JP6482187B2 - Photovoltaic yarn - Google Patents

Photovoltaic yarn Download PDF

Info

Publication number
JP6482187B2
JP6482187B2 JP2014110732A JP2014110732A JP6482187B2 JP 6482187 B2 JP6482187 B2 JP 6482187B2 JP 2014110732 A JP2014110732 A JP 2014110732A JP 2014110732 A JP2014110732 A JP 2014110732A JP 6482187 B2 JP6482187 B2 JP 6482187B2
Authority
JP
Japan
Prior art keywords
layer
thickness
transparent electrode
electrode layer
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014110732A
Other languages
Japanese (ja)
Other versions
JP2015225982A (en
Inventor
佳加 池田
佳加 池田
和義 杉野
和義 杉野
正史 布川
正史 布川
木村 睦
睦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Shinshu University NUC
Tokyo Institute of Technology NUC
Original Assignee
Suminoe Textile Co Ltd
Shinshu University NUC
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd, Shinshu University NUC, Tokyo Institute of Technology NUC filed Critical Suminoe Textile Co Ltd
Priority to JP2014110732A priority Critical patent/JP6482187B2/en
Publication of JP2015225982A publication Critical patent/JP2015225982A/en
Application granted granted Critical
Publication of JP6482187B2 publication Critical patent/JP6482187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、発電効率の向上した光発電糸及びその製造方法に関する。   The present invention relates to a photovoltaic yarn with improved power generation efficiency and a method for manufacturing the same.

地球温暖化をもたらす化石燃料の代替エネルギーとして、風力、地熱、太陽光といった自然エネルギーの活用のための研究開発が進められており、中でも太陽エネルギーを直接電力に変換する太陽電池を利用した太陽光発電の普及が期待されている。   Research and development for the utilization of natural energy, such as wind, geothermal, and solar, are being promoted as alternative energy to fossil fuels that cause global warming. In particular, sunlight using solar cells that convert solar energy directly into electric power The spread of power generation is expected.

太陽電池は、光起電力効果により太陽光を即時に電力に変換するもので、現在ではシリコン太陽電池が主流ではあるが、価格が高く、多くの家庭や事業所に普及するまでには至っていない。近年では、製法が簡便で生産コストを低く抑えることのできる有機化合物を用いた太陽電池の研究開発も行われてきている。   Solar cells instantly convert sunlight into electric power due to the photovoltaic effect. Currently, silicon solar cells are mainstream, but they are expensive and have not yet become popular in many homes and offices. . In recent years, research and development have been conducted on solar cells using organic compounds that are simple in production and can reduce production costs.

このような有機化合物を用いた太陽電池として、特許文献1には、透明材料の管の内面に透明導電層、色素増感多孔質半導体層、電解質層を順に設け、管の中央部分に対極が挿入された構造の色素増感光電変換素子が開示されている。   As a solar cell using such an organic compound, Patent Document 1 discloses that a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a transparent material tube, and a counter electrode is provided at the central portion of the tube. A dye-sensitized photoelectric conversion element having an inserted structure is disclosed.

また、出願人は特許文献2に、耐久性に優れると共に、柔軟で高効率な発電性能を発揮する光発電糸として、導電糸の周囲に中心側から順に、活性層、導電性高分子層、及び熱可塑性樹脂層が積層された光発電糸において、該熱可塑性樹脂層の厚さが0.1μm〜50μmで、かつ、該熱可塑性樹脂層の厚さが前記導電糸の直径に対して1/20〜1/5である耐久性に優れた光発電糸を開示している。   Further, the applicant described in Patent Document 2 as an photovoltaic layer that is excellent in durability and that exhibits flexible and highly efficient power generation performance, in order from the center side around the conductive yarn, an active layer, a conductive polymer layer, And the photovoltaic yarn in which the thermoplastic resin layer is laminated, the thickness of the thermoplastic resin layer is 0.1 μm to 50 μm, and the thickness of the thermoplastic resin layer is 1 with respect to the diameter of the conductive yarn. The photovoltaic yarn excellent in durability which is / 20 to 1/5 is disclosed.

しかしながら、特許文献1の技術は、布帛にするための製編あるいは製織に好適とはいえず、特許文献2よりもさらに発電効率の向上した光発電糸が求められている。
特開2007−012545 特開2012−234959
However, the technique of Patent Document 1 cannot be said to be suitable for knitting or weaving to make a fabric, and there is a demand for photovoltaic yarns with further improved power generation efficiency than Patent Document 2.
JP2007-012545 JP2012-234959

本発明は、かかる技術的背景に鑑みてなされたものであって、その目的は、曲げることが可能で柔軟性に優れると共に、高効率な発電性能を発揮する光発電糸を提供することにある。   The present invention has been made in view of such a technical background, and an object of the present invention is to provide a photovoltaic yarn that can be bent and has excellent flexibility and exhibits high-efficiency power generation performance. .

本発明者は、このような課題を解決するために鋭意検討の結果、導電線材を中心としてその周囲に中心側から順に、陰極側バッファー層(ホールブロック層)、活性層、透明電極層、電気取出し線、封止層(被覆層)が積層された光発電糸であって、陰極側バッファー層(ホールブロック層)、活性層、透明電極層のそれぞれの厚さを5nm〜1000nmにし、かつ、電気取り出しに金属線を使用することによって電気取り出し性能を向上させることができ、高効率な発電性能を有する光発電糸が得られることを見出し本発明に到達した。本発明は以下の手段を提供する。   As a result of intensive studies to solve such problems, the inventor of the present invention has a cathode-side buffer layer (hole block layer), an active layer, a transparent electrode layer, an electric layer around the conductive wire in the order from the center. It is a photovoltaic yarn in which a take-out line and a sealing layer (coating layer) are laminated, and the thickness of each of the cathode side buffer layer (hole block layer), the active layer, and the transparent electrode layer is 5 nm to 1000 nm, and It has been found that the use of a metal wire for electrical extraction can improve the electrical extraction performance, and that a photovoltaic yarn having a highly efficient power generation performance can be obtained. The present invention provides the following means.

[1]導電線材を中心としてその周囲に中心側から順に、陰極側バッファー層(ホールブロック層)、活性層、透明電極層、電気取出し線、及び封止層(被覆層)が筒型に積層された光発電糸であって、前記導電線材は、太さ0.05mm〜0.8mmでその表面に凹凸が無いステンレス線からなり、前記陰極側バッファー層(ホールブロック層)、前記活性層、及び前記透明電極層のそれぞれの厚さを5nm〜1000nmにし、かつ、前記電気取り出し線が、金属線からなり、厚さ(太さ)が20μm〜100μmで前記透明電極層と前記封止層との間において前記透明電極層にその長さ方向全体に所定のピッチで螺旋状に巻き付けられており、前記封止層(被覆層)が前記透明電極層と前記電気取り出し線とをその長さ方向全体に封止している、ことを特徴とする光発電糸。 [1] A cathode-side buffer layer (hole block layer), an active layer, a transparent electrode layer, an electrical lead wire, and a sealing layer (covering layer) are laminated in a cylindrical shape around the conductive wire in the order from the center. The conductive wire is made of a stainless steel wire having a thickness of 0.05 mm to 0.8 mm with no irregularities on its surface, the cathode side buffer layer (hole block layer), the active layer, And each thickness of the said transparent electrode layer shall be 5 nm-1000 nm, and the said electrical extraction line | wire consists of metal wires, and thickness (thickness) is 20 micrometers-100 micrometers, and the said transparent electrode layer and the said sealing layer wherein is wound helically on its entire length direction transparent electrode layer at a predetermined pitch, the sealing layer (coating layer) is its length and the electric extraction line and the transparent electrode layer between the Sealed in all directions A photovoltaic yarn characterized by

[2]前記陰極側バッファー層(ホールブロック層)が、酸化チタン(TiOx)、酸化亜鉛(ZnO)から選ばれるn型半導体層からなり、厚さが5nm〜50nmであり、前記活性層が、ポリチオフェン誘導体及びフラーレン誘導体を含む有機半導体層からなり、前記活性層において、前記ポリチオフェン誘導体がポリ−3−ヘキシルチオフェン(P3HT)であって、前記フラーレン誘導体がフェニルC61ブチル酸メチルエステル(PCBM)、フラーレンビスインデン付加体(ICBA)から選ばれる有機半導体層からなり、厚さが100nm〜1000nmであり、前記透明電極層が、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)の導電性高分子層からなり、厚さが100nm〜1000nmであり、前記封止層(被覆層)が、フェニルシリコーン、メチルシリコーン、エポキシシリコーンから選ばれる樹脂層からなり、厚さが50μm〜200μmである、ことを特徴とする請求項1に記載の光発電糸。 [2] The cathode side buffer layer (hole block layer) is composed of an n-type semiconductor layer selected from titanium oxide (TiOx) and zinc oxide (ZnO) , and has a thickness of 5 nm to 50 nm. It comprises an organic semiconductor layer containing a polythiophene derivative and a fullerene derivative. In the active layer, the polythiophene derivative is poly-3-hexylthiophene (P3HT), and the fullerene derivative is phenyl C61 butyric acid methyl ester (PCBM), fullerene. It consists of an organic semiconductor layer selected from bisindene adducts (ICBA), has a thickness of 100 nm to 1000 nm, and the transparent electrode layer is a conductive polymer of polyethylenedioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS). It consists of layers and has a thickness of 100 nm to 1000 m, and the sealing layer (coating layer), phenyl silicone, methyl silicone, a resin layer selected from epoxy silicone, a thickness of 50 m to 200 m, according to claim 1, characterized in that Photovoltaic yarn.

[1]の発明では、導電線材を中心としてその周囲に中心側から順に、陰極側バッファー層(ホールブロック層)、活性層、透明電極層、電気取出し線、封止層(被覆層)が積層された光発電糸であって、陰極側バッファー層(ホールブロック層)、活性層、透明電極層のそれぞれの厚さを5nm〜1000nmにしているので、均一な薄膜塗工がなされ、発電効率を向上させることができる。さらに、電気取り出し線が金属線からなり、前記透明電極層上に巻き付けられているので、セル有効面積が小さくなり発電効率は低下するものの、それ以上に電気取り出し性能を向上させることができ、実質のエネルギー変換効率を向上することができる。また、前記封止層(被覆層)が前記透明電極層と透明電極層上に巻き付けられた電気取り出し線を封止しているので、酸素及び水分を遮蔽すると共に、耐久性に優れた光発電糸とすることができる。   In the invention of [1], a cathode-side buffer layer (hole block layer), an active layer, a transparent electrode layer, an electrical lead wire, and a sealing layer (coating layer) are laminated in this order from the center side around the conductive wire. Since the thickness of each of the cathode side buffer layer (hole block layer), the active layer, and the transparent electrode layer is 5 nm to 1000 nm, uniform thin film coating is performed, and the power generation efficiency is improved. Can be improved. Furthermore, since the electric lead wire is made of a metal wire and is wound on the transparent electrode layer, the cell effective area is reduced and the power generation efficiency is lowered, but the electric pick-up performance can be further improved. The energy conversion efficiency can be improved. In addition, since the sealing layer (coating layer) seals the transparent electrode layer and the electric lead wire wound around the transparent electrode layer, the photovoltaic power generation has excellent durability while shielding oxygen and moisture. It can be a thread.

[2]の発明では、前記陰極側バッファー層(ホールブロック層)が、酸化チタン(TiOx)、酸化亜鉛(ZnO)から選ばれるn型半導体層からなるので、ホールブロック層を陰極側に形成し、陰極近傍における正孔―電子の再結合を抑制し、整流性が改善され、短絡電流が向上することができる。また、厚さが5nm〜50nmであるので、均一な薄膜塗工がなされ、安定した電子の移動を可能にし、陰極の保護層として有効なものとすることができる。   In the invention of [2], since the cathode side buffer layer (hole block layer) is made of an n-type semiconductor layer selected from titanium oxide (TiOx) and zinc oxide (ZnO), the hole block layer is formed on the cathode side. Further, hole-electron recombination in the vicinity of the cathode can be suppressed, rectification can be improved, and short-circuit current can be improved. In addition, since the thickness is 5 nm to 50 nm, uniform thin film coating can be performed, stable electron movement can be achieved, and it can be effective as a protective layer for the cathode.

[3]の発明では、前記活性層が、ポリチオフェン誘導体及びフラーレン誘導体を含む有機半導体層からなるので、太陽光の照射により光起電力を発生することができる。   In the invention [3], since the active layer is composed of an organic semiconductor layer containing a polythiophene derivative and a fullerene derivative, a photovoltaic force can be generated by irradiation with sunlight.

[4]の発明では、前記活性層の前記ポリチオフェン誘導体がポリ−3−ヘキシルチオフェン(P3HT)であって、前記フラーレン誘導体がフェニルC61ブチル酸メチルエステル(PCBM)、フラーレンビスインデン付加体(ICBA)から選ばれる有機半導体層からなるので、太陽光の照射により光起電力を発生することができ、かつ厚さが100nm〜1000nmであるので高効率な発電性能を発揮する光発電糸とすることができる。 In the invention of [4], the polythiophene derivative of the active layer is poly-3-hexylthiophene (P3HT), and the fullerene derivative is phenyl C 61 butyric acid methyl ester (PCBM), fullerene bisindene adduct (ICBA). ) Is a photovoltaic yarn that can generate photovoltaic power when irradiated with sunlight and that exhibits a highly efficient power generation performance because the thickness is between 100 nm and 1000 nm. Can do.

[5]の発明では、前記透明電極層が、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)の導電性高分子層からなり、厚さが100nm〜1000nmであるので安定して活性層3で発生した正孔を取り出すことができる。   In the invention of [5], the transparent electrode layer is composed of a conductive polymer layer of polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS), and has a thickness of 100 nm to 1000 nm. 3 can be taken out.

[6]の発明では、前記電気取出し線が、金、ステンレス、銀から選ばれる金属線からなり、厚さ(太さ)が、20μm〜100μmで、前記透明電極層上に巻き付けられているので、セル有効面積が小さくなり発電効率は低下するのであるが、それ以上に電気取り出し性能を向上させることができるので、実質のエネルギー変換効率を向上することができる。   In the invention of [6], the electrical lead wire is made of a metal wire selected from gold, stainless steel, and silver, and has a thickness (thickness) of 20 μm to 100 μm and is wound on the transparent electrode layer. Although the cell effective area is reduced and the power generation efficiency is lowered, the electricity extraction performance can be further improved, so that the substantial energy conversion efficiency can be improved.

[7]の発明では、前記封止層(被覆層)が、フェニルシリコーン、メチルシリコーン、エポキシシリコーンから選ばれる樹脂層からなるので、150℃未満の温度で硬化することができ、有機半導体層に熱ダメージを与えずに硬化させることができる。また、これらの樹脂層は、2mm厚フィルム状態での波長400nmの光透過率が70%以上であるので、照射される光エネルギーの損失をおさえることができる。さらにこれらの樹脂は、室温で粘度が1Pa・S〜35Pa・Sであるので、厚さが50μm〜200μmでの塗工が可能となる。50μm〜200μmの厚さで塗工を行うことで酸素及び水分を遮蔽し、陰極側バッファー層(ホールブロック層)、活性層、透明電極層、電気取出し線を保護するとともに、光発電糸に耐久性を付与することができる。   In the invention of [7], since the sealing layer (coating layer) is made of a resin layer selected from phenyl silicone, methyl silicone, and epoxy silicone, it can be cured at a temperature of less than 150 ° C. It can be cured without causing thermal damage. Moreover, since these resin layers have a light transmittance at a wavelength of 400 nm in a 2 mm thick film state of 70% or more, it is possible to suppress the loss of irradiated light energy. Furthermore, since these resins have a viscosity of 1 Pa · S to 35 Pa · S at room temperature, coating with a thickness of 50 μm to 200 μm becomes possible. Oxygen and moisture are shielded by coating at a thickness of 50 μm to 200 μm, and the cathode side buffer layer (hole block layer), active layer, transparent electrode layer, and electrical lead-out line are protected and durable against photovoltaic yarns Sex can be imparted.

[8]の発明では、導電線材の周囲に陰極側バッファー層(ホールブロック層)液を塗工し、熱処理し、乾燥することにより陰極側バッファー層(ホールブロック層)を得る陰極側バッファー層積層工程と、前記陰極側バッファー層の周囲に活性層液を塗工し、熱処理し、乾燥することにより活性層を得る活性層積層工程と、前記活性層の周囲に透明電極層液を塗工し、熱処理し、乾燥することにより透明電極層を得る透明電極層積層工程と、前記透明電極層の周りに電気取出し線を巻き付ける電気取出し線巻付け工程と、前記透明電極層の周りに電気取出し線を巻き付けた周囲上に封止層(被覆層)液を塗工し、熱処理することにより封止層を得る封止層積層工程と順に実施するので、耐久性に優れ、柔軟で高効率な発電性能を発揮する光発電糸の製造方法とすることができる。   In the invention of [8], a cathode side buffer layer stack is obtained in which a cathode side buffer layer (hole block layer) solution is applied around a conductive wire, heat treated, and dried to obtain a cathode side buffer layer (hole block layer). Coating an active layer solution around the cathode buffer layer, heat-treating and drying to obtain an active layer, and applying a transparent electrode layer solution around the active layer A transparent electrode layer laminating step for obtaining a transparent electrode layer by heat treatment and drying, an electric lead wire winding step for winding an electric lead wire around the transparent electrode layer, and an electric lead wire around the transparent electrode layer The sealing layer (coating layer) solution is applied on the periphery of the wire and heat treatment is performed in sequence with the sealing layer laminating step to obtain a sealing layer. Light that demonstrates performance It can be a method for manufacturing a conductive yarn.

[9]の発明では、前記各層を塗工する方法が、塗工液中を通過して垂直方向に下から上に一定速度で塗工物を引き上げて塗工し、熱処理し、乾燥する方法とするので、前記陰極側バッファー層(ホールブロック層)、活性層、透明電極層の厚さを5nm〜1000nmと非常に薄い膜厚に制御して塗工することができる光発電糸の製造方法とすることができる。   In the invention of [9], the method of coating each layer is a method of passing through the coating liquid, pulling up the coated material at a constant rate from the bottom to the top in the vertical direction, coating, heat-treating, and drying. Therefore, a method for producing a photovoltaic yarn capable of being applied while controlling the thickness of the cathode side buffer layer (hole block layer), active layer, and transparent electrode layer to a very thin film thickness of 5 nm to 1000 nm It can be.

本発明に係る光発電糸の一実施形態を図1及び図2に示す。本実施形態の光発電糸1は、導電線材2の周囲に中心側から順に、陰極側バッファー層(ホールブロック層)3、活性層4、透明電極層5、電気取出し線6、封止層(被覆層)7が積層された光発電糸である。   One embodiment of the photovoltaic yarn according to the present invention is shown in FIGS. The photovoltaic thread 1 of the present embodiment includes a cathode side buffer layer (hole block layer) 3, an active layer 4, a transparent electrode layer 5, an electrical lead wire 6, a sealing layer (in order from the center side around the conductive wire 2. This is a photovoltaic yarn in which a covering layer 7 is laminated.

導電線材2としては、例えば金属(アルミニウム、ステンレス、金、銀等)薄膜を蒸着処理した繊維、無機繊維(ステンレス線、銅線、アルミニウム線、金線、銀線等)、導電性繊維(カーボン練り込み繊維、導電性高分子からなる繊維)等を採用することができる。中でも導電性と表面均一性に優れた無機繊維が好ましく、ステンレス線は耐久性に優れ好ましい。導電線材2の太さは、選定する導電線材によるが、ステンレス線の場合は0.05mm〜0.8mmの範囲が好ましい。0.05mmより細くなると、発電糸の強度が弱くなり、取扱いが困難となり好ましくない。また、0.8mmより太くなると、発電糸の柔軟性が不充分となるので好ましくない。また、ステンレス線は、表面に凹凸のないものが好ましい。表面に凹凸があると陰極側バッファー層(ホールブロック層)3の塗工ムラとなり、均一な薄膜が得られない。   Examples of the conductive wire 2 include fibers obtained by vapor deposition of metal (aluminum, stainless steel, gold, silver, etc.) thin films, inorganic fibers (stainless steel wires, copper wires, aluminum wires, gold wires, silver wires, etc.), conductive fibers (carbon Kneaded fibers, fibers made of a conductive polymer) and the like can be employed. Among them, inorganic fibers excellent in conductivity and surface uniformity are preferable, and stainless steel wires are preferable because of excellent durability. The thickness of the conductive wire 2 depends on the selected conductive wire, but in the case of a stainless steel wire, a range of 0.05 mm to 0.8 mm is preferable. If it is thinner than 0.05 mm, the strength of the power generation yarn becomes weak, and handling becomes difficult, which is not preferable. On the other hand, when the thickness is larger than 0.8 mm, the flexibility of the power generation yarn becomes insufficient, which is not preferable. Further, the stainless steel wire preferably has no irregularities on the surface. If the surface is uneven, the coating on the cathode side buffer layer (hole block layer) 3 becomes uneven, and a uniform thin film cannot be obtained.

陰極側バッファー層(ホールブロック層)3は、酸化チタン(TiOx)、酸化亜鉛(ZnO)から選ばれるn型半導体層からなり、厚さが5nm〜50nmであることがより好ましい。厚さが5nm未満では、均一な薄膜が得られなかったり、ホールブロック効果が十分に得られない。また、50nmを超えた厚さにすると、絶縁性が高くなり、また柔軟性のある光発電糸とならない。   The cathode side buffer layer (hole block layer) 3 is made of an n-type semiconductor layer selected from titanium oxide (TiOx) and zinc oxide (ZnO), and more preferably has a thickness of 5 nm to 50 nm. If the thickness is less than 5 nm, a uniform thin film cannot be obtained or the hole blocking effect cannot be obtained sufficiently. On the other hand, when the thickness exceeds 50 nm, the insulating property is increased and the photovoltaic yarn is not flexible.

導電線材2の周囲に陰極側バッファー層(ホールブロック層)3を塗工する方法は、図3のように塗工液9を溜める容器の中央部に導電線材2の通過する穴を有した容器8を用い、塗工液中から導電線材を垂直方向に引き上げて塗布する方法が好ましい。均一な塗工薄膜を得るためには、導電線材2の径に合わせた、前記容器の穴径の選定、塗工液の粘度や塗工物の取り出しスピード等の調整が必要となる。さらに塗工液を塗工した導電線材を大気下で熱処理し、乾燥して陰極側バッファー層(ホールブロック層)3を導電線材2に固着する。また熱処理温度は、溶媒にもよるが、200〜300℃、30〜90分間でよい。   The method of coating the cathode side buffer layer (hole block layer) 3 around the conductive wire 2 is a container having a hole through which the conductive wire 2 passes at the center of the container for storing the coating liquid 9 as shown in FIG. 8 is preferably applied by pulling up the conductive wire in the vertical direction from the coating solution. In order to obtain a uniform coated thin film, it is necessary to select the hole diameter of the container, adjust the viscosity of the coating liquid, the take-out speed of the coated material, and the like according to the diameter of the conductive wire 2. Further, the conductive wire coated with the coating solution is heat-treated in the air and dried to fix the cathode side buffer layer (hole block layer) 3 to the conductive wire 2. The heat treatment temperature may be 200 to 300 ° C. and 30 to 90 minutes, although it depends on the solvent.

陰極側バッファー層(ホールブロック層)3の塗工液は、例えばチタニウムテトライソプロポキシド、酢酸亜鉛水和物、ポリフルオレン等をエタノール、メチルセロソルブ等の溶媒に溶解して用いるのが好ましい。   The coating solution for the cathode side buffer layer (hole block layer) 3 is preferably used by dissolving, for example, titanium tetraisopropoxide, zinc acetate hydrate, polyfluorene, etc. in a solvent such as ethanol or methyl cellosolve.

このように、本発明においては、導電線材の周囲に陰極側バッファー層(ホールブロック層)液を塗工し、熱処理し、乾燥することにより陰極側バッファー層(ホールブロック層)を得る工程を陰極側バッファー層(ホールブロック層)積層工程といい、以下それぞれ活性層を得る工程を活性層積層工程と、透明電極層を得る工程を透明電極層積層工程と、透明電極層の周りに電気取出し線を巻き付ける工程を電気取出し線巻付け工程と、封止層を得る工程を封止層積層工程という。   As described above, in the present invention, the step of applying the cathode side buffer layer (hole block layer) liquid around the conductive wire, heat-treating, and drying to obtain the cathode side buffer layer (hole block layer) is the cathode. The side buffer layer (hole block layer) lamination process is called the active layer lamination process, the process for obtaining the transparent electrode layer is the transparent electrode layer lamination process, and the electrical lead wire around the transparent electrode layer. The step of winding the wire is referred to as an electrical lead wire winding step, and the step of obtaining the sealing layer is referred to as a sealing layer lamination step.

陰極側バッファー層(ホールブロック層)積層工程と、活性層積層工程と、透明電極層積層工程は、図3のような方法でそれぞれの塗工液を塗布し、熱処理し、乾燥する。活性層積層工程と透明電極層積層工程は、酸素濃度1%以下の不活性ガス雰囲気下で塗工液を塗布し、熱処理し、乾燥するのが好ましいが、その他の工程については大気下でもかまわない。酸素濃度1%以下の不活性ガス雰囲気下で熱処理し、乾燥するのは、発電性能を低下させる酸素を遮蔽するために行うものである。陰極側バッファー層(ホールブロック層)、活性層、透明電極層のそれぞれの厚さは、5nm〜1000nmにするのが好ましい。均一な薄膜塗工がなされ、発電効率を向上させることができる。   In the cathode side buffer layer (hole block layer) laminating step, the active layer laminating step, and the transparent electrode layer laminating step, the respective coating liquids are applied, heat-treated and dried by the method shown in FIG. In the active layer laminating step and the transparent electrode layer laminating step, it is preferable to apply the coating liquid in an inert gas atmosphere having an oxygen concentration of 1% or less, heat-treat, and dry, but the other steps may be performed in the air. Absent. The heat treatment and drying in an inert gas atmosphere with an oxygen concentration of 1% or less are performed to shield oxygen that reduces power generation performance. The thickness of each of the cathode side buffer layer (hole block layer), the active layer, and the transparent electrode layer is preferably 5 nm to 1000 nm. Uniform thin film coating is performed, and power generation efficiency can be improved.

活性層4としては、ポリチオフェン誘導体及びフラーレン誘導体を溶媒に溶解した塗工液を作成し、図3のような方法で塗布し乾燥する。活性層4は、ポリチオフェン誘導体及びフラーレン誘導体からなり、電子供与性のポリチオフェン誘導体がドナー、電子吸引性の強いフラーレン誘導体がアクセプターとして働くので、太陽光の照射により活性層内部で光を吸収し励起子が生成し、光起電力が生じることで、高効率な光発電糸とすることができる。   As the active layer 4, a coating solution in which a polythiophene derivative and a fullerene derivative are dissolved in a solvent is prepared, applied by a method as shown in FIG. 3, and dried. The active layer 4 is composed of a polythiophene derivative and a fullerene derivative. The electron-donating polythiophene derivative serves as a donor, and the fullerene derivative having a strong electron-withdrawing property serves as an acceptor. Is generated and photovoltaic power is generated, so that a highly efficient photovoltaic yarn can be obtained.

ポリチオフェン誘導体としては、安定して高い開放電圧を与えるポリ−3−ヘキシルチオフェン(P3HT)が好ましい。また、フラーレン誘導体としては、フラーレン骨格を有するものであれば特に限定されないが、例えば、フェニルC61ブチル酸メチルエステル(PCBM)、フラーレンビスインデン付加体(ICBA)を挙げることができる。溶媒としては、例えばクロロベンゼン、オルトジクロロベンゼン、トルエン等を挙げることができ、3〜8mPa・Sの粘度に調整をして使用するのが好ましい。 As the polythiophene derivative, poly-3-hexylthiophene (P3HT) that stably provides a high open-circuit voltage is preferable. As the fullerene derivative is not particularly limited as long as it has a fullerene skeleton, for example, a phenyl C 61 butyric acid methyl ester (PCBM), fullerene bis indene adduct (ICBA). Examples of the solvent include chlorobenzene, orthodichlorobenzene, toluene and the like, and it is preferable to adjust the viscosity to 3 to 8 mPa · S.

活性層4の厚さは100nm〜1000nmであることがより好ましい。厚さが100nm未満では均一な薄膜が得られないため、また膜が薄くなることで光照射により生じる励起子の数も少なくなるため、発電性能が低下する。また、1000nmを超えた厚さにすると、光を吸収し励起子が生成しても接合界面にたどり着く前に再結合してしまい失活してしまう。   The thickness of the active layer 4 is more preferably 100 nm to 1000 nm. If the thickness is less than 100 nm, a uniform thin film cannot be obtained, and since the number of excitons generated by light irradiation decreases due to the thin film, the power generation performance decreases. On the other hand, if the thickness exceeds 1000 nm, even if light is absorbed and excitons are generated, they are recombined before reaching the bonding interface and deactivated.

透明電極層5としては、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)の導電性高分子層からなり、ポリエチレンジオキシチオフェン(PEDOT)にポリスチレンスルホン酸(PSS)がドープされた混合物は活性層4で発生した正孔(ホール)を安定的に取り出すので、高効率な光発電糸とすることができる。透明電極層塗工液の粘度は、10〜30mPa・Sの粘度で、濡れ性改善のため界面活性剤を添加するのが好ましい。   The transparent electrode layer 5 is composed of a conductive polymer layer of polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS), and a mixture of polyethylene dioxythiophene (PEDOT) doped with polystyrene sulfonic acid (PSS) is Since holes generated in the active layer 4 are stably taken out, a highly efficient photovoltaic yarn can be obtained. The transparent electrode layer coating solution has a viscosity of 10 to 30 mPa · S, and it is preferable to add a surfactant to improve wettability.

透明電極層5の厚さは100nm〜1000nmであることがより好ましい。厚さが100nm未満では均一な薄膜が得られなかったり、安定した正孔(ホール)の移動が得られない。また、1000nmを超えた厚さにすると、透明電極層内の膜抵抗が大きくなり、さらに、光透過率も低下するため、照射光が活性層まで到達せず発電性能の低下につながる。   The thickness of the transparent electrode layer 5 is more preferably 100 nm to 1000 nm. If the thickness is less than 100 nm, a uniform thin film cannot be obtained, or stable movement of holes cannot be obtained. On the other hand, when the thickness exceeds 1000 nm, the film resistance in the transparent electrode layer increases and the light transmittance also decreases, so that the irradiation light does not reach the active layer, leading to a decrease in power generation performance.

電気取出し線6としては、金、ステンレス、銀、銅、ニッケル、錫等から選ばれる金属線、あるいはこれらの金属がメッキされた金属線を採用することができる。これらの金属線は、導電性がよく、透明電極層上に巻き付けられているので、透明電極層5に溜まった電荷を効率的に取り出すことができる。また、電気取出し線6は、厚さ(太さ)が、20μm〜100μmであるが好ましい。20μmを下回る厚さでは、強度が弱く透明電極層に巻き付けられない。また、100μmを超える厚さでは、硬く、透明電極層を傷つけて巻き付けられない。   As the electrical lead-out wire 6, a metal wire selected from gold, stainless steel, silver, copper, nickel, tin or the like, or a metal wire plated with these metals can be employed. Since these metal wires have good conductivity and are wound on the transparent electrode layer, the charges accumulated on the transparent electrode layer 5 can be efficiently taken out. Moreover, it is preferable that the electric extraction line 6 has a thickness (thickness) of 20 μm to 100 μm. When the thickness is less than 20 μm, the strength is so weak that it cannot be wound around the transparent electrode layer. Further, when the thickness exceeds 100 μm, it is hard and cannot be wound by damaging the transparent electrode layer.

封止層(被覆層)7は、フェニルシリコーン、メチルシリコーン、エポキシシリコーンから選ばれる150℃未満の温度で硬化する透明封止用液状樹脂材料からなり、酸素及び水分を遮蔽し、陰極側バッファー層(ホールブロック層)、活性層、透明電極層、電気取出し線を保護すると共に、光発電糸に耐久性を付与するために、50μm〜200μmの厚みで塗工することが好ましい。50μmを下回る厚さでは、光発電糸を完全に被覆することができず、200μmを超える厚みでは光透過率が低くなりすぎるため発電性能が低下してしまう。また、封止層(被覆層)7の硬化に要する温度としては150℃未満の温度が好ましい。150℃を超える温度では、光発電糸が熱によって劣化し発電性能が低下してしまう。そのため、室温に近い硬化温度を有する透明封止用液状樹脂材料を用いることがより好ましい。   The sealing layer (coating layer) 7 is made of a transparent sealing liquid resin material selected from phenyl silicone, methyl silicone, and epoxy silicone and cured at a temperature of less than 150 ° C., shields oxygen and moisture, and serves as a cathode side buffer layer. In order to protect the (hole block layer), the active layer, the transparent electrode layer, and the electrical lead-out line, and to impart durability to the photovoltaic yarn, it is preferable to apply a thickness of 50 μm to 200 μm. If the thickness is less than 50 μm, the photovoltaic yarn cannot be completely covered. If the thickness exceeds 200 μm, the light transmittance is too low, and the power generation performance decreases. Moreover, as temperature required for hardening of the sealing layer (coating layer) 7, the temperature below 150 degreeC is preferable. If the temperature exceeds 150 ° C., the photovoltaic yarn is deteriorated by heat and the power generation performance is lowered. Therefore, it is more preferable to use a transparent encapsulating liquid resin material having a curing temperature close to room temperature.

封止層(被覆層)7を透明電極層、電気取出し線上に塗工する方法は、他の各層の塗工方法と同様に、図3のように塗工液を溜め、中央部に塗工物の通過する穴を有した容器を用い、塗工液中から塗工物を垂直方向に引き上げて塗布する方法が好ましい。その後熱処理し、透明封止用液状樹脂材料を硬化させて封止層(被覆層)7を形成してやればよい。   The method of coating the sealing layer (coating layer) 7 on the transparent electrode layer and the electrical lead-out line is the same as the coating method for the other layers. A method in which a container having a hole through which an object passes is used and the coated material is applied by pulling up the coated material in the vertical direction. Thereafter, heat treatment is performed to cure the liquid resin material for transparent sealing to form the sealing layer (coating layer) 7.

本発明に係る光発電糸1の製造方法は、導電線材の周囲に陰極側バッファー層(ホールブロック層)液を塗工し、熱処理し、乾燥することにより陰極側バッファー層(ホールブロック層)を得る陰極側バッファー層積層工程と、前記陰極側バッファー層の周囲に活性層液を塗工し、熱処理し、乾燥することにより活性層を得る活性層積層工程と、前記活性層の周囲に透明電極層液を塗工し、熱処理し、乾燥することにより透明電極層を得る透明電極層積層工程と、前記透明電極層の周りに電気取出し線を巻き付ける電気取出し線巻付け工程と、前記透明電極層の周りに電気取出し線を巻き付けた周囲上に封止層(被覆層)液を塗工し、熱処理することにより封止層を得る封止層積層工程と順に実施することを特徴とする。   In the method for producing the photovoltaic yarn 1 according to the present invention, a cathode side buffer layer (hole block layer) solution is applied around a conductive wire, heat treated, and dried to form a cathode side buffer layer (hole block layer). A cathode side buffer layer laminating step, an active layer laminating step of applying an active layer solution around the cathode side buffer layer, heat-treating and drying to obtain an active layer, and a transparent electrode around the active layer A transparent electrode layer laminating step for obtaining a transparent electrode layer by applying a layer solution, heat-treating and drying, an electric lead wire winding step for winding an electric lead wire around the transparent electrode layer, and the transparent electrode layer A sealing layer (coating layer) solution is applied onto the periphery around which the electric lead wire is wound, and the sealing layer is laminated in order to obtain a sealing layer by heat treatment.

また、本発明に係る光発電糸1の製造方法では、前記各層を塗工する方法が、図3に示すような構造を有する容器8に塗工液9を溜め、該塗工液中を通過して垂直方向に下から上に一定速度で塗工物を引き上げて塗工し、熱処理し乾燥する方法を特徴とする。したがって、この塗工を行う場合、塗工液の濃度、粘度管理は重要で、前記陰極側バッファー層(ホールブロック層)、活性層、透明電極層の厚さをそれぞれ5nm〜1000nmと非常に薄い膜厚に制御して塗工することを特徴とする。   Moreover, in the manufacturing method of the photovoltaic yarn 1 which concerns on this invention, the method of apply | coating each said layer stores the coating liquid 9 in the container 8 which has a structure as shown in FIG. 3, and passes through this coating liquid. Then, the method is characterized in that the coated material is pulled up at a constant speed from the bottom to the top in the vertical direction, heat-treated and dried. Therefore, when performing this coating, it is important to control the concentration and viscosity of the coating solution, and the thickness of the cathode side buffer layer (hole block layer), the active layer, and the transparent electrode layer is as very thin as 5 nm to 1000 nm, respectively. It is characterized in that coating is carried out by controlling the film thickness.

次に、本発明の具体的実施例について説明するが、本発明はこれらの実施例のものに特に限定されるものではない。なお、試験方法及び評価は次の通り行った。   Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples. The test method and evaluation were performed as follows.

(ソーラーシミュレーター特性評価)
擬似太陽光(AM1.5 100mW/cmエアマスクフィルタを装置したソーラーシュミレーター 分光計器製OTENTO−SUN III)を照射し、ソースメーターユニット(KEITHLEY2400)を用いて、太陽電池性能(短絡電流(Jsc)、開放電圧(Voc)、FF(曲線因子)、エネルギー変換効率(PCE))を調べた。照射される光量の校正については、JIS C8931に準じた標準セルで校正した。エネルギー変換効率が1.0%以上を◎、1.0%未満〜0.1%以上○、0.1%未満を×として評価した。
(Solar simulator characteristics evaluation)
Irradiated with pseudo-sunlight (AM 1.5 100 mW / cm 2 solar and apparatus the air mask filter simulator Bunkoukeiki made OTENTO-SUN III), by using a source meter unit (KEITHLEY2400), solar cell performance (short-circuit current (Jsc) , Open-circuit voltage (Voc), FF (fill factor), energy conversion efficiency (PCE)). The calibration of the amount of light applied was calibrated with a standard cell according to JIS C8931. An energy conversion efficiency of 1.0% or more was evaluated as ◎, less than 1.0% to 0.1% or more, and less than 0.1% as x.

(各層厚の測定方法)
光発電糸を数箇所割断し、割断面をSEMで観察。得られたSEM画像より各層の膜厚を計測した。
(Measurement method of each layer thickness)
Cleave several photovoltaic yarns and observe the section with SEM. The film thickness of each layer was measured from the obtained SEM image.

<実施例1>
次の(1)〜(5)の工程を順に加工して光発電糸を作成した。
(1) 導電線材2として直径0.1mmのステンレス線を用意した。陰極側バッファー層(ホールブロック層)塗工液として酢酸亜鉛水和物をメチルセロソルブ溶媒に常温で4重量%溶解し、粘度3mPa・Sの塗工液を用意し、中央部の穴径が0.8mmの図3の容器に入れた。次に前記ステンレス線を前記容器の穴の中央にセットし、10mm/Secの塗工スピードで垂直方向に引き上げて塗工した。次に酸化亜鉛の塗工されたステンレス線を乾燥機にて250℃×1時間で乾燥させ、乾燥機内で10時間徐冷して、陰極側バッファー層(ホールブロック層)の塗工を行った。陰極側バッファー層の厚さは20nmであった。
<Example 1>
The following steps (1) to (5) were processed in order to produce a photovoltaic yarn.
(1) A stainless steel wire having a diameter of 0.1 mm was prepared as the conductive wire 2. As a cathode side buffer layer (hole block layer) coating solution, zinc acetate hydrate is dissolved in methyl cellosolve solvent at 4% by weight at room temperature, and a coating solution having a viscosity of 3 mPa · S is prepared. 3. Placed in 8 mm container of FIG. Next, the stainless steel wire was set at the center of the hole of the container, and the coating was performed by pulling up in the vertical direction at a coating speed of 10 mm / Sec. Next, the stainless steel wire coated with zinc oxide was dried at 250 ° C. for 1 hour in a dryer, and gradually cooled in the dryer for 10 hours to apply the cathode side buffer layer (hole block layer). . The thickness of the cathode side buffer layer was 20 nm.

(2) 次に、ポリ−3−ヘキシルチオフェン(P3HT)とフェニルC61ブチル酸メチルエステル(PCBM)を2対1に混合し、クロロベンゼン30%オルトジクロロベンゼン70%の溶媒に常温で3重量%溶解し、粘度2mPa・Sの活性層塗工液を用意し、中央部の穴径が1mmの図3の容器に入れた。次に前記(1)で作成した陰極側バッファー層の塗工されたステンレス線を前記容器の穴の中央にセットし、20mm/Secの塗工スピードで垂直方向に引き上げて活性層を塗工した。次に酸素濃度1%以下の不活性ガス雰囲気下において該ステンレス線を145℃×15分間乾燥させ、次に10分間徐冷して、活性層の塗工を行った。活性層の厚さは300nmであった。 (2) Next, poly-3-hexylthiophene (P3HT) and phenyl C 61 butyric acid methyl ester (PCBM) were mixed in 2: 1, at room temperature in chlorobenzene 30% o-dichlorobenzene 70% of the solvent 3 wt% It melt | dissolved, the active layer coating liquid with a viscosity of 2 mPa * S was prepared, and it put into the container of FIG. 3 whose hole diameter of the center part is 1 mm. Next, the stainless steel wire coated with the cathode side buffer layer prepared in the above (1) was set in the center of the hole of the container, and the active layer was coated by pulling up in the vertical direction at a coating speed of 20 mm / Sec. . Next, the stainless steel wire was dried at 145 ° C. for 15 minutes in an inert gas atmosphere having an oxygen concentration of 1% or less, and then gradually cooled for 10 minutes to apply the active layer. The thickness of the active layer was 300 nm.

(3) 次に、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)水溶液95重量%とエチレングリコール5重量%の溶液にフッ素系界面活性剤を0.5体積%加えて、粘度20mPa・Sの透明電極層塗工液を用意し、中央部の穴径が2mmの図3の容器に入れた。次に前記(2)で作成した活性層の塗工されたステンレス線を前記容器の穴の中央にセットし、40mm/Secの塗工スピードで垂直方向に引き上げて透明電極層を塗工した。次に酸素濃度1%以下の不活性ガス雰囲気下で該ステンレス線を120℃×10分間で乾燥させ、10分間徐冷して、透明電極層の塗工を行った。透明電極層の厚さは300nmであった。 (3) Next, 0.5% by volume of a fluorosurfactant was added to a 95% by weight aqueous solution of polyethylenedioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS) and 5% by weight of ethylene glycol to obtain a viscosity of 20 mPa · A transparent electrode layer coating solution of S was prepared and placed in the container of FIG. 3 having a hole diameter of 2 mm at the center. Next, the stainless steel wire coated with the active layer prepared in (2) above was set in the center of the hole of the container, and the transparent electrode layer was coated by pulling up at a coating speed of 40 mm / Sec in the vertical direction. Next, the stainless steel wire was dried at 120 ° C. for 10 minutes in an inert gas atmosphere having an oxygen concentration of 1% or less, and gradually cooled for 10 minutes to apply a transparent electrode layer. The thickness of the transparent electrode layer was 300 nm.

(4) 次に、電気取出し線としては、直径40μmの金線を用意し、前記(3)で作成した透明電極層上に5mmピッチで巻き付けて、電気取出し線とした。 (4) Next, as an electrical lead-out wire, a gold wire having a diameter of 40 μm was prepared and wound around the transparent electrode layer created in the above (3) at a pitch of 5 mm to obtain an electrical lead-out wire.

(5) 次に、粘度3000mPa・Sのフェニルシリコーンの溶液を用意し、中央部の穴径が5mmの図3の容器に入れた。次に前記(4)で作成した透明電極層上に電気取出し線を巻きつけたステンレス線を前記容器の穴の中央にセットし、0.4mm/Secの塗工スピードで垂直方向に引き上げて封止層を塗工した。次に該ステンレス線を乾燥機にて120℃×10分間で乾燥させ、乾燥機外に出し10分間徐冷して、封止層の塗工を行った。封止層の厚さは100μmであった。 (5) Next, a phenyl silicone solution having a viscosity of 3000 mPa · S was prepared and placed in the container of FIG. 3 having a hole diameter of 5 mm at the center. Next, a stainless steel wire wound with an electrical lead wire on the transparent electrode layer prepared in (4) above is set at the center of the hole of the container, and pulled up in the vertical direction at a coating speed of 0.4 mm / Sec and sealed. A stop layer was applied. Next, the stainless steel wire was dried with a dryer at 120 ° C. for 10 minutes, taken out of the dryer, and gradually cooled for 10 minutes to apply a sealing layer. The thickness of the sealing layer was 100 μm.

こうして得られた光発電糸に擬似太陽光を照射し、エネルギー変換効率(PCE))を調べたところ表1のように良好な光発電糸が得られた。   The photovoltaic yarn thus obtained was irradiated with simulated sunlight and the energy conversion efficiency (PCE) was examined. As a result, a favorable photovoltaic yarn was obtained as shown in Table 1.

<実施例2>
導電線材2として直径0.8mmの銅線を用意し、陰極側バッファー層(ホールブロック層)塗工液としてチタニウムテトライソプロポキシドをエタノールに常温で0.4重量%溶解し、粘度2mPa・Sの塗工液を用意し、前記銅線に塗工し、熱処理し、乾燥して陰極側バッファー層の厚さが50nmとなった以外は実施例1と同様にして光発電糸を得た。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 2>
A copper wire with a diameter of 0.8 mm is prepared as the conductive wire 2, and 0.4 wt% of titanium tetraisopropoxide is dissolved in ethanol at room temperature as a cathode side buffer layer (hole block layer) coating solution, and the viscosity is 2 mPa · S. A photovoltaic yarn was obtained in the same manner as in Example 1 except that the coating liquid was prepared, coated on the copper wire, heat-treated, dried, and the thickness of the cathode-side buffer layer was 50 nm. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例3>
実施例1において活性層の塗工スピードを40mm/Secにした以外は実施例1と同様にして光発電糸を得た。活性層の厚さは600nmであった。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 3>
A photovoltaic yarn was obtained in the same manner as in Example 1 except that the coating speed of the active layer in Example 1 was 40 mm / Sec. The thickness of the active layer was 600 nm. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例4>
活性層塗工液として、ポリ−3−ヘキシルチオフェン(P3HT)とフラーレンビスインデン付加体(ICBA)を2対1に混合し、クロロベンゼン30%オルトジクロロベンゼン70%の溶媒に常温で3重量%溶解し、粘度2mPa・Sの活性層塗工液を用意した以外は実施例1と同様にして光発電糸を得た。活性層の厚さは300nmであった。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 4>
As an active layer coating solution, poly-3-hexylthiophene (P3HT) and fullerene bisindene adduct (ICBA) are mixed 2 to 1 and dissolved in a solvent of 30% chlorobenzene and 70% orthodichlorobenzene at 3% by weight at room temperature. A photovoltaic yarn was obtained in the same manner as in Example 1 except that an active layer coating solution having a viscosity of 2 mPa · S was prepared. The thickness of the active layer was 300 nm. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例5>
実施例1において、活性層の塗工スピードを3mm/Secとした以外は実施例1と同様にして光発電糸を得た。活性層の厚さは110nmであった。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 5>
In Example 1, a photovoltaic yarn was obtained in the same manner as in Example 1 except that the coating speed of the active layer was 3 mm / Sec. The thickness of the active layer was 110 nm. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例6>
電気取出し線として、直径80μmの銀線を用意した以外は実施例1と同様にして光発電糸を得た。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 6>
A photovoltaic yarn was obtained in the same manner as in Example 1 except that a silver wire having a diameter of 80 μm was prepared as an electrical lead-out wire. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例7>
封止層塗工液として、粘度4000mPa・Sのエポキシシリコーンの溶液を用意した以外は実施例1と同様にして光発電糸を得た。封止層の厚さは180μmであった。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 7>
A photovoltaic yarn was obtained in the same manner as in Example 1 except that an epoxy silicone solution having a viscosity of 4000 mPa · S was prepared as the sealing layer coating solution. The thickness of the sealing layer was 180 μm. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例8>
実施例1において、陰極側バッファー層(ホールブロック層)の塗工スピードを5mm/Secとした以外は実施例1と同様にして光発電糸を得た。陰極側バッファー層の厚さは5nmであった。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 8>
A photovoltaic yarn was obtained in the same manner as in Example 1 except that the coating speed of the cathode side buffer layer (hole block layer) was set to 5 mm / Sec. The thickness of the cathode side buffer layer was 5 nm. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例9>
実施例1において、活性層の塗工スピードを3mm/Secとした以外は実施例1と同様にして光発電糸を得た。活性層の厚さは110nmであった。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 9>
In Example 1, a photovoltaic yarn was obtained in the same manner as in Example 1 except that the coating speed of the active layer was 3 mm / Sec. The thickness of the active layer was 110 nm. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例10>
実施例1において、透明電極層の塗工スピードを20mm/Secとした以外は実施例1と同様にして光発電糸を得た。透明電極層の厚さは100nmであった。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 10>
In Example 1, a photovoltaic yarn was obtained in the same manner as in Example 1 except that the coating speed of the transparent electrode layer was 20 mm / Sec. The thickness of the transparent electrode layer was 100 nm. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例11>
実施例1において、封止層塗工液の樹脂をメチルシリコーンとし、塗工スピードを0.8mm/Secとした以外は実施例1と同様にして光発電糸を得た。封止層の厚さは60μmであった。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 11>
In Example 1, a photovoltaic yarn was obtained in the same manner as in Example 1 except that the resin of the sealing layer coating solution was methyl silicone and the coating speed was 0.8 mm / Sec. The thickness of the sealing layer was 60 μm. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<実施例12>
電気取出し線としては、直径60μmのステンレス線を用意した以外は実施例1と同様にして光発電糸を得た。光発電糸のエネルギー変換効率は表1のような結果が得られた。
<Example 12>
A photovoltaic yarn was obtained in the same manner as in Example 1 except that a stainless steel wire having a diameter of 60 μm was prepared as the electrical lead-out wire. The energy conversion efficiency of the photovoltaic yarn was as shown in Table 1.

<比較例1〜10>
表2のように塗工スピードと塗工液粘度を調整して、各層の厚さを変化させた光発電糸を作成し、エネルギー変換効率を確認した。表2のような結果が得られた。なお、比較例9では、エネルギー変換効率は良好で◎と評価されているが、封止層が薄く、電気取出し線が露出しており、耐久性に問題のあるものであった。
<Comparative Examples 1-10>
As shown in Table 2, by adjusting the coating speed and coating liquid viscosity, photovoltaic power generation yarns having different thicknesses were prepared, and the energy conversion efficiency was confirmed. The results shown in Table 2 were obtained. In Comparative Example 9, the energy conversion efficiency was good and evaluated as “◎”. However, the sealing layer was thin and the electric lead wire was exposed, and there was a problem in durability.

<比較例11>
電気取出し線としては、直径50μmの銅線を用意した以外は実施例1と同様にして光発電糸を得た。光発電糸のエネルギー変換効率は表2のような結果が得られた。
<Comparative Example 11>
A photovoltaic yarn was obtained in the same manner as in Example 1 except that a copper wire having a diameter of 50 μm was prepared as the electrical lead-out wire. As shown in Table 2, the energy conversion efficiency of the photovoltaic yarn was obtained.

<比較例12>
電気取出し線を透明電極層上に巻かずにフェニルシリコーンの封止層の塗工を行った以外は実施例1と同様にして光発電糸を得た。光発電糸のエネルギー変換効率は表2のような結果が得られた。
<Comparative Example 12>
A photovoltaic yarn was obtained in the same manner as in Example 1 except that the sealing layer of phenyl silicone was applied without winding the electrical lead wire on the transparent electrode layer. As shown in Table 2, the energy conversion efficiency of the photovoltaic yarn was obtained.

Figure 0006482187
Figure 0006482187

Figure 0006482187
Figure 0006482187

本発明に係わる光発電糸の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the photovoltaic yarn concerning this invention. 本発明に係わる光発電糸の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the photovoltaic yarn concerning this invention. 本発明に係わる光発電糸の各層の塗工液を溜め、塗工するための容器を示す概略断面図である。It is a schematic sectional drawing which shows the container for storing and applying the coating liquid of each layer of the photovoltaic yarn concerning this invention.

1・・・光発電糸
2・・・導電線材
3・・・陰極側バッファー層(ホールブロック層)
4・・・活性層
5・・・透明電極層
6・・・電気取出し線
7・・・封止層(被覆層)
8・・・容器(塗工液を溜め、中央部に塗工物の通過する穴を有した容器)
9・・・塗工液
DESCRIPTION OF SYMBOLS 1 ... Photoelectric yarn 2 ... Conductive wire material 3 ... Cathode side buffer layer (hole block layer)
DESCRIPTION OF SYMBOLS 4 ... Active layer 5 ... Transparent electrode layer 6 ... Electrical extraction line 7 ... Sealing layer (coating layer)
8 ... container (contains the coating liquid and has a hole through which the coated material passes in the center)
9 ... Coating liquid

本発明に係る光発電糸は、例えば製編あるいは製織し布帛にすることで、曲げることが可能で、柔軟性に優れ、発電効率の向上した光発電布帛として応用できる。   The photovoltaic yarn according to the present invention can be bent by forming, for example, a knitted or woven fabric, and can be applied as a photovoltaic fabric with excellent flexibility and improved power generation efficiency.

Claims (2)

導電線材を中心としてその周囲に中心側から順に、陰極側バッファー層(ホールブロック層)、活性層、透明電極層、電気取出し線、及び封止層(被覆層)が筒型に積層された光発電糸であって、前記導電線材は、太さ0.05mm〜0.8mmでその表面に凹凸が無いステンレス線からなり、前記陰極側バッファー層(ホールブロック層)、前記活性層、及び前記透明電極層のそれぞれの厚さを5nm〜1000nmにし、かつ、前記電気取り出し線が、金属線からなり、厚さ(太さ)が20μm〜100μmで前記透明電極層と前記封止層との間において前記透明電極層にその長さ方向全体に所定のピッチで螺旋状に巻き付けられており、前記封止層(被覆層)が前記透明電極層と前記電気取り出し線とをその長さ方向全体に封止している、ことを特徴とする光発電糸。 Light in which a cathode-side buffer layer (hole block layer), active layer, transparent electrode layer, electrical lead-out line, and sealing layer (covering layer) are laminated in a cylindrical shape around the conductive wire around the center. A power generation yarn, wherein the conductive wire is made of a stainless steel wire having a thickness of 0.05 mm to 0.8 mm and no irregularities on the surface thereof, the cathode side buffer layer (hole block layer), the active layer, and the transparent Each electrode layer has a thickness of 5 nm to 1000 nm, the electrical lead-out line is made of a metal wire, and has a thickness (thickness) of 20 μm to 100 μm between the transparent electrode layer and the sealing layer. The transparent electrode layer is spirally wound at a predetermined pitch over the entire length direction, and the sealing layer (coating layer) extends the transparent electrode layer and the electrical lead wire over the entire length direction. Sealed A photovoltaic yarn characterized by that. 前記陰極側バッファー層(ホールブロック層)が、酸化チタン(TiOx)、酸化亜鉛(ZnO)から選ばれるn型半導体層からなり、厚さが5nm〜50nmであり、前記活性層が、ポリチオフェン誘導体及びフラーレン誘導体を含む有機半導体層からなり、前記活性層において、前記ポリチオフェン誘導体がポリ−3−ヘキシルチオフェン(P3HT)であって、前記フラーレン誘導体がフェニルC61ブチル酸メチルエステル(PCBM)、フラーレンビスインデン付加体(ICBA)から選ばれる有機半導体層からなり、厚さが100nm〜1000nmであり、前記透明電極層が、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)の導電性高分子層からなり、厚さが100nm〜1000nmであり、前記封止層(被覆層)が、フェニルシリコーン、メチルシリコーン、エポキシシリコーンから選ばれる樹脂層からなり、厚さが50μm〜200μmである、ことを特徴とする請求項1に記載の光発電糸。 The cathode side buffer layer (hole block layer) is made of an n-type semiconductor layer selected from titanium oxide (TiOx) and zinc oxide (ZnO), has a thickness of 5 nm to 50 nm , and the active layer comprises a polythiophene derivative and It consists of an organic semiconductor layer containing a fullerene derivative. In the active layer, the polythiophene derivative is poly-3-hexylthiophene (P3HT), and the fullerene derivative is phenyl C61 butyric acid methyl ester (PCBM), fullerene bisindene addition It consists of an organic semiconductor layer selected from the body (ICBA), has a thickness of 100 nm to 1000 nm, and the transparent electrode layer consists of a conductive polymer layer of polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS) The thickness is 100nm ~ 1000nm Ri, the sealing layer (coating layer), phenyl silicone, methyl silicone, a resin layer selected from epoxy silicone, a thickness of 50 m to 200 m, photovoltaic according to claim 1, characterized in that yarn.
JP2014110732A 2014-05-29 2014-05-29 Photovoltaic yarn Active JP6482187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014110732A JP6482187B2 (en) 2014-05-29 2014-05-29 Photovoltaic yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014110732A JP6482187B2 (en) 2014-05-29 2014-05-29 Photovoltaic yarn

Publications (2)

Publication Number Publication Date
JP2015225982A JP2015225982A (en) 2015-12-14
JP6482187B2 true JP6482187B2 (en) 2019-03-13

Family

ID=54842528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014110732A Active JP6482187B2 (en) 2014-05-29 2014-05-29 Photovoltaic yarn

Country Status (1)

Country Link
JP (1) JP6482187B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146823A (en) * 2017-06-21 2017-09-08 南方科技大学 A kind of method for packing of solar cell encapsulation structure and solar cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065471A2 (en) * 2002-01-25 2003-08-07 Konarka Technologies, Inc. Photovoltaic fibers
US7194173B2 (en) * 2004-07-16 2007-03-20 The Trustees Of Princeton University Organic devices having a fiber structure
JP2007109976A (en) * 2005-10-14 2007-04-26 Oki Electric Ind Co Ltd Photoelectric conversion element, photoelectric conversion structure, apparatus for manufacturing same, and photoelectric conversion device
JP2007250743A (en) * 2006-03-15 2007-09-27 Seiko Epson Corp Manufacturing method of photoelectric conversion element, and manufacturing method of photoelectric conversion device
US8093493B2 (en) * 2007-04-30 2012-01-10 Solyndra Llc Volume compensation within a photovoltaic device
US8603855B1 (en) * 2010-10-18 2013-12-10 Wake Forest University Optoelectronic devices and applications thereof
JP2012186233A (en) * 2011-03-03 2012-09-27 Jsr Corp Device and manufacturing method therefor
JP2012234959A (en) * 2011-04-28 2012-11-29 Suminoe Textile Co Ltd Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same
JP2014078692A (en) * 2012-09-24 2014-05-01 Sekisui Chem Co Ltd Solar cell and method of manufacturing the same
JP2014067925A (en) * 2012-09-26 2014-04-17 Toshiba Corp Solar battery module

Also Published As

Publication number Publication date
JP2015225982A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
Zheng et al. Self‐powered flexible TiO2 fibrous photodetectors: heterojunction with P3HT and boosted responsivity and selectivity by Au nanoparticles
Jiang et al. Low temperature fabrication for high performance flexible CsPbI2Br perovskite solar cells
Ye et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu (thiourea) I
Liu et al. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT: PSS hole transport layers
Nho et al. Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer
Zhao et al. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer
Xiao et al. An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material
Tan et al. Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer
Liu et al. High performance planar pin perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers
Zhou et al. Inverted organic solar cells with ITO electrodes modified with an ultrathin Al 2 O 3 buffer layer deposited by atomic layer deposition
Fu et al. Achieving 10.5% efficiency for inverted polymer solar cells by modifying the ZnO cathode interlayer with phenols
US20200203083A1 (en) Fabrication of stable perovskite-based optoelectronic devices
Han et al. Low‐Temperature Modification of ZnO Nanoparticles Film for Electron‐Transport Layers in Perovskite Solar Cells
Zhao et al. Self-Doped and Crown-Ether Functionalized Fullerene as Cathode Buffer Layer for Highly-Efficient Inverted Polymer Solar Cells.
Li et al. Fully air‐processed carbon‐based efficient hole conductor free planar heterojunction perovskite solar cells with high reproducibility and stability
KR20130027725A (en) Organic electronic devices and manufacturing method of the same
Wu et al. Multifunctional two-dimensional benzodifuran-based polymer for eco-friendly perovskite solar cells featuring high stability
Li et al. Crystallization Control and Defect Passivation via a Cross-Linking Additive for High-Performance FAPbBr3 Perovskite Solar Cells
Kim et al. Sequential dip-spin coating method: fully infiltration of MAPbI3-xClx into mesoporous TiO2 for stable hybrid perovskite solar cells
KR101415168B1 (en) Preparation method of fibrous solar cells having metal grid electrode, and the fibrous solar cells thereby
US20150206663A1 (en) Opto-electronic device
WO2012057455A2 (en) Efficient organic solar cell using core/shell metal oxide nanoparticles, and method for manufacturing same
KR101694803B1 (en) Perovskite solar cells comprising metal nanowire as photoelectrode, and the preparation method thereof
Yu et al. Fabrication and optimization of polymer solar cells based on P3HT: PC 70 BM system
JP6482187B2 (en) Photovoltaic yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6482187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250