JP6491754B2 - Titanium alloy with high strength and ultra-low elastic modulus - Google Patents

Titanium alloy with high strength and ultra-low elastic modulus

Info

Publication number
JP6491754B2
JP6491754B2 JP2017536505A JP2017536505A JP6491754B2 JP 6491754 B2 JP6491754 B2 JP 6491754B2 JP 2017536505 A JP2017536505 A JP 2017536505A JP 2017536505 A JP2017536505 A JP 2017536505A JP 6491754 B2 JP6491754 B2 JP 6491754B2
Authority
JP
Japan
Prior art keywords
titanium alloy
mass
equivalent
elastic modulus
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017536505A
Other languages
Japanese (ja)
Other versions
JP2017535676A (en
Inventor
チャン・ヘ・パク
チョン・テク・ヨン
ハク・ソン・イ
チェ・クン・ホン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Machinery and Materials KIMM
Original Assignee
Korea Institute of Machinery and Materials KIMM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Machinery and Materials KIMM filed Critical Korea Institute of Machinery and Materials KIMM
Publication of JP2017535676A publication Critical patent/JP2017535676A/en
Application granted granted Critical
Publication of JP6491754B2 publication Critical patent/JP6491754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

本発明は、非線形的弾性変形をし、超高強度、超低弾性係数、安定的超弾性特性を同時に有するチタン合金に関する。
本発明は、1000MPa以上の強度、60GPa以下の弾性係数を有し、かつ、酸素濃度(質量%)の増加に対する超弾性延伸率(%)減少の相関係数が−0.5(%/質量%)以上の非線形的弾性変形をし、超高強度、超低弾性係数、安定的超弾性特性を同時に有するチタン合金に関する。
本発明は、人体に対して毒性があるアルミニウム(Al)、バナジウム(V)、ニッケル(Ni)などの元素と、生体内で耐食性の低いスズ(Sn)を全く含まず、人体に無害なチタン(Ti)、ニオブ(Nb)、ジルコニウム(Zr)、酸素(O)だけで構成され、かつ、非線形的弾性変形をし、超高強度、超低弾性係数、超弾性特性を同時に有するチタン合金に関する。
本発明は、重くて高融点を有するタンタル(Ta、融点3,017℃)を含まなかったり、少量含むことで、溶解及び凝固時にタンタル(Ta)による組成の不均一を防止することができ、軽いながらも大量生産が可能な非線形的弾性変形をし、超高強度、超低弾性係数、超弾性特性を同時に有するチタン合金に関する。
The present invention relates to a titanium alloy that undergoes non-linear elastic deformation and simultaneously has ultra-high strength, ultra-low elastic modulus, and stable super-elastic properties.
The present invention has a strength of 1000 MPa or more, an elastic modulus of 60 GPa or less, and a correlation coefficient of decrease in superelastic stretch ratio (%) with respect to an increase in oxygen concentration (mass%) is −0.5 (% / mass). %) And a titanium alloy having the above-mentioned nonlinear elastic deformation and simultaneously having ultra-high strength, ultra-low elastic modulus, and stable super-elastic properties.
The present invention does not contain any element such as aluminum (Al), vanadium (V), nickel (Ni) and the like that are toxic to the human body and tin (Sn), which has low corrosion resistance in vivo, and is harmless to the human body. The present invention relates to a titanium alloy composed of only (Ti), niobium (Nb), zirconium (Zr), and oxygen (O) and having non-linear elastic deformation and simultaneously having ultrahigh strength, ultralow elastic modulus, and superelastic characteristics. .
The present invention does not contain tantalum (Ta, melting point 3,017 ° C.) that is heavy and has a high melting point, or can contain a small amount, thereby preventing compositional nonuniformity due to tantalum (Ta) during dissolution and solidification, The present invention relates to a titanium alloy that is non-linear elastic deformation that can be mass-produced even though it is light, and that has ultra-high strength, ultra-low modulus, and super-elastic properties at the same time.

チタン合金は代表的な軽量金属で、他の素材が有し得ない特殊性に基づいて各産業分野で大きな付加価値を創出する素材としてよく知られている。
このように、高い比強度及び優れた耐食性を有するため、チタン合金は、航空宇宙用材料、化学工業用材料、生体用材料、電子用品材料、スポーツ用品材料など多様な分野に広く適用可能である。
このうち、生体用には、純チタン、Ti−6Al−4V、Ti−6Al−7Nb、Ti−Ni合金などが使用されているが、これら金属の弾性係数が人体の骨より高すぎて、相対的に弾性係数の低い骨組織には応力が少なく加えられる応力遮蔽(stress shielding)現象が発生し、これによって、人体システムは、応力が少なく加えられる骨組織を不必要な部分として認識して、破骨細胞を活性化させて溶解する問題を抱えている。
Titanium alloy is a typical lightweight metal and is well known as a material that creates great added value in each industrial field based on the speciality that other materials cannot have.
As described above, since it has a high specific strength and excellent corrosion resistance, the titanium alloy is widely applicable to various fields such as aerospace materials, chemical industry materials, biomaterials, electronic equipment materials, sports equipment materials, and the like. .
Among these, pure titanium, Ti-6Al-4V, Ti-6Al-7Nb, Ti-Ni alloy, etc. are used for living bodies, but the elastic modulus of these metals is too higher than the bones of the human body. In particular, a stress shielding phenomenon in which less stress is applied to bone tissue having a low elastic modulus occurs, and thus the human body system recognizes the bone tissue to which less stress is applied as an unnecessary part, It has a problem of activating and lysing osteoclasts.

また、アルミニウム(Al)、バナジウム(V)、ニッケル(Ni)などの元素は、生体組織内で毒性があるので、人体に無害なチタン(Ti)、ニオブ(Nb)、ジルコニウム(Zr)、タンタル(Ta)などの元素で構成された生体親和的な低弾性係数のチタン合金の開発が要求された。   In addition, since elements such as aluminum (Al), vanadium (V), and nickel (Ni) are toxic in living tissues, they are harmless to the human body, such as titanium (Ti), niobium (Nb), zirconium (Zr), and tantalum. Development of a biocompatible low elastic modulus titanium alloy composed of elements such as (Ta) has been required.

このような要求に応えて、生体親和的なチタン(Ti)、ニオブ(Nb)、ジルコニウム(Zr)、タンタル(Ta)などの元素で構成されながらも、弾性係数が低いTi−13Nb−13Zr、Ti−35Nb−5Ta−7Zrなどのような合金が開発された。   In response to such demands, Ti-13Nb-13Zr, which is composed of elements such as biocompatible titanium (Ti), niobium (Nb), zirconium (Zr), and tantalum (Ta) but has a low elastic modulus, Alloys such as Ti-35Nb-5Ta-7Zr have been developed.

しかし、一般的な金属の特性上、弾性係数が低くなると強度も低くなるので、これらの素材で作った部品の場合、疲労抵抗性が著しく低下し、部品の小型化に限界があって、患者に極めて有利な最小侵襲法の施行に限界がある。   However, due to the characteristics of general metals, the lower the modulus of elasticity, the lower the strength. In the case of parts made from these materials, the fatigue resistance is significantly reduced, and there is a limit to miniaturization of the parts. There is a limit to the implementation of the minimally invasive method that is extremely advantageous.

また、整形外科用又は歯並び矯正用素材の場合、低弾性係数及び高強度特性とともに、高い超弾性延伸率が同時に要求される。   In the case of orthopedic or orthodontic materials, a high superelastic stretch ratio is required simultaneously with a low elastic modulus and high strength characteristics.

そして、超高強度、超低弾性係数、超弾性特性が同時に発現される素材は、未来産業であるフレキシブルディスプレイ(flexible display)とウェアラブル装置(wearable device)の構造体及びその他の用途にも使用が可能である。
一方、フレキシブルディスプレイ及びウェアラブル装置に使用される金属は、皮膚とアレルギーを誘発するとの指摘があるニッケル(Ni)が含有されず、かつ、柔軟性が極大化されなければならない。柔軟性は大別して、素材自体の柔軟性及び構造的柔軟性に分類できるが、素材自体の柔軟性向上のためには、非線形的弾性変形をし、安定的超弾性及び超低弾性係数特性を有してこそ、小さな力でも素材を撓みやすくすることができる。
In addition, a material that can simultaneously develop ultra-high strength, ultra-low elastic modulus, and super-elastic properties can be used in the structure of flexible displays and wearable devices, which are future industries, and other applications. Is possible.
On the other hand, the metal used for the flexible display and the wearable device does not contain nickel (Ni) which has been pointed out to induce allergies to the skin, and the flexibility must be maximized. Flexibility can be broadly classified into the flexibility of the material itself and the structural flexibility, but in order to improve the flexibility of the material itself, nonlinear elastic deformation is performed, and stable superelasticity and ultralow elastic modulus characteristics are achieved. Only by having it can the material bend easily even with a small force.

また、構造的柔軟性は、素材の厚さが薄いほど向上するが、強度が低い場合、厚さが薄くなると素材自体の疲労抵抗性が格段に減少するので、高強度化が要求される。   Further, the structural flexibility is improved as the thickness of the material is reduced. However, when the strength is low, the fatigue resistance of the material itself is remarkably reduced as the thickness is reduced.

そのため、フレキシブルディスプレイ及びウェアラブル装置に使用される金属が有するべき特性も、生体用金属と同一であることが分かり、前記産業が最先端の高付加価値産業であることを勘案する時、生体親和的でかつ、超高強度、超低弾性係数、安定的超弾性特性を有するチタン合金の開発が要求される。   Therefore, it is clear that the characteristics of metals used in flexible displays and wearable devices are the same as those of biomedical metals, and it is biocompatible when considering that the industry is the most advanced high-value-added industry. In addition, development of a titanium alloy having ultrahigh strength, ultralow elastic modulus, and stable superelastic characteristics is required.

これに関連し、米国登録特許第7261782号(特許文献1)には、非線形的弾性変形をし、超弾性特性を有するチタン合金が開示されている。
しかし、特許文献1に開示されたチタン合金は、強度が高くなるほど弾性係数が急激に増加するという欠点がある。また、人体に対して毒性を有するバナジウム(V)を含んでいて、生体用チタンとしては適用しにくい。その他にも、融点が3,017℃と極めて高いタンタル(Ta)を含んでいて、繰り返し溶解が必要で、製造費用が高いだけでなく、重いタンタル(Ta)によって合金組成の不均一が頻繁に発生する問題もある。さらに、微量の酸素含有量の変化にも超弾性延伸率が急激に変化して、大量生産時に均一な特性制御が難しい。
In this connection, US Pat. No. 7,261,782 (Patent Document 1) discloses a titanium alloy that undergoes nonlinear elastic deformation and has superelastic characteristics.
However, the titanium alloy disclosed in Patent Document 1 has a drawback that the elastic modulus increases rapidly as the strength increases. In addition, it contains vanadium (V) that is toxic to the human body and is difficult to apply as biomedical titanium. In addition, it contains tantalum (Ta) with an extremely high melting point of 3,017 ° C., which requires repeated melting and is not only expensive to manufacture, but also has a heavy alloy composition due to heavy tantalum (Ta). There are also problems that occur. Furthermore, the superelastic stretch ratio changes abruptly even with a small change in oxygen content, and uniform characteristic control is difficult during mass production.

また、米国登録特許第7722805号(特許文献2)にも、超低弾性と高強度特性を示すチタン合金が開示されている。
しかし、特許文献2に開示されたチタン合金は、強度上昇のために酸素を添加する場合、超弾性延伸率が急激に低下するという欠点があり、主要合金元素として添加されるスズ(Sn)は、生体内で、チタン(Ti)、ニオブ(Nb)、ジルコニウム(Zr)などと比較して耐食性が著しく低くて腐食が発生しやすいという欠点がある。
U.S. Patent No. 7722805 (Patent Document 2) also discloses a titanium alloy exhibiting ultra-low elasticity and high strength characteristics.
However, the titanium alloy disclosed in Patent Document 2 has a drawback in that the superelastic stretch ratio is drastically reduced when oxygen is added to increase the strength, and tin (Sn) added as a main alloy element is In the living body, the corrosion resistance is remarkably low compared with titanium (Ti), niobium (Nb), zirconium (Zr), etc., and corrosion is likely to occur.

また、強度向上のためには追加の熱処理工程が要求されるため、複雑な工程によって製造費用を増加させて、好ましくない。さらに、微量の酸素含有量の変化にも超弾性延伸率が急激に変化して、大量生産時に均一な特性制御が難しい。   Further, since an additional heat treatment process is required for improving the strength, the manufacturing cost is increased by a complicated process, which is not preferable. Furthermore, the superelastic stretch ratio changes abruptly even with a small change in oxygen content, and uniform characteristic control is difficult during mass production.

また、特許文献1には、タンタル(Ta)とスズ(Sn)を含まないTi−Nb−Zr−O系合金が開示されている。
しかし、この合金の場合、酸素(O)含有量が低すぎると高強度化されず、酸素(O)含有量が高すぎると弾性係数が急激に上昇して成形が困難になるだけでなく、弾性変形率の偏差が大きくなって、大量生産が難しい問題がある。
Patent Document 1 discloses a Ti—Nb—Zr—O-based alloy that does not contain tantalum (Ta) and tin (Sn).
However, in the case of this alloy, when the oxygen (O) content is too low, the strength is not increased, and when the oxygen (O) content is too high, the elastic modulus increases rapidly and molding becomes difficult, There is a problem that mass deviation is difficult due to the large deviation of elastic deformation rate.

米国登録特許第7261782号US Registered Patent No. 7261784 米国登録特許第7722805号US registered patent No. 7722805

本発明の目的は、人体に対して毒性があったり、生体内で耐食性が低かったり、高融点でかつ、重い合金元素を添加しないながらも、高強度、超低弾性係数及び優秀で酸素含有量の変化に安定した超弾性延伸率を実現できるチタン合金を提供することである。   The object of the present invention is that it is toxic to the human body, has low corrosion resistance in vivo, has a high melting point, and does not add heavy alloy elements, but has high strength, ultra-low elastic modulus and excellent oxygen content. It is to provide a titanium alloy capable of realizing a superelastic stretch ratio that is stable with respect to changes in the thickness.

上記の目的を達成するために、本発明は、合金元素としてNb、Zr及びOを含み、残部のTiと不可避不純物を含み、原子価電子比(e/a)が4.17〜4.22、Mo当量(Moeq)が7.50〜9.72、Al当量(Aleq)が1.42〜14.53である、チタン合金を提供する。 In order to achieve the above object, the present invention includes Nb, Zr, and O as alloy elements, the remaining Ti and unavoidable impurities, and a valence electron ratio (e / a) of 4.17 to 4.22. A titanium alloy having a Mo equivalent (Mo eq ) of 7.50 to 9.72 and an Al equivalent (Al eq ) of 1.42 to 14.53 is provided.

また、前記原子価電子比(e/a)は4.19〜4.21、Mo当量(Moeq)が8.19〜9.03、Al当量(Aleq)であるとよい。 The valence electron ratio (e / a) is preferably 4.19 to 4.21, Mo equivalent (Mo eq ) is 8.19 to 9.03, and Al equivalent (Al eq ).

また、前記チタン合金は、Nb:30〜34質量%、Zr:5.7〜9.7質量%、O:0.03〜1.0質量%を含むことができる。   The titanium alloy may include Nb: 30 to 34% by mass, Zr: 5.7 to 9.7% by mass, and O: 0.03 to 1.0% by mass.

また、前記チタン合金は、冷間加工後、酸素濃度の増加に対する超弾性延伸率(%)減少の相関係数(%/質量%)が−0.5以上であるとよい。   The titanium alloy preferably has a correlation coefficient (% / mass%) of a decrease in superelastic stretch ratio (%) with respect to an increase in oxygen concentration after cold working being −0.5 or more.

また、前記チタン合金は、冷間加工後、2.5%以上の超弾性延伸率を有するとよい。   The titanium alloy may have a superelastic stretch rate of 2.5% or more after cold working.

また、前記チタン合金は、冷間加工後、60GPa以下の弾性係数と、1000MPa以上の引張強度を有するとよい。   The titanium alloy may have an elastic modulus of 60 GPa or less and a tensile strength of 1000 MPa or more after cold working.

また、前記チタン合金は、冷間加工後、引張強度(MPa)を平均弾性係数(GPa)で割った値が0.020以上であるとよい。   The titanium alloy may have a value obtained by dividing the tensile strength (MPa) by the average elastic modulus (GPa) after cold working is 0.020 or more.

本発明によるチタン合金は、高い強度とともに超低弾性係数を維持することができて、図1に示されているように、弾性延伸率を著しく高めることができて、優れた超弾性特性が要求されるフレキシブルディスプレイ、ウェアラブル装置、航空宇宙分野、発電分野、生活用品分野など多様な分野への応用が可能である。   The titanium alloy according to the present invention can maintain a very low elastic modulus as well as high strength, and can significantly increase the elastic stretch ratio as shown in FIG. 1, and requires excellent superelastic properties. It can be applied to various fields such as flexible displays, wearable devices, aerospace field, power generation field, and daily necessities field.

また、本発明によるチタン合金は、酸素含有量の変化に伴う超弾性延伸率の偏差が極めて小さく、実際の大量操業時に不可避に発生する部位別酸素含有量の偏差にもかかわらず均一な素材物性を実現することができて、大量生産性に優れている。   In addition, the titanium alloy according to the present invention has a very small deviation in the superelastic stretch ratio due to the change in the oxygen content, and uniform material properties despite the deviation in the oxygen content by site that inevitably occurs during actual mass operations. Can be realized and is excellent in mass productivity.

さらに、本発明によるチタン合金は、人体に対して毒性があるアルミニウム(Al)、バナジウム(V)、ニッケル(Ni)のような元素を含まず、生体内で耐食性の低いスズ(Sn)を含まないので、生体用材料にも好適に使用可能である。   Furthermore, the titanium alloy according to the present invention does not contain elements such as aluminum (Al), vanadium (V), nickel (Ni) that are toxic to the human body, and contains tin (Sn) that has low corrosion resistance in vivo. Therefore, it can be suitably used for biomaterials.

また、本発明によるチタン合金は、低弾性の実現には有利であるが、重くて融点の高いタンタル(Ta)を添加しなくても高強度及び超低弾性を実現するので、タンタル(Ta)を含む従来のチタン合金に比べて、製造が容易で組成の不均一がほとんどないチタン合金を生産することができる。   In addition, the titanium alloy according to the present invention is advantageous for realizing low elasticity, but realizes high strength and ultra-low elasticity without adding tantalum (Ta) which is heavy and has a high melting point. Compared with a conventional titanium alloy containing, it is possible to produce a titanium alloy that is easy to manufacture and has almost no nonuniform composition.

さらに、本発明によるチタン合金は、成形性に優れ、90%以上の冷間成形が可能である。   Furthermore, the titanium alloy according to the present invention is excellent in formability and can be cold formed by 90% or more.

従来のチタン合金と比較した、本発明によるチタン合金の超弾性特性を説明する図である。It is a figure explaining the superelastic characteristic of the titanium alloy by this invention compared with the conventional titanium alloy. Ti−Nb−Zr−(O)合金において、原子価電子比(e/a)の変化に対する強度/弾性係数値を比較したものである。In the Ti—Nb—Zr— (O) alloy, the strength / elastic coefficient values with respect to the change in the valence electron ratio (e / a) are compared. Ti−Nb−Zr−(O)合金において、Moeqの変化に対する強度/弾性係数値を比較したものである。In the Ti—Nb—Zr— (O) alloy, the strength / elastic coefficient values with respect to changes in Mo eq are compared. Ti−Nb−Zr−(O)合金において、Aleqの変化に対する強度/弾性係数値を比較したものである。In the Ti—Nb—Zr— (O) alloy, the strength / elastic coefficient values with respect to Al eq change are compared.

以下、添付した図1〜図4を参照して、本発明による非線形的弾性変形をし、超高強度、超低弾性係数、安定的超弾性特性を同時に有するチタン合金(以下、「チタン合金」と称する)について説明する。
これに先立ち、本明細書及び請求の範囲に使われた用語や単語は、通常的で辞書的な意味で解釈されてはならず、発明者は自らの発明を最も最善の方法で説明するために用語の概念を適切に定義できるという原則に則って本発明の技術的思想に符合する意味と概念で解釈されなければならない。
Hereinafter, referring to FIG. 1 to FIG. 4 attached, a titanium alloy that is nonlinearly elastically deformed according to the present invention and has ultra-high strength, ultra-low elastic modulus, and stable super-elastic properties simultaneously (hereinafter referred to as “titanium alloy”). Will be described.
Prior to this, the terms and words used in the specification and claims should not be interpreted in the usual and lexicographic sense, and the inventor will describe his invention in the best possible way. In accordance with the principle that the term concept can be appropriately defined, it must be interpreted with the meaning and concept consistent with the technical idea of the present invention.

したがって、本明細書に記載された実施例と図面に示された構成は本発明の好ましい一実施例に過ぎず、本発明の技術的思想を全て代弁するものではないので、本出願時点においてこれらを代替できる多様な均等物と変形例があり得ることを理解しなければならない。   Accordingly, the embodiments described in the present specification and the configurations shown in the drawings are merely preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. It should be understood that there are various equivalents and variations that can be substituted.

図1は、従来のチタン合金と比較した、本発明によるチタン合金の超弾性特性の違いを説明する図である。   FIG. 1 is a diagram for explaining the difference in superelastic characteristics of a titanium alloy according to the present invention as compared with a conventional titanium alloy.

上述のように、人体に有害なアルミニウム(Al)、バナジウム(V)、ニッケル(Ni)などの合金元素、生体内で耐食性の低いスズ(Sn)と合金元素、重くて融点が極めて高いタンタル(Ta)のような合金元素を含まず、超低弾性係数と高強度を実現するために、Ti−Nb−Zr合金が開発された。
このTi−Nb−Zr合金の強度を高めるために、固溶強化元素の酸素(O)を添加すると、強度は高くなり、かつ、弾性係数も急激に増加する。
これにより、図1に示されているように、強度の増加に伴って、弾性変形率は大きな偏差を示すが、大量操業時には不可避に発生する酸素含有量の偏差が部位別に発生し、これによって、従来のチタン合金は、均一な素材物性を実現しにくいだけでなく、高強度と超低弾性係数を同時に実現しにくかった。
As described above, alloy elements such as aluminum (Al), vanadium (V), and nickel (Ni) that are harmful to the human body, tin (Sn) and alloy elements having low corrosion resistance in vivo, tantalum (heavy and extremely high melting point) Ti-Nb-Zr alloys have been developed to achieve ultra-low elastic modulus and high strength without containing alloying elements such as Ta).
When oxygen (O), which is a solid solution strengthening element, is added to increase the strength of the Ti—Nb—Zr alloy, the strength increases and the elastic modulus increases rapidly.
Thereby, as shown in FIG. 1, the elastic deformation rate shows a large deviation as the strength increases, but the deviation of the oxygen content that inevitably occurs at the time of large-scale operation occurs for each part. The conventional titanium alloys are not only difficult to achieve uniform material properties, but also difficult to achieve high strength and ultra-low elastic modulus at the same time.

図1に示されているように、高強度と超低弾性係数を同時に実現する場合、弾性変形率も著しく増加し、その偏差も減少する。   As shown in FIG. 1, when high strength and ultra-low elastic modulus are realized simultaneously, the elastic deformation rate is remarkably increased and the deviation is also reduced.

本発明者らは、従来のTi−Nb−Zr系合金に酸素を固溶強化元素として添加しても弾性変形率の偏差が大きくなく、かつ、高強度と超低弾性係数を同時に実現できるチタン合金を開発するために努力した結果、従来のチタン合金設計で考慮されていなかった、チタン合金の原子価電子比(e/a)、ベータ相安定化元素のMo当量(Moeq)及びアルファ相安定化元素のAl当量(Aleq)を同時に所定範囲に維持する場合、上記の特性を同時に実現できることを見出し、本発明に至るようになった。 The present inventors have found that titanium does not have a large elastic deformation rate deviation even when oxygen is added as a solid solution strengthening element to a conventional Ti—Nb—Zr alloy, and can simultaneously realize high strength and ultra-low elastic modulus. As a result of efforts to develop the alloy, the valence electron ratio (e / a) of the titanium alloy, the Mo equivalent of the beta phase stabilizing element (Mo eq ), and the alpha phase, which were not considered in conventional titanium alloy design If you want to keep Al equivalent of stabilizing elements a (Al eq) simultaneously in a predetermined range, it found that can achieve the above properties at the same time, now led to the present invention.

本発明において、原子価電子比(e/a)、Mo当量(Moeq)とAl当量(Aleq)は次の式で求める。
[式1]
原子価電子比(e/a)=Ti(原子%)×0.04+Nb(原子%)×0.05+Zr(原子%)×0.04
[式2]
Mo当量(Moeq)=Nb(質量%)/3.6
[式3]
Al当量(Aleq)=Zr(質量%)/6+O(質量%)×10
In the present invention, the valence electron ratio (e / a), Mo equivalent (Mo eq ), and Al equivalent (Al eq ) are determined by the following equations.
[Formula 1]
Valence electron ratio (e / a) = Ti (atomic%) × 0.04 + Nb (atomic%) × 0.05 + Zr (atomic%) × 0.04
[Formula 2]
Mo equivalent (Mo eq ) = Nb (mass%) / 3.6
[Formula 3]
Al equivalent (Al eq ) = Zr (mass%) / 6 + O (mass%) × 10

本発明によるチタン合金は、合金元素としてNb、Zr及びOを含み、残部のTiと不可避不純物を含む。   The titanium alloy according to the present invention contains Nb, Zr, and O as alloy elements, and the balance of Ti and inevitable impurities.

すなわち、本発明によるチタン合金は、人体に対して毒性があるアルミニウム(Al)、バナジウム(V)、ニッケル(Ni)のような元素を含まず、生体内で耐食性の低いスズ(Sn)を含まず、融点が極めて高くて重いタンタル(Ta)を含有しない。   That is, the titanium alloy according to the present invention does not include elements such as aluminum (Al), vanadium (V), and nickel (Ni) that are toxic to the human body, and includes tin (Sn) that has low corrosion resistance in vivo. The melting point is extremely high and does not contain heavy tantalum (Ta).

前記原子価電子比(e/a)が4.17未満で4.22超過の場合、2%以上の超弾性延伸率、60GPa以下の弾性係数と、1000MPa以上の引張強度を同時に実現することができないので、4.17〜4.22が好ましく、原子価電子比(e/a)を4.19〜4.21となるようにすることがより好ましい。   When the valence electron ratio (e / a) is less than 4.17 and more than 4.22, it is possible to simultaneously achieve a superelastic stretch ratio of 2% or more, an elastic modulus of 60 GPa or less, and a tensile strength of 1000 MPa or more. Since it cannot be performed, 4.17 to 4.22 are preferable, and the valence electron ratio (e / a) is more preferably 4.19 to 4.21.

前記Mo当量(Moeq)が7.50未満で9.72超過の場合、2%以上の超弾性延伸率、60GPa以下の弾性係数と、1000MPa以上の引張強度を同時に実現することができないので、7.50〜9.72の範囲が好ましく、8.19〜9.03となるようにすることがより好ましい。 When the Mo equivalent (Mo eq ) is less than 7.50 and more than 9.72, a superelastic stretch ratio of 2% or more, an elastic modulus of 60 GPa or less, and a tensile strength of 1000 MPa or more cannot be realized at the same time. The range of 7.50 to 9.72 is preferable, and the range of 8.19 to 9.03 is more preferable.

前記Al当量(Aleq)は1.42未満で14.53超過の場合、2%以上の超弾性延伸率、60GPa以下の弾性係数と、1000MPa以上の引張強度を同時に実現することができないので、1.42〜14.53が好ましく、1.60〜10.78となるようにすることがより好ましい。 When the Al equivalent (Al eq ) is less than 1.42 and more than 14.53, a superelastic stretch ratio of 2% or more, an elastic modulus of 60 GPa or less, and a tensile strength of 1000 MPa or more cannot be realized simultaneously. 1.42-14.53 are preferable and it is more preferable to set it to 1.60-10.78.

前記範囲の原子価電子比(e/a)、ベータ相安定化元素のMo当量(Moeq)及びアルファ相安定化元素のAl当量(Aleq)を維持するための、Ti−Nb−Zr−O合金の組成としては、Nb:30〜34質量%、Zr:5.7〜9.7質量%、O:0.03〜1.0質量%を含むことが好ましい。 Ti—Nb—Zr— for maintaining the valence electron ratio (e / a), Mo equivalent (Mo eq ) of the beta phase stabilizing element, and Al equivalent (Al eq ) of the alpha phase stabilizing element in the above ranges. The composition of the O alloy preferably includes Nb: 30 to 34 mass%, Zr: 5.7 to 9.7 mass%, and O: 0.03 to 1.0 mass%.

また、本発明によるチタン合金は、合金の溶解及び不均一を阻害しない範囲でタンタル(Ta)を1質量%以下で少量含んでもよい。   In addition, the titanium alloy according to the present invention may contain a small amount of tantalum (Ta) in an amount of 1% by mass or less as long as the dissolution and non-uniformity of the alloy are not hindered.

本発明によるチタン合金は、原料又は製造過程で不可避に含まれる不純物を含むことができ、これらの不純物は1質量%以下、好ましくは0.1質量%以下、より好ましくは0.01質量%以下となるように管理する。   The titanium alloy according to the present invention may contain impurities inevitably contained in the raw material or the manufacturing process, and these impurities are 1% by mass or less, preferably 0.1% by mass or less, more preferably 0.01% by mass or less. To be managed.

以下、本発明の好ましい実施例及び比較例によるチタン合金を通じて本発明をより詳細に説明する。
本発明の実施例1〜7と比較例1〜4によるチタン合金は、下記表1のような組成を有するようにチタン合金溶湯を製造し、鋳造してビレットを作った後、1000℃で熱間圧延後、常温まで冷却し、最終的に断面減少率90%で冷間圧延を実施して得た。
Hereinafter, the present invention will be described in more detail through titanium alloys according to preferred examples and comparative examples of the present invention.
The titanium alloys according to Examples 1 to 7 and Comparative Examples 1 to 4 of the present invention were manufactured by casting a molten titanium alloy so as to have the composition shown in Table 1 below, and casting it to make a billet. After cold rolling, it was cooled to room temperature, and finally cold rolled at a cross-section reduction rate of 90%.

Figure 0006491754
Figure 0006491754

また、前記表1の比較例5〜11によるチタン合金と下記表2の機械的物性は、以下の特許文献又は論文に開示されたものを示したものであり、原子価電子比(e/a)、モリブデン当量及びアルミニウム当量は、開示された組成により計算した値である。 In addition, the titanium alloys according to Comparative Examples 5 to 11 in Table 1 and the mechanical properties shown in Table 2 below are those disclosed in the following patent documents or papers, and the valence ratio (e / a ), Molybdenum equivalents and aluminum equivalents are values calculated according to the disclosed composition.

比較例5:大韓民国公開特許公報特2002−0026891
比較例6:Q.Liu et al.,Progress in Natural Science:Materials International,vol23(6)(2013)pp.562−565.
比較例7:H.Tobe et al.,Materials Transactions,vol50(2009)pp.2721−2725.
比較例8:C.H.Park et al.,Materials Science and Engineering A,vol527(2010)pp.4914−4919.
比較例9:大韓民国公開特許公報特2003−0061007
比較例10:S.Schneider et al.,Materials Research,vol8(2005)pp.435−438.
比較例11:S.Ozan et al.,Acta Biomaterialia,vol20(2015)pp.176−187.
Comparative Example 5: Republic of Korea Published Patent Publication No. 2002-0026891
Comparative Example 6: Q. Liu et al. , Progress in Natural Science: Materials International, vol23 (6) (2013) pp. 562-565.
Comparative Example 7: H.I. Tobe et al. , Materials Transactions, vol 50 (2009) pp. 2721-2725.
Comparative Example 8: C.I. H. Park et al. , Materials Science and Engineering A, vol 527 (2010) pp. 4914-4919.
Comparative Example 9: Korean Patent Application Publication No. 2003-0061007
Comparative Example 10: S.I. Schneider et al. , Materials Research, vol8 (2005) pp. 435-438.
Comparative Example 11: S.I. Ozan et al. , Acta Biomaterialia, vol20 (2015) pp. 176-187.

前記表1に示されているように、本願発明の実施例1〜7によるチタン合金は、原子価電子比(e/a)が4.17〜4.22、Mo当量(Moeq)が7.50〜9.50、Al当量(Aleq)が1.45〜14.53の範囲に含まれる。 As shown in Table 1, the titanium alloys according to Examples 1 to 7 of the present invention have a valence electron ratio (e / a) of 4.17 to 4.22 and a Mo equivalent (Mo eq ) of 7. .50 to 9.50, Al equivalent (Al eq ) is included in the range of 1.45 to 14.53.

一方、比較例1〜11によるチタン合金は、必須原素として酸素(O)を含まなかったり、原子価電子比(e/a)が4.17〜4.22、Mo当量(Moeq)が7.50〜9.50、Al当量(Aleq)が1.45〜14.53の範囲に含まれない。 On the other hand, the titanium alloys according to Comparative Examples 1 to 11 do not contain oxygen (O) as an essential element, have a valence electron ratio (e / a) of 4.17 to 4.22, and have a Mo equivalent (Mo eq ). 7.50 to 9.50, Al equivalent (Al eq ) is not included in the range of 1.45 to 14.53.

前記表1の組成をもって後続加工又は熱処理を行ったチタン合金の機械的物性を評価した結果を、下記表2にまとめた。   The results of evaluating the mechanical properties of titanium alloys subjected to subsequent processing or heat treatment with the compositions shown in Table 1 are summarized in Table 2 below.

Figure 0006491754
Figure 0006491754

前記表2の結果を、図2〜図4にまとめた。
前記表2に示されているように、本発明の実施例1〜7によるチタン合金はいずれも、引張強度1000MPa以上、弾性係数50GPa以下の超低弾性係数を実現しながら、同時に2.5%以上の超弾性延伸率を実現している。すなわち、従来のチタン合金が実現することができなかった、高強度、超低弾性係数及び優れた超弾性延伸率を実現したのである。
The results of Table 2 are summarized in FIGS.
As shown in Table 2, all of the titanium alloys according to Examples 1 to 7 of the present invention achieved an ultra-low elastic modulus with a tensile strength of 1000 MPa or more and an elastic modulus of 50 GPa or less, and at the same time 2.5% The above superelastic stretch ratio is realized. That is, high strength, ultra-low elastic modulus, and excellent super-elastic stretch ratio, which could not be realized by conventional titanium alloys, were realized.

また、本願の実施例3、5及び6に示されているように、酸素含有量が増加しても超弾性延伸率の減少率は極めて低く、減少率は−0.5以上と緩やかになっていることが確認される。すなわち、本願の実施例によるチタン合金は、酸素含有量に対して安定した超弾性特性を実現することができる。   Further, as shown in Examples 3, 5 and 6 of the present application, even when the oxygen content is increased, the reduction rate of the superelastic stretch rate is extremely low, and the reduction rate becomes -0.5 or more. It is confirmed that That is, the titanium alloy according to the embodiment of the present application can realize stable superelastic characteristics with respect to the oxygen content.

一方、比較例1は、実施例1と比較する時、Nb及びZrの含有量は類似するが、酸素の含有量が不足し、本発明の実施例1〜7のような特性を実現することができず、比較例2は、実施例3と比較する時、Nb及びZrの含有量は類似するが、酸素の含有量が高すぎて、本発明の実施例1〜7のような特性を実現することができなかった。   On the other hand, when Comparative Example 1 is compared with Example 1, the contents of Nb and Zr are similar, but the oxygen content is insufficient, and the characteristics as in Examples 1 to 7 of the present invention are realized. In Comparative Example 2, when compared with Example 3, the contents of Nb and Zr are similar, but the oxygen content is too high, and the characteristics as in Examples 1 to 7 of the present invention are obtained. Could not be realized.

その他の比較例3〜11によるチタン合金は、Nb又はZrの含有量が本発明の実施例と異なり、その結果として、本発明の実施例1〜7に比べて強度が低かったり、弾性係数が高すぎたり、超弾性延伸率が低い特性を示した。   The titanium alloys according to other comparative examples 3 to 11 are different from the examples of the present invention in the content of Nb or Zr, and as a result, the strength is lower than those of the examples 1 to 7 of the present invention, and the elastic modulus is low. The properties were too high or the superelastic stretch ratio was low.

図2〜図4は、前記表2の結果を図表で示したものである。
図2から確認されるように、実施例1〜7によるチタン合金の原子価電子比(e/a)は約4.175と4.225の間に位置し、本発明の実施例による原子価電子比(e/a)を有する実施例1〜7が、そうでない比較例に比べて高い引張強度/弾性係数比を示す。
2 to 4 show the results of Table 2 in a chart.
As can be seen from FIG. 2, the valence electron ratio (e / a) of the titanium alloys according to Examples 1-7 is located between about 4.175 and 4.225, and the valence according to the examples of the present invention. Examples 1-7 having an electronic ratio (e / a) exhibit a higher tensile strength / elastic modulus ratio than comparative examples that do not.

また、図3から確認されるように、実施例1〜7によるチタン合金のMo当量(Moeq)は8〜9の間に位置し、Mo当量(Moeq)がこの範囲に属しない比較例に比べて高い引張強度/弾性係数比を示す。 Moreover, as confirmed from FIG. 3, the Mo equivalent (Mo eq ) of the titanium alloys according to Examples 1 to 7 is located between 8 and 9, and the comparative example in which the Mo equivalent (Mo eq ) does not belong to this range. High tensile strength / elastic modulus ratio.

さらに、図4から確認されるように、実施例1〜7によるチタン合金のAl当量(Aleq)は1.75〜11の間に位置し、これを外れた比較例に比べて高い引張強度/弾性係数比を示す。 Furthermore, as confirmed from FIG. 4, the Al equivalent (Al eq ) of the titanium alloys according to Examples 1 to 7 is located between 1.75 and 11, and higher tensile strength than the comparative example which deviates from this. / Indicates elastic modulus ratio.

以上から確認されるように、上記の3つの条件を全て満足する本発明の実施例1〜7の合金は、高強度、超低弾性係数、高い超弾性延伸率を同時に実現することができるが、そうでない合金は、高強度、超低弾性係数、高い超弾性延伸率のうちの少なくとも1つを実現することができなかった。   As can be seen from the above, the alloys of Examples 1 to 7 of the present invention that satisfy all the above three conditions can simultaneously achieve high strength, ultra-low elastic modulus, and high super-elastic stretch ratio. Otherwise, the alloy could not achieve at least one of high strength, ultra-low elastic modulus, and high super-elastic stretch ratio.

Claims (6)

合金元素としてNb、Zr及びOを含み、残部のTiと不可避不純物からなり、
下記式1で定義される原子価電子比(e/a)が4.19〜4.21、下記式2で定義されるMo当量(Moeq)が8.19〜9.03、下記式3で定義されるAl当量(Aleq)が1.60〜10.78である、チタン合金:
[式1]
原子価電子比(e/a)=Ti(原子%)×0.04+Nb(原子%)×0.05+Zr(原子%)×0.04
[式2]
Mo当量(Moeq)=Nb(質量%)/3.6
[式3]
Al当量(Aleq)=Zr(質量%)/6+O(質量%)×10。
It contains Nb, Zr and O as alloy elements, and consists of the balance Ti and inevitable impurities,
The valence electron ratio (e / a) defined by the following formula 1 is 4.19 to 4.21, the Mo equivalent (Mo eq ) defined by the following formula 2 is 8.19 to 9.03, the following formula 3 A titanium alloy having an Al equivalent defined by (Al eq ) of 1.60 to 10.78:
[Formula 1]
Valence electron ratio (e / a) = Ti (atomic%) × 0.04 + Nb (atomic%) × 0.05 + Zr (atomic%) × 0.04
[Formula 2]
Mo equivalent (Mo eq ) = Nb (mass%) / 3.6
[Formula 3]
Al equivalent (Al eq ) = Zr (mass%) / 6 + O (mass%) × 10.
合金元素としてNb:30〜34質量%、Zr:5.7〜9.7質量%、O:0.03〜1.0質量%を含み、残部のTiと不可避不純物からなり、
下記式1で定義される原子価電子比(e/a)が4.17〜4.22、下記式2で定義されるMo当量(Moeq)が8.33〜9.44、下記式3で定義されるAl当量(Aleq)が1.25〜11.62である、チタン合金:
[式1]
原子価電子比(e/a)=Ti(原子%)×0.04+Nb(原子%)×0.05+Zr(原子%)×0.04
[式2]
Mo当量(Moeq)=Nb(質量%)/3.6
[式3]
Al当量(Aleq)=Zr(質量%)/6+O(質量%)×10。
It contains Nb: 30 to 34% by mass, Zr: 5.7 to 9.7% by mass, O: 0.03 to 1.0% by mass as alloy elements, and consists of the balance Ti and inevitable impurities,
The valence ratio (e / a) defined by the following formula 1 is 4.17 to 4.22, the Mo equivalent (Mo eq ) defined by the following formula 2 is 8.33 to 9.44 , the following formula 3 Titanium alloy having an Al equivalent defined by (Al eq ) of 1.25 to 11.62 :
[Formula 1]
Valence electron ratio (e / a) = Ti (atomic%) × 0.04 + Nb (atomic%) × 0.05 + Zr (atomic%) × 0.04
[Formula 2]
Mo equivalent (Mo eq ) = Nb (mass%) / 3.6
[Formula 3]
Al equivalent (Al eq ) = Zr (mass%) / 6 + O (mass%) × 10.
前記チタン合金は、断面減少率90%での冷間圧延条件で冷間加工後、酸素濃度の増加に対する超弾性延伸率(%)減少の相関係数が−0.5(%/質量%)以上である、請求項1又は2に記載のチタン合金。   The titanium alloy has a correlation coefficient of -0.5 (% / mass%) of reduction in superelastic stretch ratio (%) with respect to increase in oxygen concentration after cold working under cold rolling conditions with a cross-section reduction rate of 90%. The titanium alloy according to claim 1 or 2, which is as described above. 前記チタン合金は、断面減少率90%での冷間圧延条件で冷間加工後、2.5%以上の超弾性延伸率を有する、請求項1又は2に記載のチタン合金。   The titanium alloy according to claim 1 or 2, wherein the titanium alloy has a superelastic stretch ratio of 2.5% or more after cold working under a cold rolling condition with a cross-section reduction rate of 90%. 前記チタン合金は、断面減少率90%での冷間圧延条件で冷間加工後、60GPa以下の弾性係数と、1000MPa以上の引張強度を有する、請求項1又は2に記載のチタン合金。   3. The titanium alloy according to claim 1, wherein the titanium alloy has an elastic modulus of 60 GPa or less and a tensile strength of 1000 MPa or more after cold working under cold rolling conditions with a cross-section reduction rate of 90%. 前記チタン合金は、断面減少率90%での冷間圧延条件で冷間加工後、引張強度(MPa)を平均弾性係数(GPa)で割った値が0.020以上である、請求項1又は2に記載のチタン合金。   The titanium alloy has a value obtained by dividing the tensile strength (MPa) by the average elastic modulus (GPa) by 0.020 or more after cold working under cold rolling conditions with a cross-section reduction rate of 90%. 2. The titanium alloy according to 2.
JP2017536505A 2014-09-30 2015-09-25 Titanium alloy with high strength and ultra-low elastic modulus Active JP6491754B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2014-0130903 2014-09-30
KR1020140130903A KR101562669B1 (en) 2014-09-30 2014-09-30 Ultrahigh strength, ultralow elastic modulus, and stable superelasticity titanium alloy with non-linear elastic deformation
PCT/KR2015/010175 WO2016052941A1 (en) 2014-09-30 2015-09-25 Titanium alloy having high strength and super-low elastic modulus

Publications (2)

Publication Number Publication Date
JP2017535676A JP2017535676A (en) 2017-11-30
JP6491754B2 true JP6491754B2 (en) 2019-03-27

Family

ID=54427447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017536505A Active JP6491754B2 (en) 2014-09-30 2015-09-25 Titanium alloy with high strength and ultra-low elastic modulus

Country Status (5)

Country Link
US (1) US20170233851A1 (en)
JP (1) JP6491754B2 (en)
KR (1) KR101562669B1 (en)
CN (1) CN107075616B (en)
WO (2) WO2016052789A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102301567B1 (en) * 2018-06-11 2021-09-14 순천대학교 산학협력단 Titanium alloy with low elastic modulus and high yield strength
KR102274578B1 (en) * 2019-11-19 2021-07-06 세종대학교산학협력단 Ultrafine eutectic alloy with ultrahigh strength, ultralow elastic modulus and ultrahigh elasticity based on combinatorial elastic deformation mechanism
KR102472842B1 (en) 2020-11-23 2022-12-01 전북대학교산학협력단 Method for producing ferrotitanium with improved elongation and ferrotitanium produced thereby
CN114376701B (en) * 2021-12-21 2023-02-14 长春圣博玛生物材料有限公司 High-strength screw

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152050B2 (en) * 1999-04-23 2008-09-17 テルモ株式会社 Ti-Zr alloy
JP3799474B2 (en) * 1999-06-11 2006-07-19 株式会社豊田中央研究所 Titanium alloy bolt
US6979375B2 (en) * 2000-05-02 2005-12-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy member
JP4547797B2 (en) * 2000-12-19 2010-09-22 大同特殊鋼株式会社 Biomedical Ti alloy and method for producing the same
DE60138731D1 (en) * 2000-12-20 2009-06-25 Toyota Chuo Kenkyusho Kk Process for producing a titanium alloy with high elastic deformation capacity.
US7722805B2 (en) 2003-12-25 2010-05-25 Institute Of Metal Research Chinese Academy Of Sciences Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof
KR100653160B1 (en) * 2005-03-21 2006-12-01 한국생산기술연구원 Production method of Ti-base alloy with low elastic modulus and excellent bio-compatibility
KR100977801B1 (en) * 2007-12-26 2010-08-25 주식회사 포스코 Titanium alloy with exellent hardness and ductility and method thereof
KR101234505B1 (en) * 2012-11-08 2013-02-20 한국기계연구원 Ultrahigh strength and ultralow elastic modulus titanium alloy with linear elastic deformation

Also Published As

Publication number Publication date
CN107075616B (en) 2019-03-29
US20170233851A1 (en) 2017-08-17
WO2016052789A1 (en) 2016-04-07
KR101562669B1 (en) 2015-10-23
JP2017535676A (en) 2017-11-30
CN107075616A (en) 2017-08-18
WO2016052941A1 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
Ozan et al. Deformation mechanism and mechanical properties of a thermomechanically processed β Ti–28Nb–35.4 Zr alloy
Okulov et al. Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications
Zhang et al. Effect of Sn addition on the microstructure and superelasticity in Ti–Nb–Mo–Sn alloys
Karre et al. First principles theoretical investigations of low Young's modulus beta Ti–Nb and Ti–Nb–Zr alloys compositions for biomedical applications
Hsu et al. The structure and mechanical properties of as-cast Zr–Ti alloys
Li et al. Superelasticity and tensile strength of Ti-Zr-Nb-Sn alloys with high Zr content for biomedical applications
Hsu et al. The structure and mechanical properties of as-cast Ti–25Nb–xSn alloys for biomedical applications
JP6491754B2 (en) Titanium alloy with high strength and ultra-low elastic modulus
CN103173653B (en) Low-elastic-modulus high-strength titanium alloy and preparation method thereof
US10087506B2 (en) Ultrahigh strength and ultralow elastic modulus titanium alloy showing linear elastic deformation behavior
Marsumi et al. Influence of niobium or molybdenum in titanium alloy for permanent implant application
JP2009024223A (en) Dental wire, and method for producing the same
Tada et al. Effect of Al addition on superelastic properties of aged Ti–Nb–Zr–Al quaternary alloys
CN105714149A (en) Super-elasticity low-elastic-modulus titanium alloy material and preparation method and application thereof
US11542583B2 (en) Ternary Ti—Zr—O alloys, methods for producing same and associated utilizations thereof
O’Brien et al. Initial exploration of Ti–Ta, Ti–Ta–Ir and Ti–Ir alloys: candidate materials for coronary stents
JP2006089826A (en) Superelastic titanium alloy for living body
Supriadi et al. Effect of Mn in new β titanium alloy Ti-6Nb-6Mo on corrosion behavior and mechanical properties
JP5633767B2 (en) Low elastic titanium alloy
Li et al. Effect of O addition on microstructure and mechanical properties of Ti-Nb alloys with various β stability
JP4477297B2 (en) Ti-Mo base alloy spring material
TWI755263B (en) High strength and low modulus alloy and use thereof
Zhang et al. Microstructure and superelasticity of a biomedical β-type titanium alloy under various processing routes
JP6742996B2 (en) Titanium alloy
Peng et al. Tunable the mechanical properties of β-Ti1-xMx binary alloys by transition metal M (M= Fe, Mo, Nb, Ni) substitutional doping: A first-principles study

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190301

R150 Certificate of patent or registration of utility model

Ref document number: 6491754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250