JP2012234959A - Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same - Google Patents

Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same Download PDF

Info

Publication number
JP2012234959A
JP2012234959A JP2011102297A JP2011102297A JP2012234959A JP 2012234959 A JP2012234959 A JP 2012234959A JP 2011102297 A JP2011102297 A JP 2011102297A JP 2011102297 A JP2011102297 A JP 2011102297A JP 2012234959 A JP2012234959 A JP 2012234959A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
layer
yarn
photovoltaic
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011102297A
Other languages
Japanese (ja)
Inventor
Shuichi Motonaka
修一 源中
Yuko Fukaki
裕子 深城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP2011102297A priority Critical patent/JP2012234959A/en
Publication of JP2012234959A publication Critical patent/JP2012234959A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic thread achieving excellent durability, flexibility, and high efficiency in power generation performance.SOLUTION: A photovoltaic thread excellent in durability comprises a conductive thread successively covered with an active layer, a conductive polymer layer, and a thermoplastic resin layer from the center side therearound, the thickness of the thermoplastic resin layer is in the range of 0.1 to 50 μm, and the ratio of the thickness of the thermoplastic resin layer to the diameter of the conductive thread is in the range of 1/20 to 1/5. A method for manufacturing the photovoltaic thread is also provided.

Description

本発明は、優れた耐熱変形性と耐摩擦性のある光発電糸及びその製造方法に関する。   The present invention relates to a photovoltaic yarn having excellent heat distortion resistance and friction resistance and a method for producing the same.

地球温暖化をもたらす化石燃料の代替エネルギーとして、つまり、温室効果ガス排出量を削減した低炭素社会の実現に不可欠なエネルギーとして、太陽光エネルギーを直接電力に変換する太陽電池を利用した太陽光発電の普及が期待されている。   Solar power generation using solar cells that directly convert solar energy into electric power as an alternative energy to fossil fuels that cause global warming, that is, as an indispensable energy for realizing a low-carbon society that reduces greenhouse gas emissions Is expected to spread.

太陽電池は、光起電力効果により太陽光を即時に電力に変換するもので、従来シリコン太陽電池が主流であった。近年、製法が簡便で生産コストを低く抑えることのできる有機化合物を用いた太陽電池の開発が行われている。有機化合物を用いた太陽電池には、色素増感太陽電池、有機薄膜太陽電池がある。   Solar cells convert solar light into electric power instantly due to the photovoltaic effect, and conventional silicon solar cells have been the mainstream. In recent years, solar cells have been developed using organic compounds that are simple in production and can keep production costs low. Solar cells using organic compounds include dye-sensitized solar cells and organic thin-film solar cells.

このような有機化合物を用いた太陽電池としては、特許文献1には透明材料の管の内面に透明導電層、色素増感多孔質半導体層、電解質層を順に設け、管の中央部分に対極が挿入された構造の色素増感光電変換素子が開示されている。   As a solar cell using such an organic compound, in Patent Document 1, a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a transparent material tube, and a counter electrode is provided at the central portion of the tube. A dye-sensitized photoelectric conversion element having an inserted structure is disclosed.

しかしながら、特許文献1の技術は、布帛にするための製編あるいは製織に好適とはいえなかった。
特開2007−012545
However, the technique of Patent Document 1 is not suitable for knitting or weaving to make a fabric.
JP2007-012545

この発明は、かかる技術的背景に鑑みてなされたものであって、耐久性に優れると共に、柔軟で高効率な発電性能を発揮する光発電糸を提供する。   The present invention has been made in view of such a technical background, and provides a photovoltaic yarn that is excellent in durability and that exhibits flexible and highly efficient power generation performance.

本発明者は、このような課題を解決するために鋭意検討の結果、導電糸の周囲に中心側から順に、活性層、導電性高分子層及び熱可塑性樹脂層が積層された光発電糸において、該熱可塑性樹脂層の厚さが0.1μm〜50μm、かつ、該熱可塑性樹脂層の厚さが前記導電糸の直径に対して1/20〜1/5である耐久性に優れた光発電糸を見出し本発明に到達した。本発明は以下の手段を提供する。   As a result of intensive studies to solve such problems, the present inventor has obtained a photovoltaic yarn in which an active layer, a conductive polymer layer, and a thermoplastic resin layer are laminated in order from the center side around the conductive yarn. The light having excellent durability in which the thickness of the thermoplastic resin layer is 0.1 μm to 50 μm, and the thickness of the thermoplastic resin layer is 1/20 to 1/5 with respect to the diameter of the conductive yarn. The power generation yarn has been found and the present invention has been reached. The present invention provides the following means.

[1]導電糸の周囲に中心側から順に、活性層、導電性高分子層及び熱可塑性樹脂層が積層された光発電糸において、該熱可塑性樹脂層の厚さが0.1μm〜50μm、かつ、該熱可塑性樹脂層の厚さが前記導電糸の直径に対して1/20〜1/5であることを特徴とする光発電糸。   [1] In a photovoltaic yarn in which an active layer, a conductive polymer layer, and a thermoplastic resin layer are laminated in order from the center side around the conductive yarn, the thickness of the thermoplastic resin layer is 0.1 μm to 50 μm, And the thickness of this thermoplastic resin layer is 1 / 20-1 / 5 with respect to the diameter of the said conductive yarn, The photovoltaic yarn characterized by the above-mentioned.

[2]前記活性層が、ポリチオフェン誘導体及びフラーレン誘導体からなる前項1に記載の光発電糸。   [2] The photovoltaic yarn according to item 1 above, wherein the active layer is composed of a polythiophene derivative and a fullerene derivative.

[3]前記導電性高分子層が、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)、ポリアニリン(PANI)/ポリスチレンスルホン酸(PSS)から選ばれる1種である前項1または2に記載の光発電糸。   [3] The conductive polymer layer according to item 1 or 2, wherein the conductive polymer layer is one selected from polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS) and polyaniline (PANI) / polystyrene sulfonic acid (PSS). Photovoltaic yarn.

[4]前記熱可塑性樹脂層が、EVA(エチレン−酢酸ビニル共重合樹脂)、PVB(ポリビニルブチラール樹脂)から選ばれる1種である前項1〜3のいずれか1項に記載の光発電糸。   [4] The photovoltaic yarn according to any one of items 1 to 3, wherein the thermoplastic resin layer is one selected from EVA (ethylene-vinyl acetate copolymer resin) and PVB (polyvinyl butyral resin).

[5]酸素濃度1%以下の不活性ガス雰囲気下で、導電糸の周囲に活性層を塗工し乾燥することにより活性層を得る活性層積層工程と、前記活性層の周囲に導電性高分子層を塗工し乾燥することにより導電性高分子層を得る導電性高分子層積層工程と、前記導電性高分子層の周囲に熱可塑性樹脂層を塗工することにより該熱可塑性樹脂層の厚さが0.1μm〜50μm、かつ、該熱可塑性樹脂層の厚さが前記導電糸の直径に対して1/20〜1/5である熱可塑性樹脂層を得る熱可塑性樹脂層積層工程と、前記熱可塑性樹脂層に50kGy〜250kGyの範囲の電子線照射を行う電子線照射工程とを順に実施することを特徴とする光発電糸の製造方法。   [5] An active layer laminating step in which an active layer is obtained by applying and drying an active layer around a conductive yarn in an inert gas atmosphere with an oxygen concentration of 1% or less, and a conductive high layer around the active layer. A conductive polymer layer laminating step for obtaining a conductive polymer layer by coating and drying a molecular layer, and the thermoplastic resin layer by coating a thermoplastic resin layer around the conductive polymer layer Thermoplastic resin layer lamination step for obtaining a thermoplastic resin layer having a thickness of 0.1 μm to 50 μm and a thickness of the thermoplastic resin layer of 1/20 to 1/5 of the diameter of the conductive yarn And an electron beam irradiation step of sequentially irradiating the thermoplastic resin layer with an electron beam in the range of 50 kGy to 250 kGy.

[6]前記活性層積層工程において、前記活性層としてポリチオフェン誘導体及びフラーレン誘導体を用いる前項5に記載の光発電糸の製造方法。   [6] The method for producing a photovoltaic yarn according to item 5 above, wherein in the active layer laminating step, a polythiophene derivative and a fullerene derivative are used as the active layer.

[7]前記導電性高分子層積層工程において、前記導電性高分子層としてポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)、ポリアニリン(PANI)/ポリスチレンスルホン酸(PSS)から選ばれる1種を用いる前項5または6に記載の光発電糸の製造方法。   [7] In the conductive polymer layer laminating step, the conductive polymer layer is selected from polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS), polyaniline (PANI) / polystyrene sulfonic acid (PSS) 1 7. The method for producing a photovoltaic yarn according to item 5 or 6, wherein a seed is used.

[8]前記熱可塑性樹脂層積層工程において、前記熱可塑性樹脂としてEVA(エチレン−酢酸ビニル共重合樹脂)、PVB(ポリビニルブチラール樹脂)から選ばれる1種を用いる前項5〜7のいずれか1項に記載の光発電糸の製造方法。   [8] Any one of items 5 to 7 above, in which one kind selected from EVA (ethylene-vinyl acetate copolymer resin) and PVB (polyvinyl butyral resin) is used as the thermoplastic resin in the thermoplastic resin layer laminating step. A method for producing a photovoltaic yarn according to claim 1.

[1]の発明では、導電糸の周囲に中心側から順に、活性層、導電性高分子層及び熱可塑性樹脂層が積層された光発電糸において、該熱可塑性樹脂層の厚さが0.1μm〜50μm、かつ、該熱可塑性樹脂層の厚さが前記導電糸の直径に対して1/20〜1/5であるので酸素及び水分を充分遮蔽すると共に、耐久性に優れた光発電糸とすることができる。   In the invention of [1], in the photovoltaic yarn in which the active layer, the conductive polymer layer, and the thermoplastic resin layer are sequentially laminated around the conductive yarn from the center side, the thickness of the thermoplastic resin layer is 0.00. 1 μm to 50 μm, and the thickness of the thermoplastic resin layer is 1/20 to 1/5 of the diameter of the conductive yarn, so that it sufficiently shields oxygen and moisture and has excellent durability. It can be.

[2]の発明では、前記活性層が、ポリチオフェン誘導体及びフラーレン誘導体からなり、電子供与性のポリチオフェン誘導体がドナー、電子吸引性の強いフラーレン誘導体がアクセプターとして働くので、太陽光の照射により光起電力が発生し、高効率な発電性能を発揮する光発電糸とすることができる。   In the invention of [2], the active layer is composed of a polythiophene derivative and a fullerene derivative, the electron donating polythiophene derivative serves as a donor, and the fullerene derivative having a strong electron withdrawing property serves as an acceptor. Is generated, and it can be set as a photovoltaic yarn that exhibits highly efficient power generation performance.

[3]の発明では、前記導電性高分子層が、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)、ポリアニリン(PANI)/ポリスチレンスルホン酸(PSS)であるので安定して活性層3で発生した正孔を取り出すことができる。   In the invention of [3], since the conductive polymer layer is polyethylenedioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS), polyaniline (PANI) / polystyrene sulfonic acid (PSS), the active layer 3 is stably provided. The holes generated in can be taken out.

[4]の発明では、前記熱可塑性樹脂層が、EVA(エチレン−酢酸ビニル共重合樹脂)、PVB(ポリビニルブチラール樹脂)から選ばれる1種であるので比較的容易に熱溶解し塗工することができる。さらに、酸素及び水分を遮蔽するので導電性高分子層及び活性層を保護すると共に、光発電糸に耐久性を付与することができる。   In the invention of [4], since the thermoplastic resin layer is one selected from EVA (ethylene-vinyl acetate copolymer resin) and PVB (polyvinyl butyral resin), it is relatively easily melted and coated. Can do. Furthermore, since oxygen and moisture are shielded, the conductive polymer layer and the active layer can be protected and durability can be imparted to the photovoltaic yarn.

[5]の発明では、活性層積層工程と、導電性高分子層積層工程と、熱可塑性樹脂層積層工程及び電子線照射工程を順に実施することによって、耐久性に優れた柔軟で高効率な発電性能を発揮する光発電糸を製造することができる。該熱可塑性樹脂層の厚さが0.1μm〜50μm、かつ、該熱可塑性樹脂層の厚さが前記導電糸の直径に対して1/20〜1/5であるので酸素及び水分を充分に遮蔽することができる。しかも、50kGy〜250kGyの範囲の電子線照射を実施するので熱可塑性樹脂層の架橋を促進するので耐久性を向上させることができる。活性層積層工程、導電性高分子層積層工程、熱可塑性樹脂層積層工程及び電子線照射工程を酸素濃度1%以下の不活性ガス雰囲気下で実施することで、活性層、導電性高分子層及び熱可塑性樹脂層における発電性能を損なう酸素を遮蔽することができる。さらに電子線照射工程では熱可塑性樹脂層の架橋反応を阻害するのを防止することができる。   In the invention of [5], by performing the active layer laminating step, the conductive polymer layer laminating step, the thermoplastic resin layer laminating step and the electron beam irradiation step in this order, it is flexible and highly efficient with excellent durability. It is possible to produce a photovoltaic yarn that exhibits power generation performance. Since the thickness of the thermoplastic resin layer is 0.1 μm to 50 μm and the thickness of the thermoplastic resin layer is 1/20 to 1/5 with respect to the diameter of the conductive yarn, oxygen and moisture are sufficiently absorbed. Can be shielded. And since electron beam irradiation of the range of 50 kGy-250 kGy is implemented, since bridge | crosslinking of a thermoplastic resin layer is accelerated | stimulated, durability can be improved. By carrying out the active layer lamination step, the conductive polymer layer lamination step, the thermoplastic resin layer lamination step and the electron beam irradiation step in an inert gas atmosphere having an oxygen concentration of 1% or less, the active layer, the conductive polymer layer In addition, oxygen that impairs power generation performance in the thermoplastic resin layer can be shielded. Further, it is possible to prevent the crosslinking reaction of the thermoplastic resin layer from being inhibited in the electron beam irradiation step.

[6]の発明では、前記活性層積層工程において、前記活性層としてポリチオフェン誘導体及びフラーレン誘導体を用いるので電子供与性のポリチオフェン誘導体がドナー、電子吸引性の強いフラーレン誘導体がアクセプターとして働くので、太陽光の照射により光起電力が発生し、高効率な光発電糸を製造することができる。   In the invention of [6], in the active layer laminating step, since a polythiophene derivative and a fullerene derivative are used as the active layer, an electron-donating polythiophene derivative serves as a donor, and a fullerene derivative having a strong electron-withdrawing property serves as an acceptor. Photovoltaic power is generated by irradiation of, and a highly efficient photovoltaic yarn can be manufactured.

[7]の発明では、前記導電性高分子層積層工程において、前記導電性高分子層としてポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)、ポリアニリン(PANI)/ポリスチレンスルホン酸(PSS)から選ばれる1種を用いるので安定して活性層3で発生した正孔を取り出すことができる光発電糸を製造することができる。   In the invention of [7], in the conductive polymer layer laminating step, polyethylenedioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS), polyaniline (PANI) / polystyrene sulfonic acid (PSS) is used as the conductive polymer layer. Thus, a photovoltaic yarn capable of stably extracting holes generated in the active layer 3 can be produced.

[8]の発明では、前記熱可塑性樹脂層積層工程において、前記熱可塑性樹脂としてEVA(エチレン−酢酸ビニル共重合樹脂)、PVB(ポリビニルブチラール樹脂)から選ばれる1種を用いるので比較的容易に熱溶解し塗工することができる。さらに、酸素及び水分を遮蔽するので導電性高分子層及び活性層を保護すると共に、耐久性のある光発電糸を製造することができる。   In the invention of [8], in the thermoplastic resin layer laminating step, one kind selected from EVA (ethylene-vinyl acetate copolymer resin) and PVB (polyvinyl butyral resin) is used as the thermoplastic resin relatively easily. Can be melted and coated. Furthermore, since oxygen and moisture are shielded, the conductive polymer layer and the active layer can be protected, and a durable photovoltaic thread can be manufactured.

本発明に係る光発電糸の一実施形態を図1に示す。本実施形態の光発電糸は、導電糸の周囲に中心側から順に、活性層、導電性高分子層及び熱可塑性樹脂層が積層された光発電糸である。図において、1は光発電糸、2は導電糸、3は活性層、4は導電性高分子層、5は熱可塑性樹脂層を示している。光発電糸1は、導電糸2の周囲に活性層3を積層し、さらに導電性高分子層4を積層し、最後に熱可塑性樹脂層5を積層している。   One embodiment of the photovoltaic yarn according to the present invention is shown in FIG. The photovoltaic yarn of this embodiment is a photovoltaic yarn in which an active layer, a conductive polymer layer, and a thermoplastic resin layer are laminated in this order from the center side around the conductive yarn. In the figure, 1 is a photovoltaic yarn, 2 is a conductive yarn, 3 is an active layer, 4 is a conductive polymer layer, and 5 is a thermoplastic resin layer. In the photovoltaic yarn 1, an active layer 3 is laminated around a conductive yarn 2, a conductive polymer layer 4 is further laminated, and finally a thermoplastic resin layer 5 is laminated.

導電糸2としては、例えば天然繊維(綿等)又は合成繊維(ポリエステル繊維、ナイロン繊維等)の周りに金属(アルミニウム、ステンレス、金、銀等)薄膜を蒸着処理した繊維、無機繊維(ステンレス鋼繊維等)、導電性繊維(カーボン練り込み繊維、導電性高分子からなる繊維)を採用することができる。中でも軽量で柔軟性があるのでアルミニウムを蒸着するのが好ましい。導電糸2の繊度は、0.003デシテックス〜10210デシテックスの範囲が好ましい。0.003デシテックスより細い繊度では、発電糸の強度が弱くなり、取扱いが困難となるので好ましくない。また、10210デシテックスより太い繊度では、発電糸の柔軟性が不充分となるので好ましくない。   Examples of the conductive yarn 2 include fibers obtained by vapor-depositing a metal (aluminum, stainless steel, gold, silver, etc.) thin film around natural fibers (cotton, etc.) or synthetic fibers (polyester fibers, nylon fibers, etc.), inorganic fibers (stainless steel). Fibers), conductive fibers (carbon kneaded fibers, conductive polymer fibers) can be used. Of these, aluminum is preferably deposited because of its light weight and flexibility. The fineness of the conductive yarn 2 is preferably in the range of 0.003 dtex to 10210 dtex. Fineness finer than 0.003 dtex is not preferable because the strength of the power generation yarn becomes weak and handling becomes difficult. A fineness greater than 10210 dtex is not preferable because the flexibility of the power generation yarn becomes insufficient.

活性層3としては、ポリチオフェン誘導体及びフラーレン誘導体からなり、電子供与性のポリチオフェン誘導体がドナー、電子吸引性の強いフラーレン誘導体がアクセプターとして働くので、太陽光の照射により光起電力が発生し、高効率な光発電糸とすることができる。ポリチオフェン誘導体としては、ポリ−3−ヘキシルチオフェン(P3HT)、ポリ−3−オクチルチオフェン(P3OT)、ポリ−3−ドデシルチオフェン(P3DDT)を挙げることができる。中でも、高い開放電圧を与えるポリ−3−ヘキシルチオフェン(P3HT)が好ましい。また、フラーレン誘導体としては、フラーレン骨格を有するものであれば特に限定されないが、例えば、フェニルC61ブチル酸メチルエステル(PCBM)を挙げることができる。 The active layer 3 is composed of a polythiophene derivative and a fullerene derivative. The electron donating polythiophene derivative serves as a donor, and the fullerene derivative having a strong electron withdrawing property serves as an acceptor. It can be made into a photovoltaic power generation yarn. Examples of the polythiophene derivative include poly-3-hexylthiophene (P3HT), poly-3-octylthiophene (P3OT), and poly-3-dodecylthiophene (P3DDT). Among these, poly-3-hexylthiophene (P3HT) that gives a high open-circuit voltage is preferable. The fullerene derivative is not particularly limited as long as it has a fullerene skeleton, and examples thereof include phenyl C 61 butyric acid methyl ester (PCBM).

導電性高分子層4としては、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)、ポリアニリン(PANI)/ポリスチレンスルホン酸PSSから選ばれる1種を採用することができる。ポリエチレンジオキシチオフェン(PEDOT)にポリスチレンスルホン酸(PSS)がドープされた混合物、及びポリアニリン(PANI)にポリスチレンスルホン酸(PSS)がドープされた混合物は活性層3で発生した正孔を安定的に取り出すので、高効率な光発電糸とすることができる。   As the conductive polymer layer 4, one selected from polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS) and polyaniline (PANI) / polystyrene sulfonic acid PSS can be employed. A mixture of polyethylene dioxythiophene (PEDOT) doped with polystyrene sulfonic acid (PSS) and a mixture of polyaniline (PANI) doped with polystyrene sulfonic acid (PSS) can stably generate holes generated in the active layer 3. Since it is taken out, a highly efficient photovoltaic yarn can be obtained.

熱可塑性樹脂層5としては、熱可塑性樹脂としてEVA(エチレン−酢酸ビニル共重合樹脂)、PVB(ポリビニルブチラール樹脂)から選ばれる1種を採用するので比較的容易に熱溶解し塗工することができる。さらに、酸素及び水分を遮蔽するので導電性高分子層4及び活性層3を保護すると共に、耐久性のある光発電糸1を製造することができる。   As the thermoplastic resin layer 5, one kind selected from EVA (ethylene-vinyl acetate copolymer resin) and PVB (polyvinyl butyral resin) is adopted as the thermoplastic resin, so that it can be melted and coated relatively easily. it can. Furthermore, since the oxygen and moisture are shielded, the conductive polymer layer 4 and the active layer 3 can be protected, and a durable photovoltaic yarn 1 can be manufactured.

本発明に係る光発電糸1の製造方法は、導電糸2の周囲に中心側から順に、活性層3、導電性高分子層4及び熱可塑性樹脂層5が積層された光発電糸1の製造方法において、酸素濃度1%以下の不活性ガス雰囲気下で、導電糸2の周囲に活性層3を塗工し乾燥することにより活性層3を得る活性層積層工程と、前記活性層3の周囲に導電性高分子層4を塗工し乾燥することにより導電性高分子層4を得る導電性高分子層積層工程と、前記導電性高分子層4の周囲に熱可塑性樹脂層5を塗工することにより該熱可塑性樹脂層5の厚さが0.1μm〜50μm、かつ、該熱可塑性樹脂層5の厚さが前記導電糸2の直径に対して1/20〜1/5である熱可塑性樹脂層5を得る熱可塑性樹脂層積層工程と、前記熱可塑性樹脂層5に50kGy〜250kGyの範囲の電子線照射を行う電子線照射工程とを順に実施することを特徴とする。   The manufacturing method of the photovoltaic yarn 1 according to the present invention is the manufacturing of the photovoltaic yarn 1 in which the active layer 3, the conductive polymer layer 4, and the thermoplastic resin layer 5 are laminated in this order from the center side around the conductive yarn 2. In the method, an active layer laminating step of obtaining an active layer 3 by applying and drying the active layer 3 around the conductive yarn 2 in an inert gas atmosphere having an oxygen concentration of 1% or less, and a surrounding of the active layer 3 The conductive polymer layer 4 is coated and dried to obtain the conductive polymer layer 4 and the thermoplastic polymer layer 5 is applied around the conductive polymer layer 4. By doing so, the thickness of the thermoplastic resin layer 5 is 0.1 μm to 50 μm, and the thickness of the thermoplastic resin layer 5 is 1/20 to 1/5 with respect to the diameter of the conductive yarn 2. The thermoplastic resin layer lamination step for obtaining the plastic resin layer 5, and 50 kGy to 250 k in the thermoplastic resin layer 5 An electron beam irradiation step of performing electron beam irradiation in the range of kGy is performed in order.

本発明に係る光発電糸1の製造方法によれば、活性層積層工程と、導電性高分子層積層工程と、熱可塑性樹脂層積層工程及び電子線照射工程を順に実施することによって、耐久性に優れた柔軟で高効率な発電性能を発揮する光発電糸1を製造することができる。該熱可塑性樹脂層5の厚さが0.1μm〜50μm、かつ、該熱可塑性樹脂層5の厚さが前記導電糸2の直径に対して1/20〜1/5であるので酸素及び水分を充分遮蔽すると共に、耐久性に優れた光発電糸1とすることができ、しかも、50kGy〜250kGyの範囲の電子線照射を実施するので熱可塑性樹脂層5の架橋を促進するため耐久性の向上した光発電糸1を製造することができる。活性層積層工程、導電性高分子層積層工程、熱可塑性樹脂層積層工程及び電子線照射工程を酸素濃度1%以下の不活性ガス雰囲気下で実施することで、活性層3、導電性高分子層4及び熱可塑性樹脂層5における発電性能を損なう酸素を遮蔽することができる。さらに電子線照射工程では熱可塑性樹脂層5の架橋反応を阻害するのを防止することができるので、耐久性に優れた光発電糸1を製造することができる。   According to the method for producing the photovoltaic yarn 1 according to the present invention, the active layer laminating step, the conductive polymer layer laminating step, the thermoplastic resin layer laminating step, and the electron beam irradiation step are performed in this order, thereby improving durability. It is possible to produce a photovoltaic yarn 1 that exhibits excellent and flexible and highly efficient power generation performance. Since the thickness of the thermoplastic resin layer 5 is 0.1 μm to 50 μm and the thickness of the thermoplastic resin layer 5 is 1/20 to 1/5 with respect to the diameter of the conductive yarn 2, oxygen and moisture Is sufficiently durable and can be made into a photovoltaic yarn 1 having excellent durability, and further, since the electron beam irradiation in the range of 50 kGy to 250 kGy is performed, the crosslinking of the thermoplastic resin layer 5 is promoted, so that the durability is high. An improved photovoltaic yarn 1 can be manufactured. By carrying out the active layer lamination step, the conductive polymer layer lamination step, the thermoplastic resin layer lamination step, and the electron beam irradiation step in an inert gas atmosphere having an oxygen concentration of 1% or less, the active layer 3, the conductive polymer Oxygen that impairs power generation performance in the layer 4 and the thermoplastic resin layer 5 can be shielded. Furthermore, since it is possible to prevent the crosslinking reaction of the thermoplastic resin layer 5 from being inhibited in the electron beam irradiation step, the photovoltaic yarn 1 having excellent durability can be manufactured.

本発明に係わる光発電糸1の製造方法において、活性層積層工程から電子線照射工程までの処理を、酸素濃度1%以下の不活性ガス雰囲気下で行う。前記不活性ガス雰囲気とは、導電糸2の周囲に中心側から順に積層した活性層3、導電性高分子層4及び熱可塑性樹脂層5において発電性能を損わないようにするために窒素置換などで酸素濃度を1%以下にした状態である。また、活性層積層工程から熱可塑性樹脂層積層工程までの各積層工程は、精度良く均一に積層する方法を用いれば良く、例えばダイコート法、ディップコート法を挙げることができる。   In the manufacturing method of the photovoltaic yarn 1 concerning this invention, the process from an active layer lamination process to an electron beam irradiation process is performed in inert gas atmosphere with an oxygen concentration of 1% or less. The inert gas atmosphere is nitrogen substitution in order not to impair power generation performance in the active layer 3, the conductive polymer layer 4, and the thermoplastic resin layer 5 that are sequentially laminated around the conductive yarn 2 from the center side. Thus, the oxygen concentration is 1% or less. Moreover, each lamination process from an active layer lamination process to a thermoplastic resin layer lamination process should just use the method of laminating accurately and uniformly, for example, can mention the die-coating method and the dip-coating method.

(活性層積層工程)
活性層積層工程では、ポリチオフェン誘導体とフラーレン誘導体を溶媒に溶解した混合溶液を、例えばダイコート法で塗工することで、導電糸2の周囲に精度良く積層することができる。溶媒としては特に限定されないが、例えばジクロロベンゼン、クロロベンゼン、トルエンを挙げることができる。積層する活性層3の厚さは特に限定されないが、20nm〜1500nmの範囲が好ましい。活性層3の厚さが20nm未満では電荷分離が発生し難くなるので発電性能の低下を招くため好ましくない。1500nmを超えると活性層内で電荷の移動に対する抵抗が大きくなるので発電性能の低下を招くため好ましくない。
(Active layer lamination process)
In the active layer laminating step, a mixed solution in which a polythiophene derivative and a fullerene derivative are dissolved in a solvent is applied by, for example, a die coating method, whereby the conductive yarn 2 can be accurately laminated. Although it does not specifically limit as a solvent, For example, a dichlorobenzene, chlorobenzene, and toluene can be mentioned. Although the thickness of the active layer 3 to laminate | stack is not specifically limited, The range of 20 nm-1500 nm is preferable. If the thickness of the active layer 3 is less than 20 nm, it is difficult to generate charge separation, which is not preferable because power generation performance is reduced. If the thickness exceeds 1500 nm, the resistance to charge movement in the active layer increases, and this causes a decrease in power generation performance.

(導電性高分子層積層工程)
導電性高分子層積層工程では、ポリエチレンジオキシチオフェン(PEDOT)にポリスチレンスルホン酸(PSS)がドープされた混合物、またはポリアニリン(PANI)にポリスチレンスルホン酸(PSS)がドープされた混合物を水に分散させた分散溶液を、例えばダイコート法で塗工することで、活性層3の周囲に精度良く積層することができる。積層する導電性高分子層4の厚みは特に限定されない。必要な発電性能に基づいて厚みを調整すれば良い。
(Conductive polymer layer lamination process)
In the conductive polymer layer laminating step, a mixture of polyethylene dioxythiophene (PEDOT) doped with polystyrene sulfonic acid (PSS) or polyaniline (PANI) doped with polystyrene sulfonic acid (PSS) is dispersed in water. By applying the dispersed solution, for example, by a die coating method, the active layer 3 can be accurately laminated around the active layer 3. The thickness of the conductive polymer layer 4 to be laminated is not particularly limited. The thickness may be adjusted based on the required power generation performance.

(熱可塑性樹脂層積層工程)
熱可塑性樹脂層積層工程では、融点温度以上に加熱されたEVA(エチレン−酢酸ビニル共重合樹脂)、またはPVB(ポリビニルブチラール樹脂)を、例えばダイコート法で塗工することで、導電性高分子層4の周囲に精度良く積層することができる。積層する熱可塑性樹脂層5の厚さは特に限定されないが、100nm〜50000nmの範囲が好ましい。熱可塑性樹脂層5の厚さが100nm未満では酸素及び水分に対する遮蔽力が充分とはいえなくなり発電性能の低下を招くため好ましくない。50000nmを超えると光発電糸の柔軟性を損なうため好ましくない。
(Thermoplastic resin layer lamination process)
In the thermoplastic resin layer laminating step, the conductive polymer layer is formed by applying EVA (ethylene-vinyl acetate copolymer resin) or PVB (polyvinyl butyral resin) heated to a temperature equal to or higher than the melting point temperature by, for example, a die coating method. 4 can be laminated with high precision. Although the thickness of the thermoplastic resin layer 5 to laminate | stack is not specifically limited, The range of 100 nm-50000 nm is preferable. If the thickness of the thermoplastic resin layer 5 is less than 100 nm, the shielding ability against oxygen and moisture cannot be said to be sufficient, and the power generation performance is lowered, which is not preferable. If it exceeds 50000 nm, the flexibility of the photovoltaic yarn is impaired, which is not preferable.

(電子線照射工程)
電子線照射工程では、照射量が50kGy〜250kGyの範囲の電子線を照射する。熱可塑性樹脂層5に50kGy〜250kGyの範囲の電子線を照射することで、熱可塑性樹脂層5を架橋反応により耐久性に優れた層とすることができる。照射量が50kGy未満では架橋反応が進まず、照射量が250kGyを超えると、電子線が導電性高分子層4及び活性層3にまで達し、導電性高分子層4及び活性層3を破壊してしまうため発電性能の低下を招くおそれがある。
(Electron beam irradiation process)
In the electron beam irradiation step, an electron beam with an irradiation dose in the range of 50 kGy to 250 kGy is irradiated. By irradiating the thermoplastic resin layer 5 with an electron beam in the range of 50 kGy to 250 kGy, the thermoplastic resin layer 5 can be made into a layer having excellent durability by a crosslinking reaction. When the irradiation dose is less than 50 kGy, the crosslinking reaction does not proceed. When the irradiation dose exceeds 250 kGy, the electron beam reaches the conductive polymer layer 4 and the active layer 3 to destroy the conductive polymer layer 4 and the active layer 3. As a result, power generation performance may be reduced.

次に、本発明の具体的実施例について説明するが、本発明はこれらの実施例のものに特に限定されるものではない。なお、試験方法及び評価は次の通りである。   Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples. The test method and evaluation are as follows.

(耐光強伸度試験)
80℃±3℃の雰囲気下にてJIS B 7753に準じたサンシャインウェザーメータS80(スガ試験機株式会社製)を用い、JIS C8915に準じて2000時間露光し、オートグラフAG−1KN(株式会社島津製作所)を用いて、JIS L 1015に準じて光発電糸の引張り強さ及び伸び率の変化を測定した。耐候試験後の強伸度変化が10%以内を「○」、強伸度変化が10%を超えたものを「×」で表し、「○」を合格とした。
(Light strong elongation test)
Using an sunshine weather meter S80 (made by Suga Test Instruments Co., Ltd.) according to JIS B 7753 in an atmosphere of 80 ° C. ± 3 ° C., exposure was performed for 2000 hours according to JIS C8915, and Autograph AG-1KN (Shimadzu Corporation) The change in tensile strength and elongation of the photovoltaic yarn was measured according to JIS L 1015. A change in strong elongation after the weather resistance test within 10% was indicated by “◯”, a change in strength change exceeding 10% was indicated by “x”, and “◯” was regarded as acceptable.

(摩擦堅牢度試験)
JIS L 0849に準じた摩擦試験機II形を用い、14cm×5cmの厚紙に光発電糸1を重ならないように3cm幅で長手方向に巻きつけた試験片を試験し評価した。導電性高分子層4の摩擦用白綿布への着色を目視で評価した。着色が認められなかったものを「○」、僅かに認められたものを「△」、着色が認められたものを「×」で表し、「○」を合格とした。
(Friction fastness test)
Using a friction tester type II conforming to JIS L 0849, a test piece wound in the longitudinal direction with a width of 3 cm so as not to overlap the 14 cm × 5 cm thick paper with the photovoltaic yarn 1 was tested and evaluated. The coloring of the conductive polymer layer 4 on the white cotton cloth for friction was visually evaluated. The case where coloring was not recognized was represented by “◯”, the case where slight coloring was observed was represented by “Δ”, the case where coloring was observed was represented by “x”, and “◯” was regarded as passing.

<実施例1>
酸素濃度0.1%の窒素ガス雰囲気下で、導電糸2として用意した直径100μmのアルミニウム蒸着ポリエステル糸の周囲に、ポリ−3−ヘキシルチオフェン(P3HT)とアクセプターとしてフェニルC61ブチル酸メチルエステル(PCBM)をトルエン溶媒に溶解し混合液をダイコート法にて厚み150nmになるように塗工した後、150℃×20分緩やかに加熱し溶媒を揮発させ活性層3を積層した。次に、活性層3の周囲にポリエチレンジオキシチオフェン(PEDOT)にポリスチレンスルホン酸(PSS)をドープさせた水分散体をダイコート法にて厚み150nmになるように塗工した後、200℃×20分加熱し水分を乾燥させ導電性高分子層4を積層した。さらに、導電性高分子層4の周囲に180℃で溶融した熱可塑性樹脂EVA(エチレン−ビニル共重合樹脂)をダイコート法にて厚み8000nmになるように塗工し、20℃の室温の中で空冷して熱可塑性樹脂層5を積層した。最後に、照射量100kGyの電子線を熱可塑性樹脂層5に照射して熱可塑性樹脂層5の架橋を促進、硬化させて光発電糸1を得た。
<Example 1>
In an atmosphere of nitrogen gas with an oxygen concentration of 0.1%, poly-3-hexylthiophene (P3HT) and phenyl C 61 butyric acid methyl ester (acceptor) as an acceptor are provided around an aluminum-deposited polyester yarn having a diameter of 100 μm prepared as a conductive yarn 2. PCBM) was dissolved in a toluene solvent, and the mixed solution was applied by a die coating method so as to have a thickness of 150 nm, and then heated gently at 150 ° C. for 20 minutes to evaporate the solvent, and the active layer 3 was laminated. Next, an aqueous dispersion obtained by doping polyethylene dioxythiophene (PEDOT) with polystyrene sulfonic acid (PSS) around the active layer 3 is coated to a thickness of 150 nm by a die coating method, and then 200 ° C. × 20 The mixture was heated for a minute to dry the moisture, and the conductive polymer layer 4 was laminated. Further, a thermoplastic resin EVA (ethylene-vinyl copolymer resin) melted at 180 ° C. around the conductive polymer layer 4 is applied by a die coating method to a thickness of 8000 nm, and at a room temperature of 20 ° C. The thermoplastic resin layer 5 was laminated by air cooling. Finally, the thermoplastic resin layer 5 was irradiated with an electron beam with an irradiation amount of 100 kGy to promote and cure the crosslinking of the thermoplastic resin layer 5 to obtain the photovoltaic yarn 1.

<実施例2>
熱可塑性樹脂EVA(エチレン−ビニル共重合樹脂)を厚み10000nmになるように塗工したことと、熱可塑性樹脂層5に照射した電子線の照射量を80kGyとしたこと以外は実施例1と同様にして光発電糸1を得た。
<Example 2>
The same as in Example 1 except that the thermoplastic resin EVA (ethylene-vinyl copolymer resin) was applied to a thickness of 10,000 nm and that the irradiation amount of the electron beam applied to the thermoplastic resin layer 5 was 80 kGy. Thus, a photovoltaic yarn 1 was obtained.

<実施例3>
酸素濃度0.5%の窒素ガス雰囲気下で実施したことと、導電糸2として直径200μmのステンレス鋼繊維を用いたことと、熱可塑性樹脂EVA(エチレン−ビニル共重合樹脂)を厚み20000nmになるように塗工したこと以外は実施例1と同様にして光発電糸1を得た。
<Example 3>
It was carried out in a nitrogen gas atmosphere with an oxygen concentration of 0.5%, a stainless steel fiber having a diameter of 200 μm was used as the conductive yarn 2, and a thermoplastic resin EVA (ethylene-vinyl copolymer resin) having a thickness of 20000 nm. A photovoltaic yarn 1 was obtained in the same manner as in Example 1 except that coating was performed as described above.

<実施例4>
活性層3としてポリ−3−オクチルチオフェン(P3OT)、ポリ−3−ドデシルチオフェン(P3DDT)をトルエン溶媒に溶解し混合液をダイコート法にて厚み200nmになるように塗工したことと、熱可塑性樹脂EVA(エチレン−ビニル共重合樹脂)を厚み10000nmになるように塗工したことと、熱可塑性樹脂層5に照射した電子線の照射量を200kGyとしたこと以外は実施例1と同様にして光発電糸1を得た。
<Example 4>
As active layer 3, poly-3-octylthiophene (P3OT) and poly-3-dodecylthiophene (P3DDT) were dissolved in a toluene solvent, and the mixture was applied to a thickness of 200 nm by a die coating method, and thermoplasticity Except that the resin EVA (ethylene-vinyl copolymer resin) was applied to a thickness of 10000 nm and the irradiation amount of the electron beam applied to the thermoplastic resin layer 5 was 200 kGy, the same as in Example 1. A photovoltaic yarn 1 was obtained.

<実施例5>
酸素濃度0.3%の窒素ガス雰囲気下で実施したことと、導電性高分子層4としてポリアニリン(PANI)にポリスチレンスルホン酸(PSS)をドープさせた水分散体を厚み100nmになるように塗工したことと、熱可塑性樹脂EVA(エチレン−ビニル共重合樹脂)を厚み15000nmになるように塗工したこと以外は実施例1と同様にして光発電糸1を得た。
<Example 5>
It was carried out in a nitrogen gas atmosphere with an oxygen concentration of 0.3%, and an aqueous dispersion in which polyaniline (PANI) was doped with polystyrene sulfonic acid (PSS) as the conductive polymer layer 4 was applied to a thickness of 100 nm. A photovoltaic yarn 1 was obtained in the same manner as in Example 1 except that it was coated and a thermoplastic resin EVA (ethylene-vinyl copolymer resin) was applied to a thickness of 15000 nm.

<実施例6>
熱可塑性樹脂PVB(ポリビニルブチラール樹脂)を厚み15000nmになるように塗工熱可塑性樹脂層5に照射した電子線の照射量を150kGyとしたこと以外は実施例1と同様にして光発電糸1を得た。
<Example 6>
The photovoltaic yarn 1 is formed in the same manner as in Example 1 except that the irradiation amount of the electron beam applied to the coating thermoplastic resin layer 5 is 150 kGy so that the thickness of the thermoplastic resin PVB (polyvinyl butyral resin) is 15000 nm. Obtained.

<比較例1>
熱可塑性樹脂EVA(エチレン−ビニル共重合樹脂)を厚み60000nmになるように塗工したこと以外は実施例1と同様にして光発電糸1を得た。
<Comparative Example 1>
Photovoltaic yarn 1 was obtained in the same manner as in Example 1 except that thermoplastic resin EVA (ethylene-vinyl copolymer resin) was applied to a thickness of 60000 nm.

<比較例2>
酸素濃度10%の窒素ガス雰囲気下で実施したこと以外は実施例2と同様にして光発電糸1を得た。
<Comparative example 2>
Photovoltaic yarn 1 was obtained in the same manner as in Example 2 except that it was carried out in a nitrogen gas atmosphere with an oxygen concentration of 10%.

<比較例3>
電子線を照射しなかった以外は実施例3と同様にして光発電糸1を得た。
<Comparative Example 3>
A photovoltaic yarn 1 was obtained in the same manner as in Example 3 except that the electron beam was not irradiated.

<比較例4>
熱可塑性樹脂にアクリル樹脂を厚み10000nmになるように塗工したこと以外は実施例4と同様にして光発電糸1を得た。
<Comparative example 4>
Photovoltaic yarn 1 was obtained in the same manner as in Example 4 except that an acrylic resin was applied to the thermoplastic resin to a thickness of 10,000 nm.

実施例1〜6及び比較例1〜4と評価結果を表1に示す。
Tables 1 to 6 and Comparative Examples 1 to 4 and the evaluation results are shown in Table 1.

本発明に係わる光発電糸の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the photovoltaic yarn concerning this invention.

1・・・光発電糸
2・・・導電糸
3・・・活性層
4・・・導電性高分子層
5・・・熱可塑性樹脂層
DESCRIPTION OF SYMBOLS 1 ... Photoelectric generation yarn 2 ... Conductive yarn 3 ... Active layer 4 ... Conductive polymer layer 5 ... Thermoplastic resin layer

本発明に係る光発電糸は、例えば製編あるいは製織し布帛にすることで、太陽光発電に応用できる。   The photovoltaic yarn according to the present invention can be applied to photovoltaic power generation, for example, by knitting or weaving into a fabric.

Claims (8)

導電糸の周囲に中心側から順に、活性層、導電性高分子層及び熱可塑性樹脂層が積層された光発電糸において、該熱可塑性樹脂層の厚さが0.1μm〜50μm、かつ、該熱可塑性樹脂層の厚さが前記導電糸の直径に対して1/20〜1/5であることを特徴とする光発電糸。 In the photovoltaic yarn in which the active layer, the conductive polymer layer, and the thermoplastic resin layer are laminated in order from the center side around the conductive yarn, the thickness of the thermoplastic resin layer is 0.1 μm to 50 μm, and The photovoltaic yarn, wherein the thermoplastic resin layer has a thickness of 1/20 to 1/5 of the diameter of the conductive yarn. 前記活性層が、ポリチオフェン誘導体及びフラーレン誘導体からなる請求項1に記載の光発電糸。 The photovoltaic yarn according to claim 1, wherein the active layer is composed of a polythiophene derivative and a fullerene derivative. 前記導電性高分子層が、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)、ポリアニリン(PANI)/ポリスチレンスルホン酸PSSから選ばれる1種である請求項1または2に記載の光発電糸。 The photovoltaic yarn according to claim 1 or 2, wherein the conductive polymer layer is one selected from polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS) and polyaniline (PANI) / polystyrene sulfonic acid PSS. . 前記熱可塑性樹脂層が、EVA(エチレン−酢酸ビニル共重合樹脂)、PVB(ポリビニルブチラール樹脂)から選ばれる1種である請求項1〜3のいずれか1項に記載の光発電糸。 The photovoltaic yarn according to any one of claims 1 to 3, wherein the thermoplastic resin layer is one selected from EVA (ethylene-vinyl acetate copolymer resin) and PVB (polyvinyl butyral resin). 酸素濃度1%以下の不活性ガス雰囲気下で、導電糸の周囲に活性層を塗工し乾燥することにより活性層を得る活性層積層工程と、前記活性層の周囲に導電性高分子層を塗工し乾燥することにより導電性高分子層を得る導電性高分子層積層工程と、前記導電性高分子層の周囲に熱可塑性樹脂層を塗工することにより該熱可塑性樹脂層の厚さが0.1μm〜50μm、かつ、該熱可塑性樹脂層の厚さが前記導電糸の直径に対して1/20〜1/5である熱可塑性樹脂層を得る熱可塑性樹脂層積層工程と、前記熱可塑性樹脂層に50kGy〜250kGyの範囲の電子線照射を行う電子線照射工程とを順に実施することを特徴とする光発電糸の製造方法。 In an inert gas atmosphere with an oxygen concentration of 1% or less, an active layer laminating step for obtaining an active layer by coating and drying the active layer around the conductive yarn, and a conductive polymer layer around the active layer A conductive polymer layer laminating step for obtaining a conductive polymer layer by coating and drying, and a thickness of the thermoplastic resin layer by coating a thermoplastic resin layer around the conductive polymer layer A thermoplastic resin layer laminating step of obtaining a thermoplastic resin layer having a thickness of 0.1 μm to 50 μm and a thickness of the thermoplastic resin layer of 1/20 to 1/5 of the diameter of the conductive yarn, The manufacturing method of the photovoltaic yarn characterized by implementing in order the electron beam irradiation process of performing the electron beam irradiation of the range of 50 kGy-250 kGy to a thermoplastic resin layer. 前記活性層積層工程において、前記活性層としてポリチオフェン誘導体及びフラーレン誘導体を用いる請求項5に記載の光発電糸の製造方法。 The method for producing a photovoltaic yarn according to claim 5, wherein a polythiophene derivative and a fullerene derivative are used as the active layer in the active layer lamination step. 前記導電性高分子層積層工程において、前記導電性高分子層としてポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)、ポリアニリン(PANI)/ポリスチレンスルホン酸PSSから選ばれる1種を用いる請求項5または6に記載の光発電糸の製造方法。 The conductive polymer layer laminating step uses one kind selected from polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS) and polyaniline (PANI) / polystyrene sulfonic acid PSS as the conductive polymer layer. A method for producing a photovoltaic yarn according to 5 or 6. 前記熱可塑性樹脂層積層工程において、前記熱可塑性樹脂としてEVA(エチレン−酢酸ビニル共重合樹脂)、PVB(ポリビニルブチラール樹脂)から選ばれる1種を用いる請求項5〜7のいずれか1項に記載の光発電糸の製造方法。 In the said thermoplastic resin layer lamination process, 1 type chosen from EVA (ethylene-vinyl acetate copolymer resin) and PVB (polyvinyl butyral resin) is used as said thermoplastic resin. Manufacturing method of photovoltaic power yarn.
JP2011102297A 2011-04-28 2011-04-28 Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same Pending JP2012234959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102297A JP2012234959A (en) 2011-04-28 2011-04-28 Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011102297A JP2012234959A (en) 2011-04-28 2011-04-28 Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012234959A true JP2012234959A (en) 2012-11-29

Family

ID=47434998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102297A Pending JP2012234959A (en) 2011-04-28 2011-04-28 Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012234959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225982A (en) * 2014-05-29 2015-12-14 住江織物株式会社 Photovoltaic yarn and method of producing the same
JPWO2015087797A1 (en) * 2013-12-09 2017-03-16 日産化学工業株式会社 Composition for anode buffer layer of organic thin film solar cell and organic thin film solar cell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042876A (en) * 1983-08-19 1985-03-07 Masahisa Muroki Cloth-like solar battery
JPH06334207A (en) * 1993-05-27 1994-12-02 Canon Inc Solar cell module
JP2001119047A (en) * 1999-10-21 2001-04-27 Du Pont Mitsui Polychem Co Ltd Solar cell sealing material and solar battery module
JP2007109976A (en) * 2005-10-14 2007-04-26 Oki Electric Ind Co Ltd Photoelectric conversion element, photoelectric conversion structure, apparatus for manufacturing same, and photoelectric conversion device
JP2008034668A (en) * 2006-07-31 2008-02-14 Furukawa Electric Co Ltd:The Organic solar battery, module thereof, and manufacturing method thereof
WO2008023848A1 (en) * 2006-08-24 2008-02-28 Toyo Seikan Kaisha, Ltd. Dye-sensitized solar cell
JP2008507133A (en) * 2004-07-16 2008-03-06 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic device with fiber structure
JP2009188425A (en) * 2009-05-20 2009-08-20 Bridgestone Corp Pair or solar battery sealing films
JP2009252768A (en) * 2008-04-01 2009-10-29 Fuji Electric Holdings Co Ltd Organic solar cell and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042876A (en) * 1983-08-19 1985-03-07 Masahisa Muroki Cloth-like solar battery
JPH06334207A (en) * 1993-05-27 1994-12-02 Canon Inc Solar cell module
JP2001119047A (en) * 1999-10-21 2001-04-27 Du Pont Mitsui Polychem Co Ltd Solar cell sealing material and solar battery module
JP2008507133A (en) * 2004-07-16 2008-03-06 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic device with fiber structure
JP2007109976A (en) * 2005-10-14 2007-04-26 Oki Electric Ind Co Ltd Photoelectric conversion element, photoelectric conversion structure, apparatus for manufacturing same, and photoelectric conversion device
JP2008034668A (en) * 2006-07-31 2008-02-14 Furukawa Electric Co Ltd:The Organic solar battery, module thereof, and manufacturing method thereof
WO2008023848A1 (en) * 2006-08-24 2008-02-28 Toyo Seikan Kaisha, Ltd. Dye-sensitized solar cell
JP2009252768A (en) * 2008-04-01 2009-10-29 Fuji Electric Holdings Co Ltd Organic solar cell and method of manufacturing the same
JP2009188425A (en) * 2009-05-20 2009-08-20 Bridgestone Corp Pair or solar battery sealing films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015087797A1 (en) * 2013-12-09 2017-03-16 日産化学工業株式会社 Composition for anode buffer layer of organic thin film solar cell and organic thin film solar cell
JP2015225982A (en) * 2014-05-29 2015-12-14 住江織物株式会社 Photovoltaic yarn and method of producing the same

Similar Documents

Publication Publication Date Title
Song et al. Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells
Zheng et al. Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer
Qiu et al. Integrating perovskite solar cells into a flexible fiber
Lee et al. Stitchable organic photovoltaic cells with textile electrodes
Dong et al. Interface engineering of perovskite solar cells with PEO for improved performance
Wu et al. High-performance organic photovoltaic modules using eco-friendly solvents for various indoor application scenarios
CN104009105B (en) A kind of wire perovskite solar cell and preparation method thereof
Tromholt et al. Reversible degradation of inverted organic solar cells by concentrated sunlight
Wu et al. Highly efficient perovskite solar cells based on symmetric hole transport material constructed with indaceno [1, 2-b: 5, 6-b'] dithiophene core building block
Zhao et al. Self-Doped and Crown-Ether Functionalized Fullerene as Cathode Buffer Layer for Highly-Efficient Inverted Polymer Solar Cells.
Kim et al. Transient photovoltage and dark current analysis on enhanced open-circuit voltage of polymer solar cells with hole blocking TiO2 nanoparticle interfacial layer
Adhikari et al. Device and morphological engineering of organic solar cells for enhanced charge transport and photovoltaic performance
CN106025073A (en) Organic solar cell employing ternary component as active layer
Sadeghianlemraski et al. Enhanced photo-stability of inverted organic solar cells via using polyethylenimine in the electron extraction layers
KR101415168B1 (en) Preparation method of fibrous solar cells having metal grid electrode, and the fibrous solar cells thereby
Xia et al. Molecular doping inhibits charge trapping in low-temperature-processed ZnO toward flexible organic solar cells
Yasuda et al. Photovoltaic properties and charge dynamics in nanophase-separated F8T2/PCBM blend films
KR101333714B1 (en) Preparation method of fibrous solar cells, and the fibrous solar cells thereby
An et al. Germinant ZnO nanorods as a charge-selective layer in organic solar cells
JP2012234959A (en) Photovoltaic thread covered with thermoplastic resin, and method for manufacturing the same
Sadeghianlemraski et al. Reducing ultraviolet-induced open-circuit voltage loss in inverted organic solar cells by maintaining charge selectivity of the electron collection contact using polyethylenimine
Kadir et al. A self-powered UV photodetector from poly (3, 4-ethylenedioxyselenophene)/Au nanoparticles-ZnO nanoarrays heterojunction
Aziz et al. Electrical Conductivity of Chlorophyll with Polythiophene Thin Film on Indium Tin Oxide as P‐N Heterojunction Solar Cell
Baschir et al. EFFECT OF CNTS AND METAL-PHTHALOCYANINES ADDING ON THE PHOTO-ELECTRICAL BEHAVIOR OF THE PHOTOVOLTAIC STRUCTURES BASED ON POLYMERIC BLENDS
CN103378293B (en) A kind of solaode and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151116

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151211