JP6493161B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP6493161B2
JP6493161B2 JP2015217573A JP2015217573A JP6493161B2 JP 6493161 B2 JP6493161 B2 JP 6493161B2 JP 2015217573 A JP2015217573 A JP 2015217573A JP 2015217573 A JP2015217573 A JP 2015217573A JP 6493161 B2 JP6493161 B2 JP 6493161B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor element
bonding
back electrode
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015217573A
Other languages
Japanese (ja)
Other versions
JP2017092139A (en
Inventor
圭児 黒田
圭児 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015217573A priority Critical patent/JP6493161B2/en
Publication of JP2017092139A publication Critical patent/JP2017092139A/en
Application granted granted Critical
Publication of JP6493161B2 publication Critical patent/JP6493161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本発明は、裏面電極にNi層を有する半導体素子が、Zn−Al系はんだを介してリードフレームに接合された半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device in which a semiconductor element having a Ni layer on a back electrode is bonded to a lead frame via a Zn—Al solder.

従来から、裏面電極にNi層を有する半導体素子を、Zn−Al系はんだを介してリードフレームに接合した半導体装置の製造方法が提案されている(例えば特許文献1参照)。半導体装置を製造する際には、裏面電極のNi層とリードフレームとの間に、Zn−Al系はんだを配置し、リフロー接合により半導体素子とリードフレームとを接合する。なお、裏面電極は、半導体素子の表面から順に、Al−Si層、Ti層、およびNi層が順次積層された層である。   Conventionally, a method of manufacturing a semiconductor device in which a semiconductor element having a Ni layer on a back electrode is joined to a lead frame via a Zn—Al solder has been proposed (see, for example, Patent Document 1). When manufacturing a semiconductor device, Zn—Al based solder is disposed between the Ni layer of the back electrode and the lead frame, and the semiconductor element and the lead frame are joined by reflow bonding. Note that the back electrode is a layer in which an Al—Si layer, a Ti layer, and a Ni layer are sequentially stacked from the surface of the semiconductor element.

これにより、半導体素子の裏面電極と、Zn−Al系はんだとの間には、Ni層とZn−Al系はんだの成分のAlとによりAl−Ni合金層が生成され、半導体素子とリードフレームとの接合性を高めることができる。   As a result, an Al—Ni alloy layer is generated between the back electrode of the semiconductor element and the Zn—Al based solder by the Ni layer and Al of the component of the Zn—Al based solder. It is possible to improve the bondability.

特開2005−183650号公報JP 2005-183650 A

しかしながら、特許文献1に示す製造方法では、接合時に裏面電極のNi層が、Al−Ni合金層の生成により消費されるため、接合後の裏面電極のNi層が薄くなる。このNi層が薄過ぎると、裏面電極のNi層が半導体素子側で(具体的にはNi層とTi層の間で)剥離するおそれがある。   However, in the manufacturing method shown in Patent Document 1, since the Ni layer of the back electrode is consumed by the formation of the Al—Ni alloy layer during bonding, the Ni layer of the back electrode after bonding becomes thin. If this Ni layer is too thin, the Ni layer of the back electrode may be peeled off on the semiconductor element side (specifically, between the Ni layer and the Ti layer).

さらに、半導体素子とZn−Al系はんだとの熱膨張差は、Zn−Al系はんだとリードフレームとの熱膨張差よりも大きい。このため、接合時に、半導体素子(裏面電極のNi層)とZn−Al系はんだとの界面において、Zn−Ni合金が生成された場合、半導体装置の使用時には、半導体素子とZn−Al系はんだとの界面でクラックが発生することがあった。   Furthermore, the thermal expansion difference between the semiconductor element and the Zn—Al solder is larger than the thermal expansion difference between the Zn—Al solder and the lead frame. Therefore, when a Zn—Ni alloy is generated at the interface between the semiconductor element (the Ni layer of the back electrode) and the Zn—Al solder at the time of joining, the semiconductor element and the Zn—Al solder are used when the semiconductor device is used. Cracks may occur at the interface.

本発明は、このような点を鑑みてなされたものであり、その目的とするところは、半導体素子の裏面電極の剥離を抑え、半導体装置の使用時に、半導体素子とZn−Al系はんだの界面のクラックの発生を抑えることができる半導体装置の製造方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to suppress the peeling of the back electrode of the semiconductor element, and to use the interface between the semiconductor element and the Zn-Al solder when the semiconductor device is used. An object of the present invention is to provide a method of manufacturing a semiconductor device that can suppress the occurrence of cracks.

前記課題を鑑みて、本発明に係る半導体装置の製造方法は、裏面電極にNi層を有する半導体素子を、Zn−Al系はんだを介してリードフレームに接合した半導体装置の製造方法であって、前記裏面電極と前記リードフレームとの間に、前記Zn−Al系はんだを配置し、接合温度が391〜419℃の範囲であり、かつ、以下の不等式を満たすように、前記半導体素子と前記リードフレームとを接合することを特徴とする。
0.2≦N−〔0.000118×exp(−147170/RT)〕1/2×10×(t)1/2≦0.7
ただし、N:接合前の裏面電極のNi層の厚さ(μm)、
R:気体の状態定数(8.31J/mol・K)、
T:接合温度(K)、
t:接合温度保持時間(秒)。
In view of the above problems, a method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device in which a semiconductor element having a Ni layer on a back electrode is joined to a lead frame via a Zn-Al solder, The Zn—Al based solder is disposed between the back electrode and the lead frame, the semiconductor element and the lead are arranged so that the junction temperature is in the range of 391 to 419 ° C. and the following inequality is satisfied. It is characterized by joining the frame.
0.2 ≦ N− [0.000118 × exp (−147170 / RT)] 1/2 × 10 6 × (t) 1/2 ≦ 0.7
Where N is the thickness (μm) of the Ni layer of the back electrode before bonding,
R: gas state constant (8.31 J / mol · K),
T: Junction temperature (K),
t: Bonding temperature holding time (seconds).

本発明によれば、上述した不等式を満たすように、半導体素子とリードフレームの接合時に半導体素子の裏面電極のNi層が、Al−Ni合金の生成により消費されても、裏面電極のNi層の厚さを最適な厚さ(具体的には0.2〜0.7μm)に確保することができる。これにより、半導体装置の製造時に、裏面電極(Ni層)の剥離を回避することができるとともに、半導体装置の使用時に、半導体素子とZn−Al系はんだの界面のクラックの発生を抑えることができる。   According to the present invention, even if the Ni layer of the back electrode of the semiconductor element is consumed by the formation of the Al—Ni alloy at the time of joining the semiconductor element and the lead frame so as to satisfy the above inequality, The thickness can be ensured to an optimum thickness (specifically, 0.2 to 0.7 μm). As a result, peeling of the back electrode (Ni layer) can be avoided during manufacture of the semiconductor device, and occurrence of cracks at the interface between the semiconductor element and the Zn—Al solder can be suppressed during use of the semiconductor device. .

本発明の実施形態に係る半導体装置の模式的断面図である。1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention. (a)は、Zn−Al系はんだに接合する前の半導体素子の裏面電極近傍の状態を示しており(b)は、Zn−Al系はんだに接合した後の半導体素子の裏面電極近傍の状態を示した図である。(A) has shown the state of the back surface electrode vicinity of the semiconductor element before joining to Zn-Al type solder, (b) has shown the state of the back surface electrode vicinity of the semiconductor element after joining to Zn-Al type solder. FIG. 接合前の裏面電極のNi層の厚さ0.1μm、接合温度415℃、接合温度保持時間90秒の条件で接合したときの接合後のNi層の厚さとAl−Ni合金層の厚さの関係を示した図である。The thickness of the Ni layer of the back electrode before bonding, the thickness of the Ni layer after bonding, and the thickness of the Al—Ni alloy layer when bonded under the conditions of a bonding layer temperature of 415 ° C. and a bonding temperature holding time of 90 seconds. It is the figure which showed the relationship. (a)は、接合前の裏面電極のNi層の厚さ0.4μm、接合温度415℃、接合温度保持時間90秒の条件で接合したときの接合後のNi層の厚さとAl−Ni合金層の厚さの関係を示した図であり、(b)は、接合前の裏面電極のNi層の厚さ0.4μm、接合温度415℃、接合温度保持時間180秒の条件で接合したときの接合後のNi層の厚さとAl−Ni合金層の厚さの関係を示した図である。(A) shows the thickness of the Ni layer after bonding and the Al—Ni alloy when bonded under the conditions of the thickness of the Ni layer of the back electrode before bonding of 0.4 μm, the bonding temperature of 415 ° C., and the bonding temperature holding time of 90 seconds. It is the figure which showed the relationship of the thickness of a layer, (b) is when joining on the conditions of 0.4 micrometer of Ni layer thickness of the back surface electrode before joining, joining temperature 415 degreeC, and joining temperature holding time 180 seconds It is the figure which showed the relationship between the thickness of Ni layer after joining, and the thickness of an Al-Ni alloy layer. (a)は、接合前の裏面電極のNi層の厚さ0.7μm、接合温度400〜415℃、接合温度保持時間15〜450秒の条件で接合したときの接合後のNi層の厚さとAl−Ni合金層の厚さの関係を示した図であり、(b)は、接合前の裏面電極のNi層の厚さ0.7μm、接合温度415℃、接合温度保持時間90秒の条件で接合したときの接合後のNi層の厚さとAl−Ni合金層の厚さの関係を示した図である。(A) is the thickness of the Ni layer after bonding when the Ni layer thickness of the back electrode before bonding is 0.7 μm, the bonding temperature is 400 to 415 ° C., and the bonding temperature holding time is 15 to 450 seconds. It is the figure which showed the relationship of the thickness of an Al-Ni alloy layer, (b) is the conditions of thickness 0.7micrometer of Ni layer of the back electrode before joining, joining temperature 415 degreeC, and joining temperature holding time 90 second It is the figure which showed the relationship between the thickness of the Ni layer after joining, and the thickness of an Al-Ni alloy layer when joining by. 確認試験3の(1)〜(4)に示す、すべての接合試験片のNi層の厚さとAl−Ni合金層の厚さの関係を示した図である。It is the figure which showed the relationship between the thickness of Ni layer of all the joining test pieces shown in (1)-(4) of the confirmation test 3, and the thickness of an Al-Ni alloy layer. 接合温度の(保持時間)(1/2)と接合時のNi層の消費量との関係を示した図である。It is the figure which showed the relationship between (holding time) (1/2) of joining temperature, and the consumption of the Ni layer at the time of joining. 接合温度の(1/接合温度)とLn(k)との関係を示した図である。It is a diagram illustrating a relationship between the junction temperature (1 / bonding temperature) and Ln (k 2). 初晶Znが晶出した場合と、初晶Znが晶出していない場合の接合試験片の冷熱試験後のクラック長の結果を示した図である。It is the figure which showed the result of the crack length after the thermal test of the joining test piece when primary crystal Zn crystallizes and when primary crystal Zn does not crystallize. 実施例1,2および比較例1,2に係る接合試験片の冷熱試験後のクラック長の結果を示した図である。It is the figure which showed the result of the crack length after the thermal test of the joining test piece which concerns on Examples 1, 2 and Comparative Examples 1,2.

以下の本発明の実施形態に係る半導体装置の製造方法を以下に説明する。
図1は、本発明の実施形態に係る半導体装置1の模式的断面図であり、図2(a)は、Zn−Al系はんだに接合する前の半導体素子10の裏面電極15近傍の状態を示しており、図2(b)は、Zn−Al系はんだに接合した後の半導体素子10の裏面電極15近傍の状態を示した図である。
A method for manufacturing a semiconductor device according to embodiments of the present invention will be described below.
FIG. 1 is a schematic cross-sectional view of a semiconductor device 1 according to an embodiment of the present invention. FIG. 2A shows a state in the vicinity of a back electrode 15 of a semiconductor element 10 before bonding to a Zn—Al solder. FIG. 2B shows a state in the vicinity of the back surface electrode 15 of the semiconductor element 10 after being bonded to the Zn—Al solder.

図1に示すように、本実施形態に係る半導体装置1は、銅基板等のリードフレーム11,17に、半導体素子10を搭載した装置であり、これらは、樹脂19により一体的にモールド成形されている。   As shown in FIG. 1, a semiconductor device 1 according to the present embodiment is a device in which a semiconductor element 10 is mounted on lead frames 11 and 17 such as a copper substrate, and these are integrally molded by a resin 19. ing.

半導体素子10は、その表面側では、Niメッキされたターミナル13に、Zn−Al系はんだ14を介して接合されており、その裏面側では、後述する半導体素子10の裏面電極15(図2参照)が、Zn−Al系はんだ16を介してリードフレーム17に接合されている。さらに、半導体素子10はワイヤ18に接続されている。さらにターミナル13は、Zn−Al系はんだ12を介してリードフレーム11に接合されている。   The semiconductor element 10 is joined to a Ni-plated terminal 13 via a Zn-Al based solder 14 on the front surface side, and on the rear surface side, a back electrode 15 of the semiconductor element 10 described later (see FIG. 2). ) Is bonded to the lead frame 17 via the Zn—Al solder 16. Further, the semiconductor element 10 is connected to the wire 18. Further, the terminal 13 is joined to the lead frame 11 via the Zn—Al solder 12.

リードフレーム11,17およびターミナル13は、銅を母材として、その表面にNi層が形成されている。Ni層は、メッキまたはスパッタリング等により形成される。さらに、Ni層の表面には、Cu、Ag、Au、Pt、またはPdの薄膜が形成されていてもよい。このような薄膜を形成することにより、リードフレームに対する後述するZn−Al系はんだの濡れ性を高めることができ、接合時には、薄膜を構成する金属は、はんだに拡散し、薄膜は略消滅する。   The lead frames 11 and 17 and the terminal 13 have copper as a base material and a Ni layer formed on the surface thereof. The Ni layer is formed by plating or sputtering. Furthermore, a thin film of Cu, Ag, Au, Pt, or Pd may be formed on the surface of the Ni layer. By forming such a thin film, the wettability of a Zn—Al-based solder, which will be described later, with respect to the lead frame can be increased. At the time of bonding, the metal constituting the thin film diffuses into the solder, and the thin film substantially disappears.

図2(a)に示すように、半導体素子10の半導体素子本体10aの裏面には、裏面電極15が形成されている。半導体素子本体10aは、Si素子、またはSiC、GaNなどのワイドギャップ半導体素子などを挙げることができる。   As shown in FIG. 2A, a back electrode 15 is formed on the back surface of the semiconductor element body 10 a of the semiconductor element 10. Examples of the semiconductor element body 10a include Si elements or wide gap semiconductor elements such as SiC and GaN.

裏面電極15は、裏面側から順に第1層15b〜第4層15eを積層した電極である。第1層15bは、Al,Al−Si,Ni−Siなどからなる層である。第2層15cは、Tiからなる層である。第3層15dは、NiまたはNi−Pからなる層であり、本発明でいう「Ni層」に相当する。第4層15eは、Cu、Ag、Au、Pt、またはPdからなる層であり、Zn−Al系はんだと接合する際には、Zn−Al系はんだに拡散し、消滅する。   The back surface electrode 15 is an electrode in which a first layer 15b to a fourth layer 15e are stacked in order from the back surface side. The first layer 15b is a layer made of Al, Al—Si, Ni—Si, or the like. The second layer 15c is a layer made of Ti. The third layer 15d is a layer made of Ni or Ni—P and corresponds to the “Ni layer” in the present invention. The fourth layer 15e is a layer made of Cu, Ag, Au, Pt, or Pd, and diffuses into the Zn—Al based solder and disappears when bonded to the Zn—Al based solder.

半導体装置1を製造する際には、半導体素子10の裏面電極15とリードフレーム17との間に、Zn−Al系はんだ16を配置し、Zn−Al系はんだ16を加熱して溶融し、Zn−Al系はんだ16を介して、半導体素子10とリードフレーム17とを接合する。   When manufacturing the semiconductor device 1, a Zn—Al based solder 16 is disposed between the back electrode 15 of the semiconductor element 10 and the lead frame 17, and the Zn—Al based solder 16 is heated and melted. The semiconductor element 10 and the lead frame 17 are joined via the Al-based solder 16.

この際、接合温度を391〜419℃の範囲にして、半導体素子10とリードフレーム17とを接合する。これにより、図2(b)に示すように、第4層15eが消滅するとともに、第3層15d(Ni層)のNiとZn−Al系はんだ16のAlにより、半導体素子10の第3層15dとZn−Al系はんだ16との間に、AlNiからなるAl−Ni合金層15fが形成される。ここで、接合温度が391℃未満である場合には、はんだが溶融しないため、Al−Ni合金層15fが形成されず、接合温度が419℃を超えた場合には、ZnとNiの共存下で液相となるため、Zn中へのNiの拡散速度が大きくなり、Zn−Ni合金が形成されやすい。 At this time, the semiconductor element 10 and the lead frame 17 are bonded with the bonding temperature in the range of 391 to 419 ° C. As a result, as shown in FIG. 2B, the fourth layer 15e disappears, and the third layer 15d of the semiconductor element 10 is formed by Ni of the third layer 15d (Ni layer) and Al of the Zn—Al based solder 16. An Al—Ni alloy layer 15 f made of Al 3 Ni 2 is formed between 15 d and the Zn—Al based solder 16. Here, when the bonding temperature is lower than 391 ° C., the solder does not melt, so the Al—Ni alloy layer 15 f is not formed, and when the bonding temperature exceeds 419 ° C., Zn and Ni coexist. Therefore, the diffusion rate of Ni into Zn increases, and a Zn—Ni alloy is easily formed.

この接合温度の条件を前提に、以下の不等式を満たすように半導体素子10とリードフレーム17とを接合する。
0.2≦N−〔0.000118×exp(−147170/RT)〕1/2×10×(t)1/2≦0.7
ただし、N:接合前の裏面電極の第3層(Ni層)の厚さ(μm)、
R:気体の状態定数(8.31J/mol・K)、
T:接合温度(K)、
t:接合温度保持時間。
On the premise of this bonding temperature condition, the semiconductor element 10 and the lead frame 17 are bonded so as to satisfy the following inequality.
0.2 ≦ N− [0.000118 × exp (−147170 / RT)] 1/2 × 10 6 × (t) 1/2 ≦ 0.7
Where N is the thickness (μm) of the third layer (Ni layer) of the back electrode before bonding,
R: gas state constant (8.31 J / mol · K),
T: Junction temperature (K),
t: Bonding temperature holding time.

この式の上限値(0.7)および下限値(0.2)は、接合後の半導体素子10の裏面電極15の第3層(Ni層)15dの厚さ(μm)を意味し、数式:〔0.000118×exp(−147170/RT)〕1/2×10×(t)1/2は、接合時におけるNi層の消費量(厚さ(μm))を意味する。したがって、数式:N−〔0.000118×exp(−147170/RT)〕1/2×10×(t)1/2は、接合後に残存する、裏面電極15のNi層の厚さのことである。 The upper limit value (0.7) and the lower limit value (0.2) of this equation mean the thickness (μm) of the third layer (Ni layer) 15d of the back electrode 15 of the semiconductor element 10 after bonding. : [0.000118 × exp (−147170 / RT)] 1/2 × 10 6 × (t) 1/2 means the consumption (thickness (μm)) of the Ni layer at the time of bonding. Therefore, the formula: N− [0.000118 × exp (−147170 / RT)] 1/2 × 10 6 × (t) 1/2 is the thickness of the Ni layer of the back electrode 15 remaining after bonding. It is.

上述した不等式を満たすように、半導体素子10とリードフレーム17の接合時に半導体素子10の裏面電極15の第3層(Ni層)15dが、Al−Ni合金の生成により消費されても、裏面電極15の第3層(Ni層)15dの厚さを最適な厚さ(具体的には0.2〜0.7μm)に確保することができる。   Even if the third layer (Ni layer) 15d of the back electrode 15 of the semiconductor element 10 is consumed due to the generation of the Al—Ni alloy at the time of joining the semiconductor element 10 and the lead frame 17 so as to satisfy the above inequality, the back electrode The thickness of the 15th third layer (Ni layer) 15d can be ensured to an optimum thickness (specifically, 0.2 to 0.7 μm).

これにより、半導体装置1の製造時に、裏面電極15の第3層(Ni層)15dの剥離を回避することができるとともに、半導体装置1の使用時に、半導体素子10とZn−Al系はんだ16の界面のクラックの発生を抑えることができる。また、接合前のZn−Al系はんだのAlの含有率は、4〜6質量%の範囲にあることが好ましく、接合後のZn−Al系はんだのAlの含有率は、3〜5質量%の範囲にあることが好ましい。接合前のAlの含有率が4質量%未満になると、Zn−Al系はんだの融点が増加し、接合前のAlの含有率が6質量%を超えると、Zn−Al系はんだの表面のAlが酸化する割合が増加して、Zn−Al系はんだのボイド発生率が増加することがある。   Thereby, peeling of the 3rd layer (Ni layer) 15d of the back surface electrode 15 can be avoided at the time of manufacture of the semiconductor device 1, and at the time of use of the semiconductor device 1, the semiconductor element 10 and the Zn-Al solder 16 can be prevented. Generation of cracks at the interface can be suppressed. Further, the Al content of the Zn—Al solder before joining is preferably in the range of 4 to 6 mass%, and the Al content of the Zn—Al solder after joining is 3 to 5 mass%. It is preferable that it exists in the range. When the Al content before bonding is less than 4% by mass, the melting point of the Zn—Al solder increases, and when the Al content before bonding exceeds 6% by mass, the Al on the surface of the Zn—Al solder is increased. Oxidizing rate may increase, and the void generation rate of Zn-Al solder may increase.

〔確認試験1:裏面電極のNi層の最適厚さ〕
半導体素子本体の裏面に、第1層に相当するAl−Si層、第2層に相当するTi層、第3層に相当するNi層(厚さ0.1μm、0.4μm、0.7μm、1.0μm、1.5μm、2.0μm、または3.0μm)、第4層に相当するAu層(0.1μm)の順に、積層し、裏面電極を形成した。その後、目視で、裏面電極の状態を確認した。
[Confirmation test 1: Optimal thickness of Ni layer on back electrode]
On the back surface of the semiconductor element body, an Al—Si layer corresponding to the first layer, a Ti layer corresponding to the second layer, a Ni layer corresponding to the third layer (thickness 0.1 μm, 0.4 μm, 0.7 μm, 1.0 μm, 1.5 μm, 2.0 μm, or 3.0 μm) and an Au layer (0.1 μm) corresponding to the fourth layer were laminated in this order to form a back electrode. Then, the state of the back electrode was confirmed visually.

この結果、Ni層が1.0μm以上となる裏面電極は、半導体素子本体から剥離していることがわかった。これは、Ni層を厚くすることにより、裏面電極が半導体素子本体から剥離する方向に応力が作用しているからであると考えられる。この結果、半導体素子の裏面電極のNi層の最適厚さは、0.7μm以下である。   As a result, it was found that the back electrode having a Ni layer of 1.0 μm or more was peeled from the semiconductor element body. This is presumably because stress is acting in the direction in which the back electrode is peeled off from the semiconductor element body by increasing the thickness of the Ni layer. As a result, the optimum thickness of the Ni layer on the back electrode of the semiconductor element is 0.7 μm or less.

〔確認試験2:裏面電極のNi層の上限の厚さ(Zn−Ni合金生成の観点から)〕
確認試験1と同様の構成の裏面電極のNi層の厚さが、0.1μm、0.4μm、0.7μm、1.0μm、1.5μm、2.0μm、3.0μmの半導体素子を準備した。これらの半導体素子の裏面電極のNi層とリードフレームとの間に、Zn−Al系はんだを配置した。次に、不活性ガス雰囲気下(水素ガス10体積%、窒素ガス90体積%)、接合温度400℃、接合時間90秒で、Zn−Al系はんだを介して、半導体素子とリードフレームとを接合し、接合試験片を作製した。得られた接合試験片のNi層とZn−Al系はんだとの界面にZn−Ni合金の生成の有無を確認した。この結果を表1に示す。
[Confirmation test 2: Upper limit thickness of Ni layer of back electrode (from the viewpoint of Zn-Ni alloy formation)]
Prepared are semiconductor elements having a Ni layer thickness of 0.1 μm, 0.4 μm, 0.7 μm, 1.0 μm, 1.5 μm, 2.0 μm, and 3.0 μm on the back electrode having the same configuration as that in Confirmation Test 1. did. Zn—Al solder was disposed between the Ni layer on the back electrode of these semiconductor elements and the lead frame. Next, the semiconductor element and the lead frame are bonded via a Zn-Al solder under an inert gas atmosphere (hydrogen gas 10 volume%, nitrogen gas 90 volume%) at a bonding temperature of 400 ° C. and a bonding time of 90 seconds. Then, a joining test piece was produced. The presence or absence of the production | generation of a Zn-Ni alloy was confirmed in the interface of Ni layer and Zn-Al type solder of the obtained joining test piece. The results are shown in Table 1.

Figure 0006493161
Figure 0006493161

以上のことから、半導体素子の裏面電極のNi層の厚さが、0.7μm以下であれば、Zn−Ni合金の生成が抑えられる。Ni層のNiの熱伝導率は、半導体素子のSiおよびZn−Al系はんだのZn−Al合金の熱伝導率よりも小さいため、Ni層の厚さが増加するにつれて、接合界面の熱伝導性が低下する。このため、Ni層の厚さが1.0μm以上のものは、局部的に温度が高くなり(Zn−Ni合金の生成開始温度(419℃)以上となり)、Zn−Ni合金が生成されたと考えられる。したがって、Zn−Ni合金が生成された接合試験片は、クラックが発生しやすいと考えられる。   From the above, when the thickness of the Ni layer on the back electrode of the semiconductor element is 0.7 μm or less, the formation of Zn—Ni alloy can be suppressed. Since the thermal conductivity of Ni in the Ni layer is smaller than the thermal conductivity of the semiconductor element Si and Zn—Al alloy of the Zn—Al solder, the thermal conductivity of the bonding interface increases as the Ni layer thickness increases. Decreases. For this reason, when the thickness of the Ni layer is 1.0 μm or more, the temperature locally increases (becomes higher than the formation start temperature of the Zn—Ni alloy (419 ° C.)), and it is considered that the Zn—Ni alloy was produced. It is done. Therefore, it is considered that the bonding test piece in which the Zn—Ni alloy is generated is likely to crack.

〔確認試験3:接合条件の最適範囲〕
(1)Ni層厚さ0.1μmの場合
確認試験1に示す裏面電極のNi層が、0.1μmの半導体素子のNo.1〜9の半導体素子を9個準備した。そして、裏面電極とリードフレームとの間に、Zn−Al系はんだを配置し、不活性ガス雰囲気下(水素ガス10体積%、窒素ガス90体積%)、接合温度415℃、接合温度保持時間90秒のリフロー接合条件で、半導体素子とリードフレームとをリフロー接合し、No.1〜9の接合試験片を作製した。得られた半導体素子の裏面電極のNi層の厚さ(残存する厚さ)と、Ni層とZn−Al系はんだとの界面に形成されたAl−Ni合金層の厚さを測定した。この結果を表2および図3に示す。表2の結果から明らかなように、すべての接合試験片で、裏面電極がZn−Al系はんだから剥離していた。なお、同じ条件で接合しても、Al−Ni合金層(金属間化合物層)は、3次元に成長するため、Ni層の厚さと、Al−Ni合金層の厚さとの関係には、バラツキが生じている。
[Confirmation test 3: Optimum range of joining conditions]
(1) When Ni layer thickness is 0.1 μm The Ni layer of the back electrode shown in Confirmation Test 1 is No. of a 0.1 μm semiconductor element. Nine semiconductor elements 1 to 9 were prepared. Then, Zn—Al solder is disposed between the back electrode and the lead frame, under an inert gas atmosphere (hydrogen gas 10 vol%, nitrogen gas 90 vol%), a bonding temperature 415 ° C., and a bonding temperature holding time 90. Reflow bonding of the semiconductor element and the lead frame under the reflow bonding conditions of seconds, 1 to 9 bonding test pieces were prepared. The thickness (remaining thickness) of the Ni layer of the back electrode of the obtained semiconductor element and the thickness of the Al—Ni alloy layer formed at the interface between the Ni layer and the Zn—Al based solder were measured. The results are shown in Table 2 and FIG. As is clear from the results in Table 2, the back electrode was peeled off from the Zn—Al solder in all the joint test pieces. Even if the bonding is performed under the same conditions, the Al—Ni alloy layer (intermetallic compound layer) grows three-dimensionally. Therefore, the relationship between the thickness of the Ni layer and the thickness of the Al—Ni alloy layer varies. Has occurred.

Figure 0006493161
Figure 0006493161

(2)Ni層厚さ0.4μmの場合
(2−1)接合温度415℃、接合温度保持時間90秒の場合
確認試験1に示す裏面電極のNi層が、0.4μmの半導体素子のNo.10〜44の半導体素子を35個準備した。そして、裏面電極とリードフレームとの間に、Zn−Al系はんだを配置し、不活性ガス雰囲気下(水素ガス10体積%、窒素ガス90体積%)、接合温度415℃、接合温度保持時間90秒のリフロー接合条件で、半導体素子とリードフレームとをリフロー接合し、No.10〜44の接合試験片を作製した。得られた半導体素子の裏面電極のNi層の厚さと、Ni層とZn−Al系はんだとの界面に形成されたAl−Ni合金層の厚さを測定した。この結果を表3および図4(a)に示す。表3の結果から明らかなように、すべての接合試験片で、裏面電極の剥離は無かった。
(2) When Ni layer thickness is 0.4 μm (2-1) When the junction temperature is 415 ° C. and the junction temperature holding time is 90 seconds, the Ni layer of the back electrode shown in Confirmation Test 1 is 0.4 μm of the semiconductor element No. . Thirty-five semiconductor elements of 10 to 44 were prepared. Then, Zn—Al solder is disposed between the back electrode and the lead frame, under an inert gas atmosphere (hydrogen gas 10 vol%, nitrogen gas 90 vol%), a bonding temperature 415 ° C., and a bonding temperature holding time 90. Reflow bonding of the semiconductor element and the lead frame under the reflow bonding conditions of seconds, Ten to 44 joining test pieces were prepared. The thickness of the Ni layer of the back electrode of the obtained semiconductor element and the thickness of the Al—Ni alloy layer formed at the interface between the Ni layer and the Zn—Al solder were measured. The results are shown in Table 3 and FIG. As is clear from the results in Table 3, there was no peeling of the back electrode in all the bonding test pieces.

Figure 0006493161
Figure 0006493161

(2−2)接合温度415℃、接合温度保持時間180秒の場合
確認試験1に示す裏面電極のNi層が、0.4μmの半導体素子のNo.45〜65の半導体素子を21個準備した。そして、裏面電極とリードフレームとの間に、Zn−Al系はんだを配置し、不活性ガス雰囲気下(水素ガス10体積%、窒素ガス90体積%)、接合温度415℃、接合温度保持時間180秒のリフロー接合条件で、半導体素子とリードフレームとをリフロー接合し、No.45〜65の接合試験片を作製した。得られた半導体素子の裏面電極のNi層の厚さと、Ni層とZn−Al系はんだとの界面に形成されたAl−Ni合金層の厚さを測定した。この結果を表4および図4(b)に示す。表4の結果から明らかなように、すべての接合試験片で、裏面電極がZn−Al系はんだから剥離していた。
(2-2) In the case where the bonding temperature is 415 ° C. and the bonding temperature holding time is 180 seconds, the Ni layer of the back electrode shown in Confirmation Test 1 is No. of the semiconductor element having a thickness of 0.4 μm. 21 semiconductor elements of 45 to 65 were prepared. Then, Zn—Al solder is disposed between the back electrode and the lead frame, in an inert gas atmosphere (hydrogen gas 10 vol%, nitrogen gas 90 vol%), a bonding temperature 415 ° C., and a bonding temperature holding time 180. Reflow bonding of the semiconductor element and the lead frame under the reflow bonding conditions of seconds, 45 to 65 joining test pieces were prepared. The thickness of the Ni layer of the back electrode of the obtained semiconductor element and the thickness of the Al—Ni alloy layer formed at the interface between the Ni layer and the Zn—Al solder were measured. The results are shown in Table 4 and FIG. 4 (b). As is clear from the results in Table 4, the back electrode was peeled off from the Zn—Al solder in all the joint test pieces.

Figure 0006493161
Figure 0006493161

(3)Ni層厚さ0.7μmの場合
(3−1)接合温度400〜415℃、接合温度保持時間15〜450秒の場合
確認試験1に示す裏面電極のNi層が、0.7μmの半導体素子のNo.66〜80の半導体素子を15個準備した。そして、裏面電極とリードフレームとの間に、Zn−Al系はんだを配置し、不活性ガス雰囲気下(水素ガス10体積%、窒素ガス90体積%)、接合温度400〜415℃、接合温度保持時間15〜450秒の表5に示すリフロー接合条件で、半導体素子とリードフレームとをリフロー接合し、No.66〜80の接合試験片を作製した。得られた半導体素子の裏面電極のNi層の厚さと、Ni層とZn−Al系はんだとの界面に形成されたAl−Ni合金層の厚さを測定した。この結果を表5および図5(a)に示す。表5の結果から明らかなように、すべての接合試験片で、裏面電極の剥離は無かった。
(3) When the Ni layer thickness is 0.7 μm (3-1) When the bonding temperature is 400 to 415 ° C. and the bonding temperature holding time is 15 to 450 seconds The Ni layer of the back electrode shown in Confirmation Test 1 is 0.7 μm No. of semiconductor element. Fifteen semiconductor elements 66 to 80 were prepared. Then, Zn—Al solder is disposed between the back electrode and the lead frame, and under an inert gas atmosphere (hydrogen gas 10 volume%, nitrogen gas 90 volume%), the bonding temperature is 400 to 415 ° C., and the bonding temperature is maintained. Under the reflow bonding conditions shown in Table 5 for 15 to 450 seconds, the semiconductor element and the lead frame were reflow bonded. 66-80 joint test pieces were produced. The thickness of the Ni layer of the back electrode of the obtained semiconductor element and the thickness of the Al—Ni alloy layer formed at the interface between the Ni layer and the Zn—Al solder were measured. The results are shown in Table 5 and FIG. As is clear from the results in Table 5, there was no peeling of the back electrode in all the bonding test pieces.

Figure 0006493161
Figure 0006493161

(3−2)接合温度415℃、接合温度保持時間90秒の場合
確認試験1に示す裏面電極のNi層が、0.7μmの半導体素子のNo.81〜111の半導体素子を31個準備した。そして、裏面電極とリードフレームとの間に、Zn−Al系はんだを配置し、不活性ガス雰囲気下(水素ガス10体積%、窒素ガス90体積%)、接合温度415℃、接合温度保持時間90秒のリフロー条件で、半導体素子とリードフレームとをリフロー接合し、No.81〜111の接合試験片を作製した。得られた半導体素子の裏面電極のNi層の厚さと、Ni層とZn−Al系はんだとの界面に形成されたAl−Ni合金層の厚さを測定した。この結果を表6および図5(b)に示す。表6の結果から明らかなように、すべての接合試験片で、裏面電極の剥離は無かった。
(3-2) When the junction temperature is 415 ° C. and the junction temperature holding time is 90 seconds, the Ni layer of the back electrode shown in the confirmation test 1 is 0.7 μm in the semiconductor element No. 31 semiconductor elements 81 to 111 were prepared. Then, Zn—Al solder is disposed between the back electrode and the lead frame, under an inert gas atmosphere (hydrogen gas 10 vol%, nitrogen gas 90 vol%), a bonding temperature 415 ° C., and a bonding temperature holding time 90. Reflow bonding of the semiconductor element and the lead frame under the reflow conditions of seconds, 81 to 111 bonding test pieces were prepared. The thickness of the Ni layer of the back electrode of the obtained semiconductor element and the thickness of the Al—Ni alloy layer formed at the interface between the Ni layer and the Zn—Al solder were measured. The results are shown in Table 6 and FIG. As is clear from the results in Table 6, there was no peeling of the back electrode in all the bonding test pieces.

Figure 0006493161
Figure 0006493161

(4)超音波接合の場合(Al−Ni合金層なしの場合)
確認試験1に示す裏面電極のNi層が、0.5μm,0.7μmの半導体素子のNo.112,113の半導体素子を2個準備した。そして、裏面電極とリードフレームとの間に、Zn−Al系はんだを配置し、室温で10秒間超音波振動を印加して、半導体素子とリードフレームとを接合した。これにより、Al−Ni合金層(層厚み0μm)が形成されていないNo.112,113の接合試験片を作製した。
(4) For ultrasonic bonding (without Al-Ni alloy layer)
The Ni layer of the back electrode shown in Confirmation Test 1 has a semiconductor element No. of 0.5 μm and 0.7 μm. Two semiconductor elements 112 and 113 were prepared. Then, Zn—Al solder was placed between the back electrode and the lead frame, and ultrasonic vibration was applied for 10 seconds at room temperature to join the semiconductor element and the lead frame. Thereby, No. in which the Al—Ni alloy layer (layer thickness 0 μm) was not formed. 112 and 113 bonding test pieces were produced.

得られた接合試験片を350℃に加熱して、接合試験片に熱応力を付与した。この結果、表7に示すように、Al−Ni合金層(層厚み0μm)が形成されていない接合試験片では、半導体素子の裏面電極のNi層とZn−Al系はんだとの界面で剥離が確認された。   The obtained joining test piece was heated to 350 ° C., and thermal stress was applied to the joining test piece. As a result, as shown in Table 7, in the joining test piece in which the Al—Ni alloy layer (layer thickness: 0 μm) is not formed, peeling occurs at the interface between the Ni layer on the back electrode of the semiconductor element and the Zn—Al based solder. confirmed.

なお、No.10〜44、No.66〜111の接合試験片のうち、接合後に、0.1〜1.7μmの範囲の厚さのAl−Ni合金層が形成された接合試験片に対して、350℃に加熱して、接合試験片に熱応力を付与した。しかしながら、半導体素子の裏面電極の剥離は無かった。したがって、接合後は、少なくとも、0.1μmのAl−Ni(AlNi)合金層が存在することが好ましい。 In addition, No. 10-44, no. Among the joining test pieces of 66 to 111, after joining, the joining test piece on which an Al—Ni alloy layer having a thickness in the range of 0.1 to 1.7 μm was formed was heated to 350 ° C. and joined. Thermal stress was applied to the test piece. However, there was no peeling of the back electrode of the semiconductor element. Therefore, it is preferable that at least a 0.1 μm Al—Ni (Al 3 Ni 2 ) alloy layer exists after bonding.

Figure 0006493161
Figure 0006493161

図6は、確認試験3の(1)〜(4)に示す、すべての接合試験片のNi層の厚さとAl−Ni合金層の厚さの関係を示した図である。なお、図6に示す○印は、剥離無し、×印は隔離有りを示している。図6に示すように、接合後の裏面電極のNi層の厚さが0.2〜0.7μmの範囲で、裏面電極のNi層の剥離が少ない傾向にあり、接合後の裏面電極のNi層の厚さが0.2μm未満である場合には、裏面電極のNi層の剥離が多いと言える。   FIG. 6 is a diagram showing the relationship between the thickness of the Ni layer and the thickness of the Al—Ni alloy layer of all the joining test pieces shown in (1) to (4) of Confirmation Test 3. In FIG. 6, the ◯ marks indicate no peeling, and the X marks indicate isolation. As shown in FIG. 6, when the thickness of the Ni layer of the back electrode after bonding is in the range of 0.2 to 0.7 μm, the Ni layer of the back electrode tends to be less peeled. When the thickness of the layer is less than 0.2 μm, it can be said that there is much peeling of the Ni layer of the back electrode.

そこで、これらの試験結果には、バラツキがあるため、統計解析手法である応答曲面法で、接合温度の保持時間とNi層の消費量との関係を統計解析した。この結果を図7に示す。図7は、接合温度の(保持時間)(1/2)と接合時のNi層の消費量との関係を示した図である。なお、Ni層の消費量は、接合前のNi層の厚さから接合後のNi層の厚さを差し引いた値である。次に、図7に示す、接合温度400℃、407℃、415℃の3つの温度におけるグラフの傾きから、Ni層の消費速度を算出した。この結果を、表8に示す。 Therefore, since these test results have variations, the response surface method, which is a statistical analysis method, was used to statistically analyze the relationship between the holding time of the junction temperature and the consumption of the Ni layer. The result is shown in FIG. FIG. 7 is a diagram showing the relationship between the (holding time) (1/2) of the junction temperature and the consumption of the Ni layer at the time of joining. The consumption amount of the Ni layer is a value obtained by subtracting the thickness of the Ni layer after bonding from the thickness of the Ni layer before bonding. Next, the consumption rate of the Ni layer was calculated from the slopes of the graphs at three temperatures of 400 ° C., 407 ° C., and 415 ° C. shown in FIG. The results are shown in Table 8.

Figure 0006493161
Figure 0006493161

ここで、一般に、Ni層の消費量は、以下に示す、温度と時間の関数を用いたアレニウスの式で表すことができる。
=A・exp(−E/RT)
ただし、k:Ni層消費速度、A:定数、E:活性エネルギー(J/mol)、R:気体の状態定数8.31(J/mol・K)、T:接合温度(K)
この式の両辺で対数を取ると、
Ln(k)=lnA−E/RT
となる。
Here, in general, the consumption amount of the Ni layer can be expressed by the Arrhenius equation using the function of temperature and time shown below.
k 2 = A · exp (−E / RT)
However, k: Ni layer consumption rate, A: constant, E: active energy (J / mol), R: gas state constant 8.31 (J / mol · K), T: junction temperature (K)
Taking the logarithm on both sides of this formula,
Ln (k 2) = lnA- E / RT
It becomes.

ここで、AおよびEを求めるため、表8に示す値から、図8に示すアレニウスプロットを実施した。なお、図8のY軸は、μmをmに変化してプロットしたものである。図8の結果から、E=147170J/mol、A=0.000118を得た。これにより、接合時のNi層の消費量は、〔0.000118×exp(−147170/RT)〕1/2×10×(t)1/2で表すことができる。ただし、R:気体の状態定数(8.31J/mol・K)、T:接合温度(K)、t:接合温度保持時間(秒)である。 Here, in order to obtain A and E, the Arrhenius plot shown in FIG. 8 was performed from the values shown in Table 8. The Y axis in FIG. 8 is plotted by changing μm to m. From the results of FIG. 8, E = 147170 J / mol and A = 0.000118 were obtained. Thereby, the consumption amount of the Ni layer at the time of joining can be represented by [0.000118 × exp (−147170 / RT)] 1/2 × 10 6 × (t) 1/2 . Where R: gas state constant (8.31 J / mol · K), T: junction temperature (K), and t: junction temperature holding time (seconds).

そして、図6より、接合後の裏面電極のNi層の厚さは、0.2〜0.7μmの範囲であればよいことから、
0.2≦N−〔0.000118×exp(−147170/RT)〕1/2×10×(t)1/2≦0.7(ただし、N:接合前の裏面電極のNi層の厚さ(μm))
ただし、N:接合前の裏面電極のNi層の厚さ(μm)、
R:気体の状態定数(8.31J/mol・K)、
T:接合温度(K)、
t:接合温度保持時間(秒)
の不等式の条件を満たせば、半導体素子の裏面電極の剥離を抑え、接合試験片の使用時に、半導体素子とZn−Al系はんだの界面のクラックの発生を抑えることができる、と考えられる。
And from FIG. 6, since the thickness of Ni layer of the back surface electrode after joining should just be the range of 0.2-0.7 micrometer,
0.2 ≦ N− [0.000118 × exp (−147170 / RT)] 1/2 × 10 6 × (t) 1/2 ≦ 0.7 (where N is the Ni layer of the back electrode before bonding) Thickness (μm))
Where N is the thickness (μm) of the Ni layer of the back electrode before bonding,
R: gas state constant (8.31 J / mol · K),
T: Junction temperature (K),
t: Bonding temperature holding time (seconds)
If the condition of the inequality is satisfied, it is considered that the peeling of the back electrode of the semiconductor element can be suppressed, and the occurrence of cracks at the interface between the semiconductor element and the Zn—Al solder can be suppressed when the bonding test piece is used.

〔確認試験4:接合後のZn−Al系はんだのAl量について〕
さらに、上述したNo.1〜111の半導体素子とリードフレームとを接合したZn−Al系はんだのAlの含有率を測定し、接合部分の断面をSEMにより観察した。接合後のZn-Al系はんだのAlの含有率が3質量%未満のものは、初晶Znの量が、それ以外のものに比べて多くなっていた。一方で、Alの含有率が5質量%以上の場合には、初晶Znが晶出していない、または、初晶Znがほとんど晶出していない。
[Confirmation test 4: Al content of Zn-Al solder after joining]
Furthermore, the above-mentioned No. The Al content of the Zn-Al solder in which the semiconductor elements 1-111 and the lead frame were joined was measured, and the cross section of the joined part was observed by SEM. When the Zn content in the Zn-Al solder after bonding was less than 3% by mass, the amount of primary Zn was higher than that of the other. On the other hand, when the Al content is 5% by mass or more, the primary Zn is not crystallized or the primary Zn is hardly crystallized.

そこで、初晶Znが晶出した場合(すなわち、3質量%≦Al含有率≦5質量%)と、初晶Znが晶出していない場合(Al含有率>5質量%)の接合試験片を作製し、−40℃〜250℃の温度サイクルを1サイクルとして、100サイクルで冷熱試験を行った。   Therefore, when the primary crystal Zn is crystallized (that is, 3% by mass ≦ Al content ≦ 5% by mass) and when the primary crystal Zn is not crystallized (Al content> 5% by mass) The sample was prepared, and a temperature test of -40 ° C to 250 ° C was taken as one cycle, and a thermal test was performed in 100 cycles.

その結果、図9に示すように、初晶Znが存在する方が、クラック長が小さく(クラック進展速度が小さく)、信頼性が高いことがわかった。なお、クラックは、半導体素子の裏面電極から30μm以内の位置で進展し易い。このため、接合後のZn−Al系はんだが3質量%≦Al含有率≦5質量%で、半導体素子の裏面電極から少なくとも30μm以内の位置で初晶Znを晶出させることが好ましい。   As a result, as shown in FIG. 9, it was found that the presence of primary crystal Zn had a small crack length (small crack growth rate) and high reliability. In addition, a crack is easy to progress in the position within 30 micrometers from the back surface electrode of a semiconductor element. For this reason, it is preferable to crystallize primary Zn at a position within 3 μm ≦ Al content ≦ 5% by mass and at least 30 μm from the back electrode of the semiconductor element.

以下に、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
確認試験1に示す半導体素子を準備し、接合試験片を作製した。具体的には、Zn−Al系はんだによる接合後、Zn−Al系はんだがZn−xAl(3≦x≦5)となり、0.2≦N−〔0.000118×exp(−147170/RT)〕1/2×10×(t)1/2≦0.7の不等式の条件を満たすように作製した。すなわち、N=0.7μm、T=400℃、t=30秒の接合条件で、半導体素子とリードフレームを接合した。なお、数式の値は、0.585であり、0.2〜0.7の範囲内である。
Example 1
The semiconductor element shown in the confirmation test 1 was prepared, and the joining test piece was produced. Specifically, after bonding with the Zn—Al solder, the Zn—Al solder becomes Zn—xAl (3 ≦ x ≦ 5), and 0.2 ≦ N− [0.000118 × exp (−147170 / RT) It was fabricated so as to satisfy the inequality condition of 1/2 × 10 6 × (t) 1/2 ≦ 0.7. That is, the semiconductor element and the lead frame were bonded under the bonding conditions of N = 0.7 μm, T = 400 ° C., and t = 30 seconds. In addition, the value of numerical formula is 0.585 and exists in the range of 0.2-0.7.

(実施例2)
実施例1と同じようにして、接合試験片を作製した。実施例1と相違する点は、Zn−Al系はんだによる接合後、Zn−Al系はんだがZn−xAl(x>5)となり、上述した不等式の条件を満たすように、半導体素子とリードフレームを接合した点である。すなわち、N=0.7μm、T=400℃、t=30秒の接合条件で、半導体素子とリードフレームを接合した。なお、数式の値は、0.585であり、0.2〜0.7の範囲内である。
(Example 2)
In the same manner as in Example 1, a joining test piece was produced. The difference from Example 1 is that after joining with Zn—Al solder, the Zn—Al solder becomes Zn—xAl (x> 5), and the semiconductor element and the lead frame are so arranged as to satisfy the above inequality condition. It is a joined point. That is, the semiconductor element and the lead frame were bonded under the bonding conditions of N = 0.7 μm, T = 400 ° C., and t = 30 seconds. In addition, the value of numerical formula is 0.585 and exists in the range of 0.2-0.7.

(比較例1)
実施例1と同じようにして、接合試験片を作製した。実施例1と相違する点は、上述した不等式の条件を満さないように、半導体素子とリードフレームを接合した点である。すなわち、N=0.7μm、T=415℃、t=450秒の接合条件で、半導体素子とリードフレームを接合した。なお、数式の値は、0.105であり、0.2〜0.7の範囲を外れている。なお、比較例1では、Zn−Al系はんだによる接合後、Zn−Al系はんだがZn−xAl(3≦x≦5)である点は同じである。
(Comparative Example 1)
In the same manner as in Example 1, a joining test piece was produced. The difference from the first embodiment is that the semiconductor element and the lead frame are joined so as not to satisfy the above inequality condition. That is, the semiconductor element and the lead frame were bonded under the bonding conditions of N = 0.7 μm, T = 415 ° C., and t = 450 seconds. Note that the value of the mathematical formula is 0.105, which is out of the range of 0.2 to 0.7. Note that Comparative Example 1 is the same in that the Zn—Al solder is Zn—xAl (3 ≦ x ≦ 5) after joining with the Zn—Al solder.

(比較例2)
実施例1と同じようにして、接合試験片を作製した。実施例1と相違する点は、Zn−Al系はんだによる接合後、Zn−Al系はんだがZn−xAl(x>5)となり、上述した不等式の条件を満さないように、半導体素子とリードフレームを接合した点である。すなわち、N=0.7μm、T=415℃、t=450秒の接合条件で、半導体素子とリードフレームを接合した。なお、上述した数式の値は、0.105であり、0.2〜0.7の範囲を外れている。
(Comparative Example 2)
In the same manner as in Example 1, a joining test piece was produced. The difference from Example 1 is that after bonding with Zn—Al solder, the Zn—Al solder becomes Zn—xAl (x> 5), and the semiconductor element and the lead are not satisfied so that the above inequality condition is not satisfied. This is the point where the frames are joined. That is, the semiconductor element and the lead frame were bonded under the bonding conditions of N = 0.7 μm, T = 415 ° C., and t = 450 seconds. In addition, the value of the numerical formula mentioned above is 0.105, and is outside the range of 0.2-0.7.

(評価試験と結果)
実施例1、2および比較例1、2の接合試験片に対して、−40℃〜250℃の温度サイクルを1サイクルとして、100サイクルで冷熱試験を行った。この結果、図10に示すように、実施例1の如く、Zn−Al系はんだがZn−xAl(3≦x≦5)となり、上述した不等式の条件を満たす接合試験片が、最も耐久性が高いことがわかった。
(Evaluation test and results)
With respect to the joining test pieces of Examples 1 and 2 and Comparative Examples 1 and 2, a temperature test of −40 ° C. to 250 ° C. was taken as one cycle, and a cooling test was performed in 100 cycles. As a result, as shown in FIG. 10, the Zn—Al based solder becomes Zn—xAl (3 ≦ x ≦ 5) as in Example 1, and the joining test piece that satisfies the above inequality equation has the most durability. I found it expensive.

以上、本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。   Although the embodiment of the present invention has been described in detail above, the specific configuration is not limited to this embodiment, and even if there is a design change within a scope not departing from the gist of the present invention, they are not limited to this embodiment. It is included in the invention.

1:半導体装置、10:半導体素子、15:裏面電極、15d:第3層(Ni層)、16:Zn−Al系はんだ、17:リードフレーム。 1: Semiconductor device, 10: Semiconductor element, 15: Back electrode, 15d: Third layer (Ni layer), 16: Zn—Al solder, 17: Lead frame.

Claims (1)

裏面電極にNi層を有する半導体素子を、Zn−Al系はんだを介してリードフレームに接合した半導体装置の製造方法であって、
前記裏面電極と前記リードフレームとの間に、前記Zn−Al系はんだを配置し、接合温度が391〜419℃の範囲であり、かつ、以下の不等式を満たすように、前記半導体素子と前記リードフレームとを接合することを特徴とする半導体装置の製造方法。
0.2≦N−〔0.000118×exp(−147170/RT)〕1/2×10×(t)1/2≦0.7
ただし、N:接合前の裏面電極のNi層の厚さ(μm)、
R:気体の状態定数(8.31J/mol・K)、
T:接合温度(K)、
t:接合温度保持時間(秒)。
A method of manufacturing a semiconductor device in which a semiconductor element having a Ni layer on a back electrode is joined to a lead frame via a Zn-Al solder,
The Zn—Al based solder is disposed between the back electrode and the lead frame, the semiconductor element and the lead are arranged so that the junction temperature is in the range of 391 to 419 ° C. and the following inequality is satisfied. A method of manufacturing a semiconductor device, comprising joining a frame.
0.2 ≦ N− [0.000118 × exp (−147170 / RT)] 1/2 × 10 6 × (t) 1/2 ≦ 0.7
Where N is the thickness (μm) of the Ni layer of the back electrode before bonding,
R: gas state constant (8.31 J / mol · K),
T: Junction temperature (K),
t: Bonding temperature holding time (seconds).
JP2015217573A 2015-11-05 2015-11-05 Manufacturing method of semiconductor device Active JP6493161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015217573A JP6493161B2 (en) 2015-11-05 2015-11-05 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217573A JP6493161B2 (en) 2015-11-05 2015-11-05 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2017092139A JP2017092139A (en) 2017-05-25
JP6493161B2 true JP6493161B2 (en) 2019-04-03

Family

ID=58771101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217573A Active JP6493161B2 (en) 2015-11-05 2015-11-05 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP6493161B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5160201B2 (en) * 2007-11-20 2013-03-13 株式会社豊田中央研究所 Solder material and manufacturing method thereof, joined body and manufacturing method thereof, power semiconductor module and manufacturing method thereof
JP2009129983A (en) * 2007-11-20 2009-06-11 Toyota Central R&D Labs Inc Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
JP5655714B2 (en) * 2011-06-09 2015-01-21 住友金属鉱山株式会社 Semiconductor device using Bi solder
JP5675525B2 (en) * 2011-07-28 2015-02-25 日産自動車株式会社 Semiconductor device manufacturing method and semiconductor device

Also Published As

Publication number Publication date
JP2017092139A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
TWI523724B (en) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
JP5160201B2 (en) Solder material and manufacturing method thereof, joined body and manufacturing method thereof, power semiconductor module and manufacturing method thereof
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
WO2017217145A1 (en) Solder bonded part
JP5677346B2 (en) SEMICONDUCTOR ELEMENT, SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND CONNECTION MATERIAL
US9656351B2 (en) Solder material and connected structure
JP4959539B2 (en) Laminated solder material, soldering method and solder joint using the same
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
JP2011243752A (en) Semiconductor device manufacturing method, internal semiconductor connection member, and internal semiconductor connection member group
JP6493161B2 (en) Manufacturing method of semiconductor device
JP6127941B2 (en) Solder joint material and manufacturing method thereof
JP5310309B2 (en) Solder coat lid
JP6477517B2 (en) Manufacturing method of semiconductor device
JP5723225B2 (en) Bonding structure
JP5844033B2 (en) Zinc alloy and metallized plastic film capacitor end face electrode material
JP6887183B1 (en) Solder alloys and molded solders
JP2015080812A (en) Joint method
WO2010125800A1 (en) Bonded structure and bonding method for bonded structure
JP2014024109A (en) Bi-Sb-BASED Pb-FREE SOLDER ALLOY
JP2015056641A (en) Semiconductor device and method of manufacturing the same
JP5821991B2 (en) Semiconductor module and bonding material
JP6887184B1 (en) Laminated body and manufacturing method of laminated body
JP2017147285A (en) CONJUGATE JOINED BY CLAD MATERIAL OF Pb-free Zn-Al-based ALLOY SOLDER AND METAL BASE MATERIAL
JP2018067680A (en) Semiconductor device
JP5965529B1 (en) Seal ring and seal ring material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6493161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151