JP6467668B2 - Slope reinforced soil structure with long-term durability and its construction method - Google Patents

Slope reinforced soil structure with long-term durability and its construction method Download PDF

Info

Publication number
JP6467668B2
JP6467668B2 JP2015052760A JP2015052760A JP6467668B2 JP 6467668 B2 JP6467668 B2 JP 6467668B2 JP 2015052760 A JP2015052760 A JP 2015052760A JP 2015052760 A JP2015052760 A JP 2015052760A JP 6467668 B2 JP6467668 B2 JP 6467668B2
Authority
JP
Japan
Prior art keywords
mortar
slope
layer
reinforcing
fixing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015052760A
Other languages
Japanese (ja)
Other versions
JP2016172969A (en
Inventor
和朗 三田
和朗 三田
Original Assignee
長寿補強土株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長寿補強土株式会社 filed Critical 長寿補強土株式会社
Priority to JP2015052760A priority Critical patent/JP6467668B2/en
Publication of JP2016172969A publication Critical patent/JP2016172969A/en
Application granted granted Critical
Publication of JP6467668B2 publication Critical patent/JP6467668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

本発明は、斜面に適用する補強土構造とその施工方法に関するものである。   The present invention relates to a reinforced soil structure applied to a slope and a construction method thereof.

一般に、地山の斜面の補強は、斜面に穿孔した穴に補強材を配置して周囲に注入材を注入し、注入材の硬化によりこれらを一体化し、斜面に金網を配置してその上から吹付モルタルないしコンクリートを吹き付け、コンクリート上面から突出する補強材の頭部にプレート(受圧板)を固定して地盤を安定化させる構造となっている(例えば特許文献1参照)。   Generally, the slope of a natural mountain is reinforced by placing a reinforcing material in a hole drilled in the slope, injecting an injection material around it, integrating them by hardening the injection material, and placing a wire mesh on the slope, Spray mortar or concrete is sprayed, and a plate (pressure-receiving plate) is fixed to the head of the reinforcing material protruding from the top surface of the concrete to stabilize the ground (for example, see Patent Document 1).

図9は従来の補強土構造の例(特許文献2)を示す。図9に示す補強土構造は、斜面1に穿孔した穴2にスペーサー5付きの補強材(アンカー)3を配置して周囲に注入材4を注入し、注入材4の硬化後に地盤と補強材3を一体化する一方、斜面1に配置される金網T1の下に硬化性の流動性注入材を注入した袋体T2を配置して上側の受圧板T3との間に金網T1を挟み込み、次いで流動性注入材の硬化前に補強材3を本締めして補強材3の頭部にキャップT4を被せるようにしている。斜面1の表面に保護吹付を行う場合は、図9に示すようにそれらの上から吹付Fを行うようにしていた。   FIG. 9 shows an example of a conventional reinforced soil structure (Patent Document 2). In the reinforced soil structure shown in FIG. 9, a reinforcing material (anchor) 3 with a spacer 5 is arranged in a hole 2 drilled in a slope 1, and an injection material 4 is injected into the surroundings. 3, a bag body T2 filled with a curable fluid injection material is disposed under the wire mesh T1 disposed on the slope 1, and the wire mesh T1 is sandwiched between the upper pressure plate T3 and then The reinforcing material 3 is finally tightened before the fluidity injection material is cured, and the head portion of the reinforcing material 3 is covered with the cap T4. When protective spraying is performed on the surface of the slope 1, spraying F is performed from above as shown in FIG. 9.

特開2005−213744号公報JP 2005-213744 A 特許第4256545号公報Japanese Patent No. 4256545

しかしながら、従来の補強土構造は、プレートを地盤側に接して配置するために、地盤からの浸透水を原因とする腐食にさらされ易く、プレートや固定部材、補強材の頭部の劣化を早める課題があった。図9の補強土構造は、地盤と受圧板T3の間に袋体T2を配置するが、地盤と袋体T2の間、袋体T2と受圧板T3の間に雨水などの流体が移動できる小さな隙間が残る。図10は図9の一部を拡大したもので、解りやすくするために図10では金網T1を省略しているが、袋体T2が膨らんでも袋体T2と地盤面の間、受圧板T3と袋体T2の間に微小な隙間Sが残り、これらの微小な隙間から雨水や海水の飛沫などが侵入し、重要部材である補強材3の頭部を腐食させるという課題があった。   However, since the conventional reinforced soil structure is disposed in contact with the ground side, it is easily exposed to corrosion caused by permeated water from the ground, and accelerates the deterioration of the head of the plate, the fixing member, and the reinforcing material. There was a problem. In the reinforced soil structure of FIG. 9, the bag body T2 is disposed between the ground and the pressure receiving plate T3, but a small fluid such as rainwater can move between the ground and the bag body T2 and between the bag body T2 and the pressure receiving plate T3. A gap remains. FIG. 10 is an enlarged view of a part of FIG. 9, and the wire mesh T1 is omitted in FIG. 10 for easy understanding. However, even if the bag body T2 swells, the pressure receiving plate T3 There was a problem that minute gaps S remained between the bag bodies T2, and splashes of rainwater and seawater entered from these minute gaps, corroding the head of the reinforcing member 3 as an important member.

また、補強材3および受圧板T3として使用されている製品は一般的に亜鉛鍍金製なので、海岸地域と土壌中では亜鉛鍍金の耐久性が25年程度と短く、一般環境でも数10年程度の耐久性しかないので、数10年を待たずして老朽化する課題がある。また、特許文献1の例では、金網が金属製の受圧板で上から押さえられているため、金網を崩壊土が押した場合は、金属製の受圧板の縁で金網の保護層が損傷しやすく、耐久性に課題があった。   In addition, since the products used as the reinforcing material 3 and the pressure receiving plate T3 are generally made of galvanized metal, the durability of galvanized metal is as short as about 25 years in the coastal area and soil, and it is about several tens of years even in the general environment. Since it has only durability, there is a problem of aging without waiting for several tens of years. In the example of Patent Document 1, since the wire mesh is pressed from above with a metal pressure plate, if the collapsed soil is pressed against the wire mesh, the protective layer of the wire mesh is damaged at the edge of the metal pressure plate. It was easy and there was a problem in durability.

これに対し、斜面の崩壊周期は100年〜数世紀と長期間であるため、数10年程度の耐久性しかない補強土構造では、斜面が崩壊しようとした時に、補強土がすでに老朽化しておりその機能を果たすことができない。すなわち、補強土構造の耐久性は、斜面崩壊周期が1世紀以上である点から考慮して、それ以上の耐久性がないと、崩壊周期が到来し、補強土構造の機能を消失する。   On the other hand, since the slope collapse period is as long as 100 to centuries, in the case of a reinforced soil structure that only has durability of several tens of years, when the slope is about to collapse, the reinforced soil has already deteriorated. The function cannot be fulfilled. That is, the durability of the reinforced soil structure is considered in view of the fact that the slope failure period is one century or more, and if there is no further durability, the collapse period arrives and the function of the reinforced soil structure is lost.

本発明は上記課題に鑑みてなされたもので、長期に亘り耐久性に優れた斜面の補強土構造とその施工方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the reinforcement soil structure of the slope excellent in durability over the long term, and its construction method.

上記課題を解決するために、本発明に係る斜面の補強土構造は、
斜面から地盤に穿孔された穴に充填されたセメント系注入材及び固練りモルタル内に補強材が配置され、板厚方向に挿通孔を有する受圧板が、前記斜面との間に所定の隙間を形成すると共に前記補強材の位置にあわせて配置され、当該受圧板の挿通孔を介して前記補強材の頭部に固定部材が取り付けられ、当該固定部材または前記補強部材の頭部に係止される位置で前記斜面に沿って金網が配置され、前記斜面から前記固定部材が埋設される高さまでモルタル層が形成されており、当該モルタル層の上面から補強材の頭部および固定部材の少なくとも一部分が突出しており、前記モルタル層の上面から突出する部分に内部にモルタルを充填したカバーが被せられていることを主要な特徴とする。
In order to solve the above problems, the reinforced soil structure of the slope according to the present invention is:
A reinforcing material is disposed in the cement-based injecting material filled in the hole drilled in the ground from the slope and the kneading mortar, and the pressure receiving plate having an insertion hole in the thickness direction has a predetermined gap between the slope. And is formed in accordance with the position of the reinforcing member, and a fixing member is attached to the head of the reinforcing member through the insertion hole of the pressure receiving plate, and is locked to the fixing member or the head of the reinforcing member. And a mortar layer is formed from the slope to a height at which the fixing member is embedded, and from the upper surface of the mortar layer, the head of the reinforcing material and at least a part of the fixing member The main feature is that a portion of the mortar layer protruding from the upper surface is covered with a cover filled with mortar .

本発明に係る斜面の補強土構造は、
前記モルタル層を、前記斜面から前記受圧板の設置位置付近に形成される固練りモルタルまたは吹付モルタルによるモルタル下部層と、前記斜面から前記固定部材が埋設される高さまで形成される吹付モルタルによるモルタル上部層から構成し、前記受圧板、固定部材、金網をそれぞれ前記モルタル層内に埋設したことを第2の特徴とする。
The slope reinforcing soil structure according to the present invention is:
The mortar layer is composed of a mortar lower layer made of a kneaded mortar or sprayed mortar formed near the installation position of the pressure receiving plate from the slope, and a mortar made of sprayed mortar formed from the slope to a height at which the fixing member is embedded. A second feature is that the pressure receiving plate, the fixing member, and the wire mesh are each embedded in the mortar layer.

本発明に係る斜面の補強土構造は、
前記モルタル層の斜面からの高さが7cmから15cmであることを第3の特徴とする。
The slope reinforcing soil structure according to the present invention is:
The third feature is that the height of the mortar layer from the slope is 7 cm to 15 cm.

本発明に係る斜面の補強土構造は、
前記固定部材または前記補強材の頭部に対し屈曲または湾曲状の補強鉄筋を掛止したことを第4の特徴とする。
The slope reinforcing soil structure according to the present invention is:
A fourth feature is that a bent or curved reinforcing bar is hooked to the head of the fixing member or the reinforcing member.

本発明に係る斜面の補強土構造の施工方法は、
斜面から地盤に穿孔した穴にセメント系注入材を充填して補強材を配置しあるいは前記穴に補強材を配置してからセメント系注入材を充填した後、固練りモルタルを充填する工程と、
前記斜面の上で受圧板の設置位置付近に固練りモルタルによりモルタル下部層を形成する工程と、
板厚方向に挿通孔を有する受圧板を、前記補強材の位置にあわせて前記斜面の前記モルタル下部層の上に配置する工程と、
前記斜面の前記モルタル下部層の上に金網を配置すると共に、前記受圧板に対してはその上下のいずれか一方に前記金網の一部を配置する工程と、
前記斜面の前記モルタル下部層の上に突出する補強材の頭部に固定部材を取り付ける工程と、
前記斜面の前記モルタル下部層の上面から、前記固定部材が埋設されるとともに前記補強材の頭部および当該固定部材の少なくとも一部分が突出部分として残る高さまで吹付モルタルによりモルタル上部層を形成する工程と、
当該モルタル上部層の上面から突出する前記突出部分に、内部にモルタルを充填したカバーを被せる工程を備えていることを主要な特徴とする。
The construction method of the reinforced soil structure of the slope according to the present invention is as follows:
Filling the hole drilled in the ground from the slope with the cement-based injection material and placing the reinforcing material, or placing the reinforcing material into the hole and then filling the cement-based injection material, and then filling the kneaded mortar;
Forming a mortar lower layer by kneading mortar near the installation position of the pressure plate on the slope;
Arranging a pressure receiving plate having an insertion hole in a plate thickness direction on the mortar lower layer of the slope according to the position of the reinforcing material;
Arranging a metal mesh on the mortar lower layer of the slope, and arranging a part of the metal mesh on either the upper or lower side of the pressure receiving plate;
Attaching a fixing member to the head of the reinforcing material protruding above the mortar lower layer of the slope;
Forming the mortar upper layer with sprayed mortar from the upper surface of the mortar lower layer of the slope to a height where the fixing member is embedded and at least a part of the head of the reinforcing member and the fixing member remains as a protruding portion ; ,
The main feature is that a step of covering the protruding portion protruding from the upper surface of the mortar upper layer with a cover filled with mortar is provided.

以上説明したように、本発明によると、斜面に穿孔された穴に配置される補強材、補強材の頭部に配置される受圧板および固定部材、斜面に沿って配置される金網が、穴に充填される固練りモルタルと斜面全体に形成されたモルタル層の内部に全て隙間なく埋設されるから、これらの部材が長期に亘り保護されると共に、モルタルにより雨水や海水飛沫の侵入を受けることがなく、補強材の頭部およびその周りの部材の耐久性が向上し、長期に亘って耐久性を備えた補強土構造を実現でき、特に、モルタル層の上面から突出する突出部分はモルタル吹付け作業中のモルタルの厚さを管理する基準になる等の優れた効果を奏する。
As described above, according to the present invention, the reinforcing member disposed in the hole drilled in the slope, the pressure receiving plate and the fixing member disposed in the head of the reinforcing member, and the wire mesh disposed along the slope are the holes. Since the mortar filled in and the mortar layer formed on the entire slope are all buried without gaps, these members are protected for a long period of time, and the mortar receives intrusion of rainwater and seawater splashes. no, improved durability of the members of the head and around the reinforcement, long reinforced soil structure can be realized with the durability over, in particular, the projecting portion projecting from the upper surface of the mortar layer mortar spraying It has excellent effects such as a standard for controlling the thickness of the mortar during the attaching operation .

また、本発明によると、補強材の頭部または固定部材により係止される金網と、補強材の頭部または固定部材により掛止される略へ字形の補強鉄筋の相乗補強効果により、モルタル層の吹付モルタルが下にずり落ちにくくなり、その結果、モルタル層にクラックや亀裂の発生を防止して、雨水や海水飛沫の侵入を防止し、もって補強材の頭部およびその周りの部材の耐久性を図り、斜面の崩壊を長期にわたり防止できるという優れた効果を奏する。   Further, according to the present invention, a mortar layer is obtained by a synergistic reinforcing effect of a wire mesh that is locked by a reinforcing material head or a fixing member and a substantially bar-shaped reinforcing steel bar that is hooked by the reinforcing material head or the fixing member. The sprayed mortar is less likely to slide down, and as a result, cracks and cracks are prevented from entering the mortar layer, preventing intrusion of rainwater and seawater droplets, and the durability of the reinforcement head and surrounding parts. It has an excellent effect that it can prevent the collapse of the slope for a long time.

本発明によって施工された補強土構造を示す全体断面図、Overall sectional view showing a reinforced soil structure constructed according to the present invention, 図1に示す補強土構造に使用される受圧板とナットを示す図、The figure which shows the pressure receiving plate and nut which are used for the reinforced soil structure shown in FIG. 図1に示す補強土構造の施工途中で補強材の頭部に金網をセットした状態を示す平面図、The top view which shows the state which set the metal mesh to the head of a reinforcing material in the middle of construction of the reinforced earth structure shown in FIG. 本発明によって施工された補強土構造の第2の実施形態を示す全体断面図、Overall sectional view showing a second embodiment of the reinforced soil structure constructed according to the present invention, 本発明によって施工される補強土構造の第3の実施形態を示す全体断面図、Overall sectional view showing a third embodiment of the reinforced soil structure constructed according to the present invention, 図5に示す補強土構造の施工途中で補強材の頭部のナットに補強鉄筋をセットした状態を示す平面図、The top view which shows the state which set the reinforcement reinforcement to the nut of the head of a reinforcement material in the middle of construction of the reinforcement earth structure shown in FIG. 図5に示す補強土構造の要部拡大平面図、The principal part enlarged plan view of the reinforced soil structure shown in FIG. 本発明によって施工される補強土構造の第4の実施形態を示す全体断面図、Overall sectional view showing a fourth embodiment of the reinforced soil structure constructed according to the present invention, 従来の補強土工を示す全体断面図、Overall cross-sectional view showing a conventional reinforced earthwork, 図9の受圧板付近を示す拡大断面図である。FIG. 10 is an enlarged cross-sectional view showing the vicinity of the pressure receiving plate in FIG. 9.

本発明を実施するための形態について、図面を参照して説明する。図1は本発明によって施工された補強土構造を示す全体断面図を示し、図2は補強土構造に使用される受圧板と固定部材としてのナットを示し、図3は施工途中で補強材の頭部に金網をセットした状態の平面図を示している。   DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an overall cross-sectional view showing a reinforced soil structure constructed according to the present invention, FIG. 2 shows a pressure receiving plate and a nut as a fixing member used in the reinforced soil structure, and FIG. The top view of the state which set the metal mesh to the head is shown.

本発明の補強土構造の実施形態を、施工順序に従って説明すると、図1に示すように、まず、斜面1から地盤中に内径42〜115mmで長さ15m以下の穴2を穿孔し、次に、地盤中にセメントミルク(セメント系注入材)4を充填した後、位置決め用のスペーサー5を取り付けたネジ付きの補強材(鋼棒)3を挿入する。あるいは、補強材3に口径15〜21mmの図示しない吐出パイプを先端付近まで取り付けて補強材3を挿入した後、その先端からセメントミルク4を吐出し充填する。そして、穿孔した穴2の内部でセメントミルク4が硬化することで、補強材3と周囲の地盤が一体化する。   The embodiment of the reinforced soil structure of the present invention will be described in accordance with the construction sequence. As shown in FIG. 1, first, a hole 2 having an inner diameter of 42 to 115 mm and a length of 15 m or less is drilled from the slope 1 into the ground. Then, after filling the ground with cement milk (cement-based injecting material) 4, a reinforcing material (steel bar) 3 with a screw to which a positioning spacer 5 is attached is inserted. Alternatively, a discharge pipe (not shown) having a diameter of 15 to 21 mm is attached to the reinforcing material 3 to the vicinity of the tip and the reinforcing material 3 is inserted, and then the cement milk 4 is discharged and filled from the tip. And the cement milk 4 hardens | cures inside the drilled hole 2, and the reinforcement material 3 and the surrounding ground are integrated.

次に、穴2から漏れ出すためにセメントミルク4を充填できない穴2の上部に固練りモルタル6を充填すると共に、斜面1に対し穴2の周囲を含む受圧板8の設置位置付近に固練りモルタルにより高さ1〜5cmのモルタル均し層(モルタル下部層)7を形成する。斜面1は凹凸が多い場合があり、受圧板8を設置しにくいことが多い。このため、受圧板8の設置位置付近に固練りモルタルによりモルタル均し層7を形成することで受圧板8が設置しやすくなり、また、金属製の受圧板8が地盤と接触して腐食するのを防止できる。モルタル均し層7は固練モルタルに限らず、吹付モルタルの部分吹付けでもよい。   Next, the upper portion of the hole 2 that cannot be filled with the cement milk 4 to leak out from the hole 2 is filled with the kneaded mortar 6 and is also kneaded near the installation position of the pressure receiving plate 8 including the periphery of the hole 2 with respect to the slope 1. A mortar leveling layer (mortar lower layer) 7 having a height of 1 to 5 cm is formed by mortar. The slope 1 may have many irregularities, and it is often difficult to install the pressure receiving plate 8. For this reason, it becomes easy to install the pressure receiving plate 8 by forming the mortar leveling layer 7 with the kneaded mortar near the installation position of the pressure receiving plate 8, and the metal pressure receiving plate 8 is in contact with the ground and corrodes. Can be prevented. The mortar leveling layer 7 is not limited to a kneaded mortar, but may be a partial spray of spray mortar.

次に、モルタル均し層7の上に補強材3の位置にあわせて受圧板8を配置する。受圧板8は、図2に示すように、一辺が100〜400mmの四角形状の金属製プレートで、防食性能を向上させるため亜鉛メッキ、あるいは亜鉛メッキの上に樹脂塗装(フッ素、エポキシ、飽和ポリエステルなど)を施しており、受圧板8の中央に補強材3の頭部を挿通させる挿通孔8aとその周囲に複数の開口部8bを備えている。そして、受圧板8の挿通孔8aに挿通させた補強材3の頭部に対し、フッ素樹脂塗装などを施して耐久性を高めた高さ30〜50mmのナット(固定部材)9を取り付け、ナット9と補強材3と受圧板8を固定する。   Next, the pressure receiving plate 8 is arranged on the mortar leveling layer 7 in accordance with the position of the reinforcing material 3. As shown in FIG. 2, the pressure receiving plate 8 is a rectangular metal plate having a side of 100 to 400 mm, and is coated with zinc (or fluorine, epoxy, saturated polyester) to improve corrosion resistance. And a plurality of openings 8b around the insertion hole 8a through which the head of the reinforcing member 3 is inserted. Then, a nut (fixing member) 9 having a height of 30 to 50 mm is attached to the head of the reinforcing member 3 inserted through the insertion hole 8a of the pressure receiving plate 8 and is subjected to fluororesin coating to improve durability. 9, the reinforcing member 3 and the pressure receiving plate 8 are fixed.

次に、斜面1のモルタル均し層7の上に金網10を配置する。金網10は、図3に示すように、上下に連続屈曲して左右に延びる金網用部材が上下で互いに組み合わされることで、上下左右に多数の菱形形状を形成し、モルタル均し層7上の前記受圧板8に対してはその上面に一部が配置されることで、受圧板8の上に突出するナット9に係止されるようになっている。図1の例はナット9の鍔部9aを上にして補強材3の頭部にナット9を取り付ける例であるが、上側の鍔部9aに金網10が引っ掛かりやすく、金網10に対する係止機能が向上する。金網10は、補強材3の頭部にナット9を取り付けてから受圧板8の上に配置しても、ナット9を補強材3の頭部に取り付ける前に受圧板8の上に配置してもよい。   Next, a wire mesh 10 is placed on the mortar leveling layer 7 on the slope 1. As shown in FIG. 3, the metal mesh 10 is formed by forming a plurality of rhombus shapes on the top, bottom, left and right by combining metal mesh members that are continuously bent up and down and extend left and right. A part of the pressure receiving plate 8 is disposed on the upper surface of the pressure receiving plate 8, so that the pressure receiving plate 8 is locked to a nut 9 protruding above the pressure receiving plate 8. The example of FIG. 1 is an example in which the nut 9 is attached to the head of the reinforcing member 3 with the flange portion 9a of the nut 9 facing up, but the wire mesh 10 is easily caught on the upper flange portion 9a, and the locking function for the wire mesh 10 is provided. improves. Even if the wire mesh 10 is placed on the pressure receiving plate 8 after the nut 9 is attached to the head of the reinforcing material 3, it is arranged on the pressure receiving plate 8 before the nut 9 is attached to the head of the reinforcing material 3. Also good.

次に、斜面1に対し、モルタル均し層7の周囲の斜面1から前記ナット9が埋設される高さまで吹付モルタルを隙間なく吹付け、モルタル吹付け層(モルタル上部層)11を形成する。モルタル吹付けによりモルタルが受圧板8の開口部8b、受圧板8の上面と金網10の隙間、ナット9と金網10の隙間にことごとく充填される。モルタル吹付け層11の高さは7〜15cmとし、ナット9の上面からモルタル吹付け層11の上面までの高さは1〜7cmを確保する。かくして、補強材3の頭部、受圧板8、ナット9、金網10がすべて隙間なくモルタル層の内部に埋設される。   Next, spraying mortar is sprayed onto the slope 1 from the slope 1 around the mortar leveling layer 7 to a height at which the nut 9 is embedded, thereby forming a mortar spraying layer (mortar upper layer) 11. By mortar spraying, the mortar is filled in the opening 8b of the pressure receiving plate 8, the gap between the upper surface of the pressure receiving plate 8 and the metal mesh 10, and the gap between the nut 9 and the metal mesh 10. The height of the mortar spraying layer 11 is 7 to 15 cm, and the height from the upper surface of the nut 9 to the upper surface of the mortar spraying layer 11 is 1 to 7 cm. Thus, the head of the reinforcing material 3, the pressure receiving plate 8, the nut 9, and the wire mesh 10 are all embedded in the mortar layer without any gaps.

固練りモルタル6、モルタル均し層7、モルタル吹付け層11の硬化後は、補強材3の頭部、受圧板8、ナット9、金網10はモルタル層内に固定されると共に、モルタル層が雨水や海水飛沫の侵入を防止するのでそれぞれの腐食が抑制される。   After the solidified mortar 6, the mortar leveling layer 7, and the mortar spraying layer 11 are cured, the head of the reinforcing material 3, the pressure receiving plate 8, the nut 9, and the wire mesh 10 are fixed in the mortar layer, and the mortar layer is Corrosion is suppressed because rainwater and seawater splashes are prevented from entering.

上記のように施工された補強土構造によると、斜面1が崩壊しようとする変形によって補強材3に引張力が作用すると、補強材3にかかる引張力は受圧板8が受け止めて金網10を介してモルタル層全体で地盤側へ押し戻すように作用するので、斜面1の崩壊を有効に抑制する。また、補強材3の頭部付近の部材がすべてモルタル層内に隙間なく埋設されるので、各部材の耐久性が向上し、斜面1の崩壊を長期にわたり防止できる。   According to the reinforced soil structure constructed as described above, when a tensile force acts on the reinforcing material 3 due to the deformation of the slope 1 to collapse, the tensile force applied to the reinforcing material 3 is received by the pressure receiving plate 8 via the wire mesh 10. Thus, the entire mortar layer acts to push back to the ground side, so that the collapse of the slope 1 is effectively suppressed. Moreover, since all the members near the head of the reinforcing material 3 are embedded in the mortar layer without gaps, the durability of each member is improved and the slope 1 can be prevented from collapsing for a long time.

また、上記補強土構造は、補強材3の頭部付近の部材がすべてモルタル層内に埋設されるので、モルタル吹付け層11の上面から突出する部分がなく、施工後の景観や美観に優れ、地山の斜面の景観や美観向上に大きく貢献する。   Moreover, since all the members near the head of the reinforcing material 3 are embedded in the mortar layer, the reinforced soil structure has no portion protruding from the upper surface of the mortar spraying layer 11, and is excellent in landscape and beauty after construction. , Greatly contribute to the improvement of landscape and aesthetics of natural slopes.

固練りモルタルは目的を達成する硬化剤であれば他の充填材でも良い。吹付けモルタルは本実施形態では砂とセメントと水と混和剤からなる水とセメント比50〜55%程度のコンクリートが使用されるがこれに限らない。また、受圧板8とナット9の金属保護被膜はエポキシ樹脂やPVB樹脂以外のものでも良い。さらに、受圧板8の材質は金属に限らず、コンクリートやFRPなど金属以外の材料でも良い。金網10は金属製に限らず、合成樹脂製のものなどを含み材質は問わない。   The solidified mortar may be another filler as long as it is a curing agent that achieves the purpose. In the present embodiment, the spray mortar is made of sand, cement, water, and concrete having a cement ratio of about 50 to 55%, but is not limited thereto. Further, the metal protective film of the pressure receiving plate 8 and the nut 9 may be other than epoxy resin or PVB resin. Furthermore, the material of the pressure receiving plate 8 is not limited to metal, but may be a material other than metal such as concrete or FRP. The metal mesh 10 is not limited to metal, but may be made of any material including synthetic resin.

図4は本発明に係る補強土構造の第2の実施形態を示すもので、図4の例ではナット9の鍔部9aを下にして補強材3の頭部にナット9を取り付けるようにしたものである。ナット9の形態は受圧板8を止められるものであれば通常の六角ナットなどでもよく形態を問わない。なお、図示例と異なり、モルタル均し層7の上に金網10を先に設置し、その後に受圧板8を設置してもよい。この場合でも、補強材3の頭部、金網10、受圧板8、ナット9がモルタル層内部にすべて隙間なく埋設されるから、上記実施形態で述べた効果を同様に奏することができる。   FIG. 4 shows a second embodiment of the reinforced soil structure according to the present invention. In the example of FIG. 4, the nut 9 is attached to the head of the reinforcing member 3 with the flange 9a of the nut 9 facing down. Is. The form of the nut 9 may be a normal hex nut or the like as long as the pressure receiving plate 8 can be stopped. Unlike the illustrated example, the wire mesh 10 may be installed on the mortar leveling layer 7 first, and then the pressure receiving plate 8 may be installed. Even in this case, the head of the reinforcing member 3, the wire net 10, the pressure receiving plate 8, and the nut 9 are all embedded in the mortar layer without any gaps, so that the effects described in the above embodiment can be similarly obtained.

図5ないし図7は本発明に係る補強土構造の第3の実施形態を示すもので、本実施形態では図6に示すように各補強材3の頭部に取り付けたナット9に対し、へ字形(例えば90度)に屈曲させた直径9〜16mm、長さ120〜450cmの補強鉄筋12を掛止し、同補強鉄筋12と金網10とを番線等で結束し、その上から図5および図7に示すように吹付モルタルを隙間なく吹付けてモルタル吹付け層11を形成するようにしている。補強鉄筋12は耐久性を上げるためエポキシ樹脂などで塗装したものを用いる。なお、左右に隣接する補強鉄筋12どうしを結束させてもよい。   5 to 7 show a third embodiment of the reinforced soil structure according to the present invention. In this embodiment, the nut 9 attached to the head of each reinforcing member 3 as shown in FIG. A reinforcing reinforcing bar 12 having a diameter of 9 to 16 mm and a length of 120 to 450 cm bent into a letter shape (for example, 90 degrees) is hooked, and the reinforcing reinforcing bar 12 and the wire mesh 10 are bound by a wire or the like. As shown in FIG. 7, the mortar spray layer 11 is formed by spraying the spray mortar without gaps. The reinforcing reinforcing bars 12 are coated with an epoxy resin or the like in order to increase durability. Note that the reinforcing reinforcing bars 12 adjacent to the left and right may be bound together.

図5の例では長さ120〜450cmのへ字形に左右に延びる補強鉄筋12がモルタル層を支え、また、金網10を補強するので、モルタル層のモルタルが下方にずれにくくなり、モルタル層の亀裂やクラックの発生拡大、老朽化を有効に防止することができる。これによりモルタル層への雨水や海水飛沫の侵入を長期にわたり防止し、モルタル層内の部材の耐久性をさらに向上させることができるようになる。   In the example of FIG. 5, the reinforcing bars 12 having a length of 120 to 450 cm extending left and right support the mortar layer and reinforce the wire mesh 10, so that the mortar of the mortar layer is difficult to shift downward, and the mortar layer cracks. It is possible to effectively prevent the occurrence of cracks and cracks and aging. This prevents rainwater and seawater splashes from entering the mortar layer over a long period of time, thereby further improving the durability of the members in the mortar layer.

図8は本発明に係る補強土構造の第4の実施形態を示す。前記各実施形態では、補強材3の頭部およびナット9をモルタル吹付け層11の内部に埋設したが、図8の実施形態では、補強材3の頭部をナット9の上面からモルタル吹付け層11の上面を超えて突出させ、当該補強材3の突出部分3aに対し、高さ0.5〜10cmで内部にモルタルが充填されたステンレス製などの耐久性のある筒カバー13を被せるようにしたものである。全部の補強材3について突出部分3aを設けてもいいし、一部の補強材3についてあるいは一定間隔に突出部分3aを設けるようにしてよい。筒カバー13を設けるので補強材3の突出部分3aとともにあるいはナット9のみ一部をモルタル吹付け層11の上面から突出させもよい。施工後に筒カバー13の位置によって内部の補強材の位置を外から確認できるようになる。   FIG. 8 shows a fourth embodiment of the reinforced soil structure according to the present invention. In each of the embodiments described above, the head of the reinforcing member 3 and the nut 9 are embedded in the mortar spraying layer 11. In the embodiment of FIG. 8, the head of the reinforcing member 3 is sprayed from the upper surface of the nut 9. It protrudes beyond the upper surface of the layer 11, and the protruding portion 3 a of the reinforcing member 3 is covered with a durable cylindrical cover 13 made of stainless steel having a height of 0.5 to 10 cm and filled with mortar inside. It is a thing. The protruding portions 3a may be provided for all the reinforcing members 3, or the protruding portions 3a may be provided for some of the reinforcing members 3 or at regular intervals. Since the cylindrical cover 13 is provided, a part of the nut 9 may be protruded from the upper surface of the mortar spraying layer 11 together with the protruding portion 3 a of the reinforcing member 3. After the construction, the position of the internal reinforcing material can be confirmed from the outside by the position of the tube cover 13.

ナット9の上面から突出する補強材3の突出部分3aはモルタル吹付け作業中のモルタルの厚さを管理する基準(定規)になるし、肉厚5mm以下の薄いステンレス製の筒カバー13をモルタル吹付後に該当箇所に圧入することで、筒カバー13内の充填しづらい隙間部分に対しても簡便な方法でモルタルを充填できる。さらに、モルタル硬化後に固練りモルタルを充填する部分は筒カバー13の内部など極小量ですむので、施工性がよい。なお、補強材3の突出部分3aは腐食しても構造上の劣化はないものの、腐食に伴う染み等が発生すると美観を損ねるので当該突出部分3aに合成樹脂製のキャップを被せた後、ステンレス製の筒カバー13を圧入し、モルタル硬化後に固練りモルタルを打設してもよい。   The protruding portion 3a of the reinforcing member 3 protruding from the upper surface of the nut 9 serves as a standard (ruler) for controlling the thickness of the mortar during the mortar spraying operation, and a thin stainless steel tube cover 13 having a wall thickness of 5 mm or less is used as the mortar. By press-fitting into the corresponding part after spraying, the mortar can be filled with a simple method even in the gap part in the tube cover 13 which is difficult to fill. Further, since the portion where the mortar is hardened and filled with the mortar is minimal, such as the inside of the tube cover 13, workability is good. Although the protruding portion 3a of the reinforcing member 3 is not structurally deteriorated even if it corrodes, the appearance is lost when a stain or the like accompanying the corrosion occurs. Therefore, after covering the protruding portion 3a with a synthetic resin cap, stainless steel is used. A cylinder cover 13 made of metal may be press-fitted and hardened mortar may be placed after the mortar has been cured.

上記各実施形態では、受圧板8とナット9は別体としたが、ナット9は予め受圧板8に溶接等により固定しておき、補強材3の頭部に受圧板8を回転しながらナット9を螺合させて、補強材3、受圧板8、ナット9を一体化してもよい。この場合、施工手順の効率化、施工費用の削減を図ることができる。   In each of the above embodiments, the pressure receiving plate 8 and the nut 9 are separated from each other. However, the nut 9 is fixed to the pressure receiving plate 8 by welding or the like in advance, and the nut 9 while rotating the pressure receiving plate 8 on the head of the reinforcing member 3. The reinforcing member 3, the pressure receiving plate 8, and the nut 9 may be integrated by screwing 9 together. In this case, it is possible to improve the efficiency of the construction procedure and reduce the construction cost.

かくして、本発明によれば、長期に亘り耐久性に優れた斜面の補強土構造とその施工方法を実現することができるようになる。   Thus, according to the present invention, it is possible to realize a sloped reinforced soil structure and its construction method that are excellent in durability over a long period of time.

本発明に係る斜面の補強土構造とその施工方法は、地山の斜面、切土、盛土の法面などに対する補強土構造とその施工方法として利用可能である。   The slope reinforced soil structure and its construction method according to the present invention can be used as a reinforced soil structure and its construction method for slopes of natural ground, cuts, bank slopes, and the like.

1 斜面
2 穴
3 補強材
4 セメントミルク(セメント系注入材)
5 スペーサー
6 固練りモルタル
7 モルタル均し層
8 受圧板
8a 挿通孔
8b 開口部
9 ナット(固定部材)
9a 鍔部
10 金網
11 モルタル吹付け層
12 補強鉄筋
13 筒カバー
1 slope 2 hole 3 reinforcement
4 Cement milk (cement-based injection material)
5 Spacer 6 Kneaded mortar 7 Mortar leveling layer 8 Pressure receiving plate 8a Insertion hole 8b Opening 9 Nut (fixing member)
9a buttock 10 wire mesh 11 mortar spraying layer 12 reinforcing steel bar 13 cylinder cover

Claims (5)

斜面から地盤に穿孔された穴に充填されたセメント系注入材及び固練りモルタル内に補強材が配置され、板厚方向に挿通孔を有する受圧板が、前記斜面との間に所定の隙間を形成すると共に前記補強材の位置にあわせて配置され、当該受圧板の挿通孔を介して前記補強材の頭部に固定部材が取り付けられ、当該固定部材または前記補強部材の頭部に係止される位置で前記斜面に沿って金網が配置され、前記斜面から前記固定部材が埋設される高さまでモルタル層が形成されており、当該モルタル層の上面から補強材の頭部および固定部材の少なくとも一部分が突出しており、前記モルタル層の上面から突出する部分に内部にモルタルを充填したカバーが被せられていることを特徴とする斜面の補強土構造。 A reinforcing material is disposed in the cement-based injecting material filled in the hole drilled in the ground from the slope and the kneading mortar, and the pressure receiving plate having an insertion hole in the thickness direction has a predetermined gap between the slope. And is formed in accordance with the position of the reinforcing member, and a fixing member is attached to the head of the reinforcing member through the insertion hole of the pressure receiving plate, and is locked to the fixing member or the head of the reinforcing member. And a mortar layer is formed from the slope to a height at which the fixing member is embedded, and from the upper surface of the mortar layer, the head of the reinforcing material and at least a part of the fixing member And a cover filled with mortar is covered with a portion protruding from the upper surface of the mortar layer . 前記モルタル層が、前記斜面から前記受圧板の設置位置付近に形成される固練りモルタルまたは吹付モルタルによるモルタル下部層と、前記斜面から前記固定部材が埋設される高さまで形成される吹付モルタルによるモルタル上部層から構成され、前記受圧板、固定部材、金網がそれぞれモルタル層内に埋設されていることを特徴とする請求項1記載の斜面の補強土構造。   The mortar layer is a mortar lower layer made of solid mortar or sprayed mortar formed near the installation position of the pressure receiving plate from the slope, and a mortar made of sprayed mortar formed from the slope to a height at which the fixing member is embedded. The reinforced soil structure for a slope according to claim 1, comprising an upper layer, wherein the pressure receiving plate, the fixing member, and the wire mesh are each embedded in a mortar layer. 前記モルタル層の斜面からの高さが7cmから15cmであることを特徴とする請求項1または請求項2記載の斜面の補強土構造。   The reinforced soil structure for a slope according to claim 1 or 2, wherein a height of the mortar layer from the slope is 7 cm to 15 cm. 前記固定部材または前記補強材の頭部に対し屈曲または湾曲状の補強鉄筋が掛止されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の斜面の補強土構造。   The slope reinforcing soil structure according to any one of claims 1 to 3, wherein a bent or curved reinforcing bar is hooked to the head of the fixing member or the reinforcing member. . 斜面から地盤に穿孔した穴にセメント系注入材を充填して補強材を配置しあるいは前記穴に補強材を配置してからセメント系注入材を充填した後、固練りモルタルを充填する工程と、
前記斜面の上で受圧板の設置位置付近に固練りモルタルによりモルタル下部層を形成する工程と、
板厚方向に挿通孔を有する受圧板を、前記補強材の位置にあわせて前記斜面の前記モルタル下部層の上に配置する工程と、
前記斜面の前記モルタル下部層の上に金網を配置すると共に、前記受圧板に対してはその上下のいずれか一方に前記金網の一部を配置する工程と、
前記斜面の前記モルタル下部層の上に突出する補強材の頭部に固定部材を取り付ける工程と、
前記斜面の前記モルタル下部層の上面から、前記固定部材が埋設されるとともに前記補強材の頭部および固定部材の少なくとも一部分が突出部分として残る高さまで吹付モルタルによりモルタル上部層を形成する工程と、
当該モルタル上部層の上面から突出する前記突出部分に、内部にモルタルを充填したカバーを被せる工程を備えていることを特徴とする斜面の補強土構造の施工方法。
Filling the hole drilled in the ground from the slope with the cement-based injection material and placing the reinforcing material, or placing the reinforcing material into the hole and then filling the cement-based injection material, and then filling the kneaded mortar;
Forming a mortar lower layer by kneading mortar near the installation position of the pressure plate on the slope;
Arranging a pressure receiving plate having an insertion hole in a plate thickness direction on the mortar lower layer of the slope according to the position of the reinforcing material;
Arranging a metal mesh on the mortar lower layer of the slope, and arranging a part of the metal mesh on either the upper or lower side of the pressure receiving plate;
Attaching a fixing member to the head of the reinforcing material protruding above the mortar lower layer of the slope;
From the upper surface of the mortar lower layer of the slope, the step of forming the mortar upper layer with sprayed mortar until the fixing member is embedded and at least a part of the head of the reinforcing member and the fixing member remains as a protruding portion ;
A method for constructing a reinforced soil structure for a slope, comprising a step of covering the protruding portion protruding from the upper surface of the mortar upper layer with a cover filled with mortar inside .
JP2015052760A 2015-03-17 2015-03-17 Slope reinforced soil structure with long-term durability and its construction method Active JP6467668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015052760A JP6467668B2 (en) 2015-03-17 2015-03-17 Slope reinforced soil structure with long-term durability and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015052760A JP6467668B2 (en) 2015-03-17 2015-03-17 Slope reinforced soil structure with long-term durability and its construction method

Publications (2)

Publication Number Publication Date
JP2016172969A JP2016172969A (en) 2016-09-29
JP6467668B2 true JP6467668B2 (en) 2019-02-13

Family

ID=57008114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052760A Active JP6467668B2 (en) 2015-03-17 2015-03-17 Slope reinforced soil structure with long-term durability and its construction method

Country Status (1)

Country Link
JP (1) JP6467668B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114197464A (en) * 2021-12-30 2022-03-18 中冶天工集团有限公司 Unconsolidated formation reinforcing device and construction method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090086A (en) * 1999-09-17 2001-04-03 Fuji Forest Kk Mortar and concrete spraying having vegetation pocket and mortar and concrete spraying construction method
JP3701211B2 (en) * 2001-04-12 2005-09-28 原総業株式会社 Permanent anchored frame structure
JP3905858B2 (en) * 2003-04-16 2007-04-18 日本植生株式会社 Cross inspection member and slope reinforcement method
US7384217B1 (en) * 2007-03-29 2008-06-10 Barrett Robert K System and method for soil stabilization of sloping surface
JP5132009B1 (en) * 2012-05-09 2013-01-30 株式会社ダイカ Nut for fixing used in slope stabilization method, slope stabilization structure using the same, and slope stabilization method

Also Published As

Publication number Publication date
JP2016172969A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
US6719487B2 (en) Structural unit for construction, construction of said structural units, and method for the preparation of said structural units and said construction
JP4707177B2 (en) Seismic structure of wooden house
JP6908260B2 (en) A pressure receiving plate, a method for protecting a slope having an existing legal frame using a pressure receiving plate, and a system for protecting a slope having an existing legal frame.
JP6467668B2 (en) Slope reinforced soil structure with long-term durability and its construction method
JP6471027B2 (en) Protective sheath
JP6952304B2 (en) Mounting structure of handrail support and its mounting method
JP5021325B2 (en) Manufacturing method of basic steel pipe material for supporting train lines
JP2010174553A (en) Anchor structure using anticorrosive pc steel stranded wire, anticorrosive pc steel stranded wire assembly, and construction method for the anchor structure
JP7217515B2 (en) Slope protection structure and slope protection method
JP6291697B2 (en) Slope reinforced soil structure with long-term durability and its construction method
JP2006016893A (en) Shearing reinforcing method of existing structure
JP2006328852A (en) Earthquake-resistant reinforcing method for column-like concrete body
KR102111153B1 (en) Retaining Wall Panel Structure using PC Strand
KR101864857B1 (en) Construction method of foundation pile with reinforced casing structure
JP4713277B2 (en) Pile foundation reinforcement structure
JP6296963B2 (en) Natural ground reinforcement method and structure
JP3038298B2 (en) High strength structure
JP4043968B2 (en) Repair method for existing tunnel
JP4205827B2 (en) Reinforcement structure and reinforcement method for existing underground structures
JP6345328B1 (en) Original position building method and original position structure
JP2015086672A (en) Wire-netting fixing device for reinforced soil of slope having long term durability
JP5808203B2 (en) Slope stabilization method, reinforcing bar, and slope stabilization structure
JP5266585B2 (en) Anchor structure, anchor cable assembly, and anchor structure construction method
JP5960959B2 (en) Connection structure between sewer pipe and relay structure
JP7003363B2 (en) Spray thickness guide structure and reinforcement method with spray mortar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181221

R150 Certificate of patent or registration of utility model

Ref document number: 6467668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150