JP6471203B1 - 厨房換気システムおよびその方法 - Google Patents

厨房換気システムおよびその方法 Download PDF

Info

Publication number
JP6471203B1
JP6471203B1 JP2017181184A JP2017181184A JP6471203B1 JP 6471203 B1 JP6471203 B1 JP 6471203B1 JP 2017181184 A JP2017181184 A JP 2017181184A JP 2017181184 A JP2017181184 A JP 2017181184A JP 6471203 B1 JP6471203 B1 JP 6471203B1
Authority
JP
Japan
Prior art keywords
air volume
exhaust
kitchen
duct
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017181184A
Other languages
English (en)
Other versions
JP2019056518A (ja
Inventor
啓一 松本
啓一 松本
広勝 長山
広勝 長山
田村 稔
稔 田村
高橋 理
理 高橋
永坂 茂之
茂之 永坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2017181184A priority Critical patent/JP6471203B1/ja
Application granted granted Critical
Publication of JP6471203B1 publication Critical patent/JP6471203B1/ja
Publication of JP2019056518A publication Critical patent/JP2019056518A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】厨房内環境の安全性を確保しつつ、厨房換気の省エネルギー化を図る。【解決手段】排気フード(5)毎に取付けた枝ダクト(70)内と厨房室内(2)との温度偏差を検知(74、50)して、枝ダクトを集気する集合ダクト(21)に設けた可変風量装置(Variable Air Volume:VAV、80、81、82、83)毎の風量を制御した上、排気ファン(13)および給気ファンを含む外調機(32)の風量を制御し得るように、省エネルギー化を図る風量削減を目標値に漸近させるフローチャートに従って、VAV制御風量と関連する温度偏差値を自動的に定める自動探索で設定温度を可変する通常制御運転と、室内の一酸化炭素濃度の検知(53)でVAVを最大風量で動作させる安全優先運転との切り替える手段を提供する。【選択図】図1

Description

本発明は、ホテルや飲食店等の厨房施設に備えられている換気設備に適合する排気および給気を行う厨房換気システムおよびその方法に関する。
火気を扱う厨房では、そこの給気と排気のためにダクトを配置し、排気ダクトに排気フードを取付けて厨房毎の局所排気を行う給排気設備が据え付けられている。さらに業務用厨房における従来の換気設備は、調理機器から発生する燃焼排気や湯気等の調理排気を室外に排出する排気設備、調理機器の燃焼に必要な外気を室外から導入し温湿度調整をして供給する給気設備、および厨房や空間的に連続した客席を空調するための空調設備で構成される。
図12は従来システムを示し、たとえば、テナントビル(1)2階(2F)に在る飲食店舗の厨房(2、3、4)の排気設備は、各厨房に配置する複数の排気フード(5、6、7、8)、排気フード毎の枝ダクト(9a、9b、9c、9d)、集合ダクト(10a、10b、10c、10d)、各集合ダクトに設け、排気量を調整する手動ダンパまたはモーターダンパ(11a、11b、11c、11d)、排気ダクト(12)および排気ファン(13)(この図では屋上RFに設置)で構成する。
排気系は、調理機器毎あるいは排気区分毎に設けた排気フード(5、6、7、8)が捕集した空気を、枝ダクト(9a、9b、9c、9d)を通して集合ダクト(10a、10b、10c、10d)に導き、各集合ダクトにあるモーターダンパ(11a、11b、11c、11d)を経由して排気ダクト(12)から排気ファン(13)によって、熱温風(14、15、16、17)を屋外に排出する。ここで、排気量は常時一定量で行ない、その量は機器設備容量(各機器の定格燃焼量の合計値)で求められる所定排気量の20〜40倍やあるいは排気フードの開口面積に所定風速を乗じて決めている。
図12に示す従来例において、給気設備は、外気(30)を取り込むための給気ファンおよび熱源(図省略)との往還路(31)を持つ温湿度調整のための外調機(32)、給気ダクト(33)を各厨房(2、3、4)の分岐毎に設けた手動ダンパまたは各モーターダンパ(34a、34b、34c)および給気口(36a、36b、36c)である。
この給気系は、給気ファンで取り込んだ外気(30)を空気調和機すなわち外調機(32)にて温湿度調整をした後、給気ダクト(33)を経由して、吹出口(36a、36b、36c)の吹出風量を調整する手動ダンパまたは各モーターダンパ(34a、34b、34c)を介して給気口(36a、36b、36c)から各厨房に給気する。外気の給気量(外気量)もまた常時一定で、排気量に見合った量を給気ファンで導入する。
以上の排気設備および給気設備のうち排気ファン(13)は排気ファン用インバーター(40)、外調機(32)は外調機用インバーター(41)で駆動する。また、排気系のモーターダンパ(11a、11b、11c、11d)および給気系のモーターダンパ(34a、34b、34c)の動作と、排気ファン用インバーター(40)および外調機用インバーター(41)との連携を制御盤(42)で制御している。
厨房換気は、燃料ガスを燃焼させる調理機器の必要外気量の確保、燃料ガスおよび電気調理機器における臭気や湯気、油煙等の排気による厨房内および客席内の環境改善に寄与する。一方で、前述の通りに常時一定量の排気と外気の給気を行っているため、それらファン動力と外気の温湿度調整に係るエネルギーとが莫大に消費され、テナントビルでの電力消費をみると、店舗の単位面積当たりのエネルギー消費量が飲食店で事務所の2倍にもなる。特に飲食店の厨房では事務所の15倍にもなるのが実態である。例えば複合テナントビルにおける事務所が70%で飲食店が30%の占有面積割合で入居している場合、エネルギー消費割合は事務所が30%、飲食店が70%となり逆転することになる。これは飲食店の厨房が火気の使用状況に関わらず常に一定の風量を厨房用フードから排気しているためである。
厨房換気の省エネルギー化を推進するには、前述の常時一定量の排気と外気導入を可変とし、火気使用または調理中の判断を行って過不足なく換気でき、安全性と快適性を損なわずに運用可能で、換気システム構築における導入コストの低減を実現することが必要となる。
火気使用または調理中の判断には,様々な環境の状態を検知することが示されている。特許文献2には二酸化炭素(CO)濃度による判断が記述されているが、人由来の濃度と燃焼由来の濃度との区分が難しくて明確な判断ができず、かつ電気調理機器では成立しない。特許文献7と特許文献8では、温度と湿度を組み合わせた判断を記述しているが、2つのセンサーの設置コストが必要な割には、常時水蒸気が発生している状態では温度も高くなるため湿度検知は不要で、かつ湿度センサーには実用的な検知原理においては油等による劣化が懸念され、交換頻度が早くて維持コストが余計にかかる。また特許文献7では、温度を赤外線放射で検知することを記述しているが、鍋や調理台等は光沢のある金属製の可能性が高くて放射率が低く、周囲の熱環境を反射する傾向にあって場合によっては計測値の正確性を失う。
特許文献3と特許文献5および特許文献6は、温度センサーによる火気使用または調理中の判断を行うが、調理機器近傍や排気フード内に設置すると記述されており、複数台で構成される調理機器とその上空を囲う容積の大きいフード内において、当然ながら温度分布が発生し、これを把握するためにはセンサー設置数を増やす必要があるためコストがかかり、それを回避するために代表点を定める場合にはある程度の応答遅れ等の検知情報としての妥協が必要となる。
常時一定量の排気を可変とする方法として、排気ダクト内にモーターダンパ(MD)を設置し、その開度と排気ファンの回転数を調整するが、ダンパの設置場所について特許文献3〜5では各フードに多数設置することを記述している。細やかな風量制御を行うことができるが、ダンパの設置コストが多額となり、それを制御するパターンも多数設定することとなって制御盤の作成費も増大する。さらには、給気の吹出口と排気フードの位置や空間的に連続する客席との開口位置(カウンターや配膳場所など)の配置関係によっては、各排気フードの排気量が大きく異なることにより、排気量が多く排気速度の速いフードにおいては給気とのショートサーキットが発生し、温調された給気が厨房内に循環されずに排気されて温熱環境が悪化し、快適性の懸念がある。
また過不足なく排気を制御する方法として、特許文献5には最大風量や使用低頻度の排気フードを対象に風量変更可能とした排気ファンの風量と排気ダンパ開度とのパターンを作成し、これを選択して運用すること、特許文献6には温度設定値を幾つか設けかつ設定継続時間を指定することで運用をすると記述している。作成する運用パターンは店舗が提供する食事のメニューやお客様のオーダーによって異なり、またテナントが変更して調理機器が変更した場合には、再度設定する必要があって手間と作業コストがかかる。温度設定においても同様の懸念事項が発生し、かつ室内と排気の温度およびその温度偏差は冷房や暖房、空調熱負荷などの環境状況によって変化するため定期的な再設定を行う必要があり、手間とコストがかかる。
安全性を損なわないために、特許文献5にはファンやダンパの異常検知時には最大風量で排気する策を講じているが、燃料ガスや炭火の燃焼には一酸化炭素(CO)や酸素(O)の濃度検知が必要で、管理濃度範囲を外れた場合には最大風量を確保しなければならない。
特許文献1の実施例には、排気フードの上流側の枝ダクトに温度センサーを設置し、排気温度と各調理機器からの影響を受け難い厨房内温度との差で排気量を制御する記述があり、また各排気フードに設けられた枝ダクトまたはこれら枝ダクトの下流にある集合排気ダクトにモーターダンパ(MD)を設けるという記述があるが、特許文献1〜8の全てにおいて制御する風量を測定する手段を設けていないで排気および給気風量を制御しようとしている。
特開平6−221631号公報 特開2005−156138号公報 特開2006−200818号公報 特開2006−284095号公報 特開2012−137261号公報 特開2012−137262号公報 特開2015−206508号公報 特開2016−80274号公報
第1に、火気使用または調理中の判断には、検知するセンサーの劣化を抑え、発生源の確実性を確保し、分布影響に左右されずに検知でき、本発明の普及促進に係る低コスト化およびメンテナンスの容易性を考慮する必要がある。
第2に、排気量を可変するためのモーターダンパ設置場所は、ダンパ設置コストの低減と各排気フードの排気量が大きく異なることを避けて厨房内の温熱環境悪化を抑制する必要がある。
第3に、過不足なく排気を制御しようと、排気風量とダンパ開度とのパターン化や温度設定値の複数化や固定値化をすることが、食事メニューやテナント変更、空調環境の季節変動等の影響に追従できなくなり、再設定が必要になる。
第4に、安全性に配慮するために最大風量で排気する策を講じるが、設備の異常検知時の他に、燃料ガスや炭火の燃焼に係る一酸化炭素(CO)や酸素(O)の濃度検知によるリスク回避システムが必要である。
第5に、各調理機器の発熱や燃焼量を想定した排気風量とダンパ開度等によるパターン運用を行っているが、排気風量を計測しておらず、風量測定機能を有する装置を導入した厨房換気システムを構築して給気量も制御する必要がある。
一般的に厨房機器の使用負荷率は20〜30%程度に留まると言われており、使用していない時間帯も過剰かつ無駄な換気運転を行っている。この換気運転では厨房内空気を屋外に捨て、新たに外気を温調(温度調節)して導入しなくてはならず、排気の動力エネルギーだけでなく、空調エネルギーも莫大に消費する。
既に一般事務所などでは、外気量を増減させる省エネルギーの空気調和システムを運用されているが、テナントビル内にある多くの厨房の個々の事情も考慮した上で同じような制御ができれば大幅な省エネ効果が期待できる。
すなわち、通常の換気運転では省エネルギーを図るように適切な換気能力にすることを第1とする厨房換気システムであるが、火気を扱う厨房では一般事務所で発生確率の低い一酸化炭素発生の危険性を伴う。そこで、異常事態を検知した場合にはただちに換気能力の最大化を図り、安全を第1にするように、省エネルギーと安全性の向上を含む多機能な厨房換気システムが望ましい。
本発明の第1の手段は、
複数の厨房に設けた複数の排気フードと、その排気フードに接続される複数の枝ダクトと、前記複数の枝ダクトを合流させて接続する集合ダクトと、その集合ダクトに連通する下流ダクトと、排気ファンとで構成する排気経路を有する厨房換気システムにおいて、
前記枝ダクトの通気部分に設けた排気温度センサーと、
前記集合ダクトの通気部分に設け、風量計測要素および風量制御要素を内蔵する可変風量装置と、
前記複数の厨房に設けた室内温度センサーと、
室内一酸化炭素濃度センサーおよび、または室内酸素濃度センサーと、
前記下流ダクトの通気部分に設け、全ての集合ダクトの排気を行う前記排気ファンと、
を備え、
前記排気温度センサーと前記室内温度センサーとで検出した両温度の温度偏差に基づいて排気風量を増減する風量制御を行う前記可変風量装置であり、
前記風量制御を行う前の制御前排気風量と、前記風量制御を行った後の制御後排気風量との差が、目標とする風量削減量に近付くように、前記温度偏差と前記排気風量との関係を自動探索する風量制御プロセスを含み、前記制御後排気風量を時間経過と共に前記可変風量装置で可変する前記自動探索を行う通常制御運転と、
一酸化炭素濃度あるいは酸素濃度の異常を検出した場合に、前記可変風量装置を最大風量に切り替えると共に、前記排気ファンに向けて排気要求風量を増加させる安全優先運転と、
これら通常制御運転および安全優先運転の切り替えが可能な構成を特徴とする厨房換気システムである。
本発明の第2の手段は、厨房に外気を給気する吹出口と、この吹出口を設けた枝ダクトに接続される集合ダクトと、この集合ダクトの通気部内に風量計測要素および風量制御要素を内蔵する可変風量装置と、集合ダクトに連通する上流ダクトと、その上流ダクトに設けた給気ファンまたは前記給気ファンを含む外調機とを備え、厨房内外の圧力バランスを維持するように、前記可変風量装置と前記給気ファンまたは前記排気ファンの回転を制御することを上記の厨房換気システムに加えた手段である。
本発明の第3の手段は、
複数の厨房に設けた複数の排気フードと、その排気フードに接続される複数の枝ダクトと、前記複数の枝ダクトを合流させて接続する集合ダクトと、その集合ダクトに連通する下流ダクトと、排気ファンとで構成する排気経路を有する厨房換気方法において、
前記枝ダクトの通気部分に設けた排気温度センサーと、
前記集合ダクトの通気部分に設け、風量計測要素および風量制御要素を内蔵する可変風量装置と、
前記複数の厨房に設けた室内温度センサーと、
室内一酸化炭素濃度センサーおよび、または室内酸素濃度センサーと、
前記下流ダクトの通気部分に設け、全ての集合ダクトの排気を行う前記排気ファンと、
を備え、
前記排気温度センサーと前記室内温度センサーとで検出した両温度の温度偏差に基づいて排気風量を増減する風量制御を行う前記可変風量装置とを設け、
前記風量制御を行う前の制御前排気風量と、前記風量制御を行った後の制御後排気風量との差が、目標とする風量削減量に近付くように、前記温度偏差と前記排気風量との関係を自動探索する風量制御プロセスを含み、前記制御後排気風量を時間経過と共に前記可変風量装置で可変する前記自動探索を行う通常制御運転を行うか、
あるいは、
一酸化炭素濃度あるいは酸素濃度の異常を検出した場合に、前記可変風量装置を最大風量に切り替えると共に、前記排気ファンに向けて排気要求風量を増加させる安全優先運転を行い、前記異常の非検出に従い再び前記通常制御運転に切り替えることを特徴とする厨房換気方法である。
本発明の第4の手段は、
前記厨房に外気を給気する吹出口と、この吹出口を設けた枝ダクトに接続される集合ダクトと、この集合ダクトの通気部内に風量計測要素および風量制御要素を内蔵する可変風量装置と、前記集合ダクトに連通する上流ダクトと、その上流ダクトに設けた給気ファンまたは前記給気ファンを含む外調機とを設けて、
厨房内外の圧力バランスを維持するように、前記可変風量装置と前記給気ファンまたは前記排気ファンの回転を制御することを上記の厨房換気方法に加えた手段である。
本願発明は、発明特定事項である前記温度偏差信号と前記排気風量との関係に基づく風量制御を行なうことで、厨房内外の圧力バランスを維持する関係から厨房の給気風量を従来一定であったものを本発明で変化を付けることができ、その結果、熱源およびファンの消費エネルギーも低減できるものである。しかしながら、厨房特有の火気の扱いによる一酸化炭素中毒の危険性の常在に対応可能なシステムも必要であり、本発明によってその両者に対応し両立し得る排気系技術を特徴とした厨房換気システムを提供できる。その上、危険回避のために換気を変えた厨房と異なる別店舗の他の厨房では、目標とする省エネルギーを維持できるので、本発明の厨房換気手段は店舗毎の省エネルギー計画の達成に貢献できる。
さらに述べると、本発明は、ダクト内温度センサー(ダクトサーモ)が各フードの排気ダクトに取り付けられ、それぞれの温度計測値から火気使用状況を判断し、グループ化されたフード群の排気ダクトにある風量計測要素と風量制御要素を内蔵する可変風量装置(VAV)を動作させ風量を制御するので、設置するVAVの台数を最小限にすることができ、導入コストを抑えた制御システムを提供することが可能となる。このようにすると各店舗の各厨房で異なる調理条件のそれぞれで適切な風量管理ができるので、季節、朝食〜夕食での料理変化、料理内容による熱量変更に対応して省エネルギーを考慮した厨房換気手段を提供できるのみならず、一酸化炭素濃度等の異常時にも対応できる従来にない優れた効果を与えることができる。
本発明の全システム構成図である。 本発明のシステム構成を一つの厨房を例とした詳細システム図である。 本発明の排気用インバーター出力を定める風力を増す切替条件の説明図である。 本発明の初期設定のフロー図である。 本発明の風量制御の設定プロセスのフロー図である。 本発明の風量制御の判定プロセスのフロー図である。 室温とダクト温度との温度偏差および排気風量が時刻毎に変化する実側データ例である。 一酸化炭素濃度が上昇した時を含む、排気風量が時刻毎に変化する実側データ例である。 給気一定で100%運転を行った場合の厨房の全給気風量および負荷電力量の時刻毎の変化を時間単位で示すデータである。 本発明の給気可変運転を行った場合の厨房の全給気風量および負荷電力量の時刻毎の変化を時間単位で示すデータである。 換気一定100%運転の場合と換気可変制御運転の場合の1次エネルギー使用量を比較したデータである。 換気一定100%運転の場合と換気可変制御運転の場合の年間ランニングコストを比較したデータである。 従来システムを示す概略図である。
以下、本発明の実施の形態に係る厨房換気システムについて図面を参照して説明する。発明の詳細な説明では従来技術での同一の機器には同一の符号を付してある。それらの名称および機能も同じである。以下実施例では、各厨房からの排気系および各厨房への給気系全体の構成および動作の一例を説明する。
(第1実施形態)
図1は本発明のシステム構成(100)を示し、例としてテナントビルの2階(2F)に区分けした3つの厨房(2、3、4)を示している。各厨房には室温センサー(50、51、52)、一酸化炭素(CO)濃度センサー(53、54、55)、センサーおよび制御機器の入出力信号を中継するI/O盤(60、61、62)、および排気フード(5、6、7、8)が備えてある。なお、一酸化炭素(CO)濃度センサー(53、54、55)に加え、あるいはこれを換えて、酸素濃度センサーや煙感知センサー等の異常検出センサーを設けることもできる。
図1に示す排気経路は、各排気フード(5、6、7、8)の枝ダクト(70、71、72、73)に取り付けたダクト内温度センサー(74、75、76、77)、また、枝ダクト(70、71、72、73)をそれぞれ集めた集合ダクト(21、22、23、24)毎の可変風量装置(Variable Air Volume:VAV、80、81、82、83)、各集合ダクト(21、22、23、24)をさらに集めた排気ダクト(12)で集中排気をする排気ファン(13)で構成してある。
図1には給気経路も示してある。給気ファンまたは給気ファンを含むと温湿度調整を図る外調機(32)で取り入れた外気(30)は、給気ダクト(33)から各厨房(2、3、4)の給気口(36a、36b、36c)毎に設けた可変風量装置(85、86、87)を経由して供給する。その他の給気経路の給気ファンおよび熱源(図省略)との往還路(31)などは従来システムのとおりであるが、排気フード(5、6、7、8)と給気口(36a、36b、36c)との配置位置は、給気流が厨房内を循環して排気フード(5、6、7、8)に連通するようにして排気量と給気量に相関も持たせ室内外の圧力バランスを維持する関係に設定している。すなわち、給気流と排気流が厨房内を循環しないショートサーキット構成にならない位置関係とする。
図1では制御系の信号配線を省略しているが、中央監視サーバー(図省略)で厨房換気システムの記録データと設定値の管理をすると共に、要求仕様(目的)に応じて厨房換気制御盤(90)が既存の制御盤(42)と連携し、各厨房に設置したI/O盤(60、61、62)を介して各可変風量装置(80、81、82、83、85、86、87)の制御管理およびインバーター(40、41)への指令をおこなう。排気ファン(13)は排気ファン用インバーター(40)、外調機(32)は外調機用インバーター(41)で駆動される点は従来システムと同じであるが、本発明システム(100)では厨房換気制御盤(90)が全ての指令を統括し、排気系の可変風量装置(80、81、82、83)および給気系の可変風量装置(85、86、87)の動作と、排気ファン用インバーター(40)および外調機用インバーター(41)とを連携する。この厨房換気制御盤(90)では各厨房のI/O盤(60、61、62)から受ける排気風量に基づき全集合ダクトの排気量を算出して、可変風量装置(80、81、82、83)と排気ファン用インバーター(40)に指示すると同時に排気量に応じ、厨房室内外の圧力バランスを維持する給気量を算出して可変風量装置(85、86、87)と外調機用インバーター(41)に指示する。
図2は図1の一つの厨房(2)を例として詳細な構成を示す図である。この厨房システム(2S)において各構成要素に添えた符号は図1と同じである。主な構成要素を改めて説明すると、排気系は調理器(2a、2b)の近くに設けた排気フード(5a、5b)、排気風(14a、14b)の温度測定を行うダクト内温度センサー(74a、74b)を各枝ダクト(70a、70b)に設け、各枝ダクトを集めた集合ダクト(21)、排気用可変風量装置(80)、排気ファン(13)およびそのインバーター(40)である。給気系は給気ダクト(33)、給気用可変風量装置(85)、外調機(32)および給気口(36a)で構成し、外調機(32)で温度調整した外気(30)を厨房(2)に入れる。厨房室(2)には室温センサー(50)、一酸化炭素濃度センサー(53)を設け、そして、制御系はI/O盤(60)、室温および一酸化炭素濃度等のセンサー信号ライン(92)、可変風量装置のダンパ駆動および風量センサーおよび制御ライン(94)、インバーター制御ライン(97)、タッチパネル(90a)を備えた厨房換気制御盤(90)との信号ライン(96)およびサーバライン(98)とそのサーバ(101)、中央監視盤バス(42a)で構成してある。
厨房(2)毎に設ける排気用可変風量装置(80)の排気風量は以下に説明する(1)初期設定プロセスと(2)自動演算による制御設定値の算出プロセスで定まるが、排出風量の最小風量から風量を増やす切り替え方法を図3で説明する。図3の横軸は排気ダクトの温度と室温との温度偏差であり、縦軸は可変風量装置(80)の排出風量であるが、各厨房からの排気要求風量に基づく排気ファン用インバーター(40)に置き換えても同様な動作として理解してもよい。例えば、図2例のようにテナントビル内に一つの厨房のみを対象とする場合は排気ファン(13)の対象は上記の排気用可変風量装置(80)のみであるから排気要求風量は排気ファン用インバーター(40)出力と比例する。ところで、厨房使用者が、調理機器の種類、利用頻度、冷暖房条件を考慮して温度偏差を10℃と設定した場合は、ダクト内温度センサー(74a、74b)と室温センサー(50)との計測値が10℃になる時点から風量を増大させ、設定値が20℃の場合は計測値が20℃に成った時点から風量を増大させる。すなわち、ダクトからの温度情報に基づいて温度偏差に比例して風量が増大するように厨房換気制御盤(90)からI/O盤(60)を中継して可変風量装置のダンパ駆動および風量センサーおよび制御ライン(94)とインバーター制御ライン(97)に送信する。この際、調理機器の種類や利用時間帯は時刻と共に変わるので、複数のダクトの温度偏差のうち常に最大温度偏差を検出して優先フードとして排気要求風量を決めるが、あるいはそれらの合計温度偏差、又は平均温度偏差のいずれであっても設定可能である。
図4は本発明の厨房換気システムの初期設定を行うフロー図である。まず厨房使用者は、初期算出や商用時ベースになる風量データ算出期間としてある一定期間の計測期間日を定めて(S101)、時刻毎でのダクト内温度や厨房室内温度や平均風量等をサーバに記録し(S102)、初期設定の演算開始指示(S103)と共に1日の中で空調機を稼働させるコア時間、たとえば午前9時〜午後11時を設定(S104)する。そこで、ステップS102で蓄積されたデータを使用して温度偏差最大値(A)を選定(S105)し、次に任意に定めた温度設定値(S106)と実側した温度偏差最大値の補正計算値(S107)と比較していずれかを選択(S108)して、ダクト毎の初期温度設定値(A´)を求める(S109)。一方同時に、商用時コアタイム平均排気量すなわち設計最大風量をある一定期間平均化演算(S111、S112)した後、商用時コアタイム平均排気風量(B)を定め(S113)、この値を削減量の基準値とする。
図5は風量制御プロセスのフローチャートを示す。このうち図5Aは風量削減率を定めるプロセスを示し、それに続き図5Bは判定プロセスを含む自動演算による制御設定値の算出を行うフロー図である。まず、厨房使用者は排気風量の目標削減率(S121)を定めると共にその値に2つの幅を持たせる。一つは目標許容範囲を厳しく幅の狭い削減率幅設定1(S122)として、もう一つは目標許容範囲を緩く幅の広い削減率幅設定2(S123)にする。さらに、削減率を刻々自動的に変化させて削減率を自動探索させるように2つの温度変化係数1および2を厨房使用者が定める。ここで、一方の温度変化係数1は小さな削減率変更(x)とし、他方の温度変化係数2は大きな削減率変更値(X)として定める。そこで図4で説明した初期温度設定値(A´)に温度変化係数1および2を乗じた値(S124、S125)で、後述のように削減率が自動的に刻々変化することになる。
サーバ(S120)に蓄積された所定日分の日報データ(S126、S127)は、強制開放日を除外(S128、S129)して、制御時コアタイム平均排気風量(C)を求める(S130)。次に、この制御時コアタイム平均排気風量(C)と図4に示す商用時コアタイム平均排気風量で求めた値(B)(S113)とを用いて風量削減率を次式(1)で算出(S131)する。
D = (1− (C/B))× 100 (%) (1)
次に、目標削減率(D´)(S121)と式(1)の計算値と比較(S132)する(式2)。
E = D − D´ (2)
その値Eと削減率幅設定1とを比較(S133)して、削減率幅設定1の絶対値以内、すなわち、(削減率幅設定1の正の値)> E >(削減率幅設定1の負の値)であれば、排気ファン(13)の最小排気量になる温度偏差の最小値を維持(S142)するように、厨房換気制御盤(90)がI/O盤(60)を介して可変風量装置(80)に、および既存の制御盤(42)を経由して排気ファン用インバーター(40)に指示する。
設定1の判定(S133)でE値が削減率幅設定1の正の値を超えている場合は、設定2の第1判定(S134)に進み、削減率幅設定2とも比較して(削減率幅設定2の正の値)> E >(削減率幅設定1の正の値)ならば排気系可変風量装置の最小風量となる温度偏差の最低値を少し低くするように設定値−x℃に自動設定する(S141)。また、 E >(削減率幅設定2の正の値)ならば、排気系可変風量装置の最小風量となる温度偏差の最低値を少し低くするように設定値−X℃に自動設定する(S140)。
設定1の判定(S133)でE値が削減率幅設定1の負の値未満の場合は、設定2の第2判定(S135)に進み、削減率幅設定2とも比較して(削減率幅設定1の負の値)> E >(削減率幅設定2の負の値)ならば排気系可変風量装置の最小風量となる温度偏差の最低値を少し高くするように設定値+x℃に自動設定する(S143)。また、(削減率幅設定2の負の値)> Eならば、排気系可変風量装置の最小風量となる温度偏差の最低値を少し低くするように設定値+X℃に自動設定する(S144)。
図5A、図5Bで説明したように、排気系可変風量装置での最小風量調整は、厨房換気制御盤(90)に装備されるプログラマブル・ロジック・コントローラ(PLC)による温度偏差値の追跡で自動追従できる。より具体的な運用は、図4で説明した初期設定後、ある一定期間のダクト内温度や室内温度計測および排気ファンの定格運転から初期データを算出し、その後自動制御運転に入る。自動運転後ある一定期間で風量削減率を算出して、目標削減率との乖離を詰めるようにある期間単位で最小風量の設定条件を図5A、図5Bのフローに従い増減させる。そして、目標削減率を達成したことをプログラム上で判定した場合は最小風量設定条件を維持し、大きく超えた場合はプログラムに従い自動的に減らす機能を有したシステムである。すなわち、図5Aで説明した複数のステップS122、S123、S124、S125を設けることは、省エネルギー化を図る風量削減量に漸近させるフローチャートを構成できる。例えば、削減目標値と実際との乖離が大きい時には粗調整、小さい時には微調整を行う2段構えの自動探索のプロセスを与えることになる。
実際の厨房を使用して実験を行ったデータを図6に示す。この図6のデータは、図5A、図5Bのフローに従い制御運転を行った場合のダクト内温度および室内温度の温度偏差と排気風量との関係を示す例である。図6の上側図は排気風量のデータであり、最大風量7000立方メートル毎時の排気容量を持つ排気系可変風量装置での時刻当たりの排気風量変化を示している。図6の下側図はダクト内温度と室温との温度偏差のデータであり、実線は高熱調理器の直上に取り付けたダクト1の温度変化を示し、点線は低熱調理器のダクト2の温度変化を受けている。この厨房では午前中の調理繁忙時間帯と午後1時前後、午後4時頃、午後6時頃、午後9時頃に温度偏差が大きく変化している。この温度変化に対して排気風量は午前9時〜10時頃にシステム動作として強制最大排気を維持しているが、その時間帯以後では温度偏差変化に追随して排気風量も変化している。すなわち、温度偏差が比較的少ない時間帯の15時、17〜18時頃の排気風量は約4000立方メートル毎時に低減されていることが判る。
排気風量の増減は給気風量の増減に連動させる。これは厨房に大気を流入させるために厨房内外の圧力バランスを維持するように、(排気風量) ≒(給気風量)の関係にしているのでこの連動が発生する。そこで排気風量が減ると厨房換気制御盤(90)は給気用可変風量装置(85)と外調機(32)の給気風量を減らして空調用熱源の消費も低減させる。すなわち、図5A、図5Bのフローに従う制御運転に連動して外調機の動力も減ることになるので大きな省エネルギー効果を得る結果になる。
図1、2の実施例では室温センサー(50)の他に一酸化炭素濃度センサー(53)を設けてある。これは、排気風量の制御運転中に調理器から一酸化炭素ガスが発生した場合、強制的に排気系を最大容量で稼働させた安全優先運転のシステム動作に換えるために設置している。一酸化炭素濃度センサー(53)で異常を知らせる検知信号をI/O盤(60)を介して出力され、厨房換気制御盤(90)に装備されるPLCが割り込み要求を出し、該当の可変風量装置(80)を強制全開する共に排気ファン(13)に排気量を増やす様に、それぞれI/O盤(60)および既存の制御盤(42)に送信するとともに、中央監視盤バス(42a)にて警報表示を行う。この強制全開は異常検出の続く間は警報と共に継続する。このように前述図5A、図5Bに従う通常制御運転を安全優先運転に切り替え可能にして構成してある。そして、警報解除になった時点で割り込み処理を解除して制御運転に復帰させるが、再び図5Bで定めた設定値に従い制御運転を行う。ここでは一酸化炭素濃度センサー(53)で説明したが、酸素濃度センサーあるいは煙感知器を使用して酸素濃度あるいは発煙の異常検知でも同様な動作を行う。
この安全優先運転では可変風量装置(80)の強制全開および排気ファン(13)で排気増量になる。そこで、この警報時の異常状態は省エネルギー化の達成度を算出する際、調理器故障に起因する隘路となる。しかしながら、本発明のシステムでは通常制御運転の図5Aで説明したように、強制全開時の風量計算でステップS128の工程を入れて、その影響を除外しているので、調理器故障のような外乱を排除できる。よって、本発明の手段では風量削減量を正確に把握できる。
図7は一酸化炭素濃度が異常値になった時も含めて変化する排気量の変化が現れたデータである。図7の上側図は前述の図6と同じく排気風量のデータであり、排気風量変化を示している。図7の下側図はダクト内温度と室温との温度偏差のデータ(実線)と一酸化炭素ガス濃度(点線)を示している。この例では朝9時頃に一酸化炭素濃度の上昇(14ppm)を検知したので可変風量装置の強制全開および排気ファン用インバーター(40)への排気要求風量を増加させる。図7ではこの異常検知の際に可変風量装置の強制全開によって、一酸化炭素濃度が検知限以下に即低減したことを示している。
本発明による厨房換気システム(図1)は、各店舗の各排気フードの枝ダクトに温度センサー(ダクト内サーモ)を設け、設計時や既存システムで導入されているモーターダンパの替りに風量計測機能を有する可変風量装置(VAV)を導入し、厨房内には温度センサーと一酸化炭素(CO)濃度センサーを設け、I/O盤を介して各センサーとVAVの信号情報を新たに設置する厨房換気制御盤とやり取りをして、VAVのダンパ開度と排気ファンの回転数を制御して排気量を増減する。それと共に外気量の調整も行う。排気と同様に設計時や既存システムで導入されているモーターダンパの替りに風量計測機能を有する可変風量装置(VAV)を導入し、前述の厨房換気制御盤において排気と給気のバランスを考慮し、VAVのダンパ開度と外調機に装備される給気ファンの回転数を制御して外気の給気量を増減する。
火気使用または調理中の判断には調理機器の発熱による排気温度上昇を検知することとし、各排気フードに接続される枝ダクト内に温度センサーを設けて、複数の調理機器からの平均排気温度と調理機器からの熱影響を受けない厨房内温度との差を用いる。ダクト内の排気温度はダクト表面温度でも代用可能で、その場合は表面温度センサーの外表面またはセンサーとダクト外表面を一緒に保温で覆って、外乱の熱的影響を低減する。温度センサーは応答性および精度のよい仕様とする。ダクト内の排気風速は1秒間に数mと速いため、調理機器の発熱により温度上昇した排気が一部フードから漏れることを考慮しても、枝ダクト内の温度センサーにて数秒で検知できる。ダクト内への設置方法はセンサー部が挿入され取り外しが可能な構造であり、油汚れの清掃やセンサー交換を容易にする。
常時一定量の排気を可変とする方法として、風量計測機能を有する可変風量装置(VAV)を複数の排気フードの枝ダクトが集合するダクトに設置し、排気フード全体または厨房全体の排気風量を増減する。これにより、厨房内における排気と給気とのショートサーキットを抑制し、温調された給気が厨房内に循環されずに排気されて温熱環境が悪化し、快適性が損なわれることを予防する。また、可変風量装置の設置数が大幅に減少し、導入コストの低減を実現できる。風量計測機能は差圧検出による機構を推奨し、検出部の油汚れの清掃や交換が容易な仕様とする。
過不足なく排気を制御するため、各排気フードの枝ダクトに設けた温度センサー(ダクト内サーモ)によって検知される排気と厨房内との温度偏差によって排気フード毎の火気使用または調理状況を把握し、予め可変風量装置の風量計測機能によって把握した最大(定格)風量で運用した際の温度偏差を明らかにする。次いで、目標とする風量削減量に達するように各排気フードの温度偏差と排気風量との関係を自動探索して最適化し、設定値とする。温度偏差は、店舗の食事メニューやテナント変更、空調環境の季節変動等によって変化するため固定値化せず、所定の期間を経て自動的にリセットと再設定を行うことにより、手間を省いて再設定作業のコストを削減しつつ厨房換気の省エネルギー化を推進する。
排気の可変による大きなリスクは一酸化炭素中毒や酸素濃度不足であり、これら濃度を厨房内で検知し、管理濃度範囲を外れた場合に最大風量を確保するシステムを構築する。
外気の給気量を可変する方法としても、ダクトには風量計測機能を有する可変風量装置(VAV)を設置し、計測して得られた排気量を基に給気量を増減させて、厨房内外の圧力バランスを維持するシステム構成とする。
厨房換気制御盤はモドバスで通信プロトコルを構成すると共に、中央監視室との通信ネットワークを組み中央監視室へ警報等の運転状況を伝達し、各I/O盤を中継して可変風量装置の起動指示やインバーターへの制御信号可変風量装置の故障情報などを送受信する。
厨房換気制御盤は装備するPLC(プログラマブルロジックコントローラ)動作を行い、各I/O盤を中継して可変風量装置への指令、室温センサーやダクト内温度センサーや一酸化炭素濃度センサーや煙感知器の信号受信、可変風量装置の故障および風速風量検知入力を行う。厨房換気制御盤は厨房毎に個別の目標設定が可能であり店舗の環境に応じて適切な省エネルギーの目標を定めることができる。
可変風量装置の制御をまとめると、初期起動は厨房換気制御盤の起動指示で始まり可変風量装置を一定時間の最大風量運転後にサーバで自動演算して定める目的制御の動作に入る。排気系および給気系の可変風量装置間の調整は室内外の圧力バランスを維持し、室内温度およびダクト内温度、煙検出、一酸化炭素濃度、酸素濃度に従い各可変風量装置毎も100%全開送風あるいはPLCで定めるシーケンスで調整する。そしてシステム故障や異常な煙あるいは一酸化炭素濃度を検出した場合は警報出力を中央監視室に通知すると共に、ダンパ全開の指令を可変風量装置に送信する。
本発明の特徴を改めてまとめると、
(1)設定値を定め、それとの関係で風量を調整する点、
(2)設定値は、ダクト内温度と室温偏差のデータを得たうえ、それに基づいて決定される点、
(3)前述の段落番号0036により、風量の削減率を予め設定する点、
(4)厨房における機器発熱量の変化を捉える手段として、ダクト内温度と室温の差を利用する点、
(5)前述段落番号0044で説明したように最小風量を管理する点、
(6)実際の風量調整において、設定値との温度差が最大のフードを優先する点、
(7)一酸化炭素濃度等の異常に対応するシステムを構成した点。
(第二実施形態)
上記第1実施例では一酸化炭素濃度の異常検知の場合のシステム動作を説明したが、本発明のシステム動作はそのような異常検知を含め各種の異常にも対処しおり、その例をまとめて以下、第2の実施例として挙げる。
可変風量装置の強制全開(最大風量の送風が可能なダンパ全開状態)を改めてまとめると、以下の検出に基づいた場合にも厨房換気制御盤で下記動作の指令を出す。
(I)室温センサーの検出温度が設定値を超えた場合には強制全開信号を該当する可変風量装置に送信してダンパの最大開度にして、検出温度が設定値未満に低下した後に正常動作に戻す。この際のサーモスタットの動作温度および復帰温度のディファレンシャルは厨房使用者の設定で定まる。
(II)煙を感知した場合は強制全開信号を該当する可変風量装置に送信して、警報解除後も一定時間後に通常制御制御に復帰する。
(III)一酸化炭素濃度は検出した時点で強制全開信号を最近接の可変風量装置の強制全開信号を出し、その濃度が危険水準として判断した時点で警報を発する指令にする。当初の検出値以下になった時点で通常制御動作に復帰する。
(IV)酸素濃度についても上記(III)の判断と同様に動作させる。
(V)可変風量装置の故障判断としてダンパ開度が固着した場合等に警報を指令する。
一酸化炭素濃度等の前述の異常時は、前述のように排気要求風量を増加させてVAV(80)ダンパ開度と排気ファン(13)の風量を増やすことになる。その結果、排気ダクトに繋がる他厨房の集合ダクトに対しても吸引圧が高まり、排気要求を増やしていない他の厨房にも影響するが、他の厨房に備えた可変風量装置ではその厨房使用者が定めた目標削減量に影響を与えることなく、厨房換気制御盤での前述の風量制御プロセスを維持する。
<実証実験>
上記実施例の実証実験を行った。厨房面積94平方メートル、熱源DHC、外気処理空調機冷却能力94.3kW、加熱能力199.6kW、外気処理空調機ファン風量32900立方メートル毎時、空調機モータ容量18.5kW(INV)、排気ファン風量32500立方メートル毎時、排気ファンモータ容量15kW(INV)、以上の設備条件として、厨房稼働時間は朝9時から深夜0時で通年運転の実験を行い、下記結果を得た。
図8は1カ月毎に給排気風量を集計して1時間毎の平均値と外気負荷との関係および風量の時刻変化をグラフ化したものである。この図8は本発明の換気システムを稼働させる前、すなわち給気100%における厨房給気風量および外気負荷とした時の電力消費量の時刻朝9時から深夜0時までの変化を示す。この図8の下側の棒グラフは厨房給気風量の時刻毎(1時間単位)の状態を示す。この図8は給気100%商用運転であるから時刻毎の変化がなく朝9時から夜まで一定(破線:140)であり、昼のランチ時間帯(10時〜12時)と夜のディナー時間帯(17時〜20時)のいずれも一定であるが、図8の上側に示す電力消費量では夏と冬では異なり、夏(一点鎖線:120)の12〜14時のピーク時(122)で最大120〜130キロワット外気負荷、冬(二点鎖線:130)の夜のピーク時(132)で130キロワットが給気100%の場合の状態である。
図9は本発明の厨房換気システムを適用した際、排気制御に伴う給気可変における厨房給気風量および外気負荷とした時の電力消費量の時刻朝9時から深夜0時までの変化を示す。この図9の下側の棒グラフ(150a〜150r)は厨房給気風量の時刻毎(1時間単位)の状態を示す。昼のランチ時間帯(152)で18000立方メートル/時間、その後の時間帯(154)で最大で12000立方メートル/時間に減り(156)、夜のディナー時間帯(158)で再び18000立方メートル/時間、夜帯(160)で1500立方メートル/時間に減る(162)。図9の上側に示す電力消費量では夏と冬では図8と同様に異なり、夏の12〜14時で最大120〜130キロワット、冬の深夜で110キロワットに変動している。したがって、図9に示すように本発明の厨房換気システムでは厨房稼働率の低い時間帯では前述した自動探索プロセスで排気風量が下がるので、それに伴い給気系の負荷も低くなる。特に、冬場の外気負荷ピーク時(132)に風量削減(162)、あるいは夏場の外気負荷ピーク時(122)に風量削減(156)という外気処理の熱源エネルギーも含め、相乗的に優れた省エネルギー効果を与えることになる。
図10はそのような相乗的省エネルギー効果を示すものであり、前述の図8、9で説明した1時間毎の吸気風量と外機負荷との関係に基づいて、年間1次エネルギー使用量の削減のデータである。
縦軸は換気100%時(140)と本発明の換気制御運転時とを比較した熱源およびファンに掛る使用エネルギー量を示すものである。図10の左側は換気100%時であり熱源分として1182ギガジュール、ファン分として833ギガジュールで合計約2000ギガジュールとすると、本発明の換気制御運転時では、熱源分が838ギガジュールになり、ファン分が514ギガジュール、合計約1300ギガジュールに減り、すなわち33%の年間1次エネルギー使用量の削減になる。
図11は前述の図10で説明した年間エネルギー使用量の削減で得られる年間ランニングコストの推定値である。縦軸は換気100%時と本発明の換気制御運転時とを比較した熱源およびファンに掛るコストを示すものである。図11の左側は換気100%時であり熱源分として87%、ファン分として13%で合計100%とすると、本発明の換気制御運転時では、熱源分が62%になり、ファン分が8%、合計70%に減り、すなわち30%の年間ランニングコストの低減が期待できる。
よって、厨房換気最適制御システムを導入することで、給排気ファンの消費電力を削減できるだけでなく、外気を冷却・加熱する空調エネルギーも大幅に削減できる。
厨房で1年間にわたり実験を行った検証の結果、一次エネルギーとランニングコストを年間で約30%削減することができた。また、試作実験によれば、厨房室内の温熱環境や空気質についても実用上の欠点になる問題は見だされていない。加えて、本発明を実施しても単純投資回収年数は5年以下が可能であることを実証した。
改めて本発明の効果をまとめる。
(1)本発明による厨房換気システム(図1)は、従来システム(図12)の構成機器に対して、置き換えたり容易に付加することで構築でき、新築および改修物件の両方に適用できる。
(2)本発明による排気量および外気の給気量の可変により、ファン動力と共に外気の温湿度調整に係るエネルギーを大幅に削減できる。実測の結果、夏はランチ終了後に、冬はディナー終了後に外気処理負荷をより多く削減できる。(図8、図9)
(3)実際に複合用途テナントビルにある複数の厨房で1年間の導入効果を確認したところ、常時一定量の排気(排気100%)の運用に対して本発明による厨房換気システムの運用は、1次エネルギーおよびランニングコスト共に約30%の削減が可能であること実証した(図10、図11)。
2、3、4・・・厨房
5、6、7、8・・・排気フード
9a、9b、9c、9d、70、71、72、73・・・枝ダクト
10a、10b、10c、10d、21、22、23、24・・・集合ダクト
11a、11b、11c、11d、34a、34b、34c・・・モーターダンパ
12・・・排気ダクト
13・・・排気ファン
14、15、16、17・・・熱温風、排気風
30・・・外気
31・・・往還路
32・・・外調機
33・・・給気ダクト
36a、36b、36c・・・給気口、吹出口
40・・・排気ファン用インバーター
41・・・外調機用インバーター
42・・・制御盤
50、51、52・・・室温センサー
53、54、55・・・一酸化炭素(CO)濃度センサー
60、61、62・・・I/O盤
74、75、76、77・・・ダクト内温度センサー
80、81、82、83、85、86、87・・・可変風量装置
90・・・厨房換気制御盤
92・・・センサー信号ライン
94・・・可変風量装置のダンパ駆動および風量センサーおよび制御ライン
96・・・信号ライン
97・・・インバーター制御ライン
98・・・サーバライン
101・・・サーバ
120・・・夏の電力消費量の外部負荷
122・・・夏の消費量ピーク帯
130・・・冬の電力消費量の外部負荷
132・・・冬の消費量ピーク帯
140・・・100%商用運転時の厨房給気風量
150a〜150r・・・本発明の厨房換気システムを適用した時刻毎厨房給気風量
152・・・昼のランチ時間帯
154・・・ランチ後の時間帯
156・・・夏場の外気負荷ピーク時の風量削減
158・・・夜のディナー時間帯
160・・・ディナー後の時間帯
162・・・冬場の外気負荷ピーク時の風量削減

Claims (2)

  1. 複数の厨房に設けた複数の排気フードと、その排気フードに接続される複数の枝ダクトと、前記複数の枝ダクトを合流させて接続する集合ダクトと、その集合ダクトに連通する下流ダクトと、排気ファンとで構成する排気経路を有する厨房換気システムにおいて、
    前記枝ダクトの通気部分に設けた排気温度センサーと、
    前記集合ダクトの通気部分に設け、風量計測要素および風量制御要素を内蔵する可変風量装置と、
    前記複数の厨房に設けた室内温度センサーと、
    室内一酸化炭素濃度センサーおよび、または室内酸素濃度センサーと、
    前記下流ダクトの通気部分に設け、全ての集合ダクトの排気を行う前記排気ファンと、
    を備え、
    前記排気温度センサーと前記室内温度センサーとで検出した両温度の温度偏差に基づいて排気風量を増減する風量制御を行う前記可変風量装置であり、
    前記風量制御を行う前の制御前排気風量と、前記風量制御を行った後の制御後排気風量との差が、目標とする風量削減量に近付くように、前記温度偏差と前記排気風量との関係を自動探索する風量制御プロセスを含み、前記制御後排気風量を時間経過と共に前記可変風量装置で可変する前記自動探索を行う通常制御運転と、
    一酸化炭素濃度あるいは酸素濃度の異常を検出した場合に、前記可変風量装置を最大風量に切り替えると共に、前記排気ファンに向けて排気要求風量を増加させる安全優先運転と、
    これら通常制御運転および安全優先運転の切り替えが可能な構成を特徴とする厨房換気システム。
  2. 複数の厨房に設けた複数の排気フードと、その排気フードに接続される複数の枝ダクトと、前記複数の枝ダクトを合流させて接続する集合ダクトと、その集合ダクトに連通する下流ダクトと、排気ファンとで構成する排気経路を有する厨房換気方法において、
    前記枝ダクトの通気部分に設けた排気温度センサーと、
    前記集合ダクトの通気部分に設け、風量計測要素および風量制御要素を内蔵する可変風量装置と、
    前記複数の厨房に設けた室内温度センサーと、
    室内一酸化炭素濃度センサーおよび、または室内酸素濃度センサーと、
    前記下流ダクトの通気部分に設け、全ての集合ダクトの排気を行う前記排気ファンと、
    を備え、
    前記排気温度センサーと前記室内温度センサーとで検出した両温度の温度偏差に基づいて排気風量を増減する風量制御を行う前記可変風量装置とを設け、
    前記風量制御を行う前の制御前排気風量と、前記風量制御を行った後の制御後排気風量との差が、目標とする風量削減量に近付くように、前記温度偏差と前記排気風量との関係を自動探索する風量制御プロセスを含み、前記制御後排気風量を時間経過と共に前記可変風量装置で可変する前記自動探索を行う通常制御運転を行うか、
    あるいは、
    一酸化炭素濃度あるいは酸素濃度の異常を検出した場合に、前記可変風量装置を最大風量に切り替えると共に、前記排気ファンに向けて排気要求風量を増加させる安全優先運転を行い、
    前記異常の非検出に従い再び前記通常制御運転に切り替えることを特徴とする厨房換気方法。
JP2017181184A 2017-09-21 2017-09-21 厨房換気システムおよびその方法 Active JP6471203B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017181184A JP6471203B1 (ja) 2017-09-21 2017-09-21 厨房換気システムおよびその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017181184A JP6471203B1 (ja) 2017-09-21 2017-09-21 厨房換気システムおよびその方法

Publications (2)

Publication Number Publication Date
JP6471203B1 true JP6471203B1 (ja) 2019-02-13
JP2019056518A JP2019056518A (ja) 2019-04-11

Family

ID=65356215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017181184A Active JP6471203B1 (ja) 2017-09-21 2017-09-21 厨房換気システムおよびその方法

Country Status (1)

Country Link
JP (1) JP6471203B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324248B (zh) * 2021-12-30 2024-02-23 福建中电合创电力科技有限公司 一种烟雾探测器检测电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221631A (ja) * 1993-01-29 1994-08-12 Tokyo Gas Co Ltd 厨房室の換気方法
JP2001336793A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Works Ltd 給排気空調制御システム
JP2002228242A (ja) * 2001-02-06 2002-08-14 Hitachi Plant Eng & Constr Co Ltd 室圧制御方法および装置
JP2005156138A (ja) * 2003-11-04 2005-06-16 Daikin Ind Ltd 換気制御装置
JP2008249321A (ja) * 2007-03-05 2008-10-16 Hochiki Corp レンジフードシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221631A (ja) * 1993-01-29 1994-08-12 Tokyo Gas Co Ltd 厨房室の換気方法
JP2001336793A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Works Ltd 給排気空調制御システム
JP2002228242A (ja) * 2001-02-06 2002-08-14 Hitachi Plant Eng & Constr Co Ltd 室圧制御方法および装置
JP2005156138A (ja) * 2003-11-04 2005-06-16 Daikin Ind Ltd 換気制御装置
JP2008249321A (ja) * 2007-03-05 2008-10-16 Hochiki Corp レンジフードシステム

Also Published As

Publication number Publication date
JP2019056518A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
US10712036B2 (en) Fault detection diagnostic variable differential variable delay thermostat
CN111512094B (zh) 相对湿度控制***和方法
JP5611850B2 (ja) 空調制御システム及び空調制御方法
CN106575103B (zh) 基于控制线电流的加热、通风、空气调节***模式检测
JP4333589B2 (ja) 厨房換気空調システム、厨房換気空調方法および厨房換気空調制御装置
EP2761383B1 (en) Heating, ventilation, and air conditioning management system and method
JP5176840B2 (ja) 空調制御システム及び空調制御方法
US9638436B2 (en) HVAC system remote monitoring and diagnosis
US20170167744A1 (en) Adaptive Control for Motor Fan with Multiple Speed Taps
CN207990779U (zh) 一种洁净手术室温湿度控制***
US20130090769A1 (en) Methods of operating an hvac system, an hvac system and a controller therefor employing a self-check scheme and predetermined operating procedures associated with operating units of an hvac system
JP2011149654A (ja) 省エネルギーシステム
JP2015068607A (ja) 空調システム
JP6471203B1 (ja) 厨房換気システムおよびその方法
CN112303854A (zh) 吸风式空调器的控制方法
JP2013190146A (ja) 空調システム
JP6219107B2 (ja) 空調方法及び当該空調方法において使用する空調システム
JP6775198B2 (ja) 給気器の制御方法、給気器の制御装置、および、換気システム
JP4415862B2 (ja) 換気制御システム、換気制御方法および換気制御装置
CN116202118A (zh) 一种智能变频节能天花集气罩***及安装方法
WO2019204791A1 (en) Hvac filter usage analysis system
WO2023052458A1 (en) Ventilation demand control
KR101921536B1 (ko) 공기조화기 시스템
JP2005156138A (ja) 換気制御装置
JP2012122651A (ja) 室内換気システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6471203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250