JP6463642B2 - Resin member joining method - Google Patents

Resin member joining method Download PDF

Info

Publication number
JP6463642B2
JP6463642B2 JP2015021757A JP2015021757A JP6463642B2 JP 6463642 B2 JP6463642 B2 JP 6463642B2 JP 2015021757 A JP2015021757 A JP 2015021757A JP 2015021757 A JP2015021757 A JP 2015021757A JP 6463642 B2 JP6463642 B2 JP 6463642B2
Authority
JP
Japan
Prior art keywords
resin
resin member
ultrasonic horn
reinforcing fibers
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021757A
Other languages
Japanese (ja)
Other versions
JP2016144870A (en
Inventor
翼 大野
翼 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2015021757A priority Critical patent/JP6463642B2/en
Publication of JP2016144870A publication Critical patent/JP2016144870A/en
Application granted granted Critical
Publication of JP6463642B2 publication Critical patent/JP6463642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81423General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being concave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81431General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single cavity, e.g. a groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part

Description

本発明は、マトリックス樹脂中に所定長さ以上の強化繊維が一方向に配向して配置された一方向繊維強化複合材からなる二つの樹脂部材を超音波スポット溶着により接合する樹脂部材の接合方法に関する。   The present invention relates to a resin member joining method for joining two resin members made of a unidirectional fiber reinforced composite material in which reinforcing fibers having a predetermined length or more are oriented in one direction in a matrix resin by ultrasonic spot welding. About.

自動車車体の構造部品は、従来、鋼材等の金属材料により構成されていた。近年、車体の軽量化のために、炭素繊維強化樹脂(CFRP)等の繊維強化樹脂材料により構成される構造部品の使用が実現されつつある。かかる繊維強化樹脂材として、繊維長が比較的長い強化繊維が一方向に配向して配置された一方向繊維強化複合材がある。一方向繊維強化複合材は、強化繊維の配向方向において、圧縮強度あるいは引張強度に優れている。   Conventionally, structural parts of automobile bodies have been made of metal materials such as steel. In recent years, in order to reduce the weight of a vehicle body, the use of structural parts made of a fiber reinforced resin material such as carbon fiber reinforced resin (CFRP) is being realized. As such a fiber reinforced resin material, there is a unidirectional fiber reinforced composite material in which reinforcing fibers having a relatively long fiber length are arranged in one direction. Unidirectional fiber-reinforced composites are excellent in compressive strength or tensile strength in the orientation direction of reinforcing fibers.

ところで、金属材料からなる部品同士を締結する接合方法として、大きく三つの方法がある。一つはボルト等による艤装接合であり、一つは接着剤による接着であり、一つは金属を溶融させる溶融接合である。一方向繊維強化複合材により部品を構成する場合においても、金属材料からなる部品と同様の強固な接合が求められる。一方向繊維強化複合材等の熱可塑性樹脂材料からなる部品の場合、マトリックス樹脂を溶融させて接合する溶着技術が期待される。   By the way, there are roughly three methods for joining parts made of a metal material. One is outfitting with bolts and the like, one is adhesion with an adhesive, and one is fusion bonding in which a metal is melted. Even when a part is constituted by a unidirectional fiber reinforced composite material, the same strong bonding as that of a part made of a metal material is required. In the case of a part made of a thermoplastic resin material such as a unidirectional fiber reinforced composite material, a welding technique for melting and joining a matrix resin is expected.

溶着は、ボルト等による艤装接合や、接着剤による接着のように、第三の介在物を用いる接合方法とは異なり、第三の介在物を用いることなく部品同士を強固に接合し得る接合方法である。溶着の中でも、超音波スポット溶着は、局所的に接合したい部位のみの樹脂を溶融させることができるため、部品の全体形状を考慮しなくてよいなど、応用性が高い。例えば、特許文献1には、炭素繊維やガラス繊維、アラミド繊維等の強化繊維材料を含む繊維強化複合材同士を、超音波ホーンを用いて溶着する方法が開示されている。   Welding is a joining method that can firmly join parts together without using third inclusions, unlike joint methods using third inclusions, such as outfitting joining with bolts, etc., and adhesion with adhesives. It is. Among the welding methods, ultrasonic spot welding is highly applicable because it can melt the resin only at the parts to be joined locally, and does not need to consider the overall shape of the part. For example, Patent Document 1 discloses a method of welding fiber reinforced composite materials including reinforcing fiber materials such as carbon fibers, glass fibers, and aramid fibers using an ultrasonic horn.

特開2007−313778号公報JP 2007-313778 A

超音波ホーンを用いる超音波スポット溶着は、強化繊維を含まない樹脂部材や、ガラス繊維等の比較的繊維長が短い短繊維強化複合材からなる樹脂部材の接合にも用いられてきたが、その接合強度は決して高いものではなかった。特に、車両の構造部品として樹脂部材が用いられる場合には、樹脂部材同士の接合部が、牽引力あるいは圧縮力にも耐え得ることが必要とされる。このため、上述した一方向繊維強化複合材からなる部品同士の溶着方法として、高い接合強度が得られる溶着方法が望まれる。   Ultrasonic spot welding using an ultrasonic horn has also been used for bonding resin members that do not contain reinforcing fibers and resin members made of short fiber reinforced composite materials with relatively short fiber lengths, such as glass fibers. The bonding strength was never high. In particular, when a resin member is used as a structural component of a vehicle, it is necessary that the joint portion between the resin members can withstand traction force or compression force. For this reason, the welding method in which high joining strength is acquired is desired as a welding method of the components which consist of the unidirectional fiber reinforced composite material mentioned above.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、マトリックス樹脂中に所定長さ以上の強化繊維が一方向に配向して配置された一方向樹脂強化複合材からなる樹脂部材同士の接合強度を向上させることが可能な、樹脂部品の接合方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a unidirectional resin in which reinforcing fibers having a predetermined length or more are arranged in one direction in a matrix resin. An object of the present invention is to provide a method for joining resin parts, which can improve the joining strength between resin members made of a reinforced composite material.

上記課題を解決するために、本発明のある観点によれば、熱可塑性樹脂からなるマトリックス樹脂中に所定長さ以上の繊維が一方向に配向して配置された一方向繊維強化複合材からなる二つの樹脂部材を超音波スポット溶着により接合する方法であって、前記二つの樹脂部材の接合面における前記繊維の配向方向を互いに揃えて重ね合わせる工程と、一方の樹脂部材側から超音波ホーンを押し当てるとともに前記超音波ホーンに超音波振動を与え、前記超音波ホーンを他方の樹脂部材の厚さの50%を超える位置まで進入させる工程と、を備える、樹脂部材の接合方法が提供される。   In order to solve the above-mentioned problems, according to one aspect of the present invention, a unidirectional fiber-reinforced composite material in which fibers of a predetermined length or more are arranged in one direction in a matrix resin made of a thermoplastic resin. A method of joining two resin members by ultrasonic spot welding, the step of superimposing the orientation directions of the fibers on the joining surface of the two resin members to each other, and an ultrasonic horn from one resin member side And a step of applying ultrasonic vibration to the ultrasonic horn and pressing the ultrasonic horn to a position exceeding 50% of the thickness of the other resin member. .

前記繊維の長さが、前記他方の樹脂部材における前記超音波ホーンの進入量の1.0倍以上であってもよい。   The length of the fiber may be 1.0 or more times the amount of penetration of the ultrasonic horn in the other resin member.

前記繊維が連続繊維又は長繊維であってもよい。   The fibers may be continuous fibers or long fibers.

前記樹脂部材が、1.0〜4.0mmの範囲内の厚さを有する板材であってもよい。   The resin member may be a plate material having a thickness in the range of 1.0 to 4.0 mm.

前記一方向繊維強化複合材に含まれる前記繊維の体積含有率(Vf)が40〜70%の範囲内であってもよい。   The volume content (Vf) of the fibers contained in the unidirectional fiber reinforced composite material may be in the range of 40 to 70%.

前記超音波ホーンを押し当てる際の圧力が、100〜800Nの範囲内であってもよい。   The pressure at the time of pressing the ultrasonic horn may be in the range of 100 to 800N.

前記繊維が、炭素繊維又は炭素含有繊維であってもよい。   The fiber may be a carbon fiber or a carbon-containing fiber.

以上説明したように本発明の樹脂部材の接合方法によれば、マトリックス樹脂中に所定長さ以上の強化繊維が一方向に配向して配置された一方向繊維強化複合材からなる樹脂部材同士の接合強度を向上させることができる。   As described above, according to the resin member joining method of the present invention, resin members made of a unidirectional fiber reinforced composite material in which reinforcing fibers having a predetermined length or more are oriented in one direction in a matrix resin are arranged. Bonding strength can be improved.

樹脂部材を超音波スポット溶着により接合する様子を示す説明図である。It is explanatory drawing which shows a mode that a resin member is joined by ultrasonic spot welding. 連続繊維を含む一方向繊維強化複合材からなる樹脂部材を示す模式図である。It is a schematic diagram which shows the resin member which consists of a unidirectional fiber reinforced composite material containing a continuous fiber. 繊維長が所定長さ以上の不連続繊維を含む一方向繊維強化複合材からなる樹脂部材を示す模式図である。It is a schematic diagram which shows the resin member which consists of a unidirectional fiber reinforced composite material containing the discontinuous fiber whose fiber length is more than predetermined length. 超音波ホーンを示す説明図である。It is explanatory drawing which shows an ultrasonic horn. 本実施形態にかかる樹脂部材の接合方法を示す説明図である。It is explanatory drawing which shows the joining method of the resin member concerning this embodiment. 同実施形態にかかる樹脂部材の接合方法を示す説明図である。It is explanatory drawing which shows the joining method of the resin member concerning the embodiment. 同実施形態にかかる樹脂部材の接合方法を示す説明図である。It is explanatory drawing which shows the joining method of the resin member concerning the embodiment. 同実施形態にかかる樹脂部材の接合方法を示す説明図である。It is explanatory drawing which shows the joining method of the resin member concerning the embodiment. 同実施形態にかかる樹脂部材の接合方法における2つの樹脂部材中の繊維の様子を示す説明図である。It is explanatory drawing which shows the mode of the fiber in two resin members in the joining method of the resin member concerning the embodiment. 対比例における2つの樹脂部材中の繊維の様子を示す説明図である。It is explanatory drawing which shows the mode of the fiber in the two resin members in contrast. 実施例で用いた超音波ホーンを示す説明図である。It is explanatory drawing which shows the ultrasonic horn used in the Example. 引張せん断強度の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of tensile shear strength. 超音波ホーンの進入率と荷重との関係を示すグラフである。It is a graph which shows the relationship between the approach rate of an ultrasonic horn, and a load.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol. In the present specification and drawings, a plurality of components having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral. However, when it is not necessary to particularly distinguish each of a plurality of constituent elements having substantially the same functional configuration, only the same reference numerals are given.

<1.樹脂部材>
まず、本発明の実施の形態にかかる樹脂部材の接合方法により互いに接合される樹脂部材について説明する。樹脂部材は、超音波スポット溶着によって互いに接合される部材である。超音波スポット溶着は、例えば、図1に示すように、第1の樹脂部材10Aと第2の樹脂部材10Bとを、互いの接合面を当接させて支持した状態で、接合位置Sに対して、超音波溶着装置の超音波ホーン30を第2の樹脂部材10Bにおける接合面の反対側の面から押し当てることにより行われる。かかる第1の樹脂部材10A及び第2の樹脂部材10Bは、以下に説明する樹脂部材により構成される。
<1. Resin member>
First, the resin members joined together by the resin member joining method according to the embodiment of the present invention will be described. The resin members are members that are joined to each other by ultrasonic spot welding. For example, as shown in FIG. 1, the ultrasonic spot welding is performed with respect to the joining position S in a state where the first resin member 10 </ b> A and the second resin member 10 </ b> B are supported with their joining surfaces in contact with each other. The ultrasonic horn 30 of the ultrasonic welding apparatus is pressed from the surface opposite to the bonding surface in the second resin member 10B. Such 1st resin member 10A and 2nd resin member 10B are comprised by the resin member demonstrated below.

(1−1.全体構成)
樹脂部材10A,10Bは、例えば、自動車車体用部品に使用される部材である。ただし、樹脂部材10A,10Bの用途は、特に限定されるものではない。樹脂部材10A,10Bは、マトリックス樹脂P中に、所定以上の長さの強化繊維Fが一方向に配向して配置された一方向繊維強化複合材からなる樹脂部材であれば、特に限定されない。例えば、樹脂部材10A,10Bは、一方向に配向して配置した強化繊維Fに、熱可塑性樹脂を含浸させて成形した部材(一方向繊維強化部材)とすることができる。あるいは、一方向に配向した配置した強化繊維Fに、熱可塑性樹脂を含浸させ、加熱又は乾燥してシート状にしたプリプレグ(一方向繊維強化部材)を積層して成形した部材であってもよい。
(1-1. Overall configuration)
Resin member 10A, 10B is a member used for components for automobile bodies, for example. However, the use of the resin members 10A and 10B is not particularly limited. The resin members 10 </ b> A and 10 </ b> B are not particularly limited as long as the resin members are made of a unidirectional fiber reinforced composite material in which reinforcing fibers F having a predetermined length or more are oriented in one direction in the matrix resin P. For example, the resin members 10A and 10B can be members (unidirectional fiber reinforced members) formed by impregnating a thermoplastic resin into reinforcing fibers F arranged in one direction. Alternatively, the reinforcing fiber F arranged in one direction may be impregnated with a thermoplastic resin and heated or dried to form a sheet-like prepreg (unidirectional fiber reinforced member), which may be a laminated member. .

プリプレグを積層して樹脂部材10A,10Bを成形する場合、各プリプレグにおける強化繊維の配向方向は、例えば同一方向に揃えられてよい。ただし、樹脂部材10A,10Bの接合面から離れた位置のプリプレグ15の強化繊維Fの配向方向が、接合面側のプリプレグ15の強化繊維Fの配向方向と異なっていてもよい。すなわち、第2の樹脂部材10Bについては、超音波スポット溶着によって、強化繊維Fが第1の樹脂部材10A中に入り込む範囲のプリプレグ15の強化繊維Fの配向方向が一方向に揃っていればよい。また、第1の樹脂部材10Aについては、超音波スポット溶着によって、第2の樹脂部材10B中の強化繊維Fが入り込む範囲の強化繊維Fの配向方向が一方向に揃っていればよい。   When the resin members 10A and 10B are formed by stacking prepregs, the orientation directions of the reinforcing fibers in each prepreg may be aligned in the same direction, for example. However, the orientation direction of the reinforcing fibers F of the prepreg 15 at a position away from the joining surfaces of the resin members 10A and 10B may be different from the orientation direction of the reinforcing fibers F of the prepreg 15 on the joining surface side. That is, for the second resin member 10B, the orientation direction of the reinforcing fibers F of the prepreg 15 in a range in which the reinforcing fibers F enter the first resin member 10A only needs to be aligned in one direction by ultrasonic spot welding. . Moreover, about the 1st resin member 10A, the orientation direction of the reinforced fiber F of the range into which the reinforced fiber F in the 2nd resin member 10B penetrates should just be in one direction by ultrasonic spot welding.

例えば、樹脂部材10A,10Bは、マトリックス樹脂P中に、配向方向に沿って連続する連続繊維Fcが配置された一方向繊維強化複合材からなる樹脂部材10とすることができる。図2は、連続繊維Fcを含む樹脂部材10の斜視図である。図2に示す樹脂部材10は、長手方向に沿って配向された連続繊維Fcを含む。   For example, the resin members 10 </ b> A and 10 </ b> B can be the resin member 10 made of a unidirectional fiber reinforced composite material in which continuous fibers Fc continuous in the orientation direction are arranged in the matrix resin P. FIG. 2 is a perspective view of the resin member 10 including the continuous fiber Fc. The resin member 10 shown in FIG. 2 includes continuous fibers Fc oriented along the longitudinal direction.

ただし、樹脂部材10A,10Bは、配向方向に不連続とされた、所定長さ以上の不連続繊維Fsが配置された一方向繊維強化複合材を含む樹脂部材10’であってもよい。図3は、不連続繊維Fsを含むプリプレグ(一方向繊維強化複合材)15を積層して成形した樹脂部材10’の断面図である。かかる樹脂部材10’では、一方向に配向して配置した不連続繊維Fsを含むプリプレグ15が、不連続繊維Fsの配向方向を同一方向に揃えた状態で積層されている。   However, the resin members 10 </ b> A and 10 </ b> B may be resin members 10 ′ including a unidirectional fiber reinforced composite material in which discontinuous fibers Fs having a predetermined length or more that are discontinuous in the orientation direction are arranged. FIG. 3 is a cross-sectional view of a resin member 10 ′ formed by laminating and molding a prepreg (unidirectional fiber reinforced composite material) 15 including discontinuous fibers Fs. In the resin member 10 ′, the prepregs 15 including the discontinuous fibers Fs arranged so as to be oriented in one direction are laminated in a state where the orientation directions of the discontinuous fibers Fs are aligned in the same direction.

かかる樹脂部材10A,10Bの形状は、特に制限されるものではないが、例えば板材とすることができる。一方向繊維強化複合材からなる樹脂部材10A,10Bは強度に優れるため、板材であっても所定の強度を得ることができる。また、かかる樹脂部材10A,10Bが板材であれば、軽量化にも有効である。樹脂部材10A,10Bが板材である場合、樹脂部材の厚さが薄すぎると強度が低下するおそれがある。また、樹脂部材10A,10Bの厚さが厚すぎると重量が増加する。樹脂部材10A,10Bの厚さは、例えば、1.0〜4.0mmの範囲内とすることができる。   The shape of the resin members 10A and 10B is not particularly limited, but may be a plate material, for example. Since the resin members 10A and 10B made of the unidirectional fiber reinforced composite material are excellent in strength, even if it is a plate material, a predetermined strength can be obtained. Further, if the resin members 10A and 10B are plate materials, it is effective for reducing the weight. When resin member 10A, 10B is a board | plate material, when the thickness of a resin member is too thin, there exists a possibility that intensity | strength may fall. Further, if the thickness of the resin members 10A and 10B is too thick, the weight increases. The thickness of the resin members 10A and 10B can be set within a range of 1.0 to 4.0 mm, for example.

(1−2.構成材料)
一方向繊維強化複合材において使用される強化繊維Fは、特に限定されるものではなく、例えば、炭素繊維やガラス繊維、アラミド繊維等、さらにはこれらを組み合わせた強化繊維を使用することができる。中でも、高い機械特性や強度設計の行いやすさ等の観点から、炭素繊維を含むことが好ましい。
(1-2. Constituent materials)
The reinforcing fiber F used in the unidirectional fiber-reinforced composite material is not particularly limited, and for example, carbon fibers, glass fibers, aramid fibers, and the like, or a reinforcing fiber that combines these can be used. Among these, carbon fibers are preferably included from the viewpoint of high mechanical properties and ease of strength design.

一方向繊維強化複合材に含まれる強化繊維Fの体積含有率Vfは、40〜70%の範囲内とすることができる。強化繊維Fの体積含有率Vfが低すぎると、強化繊維F同士の絡み度合いが低くなって、接合強度が低下する場合がある。一方、強化繊維Fの体積含有率Vfが高すぎると、マトリックス樹脂の割合が低下し、強度が低下する場合がある。したがって、一方向繊維強化複合材に含まれる強化繊維Fの体積含有率Vfは、42〜65%の範囲内とすることがより好ましく、45〜62%の範囲内とすることがさらに好ましい。なお、強化繊維Fの体積含有率Vfは、JIS K 7052、K7075に準じて測定される値である。   The volume content Vf of the reinforcing fiber F contained in the unidirectional fiber-reinforced composite material can be in the range of 40 to 70%. If the volume content Vf of the reinforcing fibers F is too low, the degree of entanglement between the reinforcing fibers F is lowered, and the bonding strength may be reduced. On the other hand, if the volume content Vf of the reinforcing fibers F is too high, the ratio of the matrix resin may decrease, and the strength may decrease. Therefore, the volume content Vf of the reinforcing fibers F contained in the unidirectional fiber-reinforced composite material is more preferably in the range of 42 to 65%, and still more preferably in the range of 45 to 62%. The volume content Vf of the reinforcing fiber F is a value measured according to JIS K 7052 and K7075.

上述のとおり、強化繊維Fは、所定長さ以上の繊維長を有する強化繊維であれば、連続繊維であってもよく、あるいは、不連続な長繊維であってもよい。強化繊維Fが不連続繊維Fsである場合、強化繊維Fの長さは、超音波ホーンを押し当てる樹脂部材とは反対側の樹脂部材における、超音波ホーンの進入量の1.0倍以上の長さであることが好ましい。かかる長さの強化繊維Fを含むことにより、接合される樹脂部材10A,10B中の強化繊維F同士が絡み合って、接合強度の向上に寄与しやすくなる。樹脂部材10A,10Bを構成する強化繊維Fの長さは、例えば、2.0mm以上とすることができるが、この長さに制限されるものではない。   As described above, the reinforcing fiber F may be a continuous fiber or a discontinuous long fiber as long as the reinforcing fiber has a fiber length equal to or longer than a predetermined length. When the reinforcing fiber F is a discontinuous fiber Fs, the length of the reinforcing fiber F is 1.0 times or more of the amount of the ultrasonic horn entering the resin member opposite to the resin member that presses the ultrasonic horn. The length is preferred. By including the reinforcing fibers F having such a length, the reinforcing fibers F in the resin members 10 </ b> A and 10 </ b> B to be joined are entangled with each other, and it is easy to contribute to the improvement of the joining strength. The length of the reinforcing fibers F constituting the resin members 10A and 10B can be, for example, 2.0 mm or more, but is not limited to this length.

なお、長繊維及びその端材等を機械によって細かく裁断して得られるいわゆる短繊維以外の所定の長さを有する長繊維は、所定長さ以上の繊維長を有する強化繊維Fに含まれる。すなわち、長繊維とは、比較的長い繊維長を有する不連続繊維を意味する。   The long fibers having a predetermined length other than so-called short fibers obtained by finely cutting the long fibers and the end materials thereof by a machine are included in the reinforcing fibers F having a fiber length of a predetermined length or more. That is, the long fiber means a discontinuous fiber having a relatively long fiber length.

また、一方向繊維強化複合材のマトリックス樹脂Pとしては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂、ポリスチレン樹脂、AS樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、PPS(ポリフェニレンサルファイド)樹脂、フッ素樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂などの熱可塑性樹脂が例示される。これらの熱可塑性樹脂うちの1種類、あるいは2種類以上の混合物を使用することができる。これら熱可塑性樹脂は、単独でも、混合物でも、また共重合体であってもよい。混合物の場合には相溶化剤を併用してもよい。さらに、難燃剤として臭素系難燃剤、シリコン系難燃剤、赤燐などを加えてもよい。   The matrix resin P of the unidirectional fiber reinforced composite material includes, for example, polyethylene resin, polypropylene resin, polyvinyl chloride resin, ABS resin, polystyrene resin, AS resin, polyamide resin, polyacetal resin, polycarbonate resin, thermoplastic polyester resin. And thermoplastic resins such as PPS (polyphenylene sulfide) resin, fluororesin, polyetherimide resin, polyetherketone resin, and polyimide resin. One type of these thermoplastic resins or a mixture of two or more types can be used. These thermoplastic resins may be used alone, as a mixture, or as a copolymer. In the case of a mixture, a compatibilizer may be used in combination. Further, brominated flame retardants, silicon-based flame retardants, red phosphorus and the like may be added as flame retardants.

この場合、使用される熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ナイロン6、ナイロン66等のポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリエーテルケトン、ポリエーテルスルフォン、芳香族ポリアミド等の樹脂が挙げられる。中でも可塑性マトリックス樹脂がポリアミド、ポリフェニレンスルフィド、ポリプロピレン、ポリエーテルエーテルケトン及びフェノキシ樹脂からなる群より選ばれる少なくとも1種であることが好ましい。   In this case, examples of the thermoplastic resin used include polyolefin resins such as polyethylene and polypropylene, polyamide resins such as nylon 6 and nylon 66, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyether ketone, Examples of the resin include polyether sulfone and aromatic polyamide. Among them, the plastic matrix resin is preferably at least one selected from the group consisting of polyamide, polyphenylene sulfide, polypropylene, polyether ether ketone, and phenoxy resin.

なお、互いに接合される第1の樹脂部材10A及び第2の樹脂部材10Bを構成する一方向繊維強化複合材のマトリックス樹脂P及び強化繊維Fは、異なっていてもよい。ただし、成形性の観点から、用いられるマトリックス樹脂Pの表面パラメータ(SP値)が近い等、互いに相溶するものであることが好ましい。   Note that the matrix resin P and the reinforcing fiber F of the unidirectional fiber-reinforced composite material constituting the first resin member 10A and the second resin member 10B to be bonded to each other may be different. However, from the viewpoint of moldability, it is preferable that the matrix resin P to be used is compatible with each other such that the surface parameter (SP value) is close.

<2.樹脂部材の接合方法>
以上、本実施形態にかかる樹脂部材の接合方法における接合対象としての樹脂部材10の構成について説明した。次に、本実施形態にかかる樹脂部材の接合方法として、超音波スポット溶着により、第1の樹脂部材10Aと第2の樹脂部材10Bとを接合する方法の一例について説明する。
<2. Resin member joining method>
The configuration of the resin member 10 as the joining target in the resin member joining method according to the present embodiment has been described above. Next, an example of a method for joining the first resin member 10A and the second resin member 10B by ultrasonic spot welding will be described as a method for joining the resin members according to the present embodiment.

図4は、本実施形態にかかる樹脂部材の接合方法において用いられる超音波ホーン30の先端形状を示す説明図である。図5〜図8は、第1の樹脂部材10Aと第2の樹脂部材10Bとが接合される様子を示す説明図である。かかる図5〜図8は、超音波ホーン30の進入位置において第1の樹脂部材10A及び第2の樹脂部材10Bを切断した断面図を示す。   FIG. 4 is an explanatory view showing the tip shape of the ultrasonic horn 30 used in the resin member joining method according to the present embodiment. 5-8 is explanatory drawing which shows a mode that 10 A of 1st resin members and 2nd resin member 10B are joined. 5 to 8 show cross-sectional views of the first resin member 10A and the second resin member 10B cut at the entry position of the ultrasonic horn 30. FIG.

かかる接合方法の例は、超音波溶着装置の超音波ホーン30を、第2の樹脂部材10B側から押し当てるとともに、超音波ホーン30に超音波振動を与えることにより、第1の樹脂部材10Aと第2の樹脂部材10Bとを溶着する超音波スポット溶着の例である。以下の例では、第1の樹脂部材10A及び第2の樹脂部材10Bともに、強化繊維全体を、一方向に配向して配置した強化繊維F1,F2を含む一方向繊維強化複合材からなる樹脂部材として構成されている。使用する超音波ホーン30は、例えば、図4に示すように、先端部30aの形状が円錐状をなすスポットタイプとすることができる。図示した超音波ホーン30の先端部30aの先端は曲面となっている。なお、超音波ホーン30は、先端部の形状がダイヤカット形状をなす面タイプであってもよい。   An example of such a joining method is that the ultrasonic horn 30 of the ultrasonic welding apparatus is pressed from the second resin member 10B side, and ultrasonic vibration is applied to the ultrasonic horn 30 so that the first resin member 10A and It is an example of the ultrasonic spot welding which welds the 2nd resin member 10B. In the following example, both the first resin member 10A and the second resin member 10B are resin members made of a unidirectional fiber reinforced composite material including reinforcing fibers F1 and F2 in which the entire reinforcing fibers are arranged in one direction. It is configured as. For example, as shown in FIG. 4, the ultrasonic horn 30 to be used may be a spot type in which the shape of the tip portion 30 a is conical. The tip of the tip 30a of the illustrated ultrasonic horn 30 is a curved surface. Note that the ultrasonic horn 30 may be a surface type in which the shape of the tip portion is a diamond cut shape.

まず、図5に示すように、第1の樹脂部材10Aと、第2の樹脂部材10Bとが、互いの接合面を対向させて、重ね合わせられる。このとき、第1の樹脂部材10Aにおける強化繊維F1の配向方向と、第2の樹脂部材10Bにおける強化繊維F2の配向方向とが、互いに揃えられて重ね合わせられる。図示した例では、接合面を上に向けて載置された第1の樹脂部材10Aの上に、接合面を下に向けた第2の樹脂部材10Bが重ね合わせられて保持されている。第1の樹脂部材10Aと第2の樹脂部材10Bとは、上下が逆になっていてもよい。   First, as shown in FIG. 5, the first resin member 10 </ b> A and the second resin member 10 </ b> B are overlaid with their joint surfaces facing each other. At this time, the orientation direction of the reinforcing fibers F1 in the first resin member 10A and the orientation direction of the reinforcing fibers F2 in the second resin member 10B are aligned and overlapped with each other. In the illustrated example, the second resin member 10B with the bonding surface facing downward is overlaid and held on the first resin member 10A placed with the bonding surface facing upward. The first resin member 10A and the second resin member 10B may be upside down.

なお、第1の樹脂部材10Aと第2の樹脂部材10Bとを重ね合わせる際に、互いの接合面における強化繊維F1,F2の配向方向が揃えられていればよい。すなわち、図3に示すような、複数のプリプレグ15を積層して成形された樹脂部材10’の場合には、接合面から離れた位置におけるプリプレグ15の強化繊維の配向方向が、接合面における強化繊維F1,F2の配向方向とは異なっていてもよい。   In addition, when the 1st resin member 10A and the 2nd resin member 10B are overlapped, the orientation directions of the reinforcing fibers F1 and F2 on the joint surfaces may be aligned. That is, in the case of a resin member 10 ′ formed by laminating a plurality of prepregs 15 as shown in FIG. The orientation direction of the fibers F1 and F2 may be different.

この状態で、接合位置Sに対して、第2の樹脂部材10Bの上面側から超音波ホーン30を押し当てるとともに、超音波ホーン30に対して超音波振動を付与する。これにより、接合位置Sに面圧がかかり、当該接合位置Sの表面のマトリックス樹脂Pが溶融し始める。   In this state, the ultrasonic horn 30 is pressed against the bonding position S from the upper surface side of the second resin member 10 </ b> B, and ultrasonic vibration is applied to the ultrasonic horn 30. Thereby, surface pressure is applied to the joining position S, and the matrix resin P on the surface of the joining position S starts to melt.

このとき、超音波ホーン30を押し当てる際の加圧力が低すぎると、接合が完了するまでに要する時間が長くなって、樹脂の熱分解が必要以上に生じる場合がある。また、超音波ホーン30を押し当てる際の加圧力が高すぎると、第1の樹脂部材10Aと第2の樹脂部材10Bとを互いに密着させたまま保持することが困難になる場合がある。したがって、超音波ホーン30を押し当てる際の加圧力は、100〜800Nの範囲内とすることが好ましく、200〜700Nの範囲内とすることがより好ましい。   At this time, if the applied pressure at the time of pressing the ultrasonic horn 30 is too low, the time required to complete the bonding becomes long, and the thermal decomposition of the resin may occur more than necessary. Moreover, if the applied pressure when pressing the ultrasonic horn 30 is too high, it may be difficult to hold the first resin member 10A and the second resin member 10B in close contact with each other. Therefore, the pressure applied when the ultrasonic horn 30 is pressed is preferably in the range of 100 to 800 N, and more preferably in the range of 200 to 700 N.

また、超音波ホーン30に与えられる振動の振幅が小さすぎると、接合が完了するまでに要する時間が長くなって、樹脂の熱分解が必要以上に生じる場合がある。また、超音波ホーン30に与えられる振動の振幅が大きすぎると、十分な周波数で装置を超音波溶着装置を稼働させられなくなる場合がある。したがって、超音波ホーン30に与えられる振動の振幅は、10〜60μmの範囲内とすることが好ましく、20〜50μmの範囲内とすることがより好ましい。ただし、超音波ホーン30に与えられる振動の振幅の条件は、超音波溶着を実施する設備に依存し、接合対象の樹脂部材のサイズによって最適な条件に設定される。   In addition, if the amplitude of the vibration applied to the ultrasonic horn 30 is too small, the time required for completing the joining becomes long, and the thermal decomposition of the resin may occur more than necessary. Further, if the amplitude of vibration applied to the ultrasonic horn 30 is too large, the ultrasonic welding apparatus may not be operated at a sufficient frequency. Therefore, the amplitude of vibration applied to the ultrasonic horn 30 is preferably in the range of 10 to 60 μm, and more preferably in the range of 20 to 50 μm. However, the condition of the amplitude of vibration applied to the ultrasonic horn 30 depends on the equipment for performing ultrasonic welding, and is set to an optimum condition depending on the size of the resin member to be joined.

また、超音波ホーン30に与えられる振動の周波数が小さすぎると、接合が完了するまでに要する時間が長くなって、樹脂の熱分解が必要以上に生じる場合がある。したがって、超音波ホーン30に与えられる振動の周波数は、設備上の制約等も考慮して、30〜60kHzの範囲内とすることが好ましく、35〜50kHzの範囲内とすることがより好ましい。ただし、超音波ホーン30に与えられる振動の周波数の条件は、超音波溶着を実施する設備に依存し、接合対象の樹脂部材のサイズによって最適な条件に設定される。   Further, if the frequency of vibration applied to the ultrasonic horn 30 is too small, the time required to complete the bonding becomes long, and the thermal decomposition of the resin may occur more than necessary. Therefore, the frequency of vibration applied to the ultrasonic horn 30 is preferably in the range of 30 to 60 kHz, more preferably in the range of 35 to 50 kHz, taking into account the constraints on the equipment. However, the condition of the frequency of vibration applied to the ultrasonic horn 30 depends on the equipment for performing ultrasonic welding, and is set to an optimum condition depending on the size of the resin member to be joined.

さらに、第2の樹脂部材10Bに対して、超音波ホーン30による加圧及び超音波振動を継続すると、図6〜図7に示すように、超音波ホーン30は第2の樹脂部材10Bを貫通して、第1の樹脂部材10Aに進入し始める。また、超音波ホーン30の第1の樹脂部材10Aへの進入に伴って、第2の樹脂部材10Bにおける接合面近傍の強化繊維F2が、第1の樹脂部材10A側に入り込み始める。   Furthermore, when pressurization and ultrasonic vibration by the ultrasonic horn 30 are continued with respect to the second resin member 10B, the ultrasonic horn 30 penetrates the second resin member 10B as shown in FIGS. Then, it begins to enter the first resin member 10A. Further, as the ultrasonic horn 30 enters the first resin member 10A, the reinforcing fibers F2 in the vicinity of the joint surface of the second resin member 10B start to enter the first resin member 10A side.

また、第1の樹脂部材10A及び第2の樹脂部材10Bの表面がさらに溶融するが、超音波ホーン30の先端部30aにより負荷される第2の樹脂部材10Bへの押圧力の低下に伴って、マトリックス樹脂Pの溶融量が最大となる時期を迎える。具体的には、超音波ホーン30が第2の樹脂部材10Bを貫通する直前において、マトリックス樹脂Pの溶融量が最大となる。このとき、第1の樹脂部材10A及び第2の樹脂部材10Bの接合面の界面は、強化繊維F1,F2の配向方向に沿って配向するため、溶融したマトリックス樹脂Pの層の接合強度も、同一の方向に沿って高くなる。かかるマトリックス樹脂Pの層は、後に硬化して、接着層となる。   Further, the surfaces of the first resin member 10 </ b> A and the second resin member 10 </ b> B are further melted, but as the pressing force to the second resin member 10 </ b> B loaded by the distal end portion 30 a of the ultrasonic horn 30 decreases. The time when the melting amount of the matrix resin P becomes maximum is reached. Specifically, immediately before the ultrasonic horn 30 penetrates through the second resin member 10B, the melt amount of the matrix resin P becomes maximum. At this time, since the interface between the joining surfaces of the first resin member 10A and the second resin member 10B is oriented along the orientation direction of the reinforcing fibers F1 and F2, the joining strength of the molten matrix resin P layer is also It rises along the same direction. The layer of the matrix resin P is cured later to become an adhesive layer.

以降、第2の樹脂部材10Bの強化繊維F2が、第1の樹脂部材10Aの強化繊維F1中に押し込まれながら切断される。本実施形態にかかる樹脂部材の接合方法では、図7に示すように、超音波ホーン30は、先端の位置が、第1の樹脂部材10Aの厚さの50%を超えるまで、第1の樹脂部材10Aに対して押し込まれる。超音波ホーン30の先端部30aの周囲には、圧縮された一部の第1の樹脂部材10Aと、同じく圧縮された一部の第2の樹脂部材10Bとが混在する。   Thereafter, the reinforcing fibers F2 of the second resin member 10B are cut while being pushed into the reinforcing fibers F1 of the first resin member 10A. In the method for joining resin members according to the present embodiment, as shown in FIG. 7, the ultrasonic horn 30 has the first resin until the tip position exceeds 50% of the thickness of the first resin member 10A. It is pushed into the member 10A. Around the distal end portion 30a of the ultrasonic horn 30, a part of the compressed first resin member 10A and a part of the compressed second resin member 10B are mixed.

このとき、第2の樹脂部材10Bの接合面の強化繊維F2の配向方向が、第1の樹脂部材10Aの接合面の強化繊維F1の配向方向に沿っていることにより、第2の樹脂部材10Bの強化繊維F2が、第1の樹脂部材10Aの強化繊維F1へと入りこみやすくなる。そのため、第2の樹脂部材10B中の強化繊維F2が切断されるとしても、繊維長が短くなりすぎることが抑制され、第2の樹脂部材10B中の強化繊維F2と第1の樹脂部材10A中の強化繊維F1とが絡み合いやすくなる。   At this time, the orientation direction of the reinforcing fibers F2 on the joining surface of the second resin member 10B is along the orientation direction of the reinforcing fibers F1 on the joining surface of the first resin member 10A, whereby the second resin member 10B. These reinforcing fibers F2 are likely to enter the reinforcing fibers F1 of the first resin member 10A. Therefore, even if the reinforcing fiber F2 in the second resin member 10B is cut, it is suppressed that the fiber length becomes too short, and the reinforcing fiber F2 in the second resin member 10B and the first resin member 10A It becomes easy to entangle with the reinforcing fiber F1.

そして、図8に示すように、超音波ホーン30を第2の樹脂部材10Bに押圧し始めてから、あるいは、超音波ホーン30が第1の樹脂部材10Aへと到達して、超音波ホーン30の進入を停止してから、あらかじめ設定した所定時間が経過するまで、超音波ホーン30を保持する。これにより、第1の樹脂部材10A中の強化繊維F1と第2の樹脂部材10B中の強化繊維F2とが、溶融したマトリックス樹脂P中で絡み合う。その後、超音波ホーン30を上昇させることにより、超音波スポット溶着が終了する。これにより、溶融したマトリックス樹脂Pは硬化し始め、第1の樹脂部材10Aの接合面及び第2の樹脂部材10Bの接合面の界面が溶着される。   Then, as shown in FIG. 8, after the ultrasonic horn 30 starts to be pressed against the second resin member 10B, or the ultrasonic horn 30 reaches the first resin member 10A, The ultrasonic horn 30 is held until a predetermined time elapses after the approach is stopped. As a result, the reinforcing fibers F1 in the first resin member 10A and the reinforcing fibers F2 in the second resin member 10B are entangled in the molten matrix resin P. Then, ultrasonic spot welding is complete | finished by raising the ultrasonic horn 30. FIG. As a result, the molten matrix resin P begins to harden, and the interface between the bonding surface of the first resin member 10A and the bonding surface of the second resin member 10B is welded.

このように、本実施形態にかかる樹脂部材10A,10Bの接合方法では、第1の樹脂部材10A中の強化繊維F1と、第2の樹脂部材10B中の強化繊維F2とが、同一の方向に向けて配向される。これにより、第2の樹脂部材10B中の強化繊維F2が短く分断されすぎることなく、第1の樹脂部材10A中の強化繊維F1に入り込みやすくなる。そのため、超音波ホーン30の先端を第1の樹脂部材10Aの厚さの50%以上の位置まで進入させることにより、強化繊維F同士の絡み度合いが強くなり、接合強度が向上する。また、超音波ホーン30の先端の進入量が増大するほど、強化繊維F1,F2同士の絡み度合いが強くなり、接合強度がより増大する。   Thus, in the joining method of the resin members 10A and 10B according to the present embodiment, the reinforcing fibers F1 in the first resin member 10A and the reinforcing fibers F2 in the second resin member 10B are in the same direction. Oriented towards. Thereby, the reinforcing fibers F2 in the second resin member 10B are easily divided into the reinforcing fibers F1 in the first resin member 10A without being divided too short. Therefore, by causing the tip of the ultrasonic horn 30 to enter a position that is 50% or more of the thickness of the first resin member 10A, the degree of entanglement between the reinforcing fibers F increases and the bonding strength improves. Further, as the amount of penetration at the tip of the ultrasonic horn 30 increases, the degree of entanglement between the reinforcing fibers F1 and F2 increases, and the bonding strength increases.

以下、本実施形態にかかる樹脂部材の接合方法において、第1の樹脂部材10Aの強化繊維F1と第2の樹脂部材10Bの強化繊維F2とが絡み合いやすくなるメカニズムについて説明する。   Hereinafter, in the resin member joining method according to the present embodiment, a mechanism that facilitates the entanglement of the reinforcing fibers F1 of the first resin member 10A and the reinforcing fibers F2 of the second resin member 10B will be described.

図9は、超音波ホーン30を押し込む前と、超音波ホーン30を押し込んだ後とにおける、第1の樹脂部材10A中の強化繊維F1及び第2の樹脂部材10B中の強化繊維F2の状態を示す模式図である。図9の下の図は、第1の樹脂部材10A及び第2の樹脂部材10Bを側方から見た模式図を示し、図9の上の図は、超音波ホーン30の押し込み方向に沿って強化繊維F1,F2を見た模式図を示す。   FIG. 9 shows the state of the reinforcing fibers F1 in the first resin member 10A and the reinforcing fibers F2 in the second resin member 10B before the ultrasonic horn 30 is pushed in and after the ultrasonic horn 30 is pushed in. It is a schematic diagram shown. The lower diagram in FIG. 9 shows a schematic view of the first resin member 10A and the second resin member 10B as viewed from the side, and the upper diagram in FIG. 9 is along the pushing direction of the ultrasonic horn 30. The schematic diagram which looked at the reinforcing fibers F1 and F2 is shown.

本実施形態にかかる樹脂部材の接合方法では、第1の樹脂部材10A及び第2の樹脂部材10Bの接合面において、各強化繊維F1、F2の配向方向が同一方向に向けられている。したがって、超音波ホーン30の押し込み方向に見たときに、第1の樹脂部材10Aの強化繊維F1と、第2の樹脂部材10Bの強化繊維F2とが交差しない。そのため、超音波ホーン30が押し込まれ、第2の樹脂部材10Bの強化繊維F2が第1の樹脂部材10A中に入り込んでいく際に、第2の樹脂部材10Bの強化繊維F2と第1の樹脂部材10Aの強化繊維F1とが重なることによって切断されにくくなる。   In the resin member bonding method according to the present embodiment, the orientation directions of the reinforcing fibers F1 and F2 are directed to the same direction on the bonding surfaces of the first resin member 10A and the second resin member 10B. Therefore, when viewed in the pushing direction of the ultrasonic horn 30, the reinforcing fibers F1 of the first resin member 10A do not intersect with the reinforcing fibers F2 of the second resin member 10B. Therefore, when the ultrasonic horn 30 is pushed in and the reinforcing fibers F2 of the second resin member 10B enter the first resin member 10A, the reinforcing fibers F2 of the second resin member 10B and the first resin When the reinforcing fiber F1 of the member 10A overlaps, it becomes difficult to cut.

そのため、第2の樹脂部材10Bの強化繊維F2は、繊維長が比較的長く維持されたまま、第1の樹脂部材10Aの強化繊維F1中に入り込む。これにより、第2の樹脂部材10Bの強化繊維F2と第1の樹脂部材10Aの強化繊維F1とが絡み合いやすくなる。   Therefore, the reinforcing fibers F2 of the second resin member 10B enter the reinforcing fibers F1 of the first resin member 10A while maintaining the fiber length relatively long. Thereby, the reinforcing fiber F2 of the second resin member 10B and the reinforcing fiber F1 of the first resin member 10A are easily entangled.

比較のため、第1の樹脂部材の連続繊維と第2の樹脂部材の連続繊維とが交差するように配向された場合の連続繊維の状態について説明する。図10は、超音波ホーンを押し込む前と、超音波ホーンを押し込んだ後とにおける、第1の樹脂部材80中の強化繊維F1及び第2の樹脂部材90中の強化繊維F2の状態を示す模式図である。図10の下の図は、第1の樹脂部材80及び第2の樹脂部材90を側方から見た模式図を示し、図10の上の図は、超音波ホーンの押し込み方向に沿って強化繊維F1,F2を見た模式図を示す。   For comparison, the state of the continuous fiber when the continuous fiber of the first resin member and the continuous fiber of the second resin member are oriented so as to intersect each other will be described. FIG. 10 is a schematic diagram showing the state of the reinforcing fibers F1 in the first resin member 80 and the reinforcing fibers F2 in the second resin member 90 before the ultrasonic horn is pushed in and after the ultrasonic horn is pushed in. FIG. The lower diagram in FIG. 10 shows a schematic view of the first resin member 80 and the second resin member 90 as viewed from the side, and the upper diagram in FIG. 10 strengthens along the pushing direction of the ultrasonic horn. The schematic diagram which looked at fiber F1, F2 is shown.

かかる対比例で示した樹脂部材の接合方法では、超音波ホーン30の押し込み方向に見たときに、第1の樹脂部材80及び第2の樹脂部材90の接合面において、各強化繊維F1,F2の配向方向が交差している。したがって、超音波ホーン30を押し込んだ際に、第2の樹脂部材90の強化繊維F2と第1の樹脂部材80の強化繊維F1とが互いにぶつかり合う。   In the resin member joining method shown in the comparative example, the reinforcing fibers F1, F2 are formed on the joining surfaces of the first resin member 80 and the second resin member 90 when viewed in the pushing direction of the ultrasonic horn 30. The orientation directions of are intersected. Therefore, when the ultrasonic horn 30 is pushed in, the reinforcing fiber F2 of the second resin member 90 and the reinforcing fiber F1 of the first resin member 80 collide with each other.

そのため、第2の樹脂部材90の強化繊維F2が第1の樹脂部材80の強化繊維F1中に入り込みにくくなるとともに、各強化繊維F1,F2は短く切断されやすくなる。これにより、第2の樹脂部材10Bの強化繊維F2と第1の樹脂部材10Aの強化繊維F1との絡み度合いが低くなり、接合強度を向上させることが難しくなる。   Therefore, the reinforcing fibers F2 of the second resin member 90 are less likely to enter the reinforcing fibers F1 of the first resin member 80, and the reinforcing fibers F1, F2 are easily cut short. Thereby, the degree of entanglement between the reinforcing fibers F2 of the second resin member 10B and the reinforcing fibers F1 of the first resin member 10A becomes low, and it becomes difficult to improve the bonding strength.

以上のように、本実施形態にかかる樹脂部材の接合方法では、超音波スポット溶着時に、第2の樹脂部材10Bの強化繊維F2が、繊維長を比較的長く維持したままで、第1の樹脂部材10Aの強化繊維F1中に入り込みやすくなる。そのため、強化繊維F1,F2同士の絡み度合いが高められ、接合強度を向上させることができる。   As described above, in the method for joining resin members according to the present embodiment, the first resin while the reinforcing fiber F2 of the second resin member 10B maintains a relatively long fiber length during ultrasonic spot welding. It becomes easy to enter the reinforcing fiber F1 of the member 10A. Therefore, the degree of entanglement between the reinforcing fibers F1 and F2 is increased, and the bonding strength can be improved.

<3.効果>
以上説明した本実施形態にかかる樹脂部材の接合方法では、一方向繊維強化複合材からなる第1の樹脂部材10A及び第2の樹脂部材10Bを超音波スポット溶着により接合するにあたり、接合面における強化繊維Fの配向方向が互いに揃えられる。この状態から、超音波ホーン30が第2の樹脂部材10B側から押し当てられるとともに、超音波ホーン30に対して超音波振動が与えられ、超音波ホーン30は第1の樹脂部材10Aの厚さの50%を超える位置まで進入させられる。
<3. Effect>
In the method for bonding resin members according to the present embodiment described above, the first resin member 10A and the second resin member 10B made of a unidirectional fiber-reinforced composite material are bonded by ultrasonic spot welding, and the bonding surface is reinforced. The orientation directions of the fibers F are aligned with each other. From this state, the ultrasonic horn 30 is pressed from the second resin member 10B side, and ultrasonic vibration is applied to the ultrasonic horn 30. The ultrasonic horn 30 has a thickness of the first resin member 10A. To a position exceeding 50% of the

これにより、第2の樹脂部材10B中の強化繊維F2は、その長さが比較的長く維持されたまま第1の樹脂部材10Aの強化繊維F1中に入り込み、第1の樹脂部材10A中の強化繊維F1と第2の樹脂部材10B中の強化繊維F2とが絡みやすくなる。したがって、溶融したマトリックス樹脂Pが硬化した後、第1の樹脂部材10Aと第2の樹脂部材10Bとの接合強度が高められる。   Thereby, the reinforcing fiber F2 in the second resin member 10B enters the reinforcing fiber F1 of the first resin member 10A while the length thereof is maintained relatively long, and the reinforcing fiber F2 in the first resin member 10A is reinforced. The fibers F1 and the reinforcing fibers F2 in the second resin member 10B are easily entangled. Therefore, after the molten matrix resin P is cured, the bonding strength between the first resin member 10A and the second resin member 10B is increased.

以下、本実施形態にかかる樹脂部材の接合方法の実施例について説明する。   Examples of the resin member joining method according to the present embodiment will be described below.

以下の実施例においては、一方向繊維強化複合材からなる樹脂部材を2枚準備し、これらの樹脂部材を超音波スポット溶着により接合する際の超音波ホーンの進入量を変えながら、樹脂部材の接合体の接合強度を測定した。樹脂部材は、1層の厚みが0.16mmのプリプレグを積層した、板厚が約2.0mm、長さが100mm、板幅が25mmの板状の樹脂部材である。プリプレグは、ポリアミド6をマトリックス樹脂とする、炭素繊維の体積含有率Vfが50%の一方向繊維強化複合材である。また、積層したプリプレグは、強化繊維の配向方向がすべて同一方向に向けられたものである。   In the following examples, two resin members made of a unidirectional fiber reinforced composite material are prepared, and while changing the amount of ultrasonic horn entering when these resin members are joined by ultrasonic spot welding, The joint strength of the joined body was measured. The resin member is a plate-shaped resin member having a thickness of about 2.0 mm, a length of 100 mm, and a plate width of 25 mm, in which prepregs each having a thickness of 0.16 mm are laminated. The prepreg is a unidirectional fiber-reinforced composite material using polyamide 6 as a matrix resin and a volume content Vf of carbon fibers of 50%. In the laminated prepreg, the orientation directions of the reinforcing fibers are all directed in the same direction.

図11は、本実施例において、超音波スポット溶着の際に用いた超音波ホーン30を示す。超音波ホーン30は、先端部30aが円錐状をなすスポットタイプとした。かかる超音波ホーン30を用いて、周波数を40kHz、振幅を45μm、押圧力を430Nとして、2枚の樹脂部材を超音波スポット溶着により接合した。その際、図12に示すように、2枚の樹脂部材10A,10Bを、長さ方向に12.5mm重ね合わせ、合計厚さを約4.0mmとし、上側の樹脂部材10B側から超音波ホーン30を押し当てた。   FIG. 11 shows an ultrasonic horn 30 used for ultrasonic spot welding in this embodiment. The ultrasonic horn 30 is a spot type in which the tip 30a has a conical shape. Using the ultrasonic horn 30, two resin members were joined by ultrasonic spot welding with a frequency of 40 kHz, an amplitude of 45 μm, and a pressing force of 430 N. At that time, as shown in FIG. 12, the two resin members 10A and 10B are overlapped with each other in the length direction by 12.5 mm, the total thickness is set to about 4.0 mm, and the ultrasonic horn is started from the upper resin member 10B side. 30 was pressed.

樹脂部材10A,10Bを超音波スポット溶着により接合した後、それぞれの樹脂部材10A,10Bの端部に、接着剤を用いてタブを接合した上で、JIS K 6850に準じて、樹脂部材10A,10Bの接合体の引張せん断強度を測定した。ただし、引張試験実施時における引張速度(移動速度)は、5mm/分とした。引張試験機として、AG−100kNX(島津製作所社製)を用いた。   After the resin members 10A and 10B are joined by ultrasonic spot welding, tabs are joined to the end portions of the respective resin members 10A and 10B using an adhesive, and the resin members 10A and 10B are bonded in accordance with JIS K 6850. The tensile shear strength of the 10B joined body was measured. However, the tensile speed (moving speed) at the time of carrying out the tensile test was 5 mm / min. As a tensile tester, AG-100kNX (manufactured by Shimadzu Corporation) was used.

樹脂部材10A,10Bに対する超音波ホーン30の進入量、樹脂部材10Aに対する超音波ホーン30の進入率、接合体の引張せん断強度(荷重)の結果を表1に示す。表1において、進入量は、図12における上側の樹脂部材10Bの上面からの超音波ホーン30の先端の進入量(mm)を示す。また、進入率は、図12における下側の樹脂部材10Aへの超音波ホーン30の進入率を示し、樹脂部材10Aの厚さ(=2.0mm)を100(%)とした場合の超音波ホーン30の進入率を示す。例えば、進入量が3.0mmの場合、樹脂部材10Bへの進入量は2.0mm、樹脂部材10Aへの進入量は1.0mmであり、樹脂部材10Aへの進入率は50%となる。   Table 1 shows the results of the penetration amount of the ultrasonic horn 30 with respect to the resin members 10A and 10B, the penetration rate of the ultrasonic horn 30 with respect to the resin member 10A, and the tensile shear strength (load) of the joined body. In Table 1, the entry amount indicates the entry amount (mm) of the tip of the ultrasonic horn 30 from the upper surface of the upper resin member 10B in FIG. Further, the penetration rate indicates the penetration rate of the ultrasonic horn 30 into the lower resin member 10A in FIG. 12, and the ultrasonic wave when the thickness (= 2.0 mm) of the resin member 10A is 100 (%). The approach rate of the horn 30 is shown. For example, when the entry amount is 3.0 mm, the entry amount to the resin member 10B is 2.0 mm, the entry amount to the resin member 10A is 1.0 mm, and the entry rate to the resin member 10A is 50%.

なお、表1では、目標進入率(目標進入量)と実際の進入率(進入量)とは誤差が生じるため、進入量及び進入率とは別に平均進入率を示している。また、これに対応して、平均進入率毎に、荷重平均が示されている。   In Table 1, since an error occurs between the target approach rate (target approach amount) and the actual approach rate (entry amount), the average approach rate is shown separately from the approach amount and the approach rate. Correspondingly, a load average is shown for each average approach rate.

Figure 0006463642
Figure 0006463642

また、上記実施例の進入率(%)と荷重(kN)との関係を図13に示す。図13では、横軸が進入率(%)を示し、縦軸が荷重(kN)を示す。   Moreover, the relationship between the approach rate (%) and load (kN) of the said Example is shown in FIG. In FIG. 13, the horizontal axis indicates the approach rate (%), and the vertical axis indicates the load (kN).

表1及び図13に示したように、重ね合わせた下側の樹脂部材10Aに対する超音波ホーン30の進入率が50%以上の実施例1〜9では、当該進入率が50%未満の比較例1〜7に比べて、引張せん断強度(荷重)が大きくなることが分かった。   As shown in Table 1 and FIG. 13, in Examples 1 to 9 where the penetration rate of the ultrasonic horn 30 with respect to the overlapped lower resin member 10A is 50% or more, the penetration rate is less than 50%. It was found that the tensile shear strength (load) was increased as compared with 1-7.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10,10’ 樹脂部材(一方向繊維強化複合材)
10A 第1の樹脂部材(下側の樹脂部材)
10B 第2の樹脂部材(上側の樹脂部材)
15 プリプレグ(一方向繊維強化複合材)
30 超音波ホーン
30a 先端部
80 第1の樹脂部材
90 第2の樹脂部材
F,F1,F2 強化繊維
Fc 連続繊維
P マトリックス樹脂
S 接合位置
Vf 強化繊維の体積含有率
10,10 'resin member (unidirectional fiber reinforced composite material)
10A First resin member (lower resin member)
10B Second resin member (upper resin member)
15 Prepreg (unidirectional fiber reinforced composite)
30 Ultrasonic horn 30a Tip 80 First resin member 90 Second resin member F, F1, F2 Reinforcing fiber Fc Continuous fiber P Matrix resin S Joining position Vf Volume content of reinforcing fiber

Claims (7)

熱可塑性樹脂からなるマトリックス樹脂中に所定長さ以上の強化繊維が一方向に配向して配置された一方向繊維強化複合材からなる二つの樹脂部材を超音波スポット溶着により接合する方法であって、
前記二つの樹脂部材の接合面における前記強化繊維の配向方向を互いに揃えて重ね合わせる工程と、
一方の樹脂部材側から超音波ホーンを押し当てるとともに前記超音波ホーンに超音波振動を与え、前記超音波ホーンを、他方の樹脂部材を貫通させないように前記他方の樹脂部材の厚さの50%を超える位置まで進入させる工程と、
を備える、樹脂部材の接合方法。
A method of joining two resin members made of a unidirectional fiber reinforced composite material in which reinforcing fibers having a predetermined length or more are oriented in one direction in a matrix resin made of a thermoplastic resin by ultrasonic spot welding. ,
A step of aligning and superimposing the orientation directions of the reinforcing fibers on the joint surfaces of the two resin members,
An ultrasonic horn is pressed from one resin member side and ultrasonic vibration is applied to the ultrasonic horn so that the ultrasonic horn does not penetrate the other resin member and is 50% of the thickness of the other resin member. A step of entering to a position exceeding
A method for joining resin members.
前記強化繊維の長さが、前記他方の樹脂部材における前記超音波ホーンの進入量の1.0倍以上である、請求項1に記載の樹脂部材の接合方法。   The method for joining resin members according to claim 1, wherein the length of the reinforcing fibers is 1.0 times or more of the amount of the ultrasonic horn entering the other resin member. 前記強化繊維が連続繊維又は長繊維である、請求項1又は2に記載の樹脂部材の接合方法。   The method for joining resin members according to claim 1, wherein the reinforcing fibers are continuous fibers or long fibers. 前記樹脂部材が、1.0〜4.0mmの範囲内の厚さを有する板材である、請求項1〜3のいずれか1項に記載の樹脂部材の接合方法。   The method for joining resin members according to any one of claims 1 to 3, wherein the resin member is a plate member having a thickness within a range of 1.0 to 4.0 mm. 前記一方向繊維強化複合材に含まれる前記強化繊維の体積含有率(Vf)が40〜70%の範囲内である、請求項1〜4のいずれか1項に記載の樹脂部材の接合方法。   The method for joining resin members according to any one of claims 1 to 4, wherein a volume content (Vf) of the reinforcing fibers contained in the unidirectional fiber-reinforced composite material is within a range of 40 to 70%. 前記超音波ホーンを押し当てる際の圧力が、100〜800Nの範囲内である、請求項1〜5のいずれか1項に記載の樹脂部材の接合方法。   The method for joining resin members according to any one of claims 1 to 5, wherein a pressure when pressing the ultrasonic horn is in a range of 100 to 800N. 前記強化繊維が、炭素繊維又は炭素含有繊維である、請求項1〜6のいずれか1項に記載の樹脂部材の接合方法。   The method for joining resin members according to claim 1, wherein the reinforcing fibers are carbon fibers or carbon-containing fibers.
JP2015021757A 2015-02-06 2015-02-06 Resin member joining method Active JP6463642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021757A JP6463642B2 (en) 2015-02-06 2015-02-06 Resin member joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021757A JP6463642B2 (en) 2015-02-06 2015-02-06 Resin member joining method

Publications (2)

Publication Number Publication Date
JP2016144870A JP2016144870A (en) 2016-08-12
JP6463642B2 true JP6463642B2 (en) 2019-02-06

Family

ID=56685771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021757A Active JP6463642B2 (en) 2015-02-06 2015-02-06 Resin member joining method

Country Status (1)

Country Link
JP (1) JP6463642B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6976137B2 (en) * 2017-10-31 2021-12-08 日産自動車株式会社 Joined body and manufacturing method of joined body
JP7307317B2 (en) * 2019-03-29 2023-07-12 シブヤパッケージングシステム株式会社 Ultrasonic container closing device and ultrasonic container closing method
US11141925B2 (en) 2019-10-31 2021-10-12 GM Global Technology Operations LLC Ultrasonic welding and welding horn having indenter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106646A (en) * 1992-09-14 2000-08-22 General Electric Company Method for joining composite materials
JP2001334577A (en) * 2000-05-29 2001-12-04 Takashimaya Nippatsu Kogyo Co Ltd Method for ultrasonically welding resin member
JP2006142705A (en) * 2004-11-22 2006-06-08 Kasai Kogyo Co Ltd Fibrous mat fixing structure
JP2007313778A (en) * 2006-05-26 2007-12-06 Teijin Techno Products Ltd Joining method of fiber-reinforced thermoplastic resin composite material
US20140127521A1 (en) * 2011-04-05 2014-05-08 Toray Industries, Inc. Composite molded body and method for producing same
JP5782815B2 (en) * 2011-04-28 2015-09-24 トヨタ自動車株式会社 Bonding method and structure of fiber reinforced resin material
EP3034276B1 (en) * 2014-12-19 2021-06-30 Airbus Defence and Space GmbH Component with firmly bonded connection and a joining method

Also Published As

Publication number Publication date
JP2016144870A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
EP2125334B1 (en) Method of joining a thermoplastic material to a fibre composite material and device manufactured therewith
JP5868861B2 (en) Multiaxial laminate rigidly connected by joints applied by an inserted thermoplastic web
US11511367B2 (en) Hybrid structures for joining of metals and continuous fiber materials
KR100971873B1 (en) Integrated body using composite materials for vehicles and manufacturing method of the same
JP6463642B2 (en) Resin member joining method
JP5833323B2 (en) Manufacturing method of carbon fiber composite material joining member
US10105898B2 (en) Resin joined body, manufacturing method of resin joined body, and vehicle structure
KR20140001987A (en) Joined body of carbon fiber reinforced composite material
JP2018079915A (en) Open-channel stiffener
JP6341156B2 (en) Resin bonded body, resin bonded body manufacturing method, and vehicle structure
WO2013084963A1 (en) Method for manufacturing joint member
JP2020062893A (en) Fiber-reinforced resin molded product and method for producing fiber-reinforced resin molded product
US10611328B2 (en) Composite material structural member and method of manufacturing the composite material structural member
JP5787150B2 (en) Joining method of fiber reinforced thermoplastic resin
JP5827505B2 (en) Joining method of fiber reinforced thermoplastic resin
KR101804661B1 (en) Resin joined body, method of producing resin joined body, and vehicular structural body
JP2017119432A (en) Method for producing fiber-reinforced plastic and fiber-reinforced plastic
JP6045431B2 (en) Method and apparatus for joining fiber reinforced resin laminate and fiber reinforced resin material
US10737463B2 (en) Method for producing a sandwich panel comprising a reinforced foam core
KR20230044408A (en) Fiber-reinforced plastics and methods for producing fiber-reinforced plastics
JPH10317265A (en) Fiber material for reinforcing in one direction, molding using the material, and its molded product
JP6418104B2 (en) Manufacturing method of resin joined body
JP6436014B2 (en) Resin joint
KR101483226B1 (en) Bonding panel and panel bonding method thereof
JP2009227751A (en) Fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190104

R150 Certificate of patent or registration of utility model

Ref document number: 6463642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250