JP6485539B2 - 親水化剤、親水化剤を含む組成物及び高分子多孔質膜 - Google Patents

親水化剤、親水化剤を含む組成物及び高分子多孔質膜 Download PDF

Info

Publication number
JP6485539B2
JP6485539B2 JP2017500761A JP2017500761A JP6485539B2 JP 6485539 B2 JP6485539 B2 JP 6485539B2 JP 2017500761 A JP2017500761 A JP 2017500761A JP 2017500761 A JP2017500761 A JP 2017500761A JP 6485539 B2 JP6485539 B2 JP 6485539B2
Authority
JP
Japan
Prior art keywords
polymer
hydrophilizing agent
copolymer
porous membrane
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017500761A
Other languages
English (en)
Other versions
JPWO2016133206A1 (ja
Inventor
將 神原
將 神原
田中 義人
義人 田中
吉景 大向
吉景 大向
優子 塩谷
優子 塩谷
毛利 晴彦
晴彦 毛利
三木 淳
淳 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JPWO2016133206A1 publication Critical patent/JPWO2016133206A1/ja
Application granted granted Critical
Publication of JP6485539B2 publication Critical patent/JP6485539B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/24Trifluorochloroethene
    • C08F214/245Trifluorochloroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/28Hexyfluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/28Hexyfluoropropene
    • C08F214/285Hexyfluoropropene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1668Vinyl-type polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12HPASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
    • C12H1/00Pasteurisation, sterilisation, preservation, purification, clarification, or ageing of alcoholic beverages
    • C12H1/02Pasteurisation, sterilisation, preservation, purification, clarification, or ageing of alcoholic beverages combined with removal of precipitate or added materials, e.g. adsorption material
    • C12H1/06Precipitation by physical means, e.g. by irradiation, vibrations
    • C12H1/063Separation by filtration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2439/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、親水化剤、該親水化剤及びポリマーからなる組成物、及び、該親水化剤及びポリマーからなる高分子多孔質膜に関する。また、本発明は、新規な共重合体にも関する。
水処理分野で使用される高分子多孔質膜として、フッ化ビニリデン系樹脂からなる高分子多孔質膜が知られている。フッ化ビニリデン系樹脂は疎水性であるため、フッ化ビニリデン系樹脂に親水性のポリマーを親水化剤として添加した後、フッ化ビニリデン系樹脂を高分子多孔質膜とすることにより、親水性や低ファウリング性を向上する方法が知られている。
特許文献1には、均質かつ安定した親水性を付与するために、少なくとも一つの親水性ブロックと少なくとも一つの疎水性ブロックとを有し、ポリマーマトリックスと相溶性がある両親媒性ブロックコポリマーを添加することが記載されている。
特許文献2には、主鎖がアクリル酸エステル系重合体および/またはメタクリル酸エステル系重合体、側鎖がエチレンオキサイド系重合体および/またはプロピレンオキサイド系重合体であるグラフト共重合体を使用することにより、膜の親水化を図り、低ファウリング性を付与できることが記載されている。
特許文献3には、ビニルアルコール単位及びテトラフルオロエチレン単位を有し、ビニルアルコール単位とテトラフルオロエチレン単位との交互率が30%以上である共重合体(A)と、更にフッ化ビニリデン系樹脂と、からなる高分子多孔質膜が記載されている。
更に、特許文献4では、高分子多孔質膜ではないが、風雨により外観が損なわれない塗膜を与える塗料用組成物として、フルオロモノマー、N−ビニル−ラクタム化合物、架橋可能な官能基を有する単量体およびこれらと共重合可能な単量体を共重合した含フッ素共重合体を含むことを特徴とする塗料用組成物が記載されている。
特表2012−506772号公報 特開2007−723号公報 特開2013−151671号公報 特開平1−108270号公報 特許第5142718号公報 特開平1−144409号公報
CAO JIN、他2名、「Radiation−Induced Copolymerization of N−Vinylpyrrolidone with Monochlorotrifluoroethylene」、JOURNAL OF MACROMOLECULAR SCIENCE−Chemistry、1985年、A22(e)、p.379〜386
本発明は、接触角が大きいポリマーに加えることで、接触角が小さい高分子多孔質膜を形成することができ、しかも、次亜塩素酸ナトリウム水溶液に168時間接触させた後も小さい接触角を維持することができる高分子多孔質膜を形成することができる親水化剤を提供することを目的とする。
本発明者らは、接触角が50°以下、かつ、重量減少率が7%以下であるという特性を備える親水化剤を接触角が大きいポリマーに加えることで、接触角が小さい高分子多孔質膜を形成することができ、しかも、次亜塩素酸ナトリウム水溶液に168時間接触させた後も小さい接触角を維持することができる高分子多孔質膜を形成することができることを見出し、本発明を完成するに至った。
すなわち、本発明は、接触角が50°以下、かつ、重量減少率が7%以下であるフルオロポリマーからなることを特徴とする親水化剤である。
上記フルオロポリマーは、軟化点が70〜200℃であることが好ましい。
上記フルオロポリマーは、フルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体であることが好ましい。
上記フルオロポリマーは、フッ素含有率が5質量%以上であることが好ましい。
上記親水化剤は、ポリマー(但し、上記親水化剤を除く)用親水化剤であることが好ましい。
上記親水化剤は、高分子多孔質膜用親水化剤であることが好ましい。
本発明は、上述の親水化剤とポリマー(但し、上記親水化剤を除く)とからなることを特徴とする組成物でもある。
本発明は、上述の親水化剤とポリマー(但し、上記親水化剤を除く)とからなることを特徴とする高分子多孔質膜でもある。
上記ポリマーは、ポリフッ化ビニリデン、又は、フッ化ビニリデン単位を有する共重合体であることが好ましい。
上記高分子多孔質膜は、接触角が55°以下であることが好ましい。
本発明は、フルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体からなることを特徴とする親水化剤でもある。
本発明は、テトラフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種のフルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体であって、全単量体単位に対して、フルオロモノマー単位が65〜7モル%であり、アミド結合を有する重合性ビニル化合物単位が35〜93モル%であることを特徴とする共重合体でもある。
本発明の親水化剤は、上記構成を有することから、接触角が大きいポリマーに加えることで、接触角が小さい高分子多孔質膜を形成することができ、しかも、次亜塩素酸ナトリウム水溶液に168時間接触させた後も小さい接触角を維持することができる高分子多孔質膜を形成することができる。また、透水性及び耐ファウリング性にも優れる高分子多孔質膜を形成できる。
本発明の組成物は、上記構成を有することから、接触角が小さい高分子多孔質膜を形成することができ、しかも、次亜塩素酸ナトリウム水溶液に168時間接触させた後も小さい接触角を維持することができる高分子多孔質膜を形成することができる。また、透水性及び耐ファウリング性にも優れる高分子多孔質膜を形成できる。
本発明の親水化剤を用いた高分子多孔質膜は、接触角が小さく、しかも、次亜塩素酸ナトリウム水溶液に168時間接触させた後も小さい接触角を維持することができる。また、透水性及び耐ファウリング性にも優れる。
以下、本発明を具体的に説明する。
本発明の親水化剤は、接触角が50°以下、かつ、重量減少率が7%以下であるフルオロポリマーからなることを特徴とする。
上記フルオロポリマーは、フッ素含有率が5質量%以上であることが好ましい。上記フルオロポリマーのフッ素含有率が低すぎると、重量減少率が増加する結果、長期にわたって親水性を維持できなくなるおそれがある。上記フッ素含有率は、14質量%以上であることがより好ましく、48質量%以下であることが好ましく、40質量%以下であることがより好ましい。
上記フッ素含有率は、元素分析により測定する。
また、上記フルオロポリマーの接触角(フルオロポリマー単膜での接触角)が大きすぎると、接触角が大きいポリマーに加えることによって、接触角が小さい高分子多孔質膜を形成することができない。
本発明の接触角は、水中の気泡接触角(θ)を測定し、「接触角=180°−θ」として算出する。
なお、上記接触角はシリコンウェハー上にフルオロポリマー溶液を、例えば2000rpmでスピンコートし、加熱乾燥させることで平滑な該ポリマー表面を作製後、得られたシリコンウェハーを5時間イオン交換水中に浸漬した後、3μlの気泡を25℃の水中でポリマー表面に接触させ、水中接触角を測定する。
更に、上記フルオロポリマーの重量減少率が大きすぎると、高分子多孔質膜から容易に溶出して、高分子多孔質膜の小さい接触角を維持することができない。一方、上記重量減少率が上記の範囲内にあると、高分子多孔質膜を次亜塩素酸ナトリウム水溶液で洗浄しても、高分子多孔質膜の小さい接触角を維持することができる。
上記重量減少率は次の計算式により算出する値である。
重量減少率=100―(次亜塩素酸ナトリウム(NaClO)水溶液に浸漬した後のフルオロポリマーの重量)/(NaClO水溶液に浸漬させる前のフルオロポリマーの重量)×100
NaClO水溶液に浸漬した後のフルオロポリマーの重量は、フルオロポリマー(サンプル)を、5000ppmのNaClOを含む水溶液(pH13となる様に水酸化ナトリウムを添加して調製する)に、20℃で168時間浸漬させた後、フルオロポリマーを回収し、60℃で15時間乾燥して得られるフルオロポリマーの重量である。
なお、サンプルは13質量%のフルオロポリマーを含むポリマー溶液から、直径約58mmのシャーレ上にキャスト成膜したフィルムを使用する。
上記フルオロポリマーは、軟化点が70〜200℃であることが好ましく、80℃以上であることがより好ましく、100℃以上であることが更に好ましく、120℃以上であることが特に好ましく、180℃以下であることがより好ましく、170℃以下であることが更に好ましい。軟化点が上記範囲内にあることにより、強度に優れた高分子多孔質膜を得ることができる。
本発明において、ポリマーの軟化点は、結晶性ポリマーの場合は融点を、非晶性ポリマーの場合はガラス転移温度をそれぞれ意味する。これらはそれぞれ以下のようにして測定する。ポリマー軟化点は、示差走査熱量測定法により測定した融点(Tm)またはガラス転移点(Tg)とする。結晶性ポリマーの場合は、10mgのポリマー粉末を示差走査熱量計(DSC)あるいは示差熱・熱重量同時測定装置(TG/DTA)により、温度範囲−50〜200℃、昇温速度10℃/minの条件で測定したときの融解ピークの頂点から融点を読み取る。非晶性ポリマーの場合は、温度範囲−50〜200℃、昇温速度10℃/minの条件で測定したときの2ndサイクル目のサーモグラムより、ガラス転移終了温度を読み取る。
上記フルオロポリマーは、フルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体であることが好ましい。上記共重合体は、上記接触角、及び、上記重量減少率を有している。このような条件を満たすことから、上記共重合体は、親水化剤として優れた低防汚性、低ファウリング性が期待できる。また、高耐久性も期待できる。そのため、上記共重合体を親水化剤として用いた高分子多孔質膜においても優れた低防汚性、低ファウリング性および、高耐久性が期待できる。
上記共重合体は、フルオロモノマー単位及びアミド結合を有する重合性ビニル化合物単位を含む共重合体であり、本明細書において、フルオロモノマー/アミド結合を有する重合性ビニル化合物共重合体と記載することがある。
上記フルオロモノマー/アミド結合を有する重合性ビニル化合物共重合体としては、接触角が小さい高分子多孔質膜を形成することができることから、全単量体単位に対して、フルオロモノマー単位が65〜7モル%、アミド結合を有する重合性ビニル化合物単位が35〜93モル%であるものが好ましい。また、フルオロモノマー単位が55〜15モル%、アミド結合を有する重合性ビニル化合物単位が45〜85モル%であることがより好ましい。また、フルオロモノマー単位が45〜20モル%、アミド結合を有する重合性ビニル化合物単位が55〜80モル%であることが更に好ましい。
アミド結合を有する重合性ビニル化合物単位が93モル%を超えると、極端に耐水性が悪化するおそれがある。また、重量減少率が増加する結果、長期にわたって親水性を維持できなくなるおそれがある。また、アミド結合を有する重合性ビニル化合物単位が35モル%未満だと、得られる高分子多孔質膜が親水性に乏しくなるおそれがある。
また特にフルオロモノマー単位とアミド結合を有する重合性ビニル化合物単位とのモル比(フルオロモノマー単位/アミド結合を有する重合性ビニル化合物単位)が0.07〜1.50の範囲であるものが好ましく、0.25〜1.25の範囲であるものがより好ましい。さらに好ましくは、0.25〜0.82の範囲である。モル比が小さすぎると、耐久性に優れた高分子多孔質膜を得ることができないおそれがあり、モル比が大きすぎると、親水性に優れた高分子多孔質膜を得ることができないおそれがある。適正なモル比の範囲で耐熱性、親水性、耐久性に優れた高分子多孔質膜を形成できる親水化剤が得られる。
上記フルオロモノマーとしては、(1)sp混成炭素原子に結合したフッ素原子を有するオレフィン、(2)一般式:CH=CX−COORf(式中、XはCl、H又はアルキル基、Rfはフルオロアルキル基)で表されるモノマー、(3)一般式:CH=CH−Rf(式中、Rfはフルオロアルキル基)で表されるモノマー、(4)一般式:CH=CH−ORf(式中、Rfはフルオロアルキル基)で表されるモノマー等が挙げられる。
上記アルキル基としては、炭素数1〜3のアルキル基が挙げられ、メチル基が好ましい。
上記フルオロアルキル基としては、炭素数1〜12の直鎖又は分岐したフルオロアルキル基が好ましい。
上記フルオロモノマーとしては、ポリマー主鎖を構成する炭素原子に結合したフッ素原子を上記共重合体に導入でき、それによって上記共重合体の耐熱性及び耐薬品性が向上することから、(1)が好ましく、フッ化ビニリデン、トリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、モノフルオロエチレン、トリフルオロスチレン、及び、一般式:CH=CFRf(式中、Rfは炭素数1〜12の直鎖又は分岐したフルオロアルキル基)で表されるフルオロモノマーからなる群より選択される少なくとも1種であることがより好ましく、フッ化ビニリデン、トリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、及び、トリフルオロスチレンからなる群より選択される少なくとも1種であることが更に好ましい。
また、上記フルオロモノマーとしては、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、フッ化ビニリデン、トリフルオロエチレン、モノフルオロエチレン、フルオロアルキルビニルエーテル、フルオロアルキルエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、ヘキサフルオロイソブテン、トリフルオロスチレン、及び、一般式:CH=CFRf(式中、Rfは炭素数1〜12の直鎖又は分岐したフルオロアルキル基)で表されるフルオロモノマーからなる群より選択される少なくとも1種であることが好ましく、TFE、CTFE、フッ化ビニリデン及びHFPからなる群より選択される少なくとも1種であることがより好ましく、TFE及びフッ化ビニリデンからなる群より選択される少なくとも1種であることが更に好ましい。
上記重合性ビニル化合物は、アミド結合を有しており、アミド結合に加えて重合性ビニル基を有していることが好ましい。上記アミド結合は、カルボニル基と窒素原子の間の結合をいう。
上記重合性ビニル基としては、ビニル基、アリル基、ビニルエーテル基、ビニルエステル基、アクリル基等が挙げられる。
上記アミド結合を有する重合性ビニル化合物としては、N−ビニル−β−プロピオラクタム、N−ビニル−2−ピロリドン、N−ビニル−γ−バレロラクタム、N−ビニル−2−ピペリドン、N−ビニル−ヘプトラクタムなどのN−ビニルラクタム化合物、N−ビニルホルムアミド、N−メチルーN−ビニルアセトアミドなどの非環状のN−ビニルアミド化合物、N‐アリル‐N‐メチルホルムアミド、アリル尿素などの非環状のN−アリルアミド化合物、1−(2−プロペニル)−2−ピロリドンなどのN−アリルラクタム化合物、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、N−イソプロピルアクリルアミド等のアクリルアミド化合物が挙げられる。
上記アミド結合を有する重合性ビニル化合物としては、また、
Figure 0006485539
(式中、R及びRは独立にH又は炭素数1〜10のアルキル基)で示される化合物、
Figure 0006485539
(式中、R及びRは独立にH又は炭素数1〜10のアルキル基)で示される化合物等も挙げられる。
なかでも、N−ビニルラクタム化合物又は非環状のN−ビニルアミド化合物が好ましく、N−ビニル−β−プロピオラクタム、N−ビニル−2−ピロリドン、N−ビニル−γ−バレロラクタム、N−ビニル−2−ピペリドン、及び、N−ビニル−ヘプトラクタムからなる群より選択される少なくとも1種がより好ましく、N−ビニル−2−ピロリドン、及び、N−ビニル−2−ピペリドンからなる群より選択される少なくとも1種が更に好ましく、N−ビニル−2−ピロリドンが特に好ましい。
上記フルオロモノマー/アミド結合を有する重合性ビニル化合物共重合体は、本発明の効果を損なわない範囲で、フルオロモノマー単位及びアミド結合を有する重合性ビニル化合物単位以外の他の単量体単位を有していてもよい。他の単量体単位としては、ビニルエステルモノマー単位、ビニルエーテルモノマー単位、ポリエチレングリコールを側鎖に有する(メタ)アクリルモノマー単位、ポリエチレングリコールを側鎖に有するビニルモノマー単位、長鎖炭化水素基を有する(メタ)アクリルモノマー単位、長鎖炭化水素基を有するビニルモノマー単位等が挙げられる。他の単量体単位の合計は、0〜50モル%であってよく、0〜40モル%であってよく、0〜30モル%であってよく、0〜15モル%であってよく、0〜5モル%であってよい。
フルオロモノマー単位及びアミド結合を有する重合性ビニル化合物単位以外の他の単量体単位としては、架橋性官能基を有するものは好ましくない。これは、架橋性官能基のもつ極性がファウリング性を悪化させるためである。
ここで、架橋性官能基とは、水酸基、カルボン酸基、アミノ基、酸アミド基などの活性水素含有基や、エポキシ基、ハロゲン含有基、二重結合などである。
上記フルオロモノマー/アミド結合を有する重合性ビニル化合物共重合体は、実質的にフルオロモノマー単位及びアミド結合を有する重合性ビニル化合物単位のみからなることが好ましい。
上記フルオロモノマー/アミド結合を有する重合性ビニル化合物共重合体は、重量平均分子量が10000以上であることが好ましく、15000以上がより好ましく、20000以上が更に好ましく、30000以上が特に好ましい。より好ましくは、15000〜500000であり、更に好ましくは、20000〜300000、特に好ましくは30000〜300000である。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。重量平均分子量が高いほうが、水に溶出しにくく、高分子多孔質膜中に保持されやすい。
上記親水化剤は、ポリマー(但し、上記親水化剤を除く)と混合した後、後述する方法により成形して、高分子多孔質膜とすることができる。従って、上記親水化剤は、上記ポリマー(但し、上記親水化剤を除く)用親水化剤として好適である。また、上記親水化剤は、ポリマー(但し、上記親水化剤を除く)からなる高分子多孔質膜を形成するための親水化剤として好適である。また、ポリマー(但し、上記親水化剤を除く)からなる高分子多孔質膜を製造するための上記親水化剤の使用も好適な利用方法である。上記高分子多孔質膜については後述する。
上記親水化剤は、上記ポリマーに対して、0.5〜50質量%となるように添加して組成物とすることができる。より好ましい下限は5質量%であり、更に好ましい下限は10質量%であり、より好ましい上限は30質量%である。
上記ポリマーとしては、含フッ素ポリマー、ポリ塩化ビニル、ポリ塩素化塩化ビニル、ポリエーテルスルホン、ポリスルホン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン等が挙げられる。
上記ポリマーと親水化剤を混合する方法としては、特に限定されず、たとえば、(i)上記ポリマーと親水化剤のパウダー同士を混合する方法、(ii)上記ポリマーと親水化剤のディスパージョン同士を混合した後に共凝析する方法、(iii)上記ポリマーと親水化剤のパウダーを混合し、剪断力を与えながら溶融混練し、押し出しする方法、等が挙げられる。
上記含フッ素ポリマーとしては、フッ化ビニリデン系樹脂であることが好ましく、ポリフッ化ビニリデン、又は、フッ化ビニリデン単位を有する共重合体であることがより好ましい。上記含フッ素ポリマーがこれらのポリマーであると、溶融混練により上記親水化剤と混合することが可能となり、優れた特性を有する高分子多孔質膜を形成できる組成物とすることができる。この観点から、上記組成物は、上記親水化剤と、上記ポリフッ化ビニリデン又はフッ化ビニリデン単位を有する共重合体とを、溶融混練することにより得られた組成物であることが好ましい。
上記ポリフッ化ビニリデンの重量平均分子量は、高分子多孔質膜の機械的強度及び加工性の観点から、30000〜2000000であることが好ましく、50000〜1000000であることがより好ましい。
上記ポリフッ化ビニリデンは、フッ化ビニリデン単位のみからなるホモポリマーであってもよいし、フッ化ビニリデン単位と他の単量体単位とからなる変性ポリマーであってもよい。変性ポリマーにおいて、他の単量体としては、フッ化ビニリデンと共重合可能な単量体が使用でき、TFE、HFP、CTFE、トリフルオロエチレン、フルオロアルキルビニルエーテル、フルオロアルキルエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、ヘキサフルオロイソブテン、一般式:CH=CFRf(式中、Rfは炭素数1〜12の直鎖又は分岐したフルオロアルキル基)で表されるフルオロモノマー等が挙げられる。上記ポリフッ化ビニリデンにおいて、フッ化ビニリデン単位及び他の単量体単位のモル比(フッ化ビニリデン単位/他の単量体単位)が99/1を超え、100/0未満であることが好ましい。
上記フッ化ビニリデン単位を有する共重合体としては、フッ化ビニリデン/テトラフルオロエチレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体等が挙げられる。機械的強度及び耐アルカリ性の観点から、フッ化ビニリデン単位を有する共重合体は、特にフッ化ビニリデン/テトラフルオロエチレン共重合体であることが好ましい。
成膜性及び耐アルカリ性の観点から、フッ化ビニリデン/テトラフルオロエチレン共重合体は、フッ化ビニリデン単位及びテトラフルオロエチレン単位のモル比(フッ化ビニリデン単位/テトラフルオロエチレン単位)が50〜99/50〜1であることが好ましい。このようなポリマーとしては、例えば、ダイキン工業(株)製のVTシリーズ等が挙げられる。フッ化ビニリデン/テトラフルオロエチレン共重合体は、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で50〜95/50〜5であることがより好ましく、50〜90/50〜10であることが更に好ましい。また、フッ化ビニリデン/テトラフルオロエチレン共重合体は、フッ化ビニリデン単位及びテトラフルオロエチレン単位のみからなるフッ化ビニリデン/テトラフルオロエチレン共重合体の他に、フッ化ビニリデン単位及びテトラフルオロエチレン単位に加えて、特性を損なわない範囲でヘキサフルオロプロピレン単位、クロロトリフルオロエチレン単位、パーフルオロビニルエーテル単位等を有する三元以上の共重合体でもよい。
フッ化ビニリデン単位を有する共重合体の重量平均分子量は、高分子多孔質膜の用途によって異なるが、機械的強度及び成膜性の観点からは、10000以上であることが好ましい。より好ましくは、30000〜2000000であり、更に好ましくは、50000〜1000000であり、特に好ましくは、100000〜800000である。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。
上記親水化剤は、上記ポリマーと混合した後、後述する方法により成形して、高分子多孔質膜とすることができる。すなわち、上記親水化剤は、高分子多孔質膜用親水化剤であることが好ましい。上記高分子多孔質膜については後述する。
本発明は、上述の親水化剤とポリマー(但し、前記親水化剤を除く)とからなることを特徴とする組成物でもある。
上記組成物において、上記ポリマーと上記親水化剤との質量比(ポリマー/親水化剤)が50/50〜99.5/0.5であることが好ましい。上記親水化剤が少なすぎると、高分子多孔質膜の接触角が大きすぎるおそれがあり、上記親水化剤が多すぎると、強度が低下するおそれがある。上記質量比のより好ましい上限は95/5であり、更に好ましい上限は90/10である。一方、上記質量比のより好ましい下限は70/30である。
上記組成物は、ポリマーとして上記親水化剤及び上記含フッ素ポリマーのみを含むもの、又は、ポリマーとして上記親水化剤及び上記含フッ素ポリマーとこれら以外の樹脂とを含むものであることが好ましく、ポリマーとして上記親水化剤及び上記含フッ素ポリマーのみを含むものであることがより好ましい。
上記親水化剤及び上記含フッ素ポリマー以外の樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル樹脂、ポリアクリロニトリル、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン(AS)樹脂、塩化ビニル樹脂、ポリエチレンテレフタレート、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、変性ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、及びこれらの混合物や共重合体が挙げられる。これらと混和可能な他の樹脂を混和してもよい。
上記親水化剤及び上記含フッ素ポリマー以外の樹脂としては、なかでも、ポリエチレン系樹脂、ポリプロピレン系樹脂、及び、アクリル樹脂からなる群より選択される少なくとも1種が好ましい。
ポリエチレン系樹脂は、エチレンホモポリマー又はエチレン共重合体からなる樹脂である。ポリエチレン系樹脂は、複数の種類のエチレン共重合体からなるものでもよい。エチレン共重合体としては、プロピレン、ブテン、ペンテン等の直鎖状不飽和炭化水素から選ばれた1種以上とエチレンとの共重合体が挙げられる。
ポリプロピレン系樹脂は、プロピレンホモポリマー又はプロピレン共重合体からなる樹脂である。ポリプロピレン系樹脂は、複数の種類のプロピレン共重合体からなるものでもよい。プロピレン共重合体としては、エチレン、ブテン、ペンテン等の直鎖状不飽和炭化水素から選ばれた1種類以上とプロピレンとの共重合体が挙げられる。
アクリル樹脂は、主としてアクリル酸、メタクリル酸及びこれらの誘導体、たとえばアクリルアミド、アクリロニトリル等の重合体を包含する高分子化合物である。特にアクリル酸エステル樹脂やメタクリル酸エステル樹脂が好ましい。
上記親水化剤及び上記含フッ素ポリマー以外の樹脂としては、なかでも、アクリル樹脂が最も好ましい。
上記親水化剤及び上記含フッ素ポリマー以外の樹脂の種類及び量を調整することにより、得られる高分子多孔質膜の膜強度、透水性能、阻止性能等を調整することができる。
上記組成物は、親水化の観点や、相分離制御の観点、機械的強度向上の観点から、更に、ポリビニルピロリドン、ポリメタクリル酸メチル樹脂、ポリエチレングリコール、モンモリロナイト、SiO、TiO、CaCO、ポリテトラフルオロエチレン等の添加剤を含んでいてもよい。
上記組成物は、ポリマーに対する溶媒を含むものであってもよい。溶媒としては、シクロヘキサノン、イソホロン、γーブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、脂肪族多価アルコール、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステル、有機カーボネート、HFC−365、HCFC−225等の含フッ素溶媒、ジフェニルカーボネート、メチルベンゾエート、ジエチレングリコールエチルアセテート、ベンゾフェノン、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等が挙げられる。
上記組成物は、非溶媒を含むものであってもよい。非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、四塩化炭素、o−ジクロロベンゼン、トリクロロエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、メタノール、エタノール、プロパノール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、芳香族多価アルコール、塩素化炭化水素、又はその他の塩素化有機液体及びその混合溶媒等が挙げられる。
樹脂の融点又は液体の沸点まで、樹脂を溶解も膨潤もさせない溶媒を非溶媒という。
上記組成物は、上記親水化剤及び上記ポリマーを組成物の5〜60質量%含むことが好ましい。より好ましい下限は10質量%であり、より好ましい上限は50質量%である。
上記組成物は、高分子多孔質膜を形成するための組成物として有用である。また、高分子多孔質膜を製造するための上記組成物の使用も好適な利用方法である。
本発明は、上述の親水化剤と上記ポリマー(但し、前記親水化剤を除く)とからなることを特徴とする高分子多孔質膜でもある。上記高分子多孔質膜は、上記組成物から製造することができる。
上記高分子多孔質膜は、接触角が55°以下であることが好ましい。上記接触角は、45°以下であることがより好ましく、40°以下であることが更に好ましい。上記高分子多孔質膜は、上記親水化剤及び上記ポリマーからなるものであることから、接触角が非常に小さく、接触角が小さいが故に親水性(防汚性、低ファウリング性)に優れることが期待できる。フッ化ビニリデン系樹脂からなる多孔質膜は通常70°前後の接触角を示し、疎水性が高く、これが理由でファウリングしやすいと推測される。
上記高分子多孔質膜は、次亜塩素酸ナトリウム水溶液に168時間接触させた後でも、接触角が55°以下であることが好ましく、45°以下であることがより好ましく、40°以下であることが更に好ましい。
上記接触角は、水中接触角とも呼ばれるものであり、水中で平膜に気泡を接触させ、当該気泡の接触角を測定する方法により行うことできる(captive bubble法)。測定は、水中に5時間浸漬した高分子多孔質膜について、静的接触角計を用い、室温、常圧のもとで3μLの気泡を水中で表面に接触させ、接触角を測定する。
上記高分子多孔質膜は、孔径が2nm〜2.0μmであることが好ましく、5nm〜0.5μmであることがより好ましい。孔径が小さすぎると、気体や液体の透過率が不充分になるおそれがあり、孔径が大きすぎると、阻止性能の低下や、機械的強度が低下して破損しやすくなるおそれがある。
上記孔径は、細孔が明瞭に確認できる倍率で、SEM等を用いて高分子多孔質膜の表面の写真を撮り、細孔の直径を測定する。楕円形状の孔である場合、細孔の直径は、短径をa、長径をbとすると、(a×b)×0.5で求めることができる。また、微粒子阻止率から大まかな孔径を求めることが出来る。つまり、例えば50nmのポリスチレン微粒子等を95%以上阻止する多孔質膜は、50nm以下の孔径を有すると考えられる。
上記高分子多孔質膜は、例えば、50nmの微粒子を95%以上阻止する性能を有する場合、純水透過係数が1.5×10−10/m/s/Pa以上であることが好ましく、3.0×10−10/m/s/Pa以上であることがより好ましい。純水透過係数の上限は特に限定されないが、目的の阻止率及び強度を保持する範囲で、高い値であればあるほど望ましい。
上記純水透過係数は、温度25℃でRO処理水を、必要に応じてポンプ又は窒素圧で0.01MPa以上に加圧し、作製した中空糸膜又は平膜でろ過することにより求めることができる。具体的には、下記式から求められる。
純水透過係数〔m/m/s/Pa〕=(透過水量)/(膜面積)/(透過時間)/(評価圧力)
上記高分子多孔質膜は、100nm又は50nmの微粒子阻止率が90%以上であることが好ましく、より好ましくは、95%以上である。
上記微粒子阻止率は、粒径が制御されたポリスチレンラテックス微粒子を0.1質量%Triton X−100水溶液にて100ppm程度に希釈した分散溶液を評価原液としてろ過し、次式にて求められる。
微粒子阻止率(%)=((評価原液吸光度)−(透過液吸光度))/(評価原液吸光度)×100
上記高分子多孔質膜は、機械的強度の観点から、最大点破断強度が0.5MPa以上であることが好ましく、1.0MPa以上であることがより好ましい。
最大点破断強度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、引張試験前の断面積を単位測定面積として求めることができる。また、チャック間距離25mm、引張速度50mm/分の条件下で試験片の破断強度を測定し、引張試験前の断面積を単位測定面積としても求めることができる。なお、試験片を引っ張る向きは中空糸膜の場合は押出方向で、平膜の場合はキャストの方向である。
上記高分子多孔質膜は、靭性の観点から、最大点伸度が50%以上であることが好ましく、100%以上であることがより好ましい。
最大点伸度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、チャック間距離50mmを基準にして最大点の伸び率より求められる。また、チャック間距離25mm、引張速度50mm/分の条件下で試験片の破断強度を測定し、チャック間距離25mmを基準にして最大点の伸び率からも求められる。なお、試験片を引っ張る向きは中空糸膜の場合は押出方向で、平膜の場合はキャストの方向である。
上記高分子多孔質膜の構造は特に限定されない。例えば、固形分が三次元的に網目状に広がっている三次元網目状構造、多数の球状若しくは球状に近い形状の固形分が、直接若しくは筋状の固形分を介して連結している球状構造等であってもよい。また、これらの両方の構造を有していてもよい。
上記高分子多孔質膜の形状は、平膜形状又は中空糸膜形状であることが好ましい。
平膜形状の場合、上記高分子多孔質膜は、上記親水化剤及び上記ポリマーからなるポリマー層及び多孔質基材からなる複合膜でもよい。複合膜の場合、多孔質基材表面に上記親水化剤及び上記ポリマーからなるポリマー層が被覆されているものであってもよいし、多孔質基材と上記親水化剤及び上記ポリマーからなるポリマー層とが積層されているものであってもよい。また、多孔質基材、ポリマー層、及び、上記親水化剤及び上記ポリマー以外の樹脂からなる樹脂層とからなる複合膜であってもよい。上記樹脂層を形成する樹脂としては、上記親水化剤及び上記含フッ素ポリマー以外の樹脂として上述した樹脂が挙げられる。
上記多孔質基材としては、ポリエステル繊維、ナイロン繊維、ポリウレタン繊維、アクリル繊維、レーヨン繊維、綿、絹等の有機繊維からなる織物、編物又は不織布が挙げられる。また、ガラス繊維、金属繊維等の無機繊維からなる織物、編物又は不織布も挙げられる。伸縮性、コストの観点からは、有機繊維からなる多孔質基材が好ましい。
上記多孔質基材の表面の孔径は、用途によって自由に選択できるが、好ましくは5nm〜100μm、より好ましくは8nm〜10μmである。
平膜形状の場合、上記高分子多孔質膜の厚みは、10μm〜2mmであることが好ましく、30μm〜500μmであることがより好ましい。上記の多孔質基材を用いた複合膜である場合においても高分子多孔質膜の厚みは上述の範囲内にあることが好ましい。
上記高分子多孔質膜は、単位面積、単位体積当たりの処理水量の観点から、中空糸膜形状であることがより好ましい。
中空糸膜形状の場合、中空糸膜の内径は100μm〜10mmが好ましく、150μm〜8mmがより好ましい。中空糸膜の外径は120μm〜15mmが好ましく、200μm〜12mmがより好ましい。
中空糸膜形状の場合、上記高分子多孔質膜の膜厚は、20μm〜3mmが好ましく、50μm〜2mmがより好ましい。また、中空糸膜の内外表面の孔径は、用途によって自由に選択できるが、好ましくは2nm〜2.0μm、より好ましくは5nm〜0.5μmの範囲である。
上記高分子多孔質膜は、XPS(X線光電子分光法)で測定される膜表面の上記親水化剤及び上記ポリマーの合計質量に対する上記親水化剤の割合が、膜全体の上記親水化剤及び上記ポリマーの合計質量に対する上記親水化剤の割合よりも10質量%以上高いことが好ましい。すなわち、上記高分子多孔質膜は、上記親水化剤が膜表面に偏析していることが好ましい。この数値を表面移行性とよぶ。該表面移行性は20%以上であることがより好ましく、更に好ましくは30%以上である。上限は特に設けない。
上記高分子多孔質膜は、種々の方法により製造することができる。例えば、相分離法、溶融抽出法、蒸気凝固法、延伸法、エッチング法、高分子シートを焼結することにより多孔質膜とする方法、気泡入りの高分子シートを圧潰することにより多孔質膜を得る方法、エレクトロスピニングを用いる方法等が挙げられる。
溶融抽出法は、混合物に無機微粒子と有機液状体を溶融混練し、上記親水化剤及び上記ポリマーの融点以上の温度で口金から押出したり、プレス機等により成形した後、冷却固化し、その後有機液状体と無機微粒子を抽出することにより多孔構造を形成する方法である。
蒸気凝固法は、上記親水化剤及び上記ポリマーを良溶媒に溶解した組成物からなる薄膜状物の少なくとも一方の表面に、上記良溶媒と相溶性があり上記親水化剤及び上記ポリマーを溶解しない非溶媒及び/又は貧溶媒の飽和蒸気又はミストを含む蒸気を強制的に供給する方法である。
本発明の高分子多孔質膜の製造方法は、細孔サイズの制御が容易であることから相分離法が好ましい。相分離法としては、例えば、熱誘起相分離法(TIPS)、非溶媒誘起相分離法(NIPS)等が挙げられる。
熱誘起相分離法を用いる場合、上記親水化剤及び上記ポリマーを貧溶媒又は良溶媒である溶媒に、比較的高い温度で溶解させて組成物を得る工程、及び、該組成物を冷却固化する工程からなる製造方法により本発明の高分子多孔質膜は製造することができる。
熱誘起相分離法を用いる場合、上記組成物は、上記親水化剤及び上記ポリマーが上記親水化剤及び上記ポリマーと溶媒との合計に対して10〜60質量%であることが好ましい。より好ましくは15〜50質量%である。
上記親水化剤及び上記ポリマーの濃度を適正な範囲に調整することにより、組成物の粘度を適切な範囲に調整することができる。組成物の粘度が適切な範囲になければ、高分子多孔質膜に成形することができないおそれがある。
上記貧溶媒は、上記親水化剤及び上記ポリマーを60℃未満の温度では5質量%以上溶解させることができないが、60℃以上かつ樹脂の融点以下では5質量%以上溶解させることができる溶媒のことである。貧溶媒に対し、60℃未満の温度でも樹脂を5質量%以上溶解させることができる溶媒を良溶媒という。樹脂の融点又は液体の沸点まで、樹脂を溶解も膨潤もさせない溶媒を非溶媒という。
貧溶媒としては、シクロヘキサノン、イソホロン、γーブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、脂肪族多価アルコール、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステル及び有機カーボネート等、並びに、その混合溶媒が挙げられる。HFC−365等の含フッ素溶媒、ジフェニルカーボネート、メチルベンゾエート、ジエチレングリコールエチルアセテート、ベンゾフェノン等も挙げられる。なお、非溶媒と貧溶媒の混合溶媒であっても、上記貧溶媒の定義を満たす溶媒は、貧溶媒である。
熱誘起相分離法を用いる場合、組成物の溶媒としては貧溶媒が好ましいが、この限りではなく、フルオロポリマーの相分離挙動の検討から良溶媒を用いる場合もある。
ポリフッ化ビニリデンに対する良溶媒としては、HCFC−225等の含フッ素溶媒、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド、及び、これらの混合溶媒等が挙げられる。
非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、四塩化炭素、o−ジクロロベンゼン、トリクロロエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、メタノール、エタノール、プロパノール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、芳香族多価アルコール、塩素化炭化水素、又はその他の塩素化有機液体及びその混合溶媒等が挙げられる。
熱誘起相分離法を用いる場合、上記組成物を得る工程は、上記親水化剤及び上記ポリマーを貧溶媒又は良溶媒である溶媒に高温で溶解させるものであることが好ましい。比較的高温で溶解させた場合には、上記親水化剤及び上記ポリマーの濃度を高くすることができ、これにより、高い機械的強度を有する高分子多孔質膜を得ることができる。
組成物を冷却固化する方法としては、例えば、上記組成物を、口金から冷却浴中に吐出する方法が好ましい。高分子多孔質膜が平膜の場合、キャストして、冷却浴に浸漬させる方法も好ましい方法として挙げられる。
冷却浴として用いることができる冷却液体は、組成物よりも温度が低いものであり、例えば、温度が0〜80℃であり、濃度が60〜100質量%の貧溶媒又は良溶媒である溶媒を含有する液体を用いることができる。また、冷却液体には、非溶媒や、貧溶媒や良溶媒を含有する非溶媒を用いてもよい。
上記高分子多孔質膜の製造方法においては、組成物の濃度、上記親水化剤及び上記ポリマーを溶解する溶媒の組成、冷却浴を構成する冷却液体の組成が重要である。これらの組成を調整することによって、高分子多孔質膜の多孔質構造を制御することができる。
例えば、高分子多孔質膜の片面と他方の面とで、組成物の組成や冷却液体の組成の組み合わせを変更することによって、高分子多孔質膜の片面の構造と、他方の面の構造とを異なるものにすることもできる。
上記高分子多孔質膜を非溶媒誘起相分離法により製造する場合、例えば、上記親水化剤及び上記ポリマーを溶媒に溶解して組成物を得る工程、得られた組成物を、口金から非溶媒を含む凝固浴中に吐出する工程からなる製造方法により高分子多孔質膜を得ることが好ましい。
上記組成物を、非溶媒を含む凝固浴中に浸漬することにより、該組成物と凝固浴中の溶媒と非溶媒の濃度勾配を駆動力として、非溶媒誘起型の相分離を生じせしめることができる。この方法によれば、最初に溶媒と非溶媒の置換により相分離が起こる外表面において固化が進行し、膜内部方向に向かって相分離現象が進んでいく。その結果、外表面に続いて膜内部方向に向かって連続的に孔径が変化する非対称膜を製造することもできる。
非溶媒誘起相分離法を用いる場合、上記組成物は、上記親水化剤、上記ポリマー及び溶媒からなることが好ましい。上記組成物は、上記親水化剤、上記ポリマー及び溶媒に加えて、更に、非溶媒からなることも好ましい形態の一つである。
上記組成物は、上記親水化剤、上記ポリマー、溶媒及び非溶媒の合計(組成物が非溶媒を含まない場合には、上記親水化剤、上記ポリマー及び溶媒の合計)に対して、上記親水化剤及び上記ポリマーが5〜60質量%であることが好ましい。より好ましくは、10〜50質量%である。
上記組成物は、上記親水化剤、上記ポリマー、溶媒及び非溶媒の合計に対して、非溶媒が0.1〜10質量%であることが好ましい。より好ましくは、0.5〜8質量%である。
上記親水化剤及び上記ポリマー濃度を適正な範囲に調整することにより、組成物の粘度を適切な範囲に調整することができる。組成物の粘度が適切な範囲になければ、高分子多孔質膜に成形することができないおそれがある。
組成物は、常温であってもよいし、加熱されたものでもよい。例えば、10〜75℃が好ましい。
非溶媒誘起相分離法において、上記溶媒としては、熱誘起相分離法で例示した溶媒を用いることができる。上記溶媒は、貧溶媒であっても良溶媒であってもよいが、良溶媒が好ましい。
上記非溶媒としては、熱誘起相分離法で例示した非溶媒を使用することができる。
上記凝固浴として用いることができる凝固液体として、非溶媒を含有する液体を用いて固化させることが好ましく、貧溶媒、良溶媒を含有していてもよい。上記非溶媒としては、熱誘起相分離法で例示した非溶媒を用いることができる。例えば、水を好適に用いることができる。
上記高分子多孔質膜を製造する場合、上記熱誘起相分離法と非溶媒誘起相分離法とを併用してもよい。
非溶媒誘起相分離法及び熱誘起相分離法では、上記親水化剤及び上記ポリマーを溶媒に溶解した組成物を口金から吐出した後、固化させることで多孔質膜を得ることができる。上記口金としては、例えば、スリット口金、二重管式口金、三重管式口金等が用いられる。
高分子多孔質膜の形状を中空糸膜とする場合、上記口金としては、中空糸膜紡糸用の二重管式口金、三重管式口金等が好ましく用いられる。
二重管式口金を用いる場合、二重管式口金の外側の管から組成物を吐出し、イオン交換水等の中空部形成流体を内側の管から吐出しながら凝固浴又は冷却浴中で固化することで、中空糸膜とすることができる。
中空部形成流体には、通常、気体もしくは液体を用いることができる。熱誘起相分離法では、冷却液体と同様の、濃度が60〜100%の貧溶媒若しくは良溶媒を含有する液体が好ましく採用できるが、非溶媒や、貧溶媒や良溶媒を含有する非溶媒を用いてもよい。非溶媒誘起相分離法では、上記中空部形成流体としては、上述した非溶媒を用いることが好ましく、例えば、イオン交換水等の水が好ましい。また、上述した非溶媒は、貧溶媒、良溶媒を含有していてもよい。
熱誘起相分離法を用いる場合は、上記中空部形成流体としては、上述した溶媒を用いることが好ましく、例えば、グリセロールトリアセテート等の貧溶媒が好ましい。また、熱誘起相分離法を用いる場合は、窒素ガスを用いることもできる。
中空部形成流体と冷却液体又は凝固液体の組成を変えることにより、二種の構造を有する中空糸膜を形成することもできる。中空部形成流体は、冷却して供給してもよいが、冷却浴の冷却力のみで中空糸膜を固化するのに十分な場合は、中空部形成流体は冷却せずに供給してもよい。
三重管式口金は、2種の樹脂溶液を用いる場合に好適である。例えば、三重管式口金の外側の管と中間の管から2種の組成物を吐出し、中空部形成液体を内側の管から吐出しながら凝固浴又は冷却浴中で固化することで、中空糸膜とすることができる。また、三重管式口金の外側の管から組成物を吐出し、中間の管から上記親水化剤及び上記ポリマー以外の樹脂からなる樹脂溶液を吐出し、中空部形成流体を内側の管から吐出しながら凝固浴又は冷却浴中で固化することで、中空糸膜とすることができる。
上記親水化剤及び上記ポリマー以外の樹脂としては上述したものが挙げられる。中でも、上記親水化剤及び上記含フッ素ポリマー以外の樹脂として上述した樹脂が好ましく、アクリル樹脂がより好ましい。
上記のように、二重管式口金や三重管式口金を用いた製造方法で中空糸膜を製造した場合、凝固液体又は冷却液体の量を、平膜を製造した場合よりも少なくすることができる点で好ましい。
上記高分子多孔質膜の形状が中空糸膜の場合、上記の方法で得られた中空糸膜の外表面又は内表面に、更に、上記ポリマー層又は上記親水化剤及び上記ポリマー以外の樹脂からなる樹脂層を形成してもよい。
上記フルオロポリマー層又は上記樹脂層は、中空糸膜の外表面又は内表面に組成物又は樹脂溶液を塗布することで形成することができる。中空糸膜の外表面に組成物又は樹脂溶液を塗布する方法としては、中空糸膜を組成物又は樹脂溶液に浸潰したり、中空糸膜に組成物又は樹脂溶液を滴下したりする方法等が好ましく用いられる。中空糸膜の内表面に組成物又は樹脂溶液を塗布する方法としては、組成物又は樹脂溶液を中空糸膜内部に注入する方法等が好ましく用いられる。
組成物又は樹脂溶液の塗布量を制御する方法としては、組成物又は樹脂溶液の塗布量自体を制御する方法の他に、多孔質膜を組成物又は樹脂溶液に浸漬したり、多孔質膜に組成物又は樹脂溶液を塗布した後に、組成物又は樹脂溶液の一部をかき取ったり、エアナイフを用いて吹き飛ばす方法や、塗布の際の濃度を調整する方法も好ましく用いられる。
上記高分子多孔質膜の形状を平膜とする場合、上記組成物をキャストして、冷却浴又は凝固浴に浸漬させることによって製造することができる。また、スリット口金を用いて、冷却浴又は凝固浴に上記組成物を吐出することでも製造することができる。
上記高分子多孔質膜が多孔質基材からなる複合膜である場合、上記多孔質基材を上記組成物に浸漬する方法、上記多孔質基材の少なくとも片面に上記組成物を塗布する方法等により上記高分子多孔質膜を得ることもできる。
上述した製造方法により、接触角が小さい高分子多孔質膜を得ることができるが、透水性能が十分でない場合には、上記製造方法で得られた多孔質膜を更に延伸して本発明の高分子多孔質膜としてもよい。
上記高分子多孔質膜の孔径を制御する方法としては、例えば、上記組成物に孔径を制御するための添加剤を入れ、上記親水化剤及び上記ポリマーによる多孔質構造を形成する際、又は多孔質構造を形成した後に、添加剤を溶出させることにより高分子多孔質膜の孔径を制御することができる。また、添加剤は多孔質膜内に留まらせてもよい。
非溶媒誘起相分離法及び熱誘起相分離法のいずれにおいても、上記組成物は添加剤を含んでいてもよい。多孔質構造を形成した後、添加剤を溶出させることにより、高分子多孔質膜の孔径を制御することができる。上記添加剤は、必要に応じて多孔質膜内に留まらせてもよい。
上記添加剤としては、有機化合物及び無機化合物を挙げることができる。上記有機化合物としては、組成物を構成する溶媒に溶解するもの、又は、均一に分散するものであることが好ましい。更に、非溶媒誘起相分離法では凝固液体に含まれる非溶媒、熱誘起相分離法では冷却液体に含まれる溶媒に溶解するものが好ましい。
上記有機化合物としては、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリエチレンイミン、ポリアクリル酸、テキストラン等の水溶性ポリマー、Tween40(ポリオキシエチレンソルビタンモノパルミタート)等の界面活性剤、グリセリン、糖類等を挙げることができる。
上記無機化合物としては、水溶性化合物が好ましく用いられる。例えば、塩化カルシウム、塩化リチウム、硫酸バリウム等を挙げることができる。
上記添加剤を用いずに、凝固液における非溶媒の種類、濃度及び温度によって相分離速度をコントロールすることによって表面の平均孔径を制御することも可能である。また、上記組成物に非溶媒を添加することも、相分離速度制御に有効である。
上記組成物は、親水化の観点や、相分離制御の観点、機械的強度向上の観点から、更に、ポリビニルピロリドン、ポリメタクリル酸メチル樹脂、モンモリロナイト、SiO、TiO、CaCO、ポリテトラフルオロエチレン等の添加剤を含んでいてもよい。
上記高分子多孔質膜は、透水性向上の観点から、アルカリで処理を行ってもよい。アルカリとは、例えば、NaOH水溶液、KOH水溶液、アンモニア水、アミン溶液等である。これらは、エタノール、メタノール等のアルコールや有機溶剤を含んでいてもよい。特にアルカリがアルコールを含むことが好ましいが、これらに限定されるものではない。
上記親水化剤は、高分子多孔質膜に塗布することにより、塗膜とし、親水性を付与することもできる。高分子多孔質膜としては、上記のものが使用できる。上記親水化剤は、有機溶剤を含むものであってもよく、有機溶剤を含む場合、容易に塗布することが可能になる。
上記有機溶剤としては、ベンゼン、トルエン、キシレン、ナフタレン、ソルベントナフサなどの芳香族炭化水素;
酢酸メチル、酢酸エチル、酢酸プロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸イソプロピル、酢酸イソブチル、酢酸セロソルブ、プロピレングリコールメチルエーテルアセテート、酢酸カルビトール、ジエチルオキサレート、ピルビン酸エチル、エチル−2−ヒドロキシブチレート、エチル アセトアセテート、酢酸アミル、乳酸メチル、乳酸エチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、2−ヒドロキシイソ 酪酸メチル、2−ヒドロキシイソ酪酸エチルなどのエステル類;
アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトンメチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン、2−ヘキサノン、シクロヘキサノン、メチルアミノケトン、2−ヘプタノンなどのケトン類;
エチルセルソルブ、メチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレン グリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールジメチルエーテル、エチレ ングリコールモノアルキルエーテルなどのグリコールエーテル類;
メタノール、エタノール、iso−プロパノール、n−ブタノール、イソブタノール、tert−ブタノール、sec−ブタノール、3−ペンタノー ル、オクチルアルコール、3−メチル−3−メトキシブタノール、tert−アミルアルコールなどのアルコール類;
テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどの環状エーテル類;
N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;
メチルセロソルブ、セロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、ジエチレングリコールモノメチルエーテルなどのエーテルアルコール類;
1,1,2−トリクロロ−1,2,2−トリフルオロエタン、1,2−ジクロロ−1,1,2,2−テトラフルオロエタン、ジメチルスルホキシドなどがあげられる。
あるいはこれらの2種以上の混合溶剤などがあげられる。
またさらに、フッ素系溶剤としては、たとえばCHCClF(HCFC−141b)、CFCFCHCl/CClFCFCHClF混合物(HCFC−225)、パーフルオ ロヘキサン、パーフルオロ(2−ブチルテトラヒドロフラン)、メトキシ−ノナフルオロブタン、1,3−ビストリフルオロメチルベンゼンなどのほか、
H(CFCFCHOH(n:1〜3の整数)、F(CFCHOH(n:1〜5の整数)、CFCH(CF)OHなどのフッ素系アルコール類;
ベンゾトリフルオライド、パーフルオロベンゼン、パーフルオロ(トリブチルアミン)、
ClCFCFClCFCFClなどがあげられる。
これらフッ素系溶剤は単独でも、またフッ素系溶剤同士、非フッ素系とフッ素系の1種以上との混合溶剤などを挙げることができ、なかでもアルコールとケトン、酢酸ブチル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシドが好ましく、さらにiso−プロパノールとメチルエチルケトン、メチルイソブチルケトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシドが最も好ましい。上記親水化剤が上記有機溶剤を含む場合、上記フルオロポリマーを5〜60質量%含むことが好ましい。親水化剤の塗布は、公知の方法により実施でき、例えば、スピンコート法、バーコード法、キャスト法、スプレー法、エレクトロスピニング法等の方法により塗布することができる。上記親水化剤は、更に、硬化剤、硬化促進剤、顔料、分散剤、増粘剤、防腐剤、紫外線吸収剤、消泡剤、レベリング剤等の塗料に通常使用される添加剤を含むものであってもよい。
上記高分子多孔質膜は、飲料水製造、浄水処理、排水処理等の水処理に用いられる精密濾過膜又は限外濾過膜として好適である。上記高分子多孔質膜は、接触角が小さいため、水処理用の高分子多孔質膜であることが好ましい。
また、上記高分子多孔質膜は、食品分野、電池分野等においても好適に用いられる。
食品分野においては、発酵に用いた酵母の分離除去や、液体の濃縮を目的として上記高分子多孔質膜を用いることができる。
電池分野においては、電解液は透過できるが、電池反応で生じる生成物は透過できないようにするための電池用セパレーターとして上記高分子多孔質膜を用いることができる。
本発明は、フルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体からなることを特徴とする親水化剤でもある。上記共重合体の好適な構成は、上述した特定の接触角及び重量減少率を有するフルオロポリマーとして記載した構成がそのまま適用できる。しかしながら、上記親水化剤は、フルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体からなるものであれば、上述した接触角及び重量減少率を有する共重合体からなることは、必ずしも必要でない。
本発明者らは、また、上記親水化剤について鋭意検討していたなかで、TFE及びHFPからなる群より選択される少なくとも1種のフルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体であって、全単量体単位に対して、フルオロモノマー単位が65〜7モル%であり、アミド結合を有する重合性ビニル化合物単位が35〜93モル%であることを特徴とする新規共重合体を見出すことにも成功した(以下、共重合体(A)ということがある)。本発明の共重合体(A)は、上記構成を有することから、耐熱性に優れる。本発明の共重合体(A)は、上記構成を有することから、非水溶性と親水性を両立させることができ、塗布、溶媒キャスト、射出成型、押出成型、圧縮成型等によって接触角の小さい表面を形成することができる。また、形成された表面は耐ファウリング性にも優れる。
共重合体(A)において、アミド結合を有する重合性ビニル化合物単位が93モル%を超えると、極端に耐水性が悪化する。
共重合体(A)において、フルオロモノマー単位が55〜15モル%、アミド結合を有する重合性ビニル化合物単位が45〜85モル%であることがより好ましい。フルオロモノマー単位が45〜20モル%、アミド結合を有する重合性ビニル化合物単位が55〜80モル%であることが更に好ましい。
また特に、共重合体(A)において、フルオロモノマー単位とアミド結合を有する重合性ビニル化合物単位とのモル比(フルオロモノマー単位/アミド結合を有する重合性ビニル化合物単位)が0.08〜1.50の範囲であるものが好ましく、0.25〜1.25の範囲であるものがより好ましい。さらに好ましくは、0.25〜0.82の範囲である。モル比が小さすぎると、耐久性に優れた高分子多孔質膜を得ることができないおそれがあり、モル比が大きすぎると、親水性に優れた高分子多孔質膜を得ることができないおそれがある。適正なモル比の範囲で耐熱性、親水性、耐久性に優れた高分子多孔質膜を形成できる親水化剤が得られる。
特許文献4には、TFE又はHFP、N−ビニル−2−ピロリドン及びω−ヒドロキシブチルビニルエーテルを含む共重合体が記載されている。非特許文献1には、N−ビニルピロリドンとCTFEとを共重合させたことが記載されている。特許文献5には、VDF−HFP−ビニルピロリドン共重合体が記載されている。特許文献6には、フッ化ビニリデン/1−ビニル−2−ピロリジノン序列コポリマーが記載されている。しかしながら、上記の共重合体(A)は知られていない。
上記重合性ビニル化合物は、アミド結合を有しており、アミド結合に加えて重合性ビニル基を有していることが好ましい。上記アミド結合は、カルボニル基と窒素原子の間の結合をいう。
上記重合性ビニル基としては、ビニル基、アリル基、ビニルエーテル基、ビニルエステル基、アクリル基等が挙げられる。
上記アミド結合を有する重合性ビニル化合物としては、N−ビニル−β−プロピオラクタム、N−ビニル−2−ピロリドン、N−ビニル−γ−バレロラクタム、N−ビニル−2−ピペリドン、N−ビニル−ヘプトラクタムなどのN−ビニルラクタム化合物、N−ビニルホルムアミド、N−メチルーN−ビニルアセトアミドなどの非環状のN−ビニルアミド化合物、N‐アリル‐N‐メチルホルムアミド、アリル尿素などの非環状のN−アリルアミド化合物、1−(2−プロペニル)−2−ピロリドンなどのN−アリルラクタム化合物、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、N−イソプロピルアクリルアミド等のアクリルアミド化合物が挙げられる。
上記アミド結合を有する重合性ビニル化合物としては、また、
Figure 0006485539
(式中、R及びRは独立にH又は炭素数1〜10のアルキル基)で示される化合物、
Figure 0006485539
(式中、R及びRは独立にH又は炭素数1〜10のアルキル基)で示される化合物等も挙げられる。
なかでも、N−ビニルラクタム化合物又は非環状のN−ビニルアミド化合物が好ましく、N−ビニル−β−プロピオラクタム、N−ビニル−2−ピロリドン、N−ビニル−γ−バレロラクタム、N−ビニル−2−ピペリドン、及び、N−ビニル−ヘプトラクタムからなる群より選択される少なくとも1種がより好ましく、N−ビニル−2−ピロリドン、及び、N−ビニル−2−ピペリドンからなる群より選択される少なくとも1種が更に好ましく、N−ビニル−2−ピロリドンが特に好ましい。
新規共重合体(A)は、フルオロモノマー単位及びアミド結合を有する重合性ビニル化合物単位以外の他の単量体単位を有していてもよい。他の単量体単位としては、ビニルエステルモノマー単位、ビニルエーテルモノマー単位、ポリエチレングリコールを側鎖に有する(メタ)アクリルモノマー単位、ポリエチレングリコールを側鎖に有するビニルモノマー単位、長鎖炭化水素基を有する(メタ)アクリルモノマー単位、長鎖炭化水素基を有するビニルモノマー単位、エチレン単位、プロピレン等のα−アルキルオレフィン単位、塩化ビニル単位、塩化ビニリデン単位、ノルボルネン類等の1,2−二置換オレフィン等が挙げられる。他の単量体単位の合計は、0〜50モル%であってよく、0〜40モル%であってよく、0〜30モル%であってよく、0〜15モル%であってよく、0〜5モル%であってよい。
共重合体(A)において、フルオロモノマー単位及びアミド結合を有する重合性ビニル化合物単位以外の他の単量体単位としては、架橋性官能基を有するものは好ましくない。これは、架橋性官能基のもつ極性が耐熱性や耐久性を悪化させるためである。
ここで、架橋性官能基とは、水酸基、カルボン酸基、アミノ基、酸アミド基などの活性水素含有基や、エポキシ基、ハロゲン含有基、二重結合などである。
上記フルオロモノマー/アミド結合を有する重合性ビニル化合物共重合体(A)は、実質的にフルオロモノマー単位及びアミド結合を有する重合性ビニル化合物単位のみからなることが好ましい。
新規共重合体(A)は、ラジカル重合によって製造できる。製造プロセスの種類や媒体の種類・有無、重合反応系内の均一性等に関して特に限定されることはないが、例えば、溶液重合、乳化重合、ソープフリー重合、懸濁重合、沈殿重合、分散重合、塊状重合などにより製造できる。
新規共重合体(A)は、親水化剤として利用できる他、封止剤、コーティング剤、分散剤、バインダー、帯電防止剤、接着剤、増粘剤、湿潤剤、汚れ防止剤、多孔質膜等としても好適に利用できる。
新規共重合体(A)は、屈折率が低いので、光学材料としても好適に利用できる。光学材料としての屈折率(nD)は、ナトリウムD線を光源として25℃において(株)アタゴ光学機器製作所製のアッベ屈折率計を用いて測定する。
屈折率が低いと、原理的にレイリー散乱損失が低下するため、光学材料として使用する際に優位である。また、反射率も低屈折率であるとフレネル反射が低減するため、小さくなる。そのため、表示関係のデバイスとして使用する際には優位となる。さらに、CCDやCMOSといった撮像素子において、光学系に低屈折率材料を用いると、光の取り込み効率が向上するため好ましい。また、一般的に低屈折率材料は屈折率の波長依存性も低く、光学設計の点でも有利になる。
つぎに本発明を実験例をあげて説明するが、本発明はかかる実験例のみに限定されるものではない。
実験例の各数値は以下の方法により測定した。
モノマーのモル比
元素分析により測定した。
分子量の測定はゲル浸透クロマトグラフィー(GPC)測定により行った。
耐ファウリング性評価
透水量測定装置を用いて平膜の耐ファウリング性評価を行った。供給液にはフミン酸(和光純薬工業社製)水溶液(50ppm)を用いた。透水量測定装置に平膜を1枚セットし、透過圧力を0.5atmに調整し、同時に膜の厚密化を行うため純水を温度25℃、流量20mL/minの条件で30分以上流した。このときの膜透過速度から、純水透過係数を測定した。その後、供給液をフミン酸水溶液に切り替え温度25℃、流量20mL/minの条件で流し、30分および1時間経過後の透水量を初期値と比較した。評価は下記の基準により行った。
◎:1時間経過後の透水量が初期と比較して50%以上を保持
○:30分経過後の透水量が初期と比較して50%以上を保持
×:30分経過後の透水量が初期と比較して50%未満
製造例1
テトラフルオロエチレンとN−ビニルピロリドンの共重合体(1)の調製
気密検査済みの耐圧性反応容器内を十分に窒素置換した後、脱酸素処理したアセトン(752g)及びN−ビニルピロリドン(27.2g)を添加した。続いてテトラフルオロエチレン(100g)を加圧添加し、攪拌しながら混合物の内温を60℃となる様に調整した上で、t−ブチルパーオキシピバレートを加えて反応を開始した。反応開始から35分後、残存するテトラフルオロエチレンを除去し、ヒドロキノン(1.1g)を添加した。次いで反応混合物を濃縮して得られる濃縮溶液を、ヘキサン中に添加して再沈殿させて析出する固体成分を水で3回洗浄した。水洗後のポリマーをメタノールに溶解させた後、水中に再沈殿させて析出する固体を乾燥させ、目的の共重合体(1)を15g得た。得られた共重合体(1)は、重量平均分子量6.4×10、分子量分布1.9、50モル%のテトラフルオロエチレン単位及び50モル%のN−ビニルピロリドン単位を含む共重合体であることが分かった。テトラフルオロエチレン単位/N−ビニルピロリドン単位のモル比は1であり、フッ素含有率は36質量%であった。
製造例2
テトラフルオロエチレンとN−ビニルピロリドンの共重合体(2)の調製
気密検査済みの耐圧性反応容器内を十分に窒素置換した後、脱酸素処理したメチルイソブチルケトン(90.3g)及びN−ビニルピロリドン(9.80g)を添加した。続いてテトラフルオロエチレンを加圧添加し、スターラーで攪拌しながら混合物の内温を60℃となる様に調整した上で、アゾビスイソブチロニトリル(0.197g)を加えて反応を開始した。反応開始から1時間後、残存するテトラフルオロエチレンを除去し、ヒドロキノン(0.132g)を添加した。次いで反応混合物をヘキサン中に添加して再沈殿させた。デカンテーションにより上澄みを除去し、水を加えて洗浄後、析出していたポリマーを吸引濾過により回収した。得られたポリマーを水で2回、酢酸エチルで3回洗浄した。得られた固体を乾燥させ、目的の共重合体(2)を3.3g得た。得られた共重合体(2)は、重量平均分子量6.5×10、分子量分布2.0、34モル%のテトラフルオロエチレン単位及び66モル%のN−ビニルピロリドン単位を含む共重合体であった。テトラフルオロエチレン単位/N−ビニルピロリドン単位のモル比は0.52であり、フッ素含有率は24質量%であった。
製造例3
(MMA−PEGMA)共重合体(3)の調製
300ml4つ口ナスフラスコに、メチルエチルケトン(MEK)を100gとCH=C(CH)−CH(以下「MMA」と略す。)を200mモル(20g)、CH=C(CH)−COO(CHCHO)CH(以下「PEGMA」と略す。)を58mモル(27.5g)(M:475,m=9)添加し、入れ、溶液に窒素を20分間吹き込みバブリングした。その後AIBNを0.60mモル(0.1g)反応溶液に仕込み、内温が60℃になるように、水浴の温度を上げた。スリーワンモーターは250rpmで回転させた。8時間後、反応を終了し、放冷した。反応溶液をエバポレーターで濃縮し、ヘキサンで再沈殿を行い、ポリマーを回収した後、真空乾燥にて、目的のポリマー(MMA−PEGMA)を得た。得られた共重合体(3)は、重量平均分子量15.0×10、分子量分布2.5、72モル%のMMA単位及び28モル%のPEGMA単位を含む共重合体であった。フッ素含有率は0質量%であった。
製造例4
テトラフルオロエチレンとN−ビニルピロリドンの共重合体(4)の調製
気密検査済みの耐圧性反応容器内を十分に窒素置換した後、脱酸素処理したメチルイソブチルケトン(85.0g)及びN−ビニルピロリドン(3.90g)を添加した。続いてテトラフルオロエチレンを加圧添加し、スターラーで攪拌しながら混合物の内温を60℃となる様に調整した上で、アゾビスイソブチロニトリル(0.201g)を加えて反応を開始した。反応開始から1時間後、残存するテトラフルオロエチレンを除去し、ヒドロキノン(0.133g)を添加した。次いで反応混合物をヘキサン中に添加して再沈殿させた。デカンテーションにより上澄みを除去し、水を加えて洗浄後、析出していたポリマーを吸引濾過により回収した。得られたポリマーを水で2回、酢酸エチルで3回洗浄した。得られた固体を乾燥させ、目的の共重合体(4)を4.1g得た。得られた共重合体(4)は、重量平均分子量7.8×10、分子量分布2.5、80モル%のテトラフルオロエチレン単位及び20モル%のN−ビニルピロリドン単位を含む共重合体であった。テトラフルオロエチレン単位/N−ビニルピロリドン単位のモル比は4であり、フッ素含有率は59.5質量%であった。
製造例5
テトラフルオロエチレンとN−ビニルピロリドンの共重合体(5)の調製
気密検査済みの耐圧性反応容器内を十分に窒素置換した後、脱酸素処理したメチルイソブチルケトン(MIBK)(90.3g)、N−ビニルピロリドン(49.0g)及びアゾビスイソブチロニトリル(0.197g)を添加した。続いて容器内圧が0.02MPaGとなる様にテトラフルオロエチレンを添加し、攪拌しながら混合物の内温を60℃となる様に調整した上で反応を開始した。反応開始から1時間後、残存するテトラフルオロエチレンを除去し、ヒドロキノン(0.132g)を添加した。次いで反応混合物をヘキサンとMIBKを体積比で1:1に混合した溶媒中に添加して再沈殿させた。上澄み液を除去後、再度、メタノールに溶解させ、ヘキサンとメチルエチルケトンを体積比で1:1に混合した溶媒中に添加して再沈殿させ、沈殿物を濾過精製し、45℃の送風乾燥機で18時間乾燥させ、目的の共重合体(5)を5.4g得た。得られた共重合体(5)は、重量平均分子量7.1×10、分子量分布2.7、5.4モル%のテトラフルオロエチレン単位及び94.6モル%のN−ビニルピロリドン単位を含む共重合体であった。テトラフルオロエチレン単位/N−ビニルピロリドン単位のモル比は0.06であり、フッ素含有率は4.1質量%であった。
実験例1
製造例1で得た共重合体(1)が1質量%、N,N−ジメチルアセトアミドが99質量%となるようにポリマー溶液を調製した。このポリマー溶液を、シリコンウェハー上に2000rpmでスピンコートし、110℃で加熱乾燥させることで平滑な該ポリマー表面を得た。得られたシリコンウェハーを5時間イオン交換水中に浸漬した後、3μlの気泡を水中でポリマー表面に接触させ、接触角を測定した結果、46.7°であり、十分に高い親水性であった。
共重合体(1)のガラス転移温度をDSCを用いて測定した結果、109℃であった。
共重合体(1)が13質量%、N,N−ジメチルホルムアミドが87質量%からなるポリマー溶液2.3gを調製し、直径約58mmのシャーレ上に展開した後乾燥させてポリマーフィルムを得た。このフィルムを水酸化ナトリウムでpH13に調整した5000ppm次亜塩素酸ナトリウム水溶液中に168時間浸漬した。浸漬後、水洗したポリマーフィルムを乾燥させ、浸漬前後の重量変化を算出した。その結果、1.4質量%の重量減少であり、高い安定性が示された。
参考例1
ポリフッ化ビニリデンが18質量%、N,N−ジメチルアセトアミドが82質量%となるようにポリマー溶液を調製した。このポリマー溶液を、ガラス板にアプリケーター(203μm)を用いて塗布し、直ちに25℃の水凝固浴中に10分間浸漬し平膜の多孔質膜を得た。得られた多孔質膜の接触角は77.0°であった。
実験例2
製造例1で得た共重合体(1)が1.8質量%、ポリフッ化ビニリデンが16.2質量%、N,N−ジメチルアセトアミドが82質量%となるようにポリマー溶液を調製した。このポリマー溶液を、ガラス板にアプリケーター(203μm)を用いて塗布し、直ちに25℃の水凝固浴中に10分間浸漬し平膜の多孔質膜を得た。得られた多孔質膜を水酸化ナトリウムでpH11に調整した5000ppm次亜塩素酸ナトリウム水溶液に168時間浸漬し、表面の接触角を測定した。浸漬前の接触角は43.5°であり、親水化剤として機能した。また、168時間浸漬後の接触角は47.3°であり、親水化剤として、高い安定性を示した。
実験例3
製造例2で得た共重合体(2)を用いて、実験例1と同様にシリコンウェハー上にスピンコートして該ポリマー表面を作成した結果、接触角は33.8°であった。
共重合体(2)のガラス転移温度をDSCを用いて測定した結果、152℃であった。
共重合体(2)が13質量%、N,N−ジメチルホルムアミドが87質量%からなるポリマー溶液を調製した後、実験例1と同様にpH13の5000ppm次亜塩素酸ナトリウム水溶液に浸漬したポリマーフィルムの重量変化を測定した。168時間での浸漬により6.0質量%の減少であり高い安定性を示した。
実験例4
製造例2で得た共重合体(2)が4.5質量%、ポリフッ化ビニリデンが13.5質量%、N,N−ジメチルアセトアミドが82質量%となるようにポリマー溶液を調製した。実験例2と同様に多孔質膜を得てpH11での5000ppm次亜塩素酸ナトリウム水溶液への浸漬を行った結果、浸漬前の接触角は30.1°であり、親水化剤として機能した。また、168時間浸漬後の接触角は26.4°であり、高い安定性を示した。
比較例1
製造例3で得た共重合体(3)(MMA−PEGMA)を用いて、実験例1と同様に接触角を測定した結果、45.2°であった。
共重合体(3)が13質量%、N,N−ジメチルホルムアミドが87質量%からなるポリマー溶液を乾固してポリマーフィルムを調製した後、pHを11とした以外は実験例1と同様に5000ppm次亜塩素酸ナトリウム水溶液に浸漬して重量変化を測定した結果、13.3質量%の重量減少が生じた。
比較例2
製造例3で得られた共重合体(3)が4.5質量%、ポリフッ化ビニリデンが13.5質量%、N,N−ジメチルアセトアミドが82.0質量%となるようにポリマー溶液を調製した。実験例2と同様に多孔質膜を得てpH11での5000ppm次亜塩素酸ナトリウム水溶液への浸漬を行った結果、浸漬前の接触角は42.7°、168時間浸漬後の接触角は57.8°であり、耐久性の低い結果となった。これは、共重合体(3)自身の耐久性が比較例1で示したように悪かったためだと思われる。
比較例3
ポリビニルピロリドン(和光純薬工業社より試薬として購入 Mw=35,000)をメタノールに溶解させてポリマーフィルムを形成した以外は、実験例1と同様にpH13での5000ppm次亜塩素酸ナトリウムへの浸漬を行った。168時間後の重量減少は100質量%であり、すべて溶解した。
比較例4
製造例4で得た共重合体(4)を用いて、実験例1と同様にシリコンウェハー上にスピンコートして該ポリマー表面を作成した結果、接触角は60.2°であり、十分な親水性を示さなかった。
共重合体(4)のガラス転移温度をDSCを用いて測定した結果、71℃であった。
共重合体(4)が13質量%、N,N−ジメチルホルムアミドが87質量%からなるポリマー溶液を調製した後、実験例1と同様にpH13の5000ppm次亜塩素酸ナトリウム水溶液に浸漬したポリマーフィルムの重量変化を測定した。168時間での浸漬により生じた重量減少は0.3質量%であった。
比較例5
テトラフルオロエチレン/ビニルアルコールのモル比が33/67のポリ(テトラフルオロエチレン/ビニルアルコール)共重合体を用いて、親水性、耐久性を評価した。この共重合体の分子量は13万、フッ素含有率は40質量%、モル比は0.49、接触角は40.5°、重量減少率は9.2%のポリマーであった。この共重合体が1.8質量%、ポリフッ化ビニリデンが16.2質量%、N,N−ジメチルアセトアミドが82.0質量%となるようにポリマー溶液を調製した。実験例2と同様に多孔質膜を得てpH11での5000ppm次亜塩素酸ナトリウム水溶液への浸漬を行った結果、浸漬前の接触角は43.5°、168時間浸漬後の接触角は58.9°であり、耐久性の低い結果となった。
比較例6
製造例5で得られた共重合体(5)をN,N−ジメチルアセトアミドに溶解させてポリマーフィルムを形成した以外は、実験例1と同様にpH13での5000ppm次亜塩素酸ナトリウムへの浸漬を行った。168時間後の重量減少は100質量%であり、すべて溶解した。
実験例5
製造例1で得た共重合体(1)が3質量%、ポリフッ化ビニリデンが20質量%、N,N−ジメチルアセトアミドが77質量%となるようにポリマー溶液を調製した。
このポリマー溶液を、ガラス板にアプリケーター(203μm)を用いて塗布し、直ちに25℃の水凝固浴中に10分間浸漬し平膜の多孔質膜を得た。得られた多孔質膜の評価を行った結果、純水透過係数は6.4×10−10/m/s/Pa、耐ファウリング性評価は○であった。
実験例6
製造例2で得た共重合体(2)を3質量%とした以外は、実験例5と同様に平膜の多孔質膜を作製した。得られた多孔質膜の評価を行った結果、純水透過係数は6.9×10−10/m/s/Pa、耐ファウリング性評価は◎であった。
参考例2
PVdFが16質量%、ポリエチレングリコール400が5質量%、水が2質量%、N,N−ジメチルアセトアミドが77質量%となるようにポリマー溶液を調製した。
このポリマー溶液から、実験例5と同様にして平膜の多孔質膜を得た後、90℃の水中で洗浄してポリエチレングリコール400を除去した。得られた多孔質膜の評価を行った結果、純水透過係数は5.1×10−10/m/s/Pa、耐ファウリング性評価は×であった。
比較例7
製造例4で得た共重合体(4)を3質量%とした以外は、実験例5と同様に平膜の多孔質膜を作製した。得られた多孔質膜の評価を行った結果、純水透過係数は5.8×10−10/m/s/Pa、耐ファウリング性評価は×であった。
製造例6
クロロトリフルオロエチレンとN−ビニルピロリドンの共重合体(6)の調製
気密検査済みの耐圧性反応容器内を十分に窒素置換した後、脱酸素処理したメチルイソブチルケトン(90.3g)及びN−ビニルピロリドン(3.27g)を添加した。続いてクロロトリフルオロエチレン(128g)を加圧添加し、攪拌しながら混合物の内温を60℃となる様に調整した上で、アゾビスイソブチロニトリル(0.197g)を加えて反応を開始した。反応開始から16時間後、さらに80℃で1時間反応させた後、残存するクロロトリフルオロエチレンを除去し、ヒドロキノン(0.132g)を添加した。次いで反応混合物を濃縮して得られる濃縮溶液を、ヘキサン中に添加して再沈殿させて析出する固体成分を、同量のジエチルエーテルとヘキサンを加えて撹拌し、上澄みを除いた後ドラフトで終夜風乾した。水で3回洗浄、デカンテーション後、ドラフト内で風乾した。さらにヘキサンで3回洗浄、デカンテーション後乾燥させ、目的の共重合体(6)を2.69g得た。得られた共重合体(6)は、重量平均分子量4.7×10、分子量分布4.3、64モル%のクロロトリフルオロエチレン単位及び36モル%のN−ビニルピロリドン単位を含む共重合体であることが分かった。クロロトリフルオロエチレン単位/N−ビニルピロリドン単位のモル比は1.78であった。
製造例7
ヘキサフルオロプロピレンとN−ビニルピロリドンの共重合体(7)の調製
気密検査済みの耐圧性反応容器内を十分に窒素置換した後、脱酸素処理したアセトン(891.6g)及びN−ビニルピロリドン(135.8g)を添加した。続いてヘキサフルオロプロピレン(150g)を加圧添加し、攪拌しながら混合物の内温を60℃となる様に調整した上で、t−ブチルパーオキシピバレートを加えて反応を開始した。反応開始から4時間30分後、残存するヘキサフルオロプロピレンを除去した。次いで反応混合物を、ヘキサン/酢酸エチル=8:2(vol%)の混合溶液中に添加して再沈殿させた。析出する固体成分を別途ヘキサン/酢酸エチル混合溶液で洗浄した。得られたポリマーを乾燥させ、目的の共重合体(7)を249g得た。得られた共重合体(7)は、重量平均分子量1.2×10、分子量分布1.7、28モル%のヘキサフルオロプロピレン単位及び72モル%のN−ビニルピロリドン単位を含む共重合体であることが分かった。ヘキサフルオロプロピレン単位/N−ビニルピロリドン単位のモル比は0.39であり、フッ素含有率は26質量%であった。
実験例7
熱重量分析装置を用いて、共重合体(2)を空気雰囲気下、10℃/minで600℃まで昇温した。一定重量部と重量減少部からそれぞれ接線を引き、交点を熱分解温度とした結果、共重合体(2)の熱分解温度は368℃であった。
比較例8
熱重量分析装置を用いて、実験例7と同様に共重合体(6)を空気雰囲気下、10℃/minで600℃まで昇温した。一定重量部と重量減少部からそれぞれ接線を引き、交点を熱分解温度とした結果、共重合体(6)の熱分解温度は303℃であった。
実験例8
熱重量分析装置を用いて、実験例7と同様に共重合体(7)を空気雰囲気下、10℃/minで600℃まで昇温した。一定重量部と重量減少部からそれぞれ接線を引き、交点を熱分解温度とした結果、共重合体(7)の熱分解温度は375℃であった。
実験例9
製造例6で得た共重合体(6)を用いて、実験例1と同様にシリコンウェハー上にスピンコートして該ポリマー表面を作成した結果、接触角は46.8°であった。
実験例10
製造例7で得た共重合体(7)を用いて、実験例1と同様にシリコンウェハー上にスピンコートして該ポリマー表面を作成した結果、接触角は38.2°であった。

Claims (11)

  1. テトラフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種のフルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体であり、全単量体単位に対して、フルオロモノマー単位が55〜15モル%であり、アミド結合を有する重合性ビニル化合物単位が45〜85モル%であり、軟化点が80〜200℃であり、接触角が50°以下、かつ、重量減少率が7%以下であるフルオロポリマーからなり、
    前記接触角は、シリコンウェハー上にフルオロポリマー溶液をスピンコートし、加熱乾燥させることで平滑なポリマー表面を作製後、得られたシリコンウェハーを5時間イオン交換水中に浸漬した後、3μlの気泡を25℃の水中でポリマー表面に接触させて測定した水中接触角であり、
    前記重量減少率は、下記式:
    重量減少率=100−(次亜塩素酸ナトリウム(NaClO)水溶液に浸漬した後のフルオロポリマーの重量)/(NaClO水溶液に浸漬させる前のフルオロポリマーの重量)×100
    (式中、NaClO水溶液に浸漬した後のフルオロポリマーの重量は、フルオロポリマーを、5000ppmのNaClOを含む水溶液(pH13となる様に水酸化ナトリウムを添加して調製する)に、20℃で168時間浸漬させた後、フルオロポリマーを回収し、60℃で15時間乾燥して得られるフルオロポリマーの重量である。)で算出する値である
    ことを特徴とする親水化剤。
  2. フルオロポリマーは、フッ素含有率が5質量%以上である請求項1記載の親水化剤。
  3. ポリマー(但し、前記親水化剤を除く)用親水化剤である請求項1又は2記載の親水化剤。
  4. 高分子多孔質膜用親水化剤である請求項1、2又は3記載の親水化剤。
  5. 請求項1、2、3又は4記載の親水化剤とポリマー(但し、前記親水化剤を除く)とからなることを特徴とする組成物。
  6. 前記ポリマー(但し、前記親水化剤を除く)は、ポリフッ化ビニリデン、又は、フッ化ビニリデン単位を有する共重合体である請求項記載の組成物。
  7. 請求項1、2、3又は4記載の親水化剤とポリマー(但し、前記親水化剤を除く)とからなることを特徴とする高分子多孔質膜。
  8. 前記ポリマー(但し、前記親水化剤を除く)は、ポリフッ化ビニリデン、又は、フッ化ビニリデン単位を有する共重合体である請求項記載の高分子多孔質膜。
  9. 接触角が55°以下であり、
    前記接触角は、水中に5時間浸漬した高分子多孔質膜について、静的接触角計を用い、室温、常圧のもとで3μLの気泡を水中で表面に接触させて測定した水中接触角である
    請求項又は記載の高分子多孔質膜。
  10. テトラフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種のフルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体からなり、
    前記共重合体は、全単量体単位に対して、フルオロモノマー単位が55〜15モル%であり、アミド結合を有する重合性ビニル化合物単位が45〜85モル%であり、軟化点が80〜200℃である
    ことを特徴とする親水化剤。
  11. テトラフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種のフルオロモノマーとアミド結合を有する重合性ビニル化合物との共重合体であって、全単量体単位に対して、フルオロモノマー単位が55〜15モル%であり、アミド結合を有する重合性ビニル化合物単位が45〜85モル%であり、軟化点が80〜200℃であることを特徴とする共重合体。
JP2017500761A 2015-02-20 2016-02-19 親水化剤、親水化剤を含む組成物及び高分子多孔質膜 Active JP6485539B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015031982 2015-02-20
JP2015031982 2015-02-20
JP2015121324 2015-06-16
JP2015121324 2015-06-16
PCT/JP2016/054907 WO2016133206A1 (ja) 2015-02-20 2016-02-19 親水化剤、親水化剤を含む組成物及び高分子多孔質膜

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018239746A Division JP6760359B2 (ja) 2015-02-20 2018-12-21 親水化剤、親水化剤を含む組成物及び高分子多孔質膜

Publications (2)

Publication Number Publication Date
JPWO2016133206A1 JPWO2016133206A1 (ja) 2017-11-24
JP6485539B2 true JP6485539B2 (ja) 2019-03-20

Family

ID=56689372

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017500761A Active JP6485539B2 (ja) 2015-02-20 2016-02-19 親水化剤、親水化剤を含む組成物及び高分子多孔質膜
JP2018239746A Active JP6760359B2 (ja) 2015-02-20 2018-12-21 親水化剤、親水化剤を含む組成物及び高分子多孔質膜

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018239746A Active JP6760359B2 (ja) 2015-02-20 2018-12-21 親水化剤、親水化剤を含む組成物及び高分子多孔質膜

Country Status (6)

Country Link
US (1) US20180022846A1 (ja)
EP (1) EP3252086B1 (ja)
JP (2) JP6485539B2 (ja)
CN (1) CN107250179B (ja)
TW (1) TW201708276A (ja)
WO (1) WO2016133206A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3079834B1 (fr) * 2018-04-10 2021-09-10 Arkema Inc Fluoropolymeres fonctionnels
CN110894254A (zh) * 2018-09-12 2020-03-20 浙江大学 一种叔胺衍生物型含氟两亲聚合物及其由该聚合物制备的分离膜
JP7319554B2 (ja) * 2018-09-14 2023-08-02 ダイキン工業株式会社 組成物及び積層体
WO2020158633A1 (ja) * 2019-01-31 2020-08-06 ダイキン工業株式会社 構造体、複合体、電池、及び、複合体の製造方法
CN110141981A (zh) * 2019-05-28 2019-08-20 迈博瑞生物膜技术(南通)有限公司 一种亲水性乙烯-三氟氯乙烯共聚物中空膜的制备方法
US20230187694A1 (en) 2020-05-01 2023-06-15 Daikin Industries, Ltd. Composite, polymer electrolyte, electrochemical device, polymer-based solid-state battery, and actuator
CN112108015A (zh) * 2020-10-10 2020-12-22 天津工业大学 一种结构可控两亲性超支化聚合物原位改性超滤膜的制备方法
CN116917029A (zh) 2021-03-01 2023-10-20 国立大学法人东京大学 微颗粒和微颗粒分散液

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084173A (en) * 1985-05-27 1992-01-28 Asahi Medical Co., Ltd. Hydrophilic composite porous membrane, a method of producing the plasma separator
JPH01144409A (ja) * 1987-09-18 1989-06-06 Pennwalt Corp 弗化ビニリデンとn−アルキルアクリルアミドとの親水性序列コポリマー及びその製造方法
JPH0830164B2 (ja) * 1987-10-20 1996-03-27 旭硝子株式会社 塗料用組成物
DE69017197T2 (de) * 1990-05-18 1995-09-14 Japan Gore Tex Inc Hydrophile poröse Membrane aus Fluoropolymer.
US5354587A (en) * 1993-11-15 1994-10-11 W. L. Gore & Associates, Inc. Hydrophilic compositions with increased thermal and solvent resistance
US20020148774A1 (en) * 2001-02-06 2002-10-17 I-Fan Wang Asymmetric hydrophilic membrane by grafting
JP4785528B2 (ja) * 2003-04-16 2011-10-05 株式会社クレハ フッ化ビニリデン系樹脂多孔膜及びその製造方法
US20100034504A1 (en) * 2008-08-08 2010-02-11 E.I. Du Pont De Nemours And Company Melt Processible Semicrystalline Fluoropolymer Comprising Repeating Units Arising from Tetrafluoroethylene and a Hydrocarbon Monomer Having a Functional Group and a Polymerizable Carbon-Carbon Double Bond, and Multilayer Articles Therefrom
JP5423214B2 (ja) * 2009-07-31 2014-02-19 旭硝子株式会社 新規な含フッ素共重合体および膜
JP2011225659A (ja) * 2010-04-16 2011-11-10 Asahi Glass Co Ltd 親水化されたエチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体
US20150021261A1 (en) * 2011-12-28 2015-01-22 Daikin Industries, Ltd. Porous polymer membrane
US10092653B2 (en) * 2012-09-13 2018-10-09 W. L. Gore & Associates, Inc. Polytetrafluoroethylene co-polymer emulsions
EP3015506A4 (en) * 2013-06-26 2017-01-11 Daikin Industries, Ltd. Composition, porous polymer membrane and hydrophilic agent

Also Published As

Publication number Publication date
JP6760359B2 (ja) 2020-09-23
EP3252086A4 (en) 2018-10-24
CN107250179A (zh) 2017-10-13
WO2016133206A1 (ja) 2016-08-25
EP3252086B1 (en) 2024-06-19
EP3252086A1 (en) 2017-12-06
TW201708276A (zh) 2017-03-01
US20180022846A1 (en) 2018-01-25
CN107250179B (zh) 2021-01-05
JP2019094498A (ja) 2019-06-20
JPWO2016133206A1 (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6485539B2 (ja) 親水化剤、親水化剤を含む組成物及び高分子多孔質膜
JP5861734B2 (ja) 高分子多孔質膜
JP6075452B2 (ja) 組成物、高分子多孔質膜及び親水化剤
JP5664818B1 (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP5626269B2 (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
TW200911848A (en) Vinylidene fluoride copolymers
CN105008029B (zh) 长链支化的氟聚合物膜
JP2015058419A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
CN114828993A (zh) 用于基于pvdf的膜的包含两性离子部分的聚合物添加剂
US20210197130A1 (en) Fluoropolymer latex coatings for membranes
WO2019016179A1 (en) MEMBRANES COMPRISING FLUORINATED POLYMERS AND USE THEREOF
JP2015058418A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
WO2019016177A1 (en) MEMBRANES COMPRISING FLUORINATED POLYMERS AND THEIR USE
JP2016169375A (ja) オキシアルキレン基含有含フッ素重合体
WO2024003351A1 (en) Use of polymer additive comprising zwitterionic moieties in pvdf membranes for increasing the flux of said membranes
JP2014200703A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP2014200702A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R151 Written notification of patent or utility model registration

Ref document number: 6485539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151