検出センサ43および電流センサ45u,45vのうちの少なくとも1つに異常が生じているときには、モータMG1の高制御性が要求されている(モータMG1の制御性がより低下する懸念がある)と判断し、許可フラグF1に値0を設定する、即ち、インバータ41の制御として第2PWM制御の実行を禁止する(ステップS320)。
こうして許可フラグF1を設定すると、続いて、モータMG2の回転子の回転位置θm2を検出する回転位置検出センサ44やモータMG2に流れる相電流Iu2,Iv2を検出する電流センサ46u,46vに異常が生じているか否かを判定する(ステップS330)。ここで、ステップS330の処理は、モータMG1ではなくモータMG2の高制御性が要求されているか否かを判断する処理である点を除いて、ステップS300の処理と同様に行なう(判断する)ことができる。
ステップS330で回転位置検出センサ44および電流センサ46u,46vの何れにも異常が生じていないときには、モータMG2の高制御性が要求されていない(必要程度に担保されている)と判断し、許可フラグF2に値1を設定して、即ち、インバータ42の制御として第2PWM制御の実行を許可して(ステップS340)、本ルーチンを終了する。一方、回転位置検出センサ44および電流センサ46u,46vのうちの少なくとも1つに異常が生じているときには、モータMG2の高制御性が要求されている(モータMG2の制御性がより低下する懸念がある)と判断し、許可フラグF2に値0を設定して、即ち、インバータ42の制御として第2PWM制御の実行を禁止して(ステップS350)、本ルーチンを終了する。
上述したように、インバータ41の制御として、第2PWM制御を実行する場合、第1PWM制御を実行する場合に比して、モータMG1の制御性が低くなりやすい。このため、回転位置検出センサ43および電流センサ45u,45vのうちの少なくとも1つに異常が生じているときにインバータ41の制御として第2PWM制御を実行すると、モータMG1の制御性がより低下し、インバータ41に過電流や過電圧が生じる懸念がある。この変形例では、回転位置検出センサ43および電流センサ45u,45vのうちの少なくとも1つに異常が生じているときには、モータMG1の高制御性が要求されている(モータMG1の制御性がより低下する懸念がある)と判断し、インバータ41の制御として第2PWM制御の実行を禁止して第1PWM制御を実行することにより、モータMG1の高制御性の要求をより十分に満たすことができる。具体的には、インバータ41に過電流や過電圧が生じるのを抑制することができる。なお、インバータ42の制御についても同様に考えることができる。
次に、図8の許可フラグ設定ルーチンについて説明する。図8の許可フラグ設定ルーチンが実行されると、モータECU40は、まず、モータMG1,MG2のトルク指令変化率ΔTm1*,ΔTm2*や回転数変化率ΔNm1,ΔNm2,高電圧側電力ライン54aの電圧変化率ΔVH,バッテリ50の電圧変化率ΔVbなどのデータを入力する(ステップS400)。ここで、モータMG1,MG2のトルク指令変化率ΔTm1*,ΔTm2*は、モータMG1,MG2のトルク指令Tm1*,Tm2*の単位時間当たりの変化量である。モータMG1,MG2の回転数変化率ΔNm1,ΔNm2は、モータMG1,MG2の回転数Nm1,Nm2の単位時間当たりの変化量である。高電圧側電力ライン54aの電圧変化率ΔVHは、高電圧側電力ライン54aの電圧VHの単位時間当たりの変化量である。バッテリ50の電圧変化率ΔVbは、バッテリ50の電圧Vbの単位時間当たりの変化量である。
こうしてデータを入力すると、モータMG1の駆動状態の急変時か否かを判定する(ステップS410〜S416)。具体的には、モータMG1のトルク指令変化率ΔTm1*の絶対値を閾値ΔTm1refと比較することにより、モータMG1のトルク指令Tm1*の急変時か否かを判定する(ステップS410)。また、モータMG1の回転数変化率ΔNm1の絶対値を閾値ΔNm1refと比較することにより、モータMG1の回転数Nm1の急変時か否かを判定する(ステップS412)。さらに、高電圧側電力ライン54aの電圧変化率ΔVHの絶対値を閾値ΔVHrefと比較することにより、高電圧側電力ライン54aの電圧VHの急変時か否かを判定する(ステップS414)。加えて、バッテリ50の電圧変化率ΔVbの絶対値を閾値ΔVbrefと比較することにより、バッテリ50の電圧Vbの急変時か否かを判定する(ステップS416)。
ここで、ステップS410〜S416の処理は、図6の許可ルーチンのステップS200の処理と同様に、モータMG1の高制御性が要求されているか否かを判断する処理である。モータMG1の駆動状態の急変時には、モータMG1の制御性がより低下する懸念がある。この変形例では、これを踏まえて、モータMG1の駆動状態の急変時か否かを判定することにより、モータMG1の高制御性が要求されているか否かを判断するものとした。なお、閾値ΔTm1ref,ΔNm1ref,ΔVHref,ΔVbrefは、モータMG1やインバータ41,高電圧側電力ライン54a,バッテリ50の仕様などに基づいて適宜設定することができる。
ステップS410〜S416で、トルク指令変化率ΔTm1*の絶対値が閾値ΔTm1ref以下で且つ回転数変化率ΔNm1の絶対値が閾値ΔNm1ref以下で且つ電圧変化率ΔVHの絶対値が閾値ΔVHref以下で且つ電圧変化率ΔVbの絶対値を閾値ΔVbref以下のとき、即ち、モータMG1の駆動状態の急変時でないときには、モータMG1の高制御性が要求されていない(必要程度に担保されている)と判断し、許可フラグF1に値1を設定する、即ち、インバータ41の制御として第2PWM制御の実行を許可する(ステップS420)。
一方、トルク指令変化率ΔTm1*の絶対値が閾値ΔTm1refよりも大きいときや、回転数変化率ΔNm1の絶対値が閾値ΔNm1refよりも大きいとき,電圧変化率ΔVHの絶対値が閾値ΔVHrefよりも大きいとき,電圧変化率ΔVbの絶対値を閾値ΔVbrefよりも大きいとき、即ち、モータMG1の駆動状態の急変時には、モータMG1の高制御性が要求されている(モータMG1の制御性がより低下する懸念がある)と判断し、許可フラグF1に値0を設定する、即ち、インバータ41の制御として第2PWM制御の実行を禁止する(ステップS430)。
こうして許可フラグF1を設定すると、続いて、モータMG2の駆動状態の急変時か否かを判定する(ステップS440〜S446)。具体的には、モータMG2のトルク指令変化率ΔTm2*の絶対値を閾値ΔTm2refと比較することにより、モータMG2のトルク指令Tm2*の急変時か否かを判定する(ステップS440)。また、モータMG2の回転数変化率ΔNm2の絶対値を閾値ΔNm2refと比較することにより、モータMG2の回転数Nm2の急変時か否かを判定する(ステップS442)。さらに、高電圧側電力ライン54aの電圧変化率ΔVHの絶対値を閾値ΔVHrefと比較することにより、高電圧側電力ライン54aの電圧VHの急変時か否かを判定する(ステップS444)。加えて、バッテリ50の電圧変化率ΔVbの絶対値を閾値ΔVbrefと比較することにより、バッテリ50の電圧Vbの急変時か否かを判定する(ステップS446)。ここで、ステップS440〜S446の処理は、モータMG1ではなくモータMG2の高制御性が要求されているか否かを判断する処理である点を除いて、ステップS410〜S416の処理と同様に行なう(判断する)ことができる。
ステップS440〜S446で、トルク指令変化率ΔTm2*の絶対値が閾値ΔTm2ref以下で且つ回転数変化率ΔNm2の絶対値が閾値ΔNm2ref以下で且つ電圧変化率ΔVHの絶対値が閾値ΔVHref以下で且つ電圧変化率ΔVbの絶対値を閾値ΔVbref以下のとき、即ち、モータMG2の駆動状態の急変時でないときには、モータMG2の高制御性が要求されていない(必要程度に担保されている)と判断し、許可フラグF2に値1を設定して、即ち、インバータ42の制御として第2PWM制御の実行を許可して(ステップS450)、本ルーチンを終了する。
一方、トルク指令変化率ΔTm2*の絶対値が閾値ΔTm2refよりも大きいときや、回転数変化率ΔNm2の絶対値が閾値ΔNm2refよりも大きいとき,電圧変化率ΔVHの絶対値が閾値ΔVHrefよりも大きいとき,電圧変化率ΔVbの絶対値を閾値ΔVbrefよりも大きいとき、即ち、モータMG2の駆動状態の急変時には、モータMG2の高制御性が要求されている(モータMG2の制御性がより低下する懸念がある)と判断し、許可フラグF2に値0を設定して、即ち、インバータ42の制御として第2PWM制御の実行を禁止して(ステップS460)、本ルーチンを終了する。
上述したように、インバータ41の制御として、第2PWM制御を実行する場合、第1PWM制御を実行する場合に比して、モータMG1の制御性が低くなりやすい。このため、モータMG1の駆動状態の急変時にインバータ41の制御として第2PWM制御を実行すると、モータMG1の制御性がより低下し、インバータ41に過電流や過電圧が生じる懸念がある。この変形例では、モータMG1の駆動状態の急変時には、モータMG1の高制御性が要求されている(モータMG1の制御性がより低下する懸念がある)と判断し、インバータ41の制御として第2PWM制御の実行を禁止して第1PWM制御を実行することにより、モータMG1の高制御性の要求をより十分に満たすことができる。具体的には、インバータ41に過電流や過電圧が生じるのを抑制することができる。なお、インバータ42の制御についても同様に考えることができる。
次に、図9の許可フラグ設定ルーチンについて説明する。図9の許可フラグ設定ルーチンが実行されると、モータECU40は、まず、モータMG1による制振制御を行なっているか否かを判定する(ステップS500)。ここで、モータMG1による制振制御は、例えば、エンジン22の始動時(モータMG1によりエンジン22をクランキングして始動する際)やエンジン22の運転中にその回転変動が比較的大きいときなどに行なわれる。また、ステップS500の処理は、例えば、図示しないルーチンによりモータMG1による制振制御を行なっているか否かが判定されて図示しないRAMに書き込まれたものを読み込むことにより行なうことができる。このステップS500の処理は、図6の許可ルーチンのステップS200の処理と同様に、モータMG1の高制御性が要求されているか否かを判断する処理である。モータMG1による制振制御を行なっているときには、制振性能を十分に発揮させるために、モータMG1の制御性をより高くするのが好ましい(より高くするように要請される)。この変形例では、これを踏まえて、モータMG1による制振制御を行なっているか否かを判定することにより、モータMG1の高制御性が要求されているか否かを判断するものとした。
ステップS500でモータMG1による制振制御を行なっていないときには、モータMG1の高制御性が要求されていない(モータMG1の制御性をより高くするように要請されていない)と判断し、許可フラグF1に値1を設定する、即ち、インバータ41の制御として第2PWM制御の実行を許可する(ステップS510)。一方、モータMG1による制振制御を行なっているときには、モータMG1の高制御性が要求されている(モータMG1の制御性をより高くするように要請されている)と判断し、許可フラグF1に値0を設定する、即ち、インバータ41の制御として第2PWM制御の実行を禁止する(ステップS520)。
こうして許可フラグF1を設定すると、続いて、モータMG2による制振制御を行なっているか否かを判定する(ステップS530)。ここで、モータMG2による制振制御は、エンジン22の始動時や駆動輪39a,39b(駆動軸36)の回転変動が比較的大きいときなどに行なわれる。また、ステップS530の処理は、モータMG1ではなくモータMG2の高制御性が要求されているか否かを判断する処理である点を除いて、ステップS500の処理と同様に行なう(判断する)ことができる。
ステップS530でモータMG2による制振制御を行なっていないときには、モータMG2の高制御性が要求されていない(モータMG2の制御性をより高くするように要請されていない)と判断し、許可フラグF2に値1を設定して、即ち、インバータ42の制御として第2PWM制御の実行を許可して(ステップS540)、本ルーチンを終了する。一方、モータMG2による制振制御を行なっているときには、モータMG2の高制御性が要求されている(モータMG2の制御性をより高くするように要請されている)と判断し、許可フラグF2に値0を設定して、即ち、インバータ42の制御として第2PWM制御の実行を禁止して(ステップS550)、本ルーチンを終了する。
上述したように、インバータ41の制御として、第2PWM制御を実行する場合、第1PWM制御を実行する場合に比して、モータMG1の制御性が低くなりやすい。このため、モータMG1の制振制御を行なっているときにインバータ41の制御として第2PWM制御を実行すると、制振性能を十分に発揮できない可能性がある。この変形例では、モータMG1の制振制御を行なっているときには、モータMG2の高制御性が要求されている(モータMG2の制御性をより高くするように要請されている)と判断し、インバータ41の制御として第2PWM制御の実行を禁止して第1PWM制御を実行することにより、モータMG1の高制御性の要求をより十分に満たすことができる。具体的には、制振性能を十分に発揮させることができる。なお、インバータ42の制御についても同様に考えることができる。
次に、図10の許可フラグ設定ルーチンについて説明する。図10の許可フラグ設定ルーチンが実行されると、モータECU40は、まず、リアクトルLに流れる電流ILを検出する電流センサ55aや高電圧側電力ライン54a(コンデンサ57)の電圧VHを検出する電圧センサ57aに異常が生じているか否かを判定する(ステップS600)。ここで、ステップS600の処理は、例えば、図示しないルーチンにより電流センサ55aや電圧センサ57aのそれぞれの異常の有無が判定されて図示しないRAMに書き込まれたものを読み込むことにより行なうことができる。このステップS600の処理は、モータMG1,MG2の高制御性が要求されているか否かを判断する処理である。電流センサ55aや電圧センサ57aに異常が生じているときには、電流センサ55aからのリアクトルLの電流ILや電圧センサ57aからの高電圧側電力ライン54aの電圧VHが正しい値でなかったり入力されなかったりする可能性があり、モータMG1,MG2の制御性がより低下する懸念がある。この変形例では、これを踏まえて、電流センサ55aや電圧センサ57aに異常が生じているか否かを判定することにより、モータMG1,MG2の高制御性が要求されているか否かを判断するものとした。
ステップS600で電流センサ55aおよび電圧センサ57aの何れにも異常が生じていないときには、モータMG1,MG2の高制御性が要求されていない(必要程度に担保されている)と判断し、許可フラグF1,F2に値1を設定して、即ち、インバータ41,42の制御として第2PWM制御の実行を許可して(ステップS610)、本ルーチンを終了する。一方、電流センサ55aおよび電圧センサ57aのうちの少なくとも1つに異常が生じているときには、モータMG1,MG2の高制御性が要求されている(モータMG1,MG2の制御性がより低下する懸念がある)と判断し、許可フラグF1,F2に値0を設定して、即ち、インバータ41,42の制御として第2PWM制御の実行を禁止して(ステップS620)、本ルーチンを終了する。
上述したように、インバータ41,42の制御として、第2PWM制御を実行する場合、第1PWM制御を実行する場合に比して、モータMG1,MG2の制御性が低くなりやすい。このため、電流センサ55aおよび電圧センサ57aのうちの少なくとも1つに異常が生じているときにインバータ41,42の制御として第2PWM制御を実行すると、モータMG1,MG2の制御性がより低下し、インバータ41,42に過電流や過電圧が生じる懸念がある。この変形例では、電流センサ55aおよび電圧センサ57aのうちの少なくとも1つに異常が生じているときには、モータMG1,MG2の高制御性が要求されている(モータMG1,MG2の制御性がより低下する懸念がある)と判断し、インバータ41,42の制御として第2PWM制御の実行を禁止して第1PWM制御を実行することにより、モータMG1,MG2の高制御性の要求をより十分に満たすことができる。具体的には、インバータ41,42に過電流や過電圧が生じるのを抑制することができる。
次に、図11の許可フラグ設定ルーチンについて説明する。図11の許可フラグ設定ルーチンが実行されると、モータECU40は、バッテリレス走行モードであるか否かを判定する(ステップS700)。ここで、バッテリレス走行モードは、システムメインリレー56をオフで(バッテリ50を昇圧コンバータ55側から切り離して)且つ昇圧コンバータ55を駆動停止してエンジン22およびモータMG1,MG2の駆動によって走行するモードである。バッテリレス走行モードで走行するときとしては、バッテリ50に異常が生じたときなどを挙げることができる。バッテリレス走行モードでは、HVECU70は、アクセル開度Accと車速Vとに基づいて要求トルクTd*を設定し、エンジン22の目標回転数Ne*に回転数Ne1を設定し、高電圧側電力ライン54aの目標電圧VH*に電圧VH1を設定し、高電圧側電力ライン54aの電圧VHが目標電圧VH*となると共に要求トルクTd*が駆動軸36に出力されるようにモータMG1,MG2のトルク指令Tm1*,Tm2*を設定する。ここで、回転数Ne1は、エンジン22を効率よく運転できる回転数などを用いることができる。電圧VH1は、高電圧側電力ライン54a(コンデンサ57)の許容上限電圧よりも若干低い電圧などを用いることができる。そして、エンジン22の目標回転数Ne*をエンジンECU24に送信すると共にモータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に送信する。エンジンECU24は、エンジン22が目標回転数Ne*で回転するようにエンジン22の吸入空気量制御や燃料噴射制御,点火制御などを行なう。モータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようにインバータ41,42のトランジスタT11〜T16,T21〜T26のスイッチング制御を行なう。
ステップS700の処理は、例えば、図示しないルーチンによりバッテリレス走行モードであるか否かが判定されて図示しないRAMに書き込まれたものを読み込むことにより行なうことができる。このステップS700の処理は、モータMG1,MG2の高制御性が要求されているか否かを判断する処理である。バッテリレス走行モードで走行する際には、モータMG1,MG2の消費電力の和の変動をバッテリ50で吸収することができないから、システムメインリレー56をオンで走行しているときに比して、モータMG1,MG2の消費電力(発電電力)の和をより精度よく調節する必要があり、モータMG1,MG2の制御性をより高くする必要がある(より高くするように要請される)。この変形例では、これを踏まえて、バッテリレス走行モードであるか否かを判定することにより、モータMG1,MG2の高制御性が要求されているか否かを判断するものとした。
ステップS700でバッテリレス走行モードでないときには、モータMG1,MG2の高制御性が要求されていない(モータMG1,MG2の制御性をより高くするように要請されていない)と判断し、許可フラグF1,F2に値1を設定して、即ち、インバータ41,42の制御として第2PWM制御の実行を許可して(ステップS710)、本ルーチンを終了する。一方、バッテリレス走行モードのときには、モータMG1,MG2の高制御性が要求されている(モータMG1,MG2の制御性をより高くするように要請されている)と判断し、許可フラグF1,F2に値0を設定して、即ち、インバータ41,42の制御として第2PWM制御の実行を禁止して(ステップS720)、本ルーチンを終了する。
上述したように、インバータ41,42の制御として、第2PWM制御を実行する場合、第1PWM制御を実行する場合に比して、モータMG1,MG2の制御性が低くなりやすい。このため、バッテリレス走行モードのときにインバータ41,42の制御として第2PWM制御を実行すると、モータMG1,MG2の消費電力(発電電力)の和をより精度よく調節できない可能性がある。この変形例では、バッテリレス走行モードのときには、モータMG1,MG2の高制御性が要求されている(モータMG1,MG2の制御性をより高くするように要請されている)と判断し、インバータ41,42の制御として第2PWM制御の実行を禁止して第1PWM制御を実行することにより、モータMG1、MG2の高制御性の要求をより十分に満たすことができる。具体的には、モータMG1,MG2の消費電力(発電電力)の和をより精度よく調節することができる。
次に、図12の許可フラグ設定ルーチンについて説明する。図12の許可フラグ設定ルーチンが実行されると、モータECU40は、エンジン22の始動時(モータMG1によりエンジン22をクランキングして始動する際)か否かを判定する(ステップS800)。ここで、ステップS800の処理は、例えば、図示しないルーチンによりエンジン22の始動時か否かが判定されて図示しないRAMに書き込まれたものを読み込むことにより行なうことができる。このステップS800の処理は、モータMG1,MG2の高制御性が要求されているか否かを判断する処理である。エンジン22の始動時には、モータMG1の回転数Nm1やトルクTm1(エンジン22のクランキング用のトルク)が急変したり、モータMG1から出力されてプラネタリギヤ30を介して駆動軸36に作用するトルクの急変によって要求トルクTd*を担保するためにモータMG2のトルクTm2が急変したりするから、モータMG1,MG2の制御性がより低下する懸念がある。この変形例では、これを踏まえて、エンジン22の始動時か否かを判定することにより、モータMG1,MG2の高制御性が要求されているか否かを判断するものとした。
ステップS800でエンジン22の始動時でないときには、モータMG1,MG2の高制御性が要求されていない(必要程度に担保されている)と判断し、許可フラグF1,F2に値1を設定して、即ち、インバータ41,42の制御として第2PWM制御の実行を許可して(ステップS810)、本ルーチンを終了する。一方、エンジン22の始動時には、モータMG1,MG2の高制御性が要求されている(モータMG1,MG2の制御性がより低下する懸念がある)と判断し、許可フラグF1,F2に値0を設定して、即ち、インバータ41,42の制御として第2PWM制御の実行を禁止して(ステップS820)、本ルーチンを終了する。
上述したように、インバータ41,42の制御として、第2PWM制御を実行する場合、第1PWM制御を実行する場合に比して、モータMG1,MG2の制御性が低くなりやすい。このため、エンジン22の始動時にインバータ41,42の制御として第2PWM制御を実行すると、モータMG1,MG2の制御性がより低下し、インバータ41,42に過電流や過電圧が生じる懸念がある。この変形例では、エンジン22の始動時には、モータMG1,MG2の高制御性が要求されている(モータMG1,MG2の制御性がより低下する懸念がある)と判断し、インバータ41,42の制御として第2PWM制御の実行を禁止して第1PWM制御を実行することにより、モータMG1,MG2の高制御性の要求をより十分に満たすことができる。具体的には、インバータ41,42に過電流や過電圧が生じるのを抑制することができる。
実施例や変形例のハイブリッド自動車20では、図6〜図12のルーチンで説明したように、許可フラグF1に値0を設定する(インバータ41の制御として第2PWM制御の実行を禁止する)条件として、以下の条件を用いるものとした。図6のルーチンでは、(A)回転位置検出センサ43および電流センサ45u,45vのうちの少なくとも1つのゼロ点学習が完了していない条件を用いるものとした。図7のルーチンでは、(B)回転位置検出センサ43および電流センサ45u,45vのうちの少なくとも1つに異常が生じている条件を用いるものとした。図8のルーチンでは、(C)モータMG1の駆動状態が急変した条件を用いるものとした。図9のルーチンでは、(D)モータMG1による制振制御を行なっている条件を用いるものとした。図10のルーチンでは、(E)電流センサ55aおよび電圧センサ57aのうちの少なくとも1つに異常が生じている条件を用いるものとした。図11のルーチンでは、(F)バッテリレス走行モードである条件を用いるものとした。図12のルーチンでは、(G)エンジン22の始動時である条件を用いるものとした。しかし、(A)〜(G)のうちのいくつかまたは全てを組み合わせて用いるものとしてもよい。例えば、(A)〜(G)の全てを組み合わせて用いる場合、(A)〜(G)のうちの少なくとも1つが成立したときに、許可フラグF1に値0を設定するものとしてもよい。許可フラグF2についても同様に考えることができる。
実施例のハイブリッド自動車20では、モータMG1の高制御性が要求されているときには、インバータ41の制御として、第2PWM制御の実行を禁止する(第1PWM制御を実行する)ものとしたが、第2PWM制御の実行を制限するものとしてもよい。例えば、インバータ41の制御として、第2PWM制御の領域のうちエリア1(図5参照)以外の第2PWM制御の実行を禁止したり、第2PWM制御の領域で巡航走行している場合以外の第2PWM制御の実行を禁止したりするものとしてもよい。インバータ42の制御についても同様に考えることができる。
実施例のハイブリッド自動車20では、エンジンECU24とモータECU40とバッテリECU52とHVECU70とを備えるものとしたが、これらのうちのいくつかまたは全てが単一の電子制御ユニットとして構成されるものとしてもよい。
実施例のハイブリッド自動車20では、蓄電装置として、バッテリ50を用いるものとしたが、キャパシタを用いるものとしてもよい。
実施例のハイブリッド自動車20では、インバータ41,42とバッテリ50との間に昇圧コンバータ55を設けるものとしたが、この昇圧コンバータを設けないものとしてもよい。
実施例のハイブリッド自動車20では、駆動輪39a,39bに連結された駆動軸36にプラネタリギヤ30を介してエンジン22およびモータMG1を接続すると共に駆動軸36にモータMG2を接続する構成とした。しかし、図13の変形例のハイブリッド自動車120に示すように、駆動輪39a,39bに連結された駆動軸36に変速機130を介してモータMGを接続すると共にモータMGの回転軸にクラッチ129を介してエンジン22を接続する構成としてもよい。また、図14の変形例のハイブリッド自動車220に示すように、駆動輪39a,39bに連結された駆動軸36に走行用のモータMG2を接続すると共にエンジン22の出力軸に発電用モータMG1を接続するいわゆるシリーズハイブリッド自動車の構成としてもよい。さらに、図15の変形例の電気自動車320に示すように、駆動輪39a,39bに連結された駆動軸36に走行用のモータMGを接続する電気自動車の構成としてもよい。なお、電気自動車320の構成とした場合、モータECU40は、図6〜図12の許可フラグ設定ルーチンのうち図6〜図10の許可フラグ設定ルーチンを実行することができる。
また、こうした自動車の形態に限定されるものではなく、自動車などの移動体に搭載される駆動装置の形態としたり、建設設備などの移動体でない設備に組み込まれる駆動装置の形態としたりしてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、モータMG2が「モータ」に相当し、インバータ42が「インバータ」に相当し、バッテリ50が「蓄電装置」に相当し、モータECU40が「制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、駆動装置や自動車の製造産業などに利用可能である。
20,120,220 ハイブリッド自動車、22 エンジン、23 クランクポジションセンサ、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 プラネタリギヤ、36 駆動軸、38 デファレンシャルギヤ、39a,39b 駆動輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、45u,45v,46u,46v 電流センサ、50 バッテリ、51a 電圧センサ、51b 電流センサ、51c 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54a 高電圧側電力ライン、54b 低電圧側電力ライン、55 昇圧コンバータ、55a 電流センサ、56 システムメインリレー、57,58 コンデンサ、57a,58a 電圧センサ、70 ハイブリッド用電子制御ユニット(HVECU)、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、129 クラッチ、130 変速機、320 電気自動車、D11〜D16,D21〜D26,D31,D32 ダイオード、L リアクトル、MG,MG1,MG2 モータ、T11〜T16,T21〜T26,T31,T32 トランジスタ。

Claims (9)

  1. 走行用のモータと、
    複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
    前記インバータを介して前記モータと電力をやりとりする蓄電装置と、
    を備える駆動装置であって、
    前記インバータの制御として、前記モータのトルク指令に基づく各相の電圧指令と搬送波電圧との比較によって前記複数のスイッチング素子の第1PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう第1PWM制御と、前記トルク指令に基づく電圧の変調率および電圧位相と前記モータの電気角の単位周期当たりのパルス数とに基づいて前記複数のスイッチング素子の第2PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう制御であって前記第1PWM制御に比して前記複数のスイッチング素子のスイッチング回数を少なくする第2PWM制御と、を切り替えて実行する制御装置を備え、
    前記制御装置は、前記モータの高制御性が要求されていないときには、前記インバータの制御として前記第2PWM制御の実行を許可し、前記高制御性が要求されているときには、前記インバータの制御として前記第2PWM制御の実行を禁止し、
    更に、前記制御装置は、前記インバータの制御として前記第2PWM制御の実行を許可すると共に前記モータの目標動作点が所定領域内のときには、前記インバータの制御として前記第2PWM制御を実行し、前記インバータの制御として前記第2PWM制御の実行を許可すると共に前記目標動作点が前記所定領域外のときおよび前記インバータの制御として前記第2PWM制御の実行を禁止するときには、前記インバータの制御として前記第1PWM制御を実行する、
    駆動装置。
  2. 走行用のモータと、
    複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
    前記インバータを介して前記モータと電力をやりとりする蓄電装置と、
    を備える駆動装置であって、
    前記モータの回転子の回転位置を検出する回転位置検出センサと、
    前記モータに流れる電流を検出する電流センサと、
    前記インバータの制御として、前記モータのトルク指令に基づく各相の電圧指令と搬送波電圧との比較によって前記複数のスイッチング素子の第1PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう第1PWM制御と、前記トルク指令に基づく電圧の変調率および電圧位相と前記モータの電気角の単位周期当たりのパルス数とに基づいて前記複数のスイッチング素子の第2PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう制御であって前記第1PWM制御に比して前記複数のスイッチング素子のスイッチング回数を少なくする第2PWM制御と、を切り替えて実行する制御装置と、
    を備え、
    前記制御装置は、前記回転位置検出センサおよび前記電流センサのうちの少なくとも1つのゼロ点学習が完了していないときには、前記モータの高制御性が要求されていると判定し、前記高制御性が要求されているときには、前記高制御性が要求されていないときに比して、前記インバータの制御として前記第2PWM制御の実行を制限する、
    駆動装置。
  3. 走行用のモータと、
    複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
    前記インバータを介して前記モータと電力をやりとりする蓄電装置と、
    を備える駆動装置であって、
    前記モータの回転子の回転位置を検出する回転位置検出センサと、
    前記モータに流れる電流を検出する電流センサと、
    前記インバータの制御として、前記モータのトルク指令に基づく各相の電圧指令と搬送波電圧との比較によって前記複数のスイッチング素子の第1PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう第1PWM制御と、前記トルク指令に基づく電圧の変調率および電圧位相と前記モータの電気角の単位周期当たりのパルス数とに基づいて前記複数のスイッチング素子の第2PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう制御であって前記第1PWM制御に比して前記複数のスイッチング素子のスイッチング回数を少なくする第2PWM制御と、を切り替えて実行する制御装置と、
    を備え、
    前記制御装置は、前記回転位置検出センサおよび前記電流センサのうちの少なくとも1つに異常が生じているときには、前記モータの高制御性が要求されていると判定し、前記高制御性が要求されているときには、前記高制御性が要求されていないときに比して、前記インバータの制御として前記第2PWM制御の実行を制限する、
    駆動装置。
  4. 走行用のモータと、
    複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
    前記インバータを介して前記モータと電力をやりとりする蓄電装置と、
    を備える駆動装置であって、
    前記インバータの制御として、前記モータのトルク指令に基づく各相の電圧指令と搬送波電圧との比較によって前記複数のスイッチング素子の第1PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう第1PWM制御と、前記トルク指令に基づく電圧の変調率および電圧位相と前記モータの電気角の単位周期当たりのパルス数とに基づいて前記複数のスイッチング素子の第2PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう制御であって前記第1PWM制御に比して前記複数のスイッチング素子のスイッチング回数を少なくする第2PWM制御と、を切り替えて実行する制御装置を備え、
    前記制御装置は、前記モータによる制振制御を行なっているときには、前記モータの高制御性が要求されていると判定し、前記高制御性が要求されているときには、前記高制御性が要求されていないときに比して、前記インバータの制御として前記第2PWM制御の実行を制限する、
    駆動装置。
  5. 走行用のモータと、
    複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
    前記インバータを介して前記モータと電力をやりとりする蓄電装置と、
    を備える駆動装置であって、
    前記蓄電装置からの電力を昇圧して前記インバータに供給する昇圧コンバータと、
    前記昇圧コンバータのリアクトルに流れる電流を検出する電流センサと、
    前記昇圧コンバータよりも前記インバータ側の電圧を検出する電圧センサと、
    前記インバータの制御として、前記モータのトルク指令に基づく各相の電圧指令と搬送波電圧との比較によって前記複数のスイッチング素子の第1PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう第1PWM制御と、前記トルク指令に基づく電圧の変調率および電圧位相と前記モータの電気角の単位周期当たりのパルス数とに基づいて前記複数のスイッチング素子の第2PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう制御であって前記第1PWM制御に比して前記複数のスイッチング素子のスイッチング回数を少なくする第2PWM制御と、を切り替えて実行する制御装置と、
    を備え、
    前記制御装置は、前記電流センサと前記電圧センサとのうちの少なくとも1つに異常が生じているときには、前記モータの高制御性が要求されていると判定し、前記高制御性が要求されているときには、前記高制御性が要求されていないときに比して、前記インバータの制御として前記第2PWM制御の実行を制限する、
    駆動装置。
  6. 請求項1ないし5のいずれか1つの請求項に記載の駆動装置であって、
    前記第2PWM制御は、前記第1PWM制御に比して、所望の次数の高調波成分が低減されると共に前記モータの損失と前記インバータの損失との合計損失が低減されるように前記複数のスイッチング素子の第2PWM信号を生成する制御である、
    駆動装置。
  7. 請求項1記載の駆動装置であって、
    前記制御装置は、前記モータのトルク指令,前記モータの回転数,前記インバータの電圧,前記蓄電装置の電圧のうちの少なくとも1つの単位時間当たりの変化量がそれぞれの閾値よりも大きいときには、前記高制御性が要求されていると判定する、
    駆動装置。
  8. 走行用のモータと、
    複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
    前記インバータを介して前記モータと電力をやりとりする蓄電装置と、
    を備える駆動装置を搭載し、
    前記モータからの動力を用いて走行する自動車であって、
    エンジンと、
    前記エンジンからの動力を用いて発電する発電機と、
    複数の第2スイッチング素子のスイッチングによって前記発電機を駆動する発電機用インバータと、
    前記インバータおよび前記発電機用インバータと前記蓄電装置との接続および接続の解除を行なうリレーと、
    前記インバータの制御として、前記モータのトルク指令に基づく各相の電圧指令と搬送波電圧との比較によって前記複数のスイッチング素子の第1PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう第1PWM制御と、前記トルク指令に基づく電圧の変調率および電圧位相と前記モータの電気角の単位周期当たりのパルス数とに基づいて前記複数のスイッチング素子の第2PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう制御であって前記第1PWM制御に比して前記複数のスイッチング素子のスイッチング回数を少なくする第2PWM制御と、を切り替えて実行する制御装置と、
    を備え、
    前記制御装置は、前記インバータの制御として、前記第1PWM制御と前記第2PWM制御とを切り替えて実行すると共に前記モータの高制御性が要求されているときには前記高制御性が要求されていないときに比して前記第2PWM制御の実行を制限するのに加えて、前記発電機用インバータの制御として、前記第1PWM制御と前記第2PWM制御とを切り替えて実行すると共に前記発電機の前記高制御性が要求されているときには前記高制御性が要求されていないときに比して前記第2PWM制御の実行を制限し、
    更に、前記制御装置は、前記リレーにより前記インバータおよび前記発電機用インバータと前記蓄電装置との接続を解除して走行する際には、前記モータおよび前記発電機の前記高制御性が要求されていると判定する、
    自動車。
  9. 走行用のモータと、
    複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
    前記インバータを介して前記モータと電力をやりとりする蓄電装置と、
    を備える駆動装置を搭載し、
    前記モータからの動力を用いて走行する自動車であって、
    エンジンと、
    発電電動機と、
    前記エンジンの出力軸と前記発電電動機の回転軸と車軸に連結された駆動軸との3軸に3つの回転要素が接続されたプラネタリギヤと、
    複数の第2スイッチング素子のスイッチングによって前記発電電動機を駆動する発電電動機用インバータと、
    前記インバータの制御として、前記モータのトルク指令に基づく各相の電圧指令と搬送波電圧との比較によって前記複数のスイッチング素子の第1PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう第1PWM制御と、前記トルク指令に基づく電圧の変調率および電圧位相と前記モータの電気角の単位周期当たりのパルス数とに基づいて前記複数のスイッチング素子の第2PWM信号を生成して前記複数のスイッチング素子のスイッチングを行なう制御であって前記第1PWM制御に比して前記複数のスイッチング素子のスイッチング回数を少なくする第2PWM制御と、を切り替えて実行する制御装置と、
    を備え、
    前記蓄電装置は、前記インバータおよび前記発電電動機用インバータを介して前記モータおよび前記発電電動機と電力をやりとりし、
    前記制御装置は、前記インバータの制御として、前記第1PWM制御と前記第2PWM制御とを切り替えて実行すると共に前記モータの高制御性が要求されているときには前記高制御性が要求されていないときに比して前記第2PWM制御の実行を制限するのに加えて、前記発電電動機用インバータの制御として、前記第1PWM制御と前記第2PWM制御とを切り替えて実行すると共に前記発電電動機の前記高制御性が要求されているときには前記高制御性が要求されていないときに比して前記第2PWM制御の実行を制限し、
    更に、前記制御装置は、前記発電電動機によって前記エンジンをクランキングして始動する際には、前記モータおよび前記発電電動機の前記高制御性が要求されていると判定する、
    自動車。
JP2016205427A 2016-10-19 2016-10-19 駆動装置および自動車 Active JP6500872B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016205427A JP6500872B2 (ja) 2016-10-19 2016-10-19 駆動装置および自動車
US15/724,520 US11358476B2 (en) 2016-10-19 2017-10-04 Drive device and vehicle
CN201710966171.3A CN107962980B (zh) 2016-10-19 2017-10-17 驱动装置和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205427A JP6500872B2 (ja) 2016-10-19 2016-10-19 駆動装置および自動車

Publications (2)

Publication Number Publication Date
JP2018068037A JP2018068037A (ja) 2018-04-26
JP6500872B2 true JP6500872B2 (ja) 2019-04-17

Family

ID=61902548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205427A Active JP6500872B2 (ja) 2016-10-19 2016-10-19 駆動装置および自動車

Country Status (3)

Country Link
US (1) US11358476B2 (ja)
JP (1) JP6500872B2 (ja)
CN (1) CN107962980B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3157146B1 (en) 2014-07-18 2018-12-26 Mitsubishi Heavy Industries Compressor Corporation Rotational driving force imparting device and electric motor device for same
WO2017037939A1 (ja) * 2015-09-04 2017-03-09 三菱重工コンプレッサ株式会社 可変速増速機の始動方法及び可変速増速機の始動制御装置
JP6439771B2 (ja) * 2016-10-19 2018-12-19 トヨタ自動車株式会社 駆動装置および自動車
US11689084B2 (en) * 2017-07-27 2023-06-27 Flekkefjord Elektro As Electromotor having integrated inverter
JP6882719B2 (ja) * 2018-03-07 2021-06-02 オムロン株式会社 ロボット制御装置、異常診断方法、及び異常診断プログラム
DE102018211137B4 (de) * 2018-07-05 2023-11-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Systeme zur Starterbetätigung
JP2021065038A (ja) * 2019-10-15 2021-04-22 トヨタ自動車株式会社 車両
KR20210105647A (ko) * 2020-02-19 2021-08-27 현대트랜시스 주식회사 하이브리드 차량용 동력전달장치
US11420523B2 (en) * 2020-09-25 2022-08-23 GM Global Technology Operations LLC Enhanced electric drive vehicle operation via pulse width modulation (PWM) type and frequency control

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5823280A (en) * 1995-01-12 1998-10-20 Nevcor, Inc. Hybrid parallel electric vehicle
US6177734B1 (en) * 1998-02-27 2001-01-23 Isad Electronic Systems Gmbh & Co. Kg Starter/generator for an internal combustion engine, especially an engine of a motor vehicle
EP0856427B1 (en) * 1996-07-30 2006-03-01 Denso Corporation Hybrid car controller
JP3979289B2 (ja) * 2002-12-26 2007-09-19 アイシン・エィ・ダブリュ株式会社 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP4082338B2 (ja) * 2003-11-27 2008-04-30 日産自動車株式会社 モータ駆動4wd車両の制御装置及び制御方法
JP5011892B2 (ja) 2006-08-28 2012-08-29 日産自動車株式会社 電動機制御装置
JP4858597B2 (ja) * 2008-11-28 2012-01-18 株式会社デンソー 回転機の制御装置及びその製造方法
JP4580023B2 (ja) * 2009-03-02 2010-11-10 ファナック株式会社 複数の巻線を備えたモータを駆動するモータ駆動システム
JP5183594B2 (ja) * 2009-07-31 2013-04-17 日立オートモティブシステムズ株式会社 モータの制御装置及びそれを備えたモータシステム
JP5297953B2 (ja) * 2009-09-08 2013-09-25 トヨタ自動車株式会社 電動車両の電動機駆動システム
WO2011099122A1 (ja) * 2010-02-10 2011-08-18 株式会社 日立製作所 電力変換装置
JP2012100419A (ja) * 2010-11-01 2012-05-24 Toyota Motor Corp 駆動装置および自動車
CN103650330B (zh) * 2011-06-30 2017-08-25 丰田自动车株式会社 电动机驱动装置、具备该电动机驱动装置的车辆以及电动机驱动装置的控制方法
US9190896B2 (en) * 2011-09-16 2015-11-17 Ford Global Technologies, Llc PWM strategy for reduction of inverter hotspot temperature and overall losses
JP5845827B2 (ja) * 2011-11-07 2016-01-20 トヨタ自動車株式会社 ハイブリッド車両
JP2013103516A (ja) * 2011-11-10 2013-05-30 Toyota Motor Corp 車両および車両の制御方法
JP6009757B2 (ja) * 2011-11-24 2016-10-19 トヨタ自動車株式会社 車両および車両の制御方法
JP5594301B2 (ja) * 2012-02-07 2014-09-24 株式会社豊田中央研究所 電動機駆動システム
DE102012208747A1 (de) * 2012-05-24 2013-11-28 Zf Friedrichshafen Ag Verfahren zum Betrieb einer Drehfeldmaschine
JP5969382B2 (ja) * 2012-12-26 2016-08-17 トヨタ自動車株式会社 交流電動機の制御システム
JP5696729B2 (ja) * 2013-02-05 2015-04-08 トヨタ自動車株式会社 車両の制御装置
JP6204121B2 (ja) 2013-09-09 2017-09-27 株式会社日立製作所 モータ駆動システムおよび該システムを搭載する電気鉄道車両
JP5986595B2 (ja) 2014-02-20 2016-09-06 株式会社豊田中央研究所 電力変換器制御装置及びそれを備えたモータシステム
JP6221958B2 (ja) 2014-06-17 2017-11-01 株式会社デンソー 回転機の制御装置
JP6239448B2 (ja) 2014-06-18 2017-11-29 株式会社日立製作所 インバータおよびこれを用いた駆動システム
JP6143905B1 (ja) * 2016-03-08 2017-06-07 三菱電機株式会社 回転電機駆動装置の制御装置

Also Published As

Publication number Publication date
JP2018068037A (ja) 2018-04-26
US20180105064A1 (en) 2018-04-19
CN107962980A (zh) 2018-04-27
CN107962980B (zh) 2021-05-07
US11358476B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
JP6500872B2 (ja) 駆動装置および自動車
JP5423898B2 (ja) 電動車両およびその制御方法
JP6172114B2 (ja) ハイブリッド自動車
JP6183339B2 (ja) ハイブリッド自動車
JP2018098857A (ja) 駆動装置および自動車
JP2018114768A (ja) 自動車
JP2021084537A (ja) ハイブリッド車両
JP6631571B2 (ja) ハイブリッド自動車
JP5733004B2 (ja) ハイブリッド自動車
JP2019073154A (ja) ハイブリッド自動車
JP2009220791A (ja) 車両およびその制御方法
JP2018184133A (ja) ハイブリッド自動車
JP2018127144A (ja) ハイブリッド自動車
JP6451726B2 (ja) ハイブリッド自動車
CN108189830B (zh) 混合动力汽车
JP2013123941A (ja) ハイブリッド自動車
JP2011162130A (ja) ハイブリッド車およびその制御方法
JP2008007018A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2018167614A (ja) ハイブリッド車両の制御装置
CN108725426B (zh) 混合动力车辆及其控制方法
JP6607217B2 (ja) ハイブリッド自動車
JP7067053B2 (ja) ハイブリッド自動車
JP2010260477A (ja) ハイブリッド自動車
JP6769366B2 (ja) ハイブリッド車両の制御装置
JP6973289B2 (ja) ハイブリッド自動車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R151 Written notification of patent or utility model registration

Ref document number: 6500872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250