JP6448392B2 - トナーの製造方法 - Google Patents

トナーの製造方法 Download PDF

Info

Publication number
JP6448392B2
JP6448392B2 JP2015014914A JP2015014914A JP6448392B2 JP 6448392 B2 JP6448392 B2 JP 6448392B2 JP 2015014914 A JP2015014914 A JP 2015014914A JP 2015014914 A JP2015014914 A JP 2015014914A JP 6448392 B2 JP6448392 B2 JP 6448392B2
Authority
JP
Japan
Prior art keywords
toner
particles
acid
resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015014914A
Other languages
English (en)
Other versions
JP2016139062A (ja
Inventor
三浦 正治
正治 三浦
剛 大津
剛 大津
龍一郎 松尾
龍一郎 松尾
和起子 勝間田
和起子 勝間田
陽介 岩崎
陽介 岩崎
健太郎 釜江
健太郎 釜江
恒 石上
恒 石上
溝尾 祐一
祐一 溝尾
西川 浩司
浩司 西川
山▲崎▼ 克久
克久 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015014914A priority Critical patent/JP6448392B2/ja
Publication of JP2016139062A publication Critical patent/JP2016139062A/ja
Application granted granted Critical
Publication of JP6448392B2 publication Critical patent/JP6448392B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真方式、静電記録方式、静電印刷方式、トナージェット方式に用いられるトナーに関する。
近年、電子写真方式のフルカラー複写機が広く普及するに従い、更なる高画質化、省エネルギー化が要求されている。特にPOD市場においてはプロセススピードが速いこと、印字枚数が多いこと等に起因して、これまで以上に耐ストレス性が高いトナーや、安定した帯電性能を有するトナーが要求されている。トナーに高いストレスが加わるとトナー表面の無機微粉体(外添剤)がトナー母体に埋没しスぺーサー効果が弱まってしまう為、対象物(キャリアや感光ドラム、中間転写体等)との付着力が増大し、現像性・転写性の悪化に繋がる。特に小粒径外添剤を多く使用すると埋没され易い為、スぺーサー効果が維持できず耐ストレス性に弱いトナーとなってしまう。
これを改善するため特許文献1には大粒径単分散球形外添剤をトナー母体に被覆することでストレス付与後のスぺーサー機能を維持する試みがされている。しかしながら大粒径外添剤は母体表面から離脱し易く、離脱した外添剤が現像キャリア表面に付着しトナーとの摩擦帯電性能が低下しトナーの帯電量ダウンを引き起こす。また帯電ローラ等の部材に付着し画像不良を引き起こす場合もある。
特許文献2では、外添混合槽内の回転駆動部とケーシングとの間隙で強い剪断をかけ、大粒径の無機微粉末をトナー粒子表面に固定化する方法が開示されている。しかしながら、粉砕トナーのようにトナー粒子が凹凸形状を有する場合、この手法は必ずしも有効ではない。回転駆動部とケーシングとの間隙での強い剪断力により無機微粉末がトナー粒子の凹部へと転がり、外添剤としての機能を十分に果たせない可能性がある。
特許文献3では、上記のような埋没,転がりの抑制を両立するため、大粒径の非球状不定形シリカを外添した例がある。しかしながら、このような外添剤を母体表面に拡散性の高い状態で均一に付着させることは難しく、耐久を通じて優れたスぺーサー効果と離脱性の両立を図ることは難しい。
以上のことよりトナーの耐久安定性、特に外添剤によるスぺーサー効果の維持と外添剤の離脱の両立に関しては未だ改善の余地が残る。
特開2002−318467号公報 特開2008−292675号公報 特開2007−279702号公報
本発明の目的は終始安定した耐久性を満足させることである。特に(1)外添剤がトナー母体に埋没しスぺーサー機能が果たせなくなることでの付着力増大(現像性、転写性悪化)と、(2)外添剤がトナー表面から遊離することでキャリア表面に付着して帯電性が低下することを防ぐトナーを提供することにある。
本発明は、結着樹脂及び有機無機複合粒子を含有するトナー粒子を含有するトナーの製造方法であって
該トナーの製造方法は、
該結着樹脂を含有するトナー母粒子と該有機無機複合粒子とを混合する工程、および
熱風による表面処理によって、該トナー母粒子表面に該有機無機複合粒子を固着して、該有機無機複合粒子が表面に固着したトナー粒子を得る工程、
を有し、
該有機無機複合粒子は個数平均粒径が50nm以上200nm以下であり、該有機無機複合粒子は、ビニル系樹脂粒子に無機微粒子が埋め込まれた構造を有し、該有機無機複合粒子の表面には無機微粒子に由来する凸部が複数存在する、
ことを特徴とするトナーの製造方法に関する。
本発明によれば、耐久を通じて優れた現像安定性、転写安定性を発揮するトナーを提供することができる。
本発明のトナーの電子線透過型顕微鏡によるトナー断面図である。 本発明のトナーの電子線透過型顕微鏡によるトナー断面における結晶性ポリエステルの長軸長さと短軸長さを示す図である。 本発明のトナーの電子線透過型顕微鏡によるトナー断面における二値化後の1.0μm×1.0μmの視野である。 本発明に用いられる熱球形化処理装置の図である。
本発明のトナーは、結着樹脂及び有機無機複合粒子を含有するトナー粒子を含有するトナーにおいて、該トナー粒子の表面は、該有機無機複合粒子が熱による表面処理によって固着しており、該有機無機複合粒子は個数平均粒径が50nm以上200nm以下であり、該有機無機複合粒子は、ビニル系樹脂粒子に無機微粒子が埋め込まれた構造を有し、該有機無機複合粒子の表面には無機微粒子に由来する凸部が複数存在することを特徴とする。
優れた耐久安定性を発揮するには無機微粒子(外添剤とも称す)によるスぺーサー効果が終始維持される必要がある。スぺーサー効果が無いとトナー母体が直接対象物(現像キャリア、感光ドラム、中間転写体等)に接する為、トナー−対象物間の非静電付着力が大きい状態となる。そうすると電界による応答性が悪くなり現像性の低下、転写効率低下/転写ボソの発生等に繋がる。スぺーサー効果の維持は外添剤の母体表面への埋没、遊離を抑えることで成される。埋没を防ぐ為には大粒径の外添剤を用いた方が有利ではあるが大粒径の外添剤はトナー表面から離脱し易い。この離脱を防ぐ為に外添装置による外添強度アップでトナー母体に強く固着させようとすると、母体が持つ微少な凹凸の凹部に外添剤が寄り集まる現象が起こる。この現象は特に機械式粉砕トナーのようなトナー母体が不定形なものを用いた場合は、外添剤がトナー母体の凸部に付着し難く、凹部に集中するといった傾向となる。また外添剤粒径としては大粒径、形状的には球形に近づくほどこの現象が起こりやすい。
外添剤はトナー表面に均一に拡散して付着している方がより効果的にその機能を発揮することが出来る。トナー母体を不定形の物を用いた場合は凹部に外添剤が寄り集まる為、凸部に外添剤を付着させ難い。しかしながら凸部が主に対象物と接触するので、凸部に拡散性の高い状態で外添剤を付着させることが重要である。逆に凹部付着している外添剤はスぺーサー機能あるいは帯電付与機能を効果的に発現しない。
本発明では無機微粒子に由来する凸部が複数存在する有機無機複合粒子を用いることでトナー表面への拡散性を高めた状態で付着させることができる。これは本発明で用いる有機無機複合粒子が有する無機微粒子成分で形成される微少な凹凸が効いているのもと考えられる。本発明者が考えるに、微少凹凸が有機無機複合粒子間の凝集を防ぎ、またトナー表面に対して適度な引っ掛かりを持つ為、母体凹部への偏りも発生しないと推察している。本発明に用いられる該有機無機複合粒子のように無機微粒子に由来する凸部が複数存在することが重要であり、例えば樹脂粒子内部に無機微粒子が完全に埋め込まれ凸部がないものだと均一拡散性は期待できない。本発明で用いられる有機無機複合粒子は所謂金平糖のような形状を有している。
一方で優れた耐久安定性を有するトナーの条件として外添剤の離脱(遊離)を抑える必要がある。外添剤が離脱するとそれが現像キャリア表面に付着し、トナー−キャリア間の摩擦帯電性が低下し、結果的にトナーの帯電量ダウンに繋がる。本発明では熱風処理により外添剤をトナー表面に熱的に固着させることが出来るので、離脱に強い状態を作り出すことができる。また本発明では前述のように特徴のある有機無機複合粒子を用いるため、拡散性の高い状態でトナー母体表面に付着させることが出来る。その状態で熱風処理し位置を固定/固着出来る為、本発明のトナーは長期に渡り優れたスぺーサー機能と帯電性を実現することが出来る。
また本発明の有機無機複合粒子は樹脂成分を有するため、無機粒子だけで構成されるものに比べ、熱風処理による固着性能が高い。これは無機物質と比べ樹脂成分は熱伝導度が高い為、固着され易いのだと考えている。
本発明に用いられる該有機無機複合粒子は、個数平均粒径が50nm以上200nm以下のものを用いることで優れた耐久性を発現できる。個数平均粒径が50nm未満だとスぺーサー機能的に弱くなり本発明で期待される効果まで至らない。逆に200nm超であると熱風処理装置内での外添剤離脱が発生し易くなり適していない。
また本発明ではトナー母体に結晶性ポリエステルを含有し、結晶性ポリエステルの分散状態によりさらに高性能なトナーとすることが出来る。具体的にはトナー粒子のルテニウム染色処理された透過型電子顕微鏡(TEM)断面において、該結晶性ポリエステルがトナー粒子断面上で針状に観察される結晶を形成しており、該結晶の長軸長さの個数平均径(D1)が60nm以上250nm以下であり、該トナー粒子断面中の1.0μm×1.0μmの視野において該トナー粒子中の該結晶性ポリエステルの占める面積を求めたとき、面積の標準偏差が10.0%以下であるトナーをしたときにより高い外添剤の拡散性能を発揮する。
結晶性ポリエステルが上記状態で微分散していると、トナー母体表面にも同様に結晶性ポリエステルが微分散しているといえる。そうするとこの表面に存在する結晶性ポリエステルが楔となり、有機無機複合粒子の凸部と相俟って有機無機微粒子が固定化され、高い拡散性が得られると考えられる。結晶の長軸長さの個数平均径(D1)が60nm未満であると結晶径が小さすぎる為、期待する拡散性が得られなかった。250nm超であると微分散されない方向となるのでこれも期待する拡散性が得られない。
拡散性は後述するSEMにより視覚的にとらえることもできるし、ESCAを用いて外添剤被覆率を測定し、同じ外添剤添加部数の場合被覆率が高いものが拡散性が高いと判断することが出来る。
本発明で用いる有機無機複合粒子は、例えばWO2013/063291の実施例の記載に従って製造することができる。
有機無機複合粒子の個数平均粒径や形状は、有機無機複合粒子に使用する無機微粒子の粒径や、無機微粒子と樹脂の量比を変えることで調整することができる。
これらの有機無機複合粒子は、トナー母体100.00質量部に対して、2.0質量部以上15.0質量部以下であることが好ましく、3.0質量部以上10.0質量部以下がより好ましい。2.0質量部未満であると本発明で期待するスぺーサー機能が効果的に発現しない。15.0質量部超であると熱風処理を用いて固着させた場合においても粒子の離脱レベルが悪くなってしまう。
<無機粒子(外添剤)>
本発明に使用できるその他の無機微粒子としては、例えば、フッ化ビニリデン微粉末、ポリテトラフルオロエチレン微粉末等のフッ素系樹脂粉末、酸化チタン微粉末、アルミナ微粉末、湿式製法シリカ、乾式製法シリカ等の微粉末シリカ、それらをシラン化合物、及び有機ケイ素化合物、チタンカップリング剤、シリコーンオイル等により表面処理を施した処理シリカ等がある。
本発明に使用できるシリカとしては、湿式製法シリカ及び乾式製法シリカいずれも使用できる。湿式製法シリカとしては、特にアルコキシシランを水が存在する有機溶媒中において、触媒により加水分解、縮合反応させて得られるシリカゾル懸濁液から、溶媒除去、乾燥して、粒子化する、ゾルゲル法により製造されるシリカ粒子がある。ゾルゲル法により製造されるシリカ粒子は、得られる粒子の粒度分布がシャープであり、且つ概略球状の粒子が得られるとともに、反応時間を変えることにより所望の粒度分布を有する粒子が得られるので、特に好ましく用いられる。
また、乾式製法シリカとしては、ケイ素ハロゲン化合物の蒸気相酸化により生成された微粉体であり、いわゆる乾式法シリカ又はヒュームドシリカと称されるもので、従来公知の技術によって製造されるものである。例えば、四塩化ケイ素ガスの酸水素焔中における熱分解酸化反応を利用するもので、基礎となる反応式は次の様なものである。
SiCl4+2H2+O2→SiO2+4HCl
また、この製造工程において、例えば塩化アルミニウム又は塩化チタン等他の金属ハロゲン化合物をケイ素ハロゲン化合物と共に用いることによってシリカと他の金属酸化物の複合微粉体を得ることも可能であり、それらも包含する。
また、酸化チタン微粉体であれば、硫酸法、塩素法、揮発性チタン化合物例えばチタンアルコキシド,チタンハライド,チタンアセチルアセトネートの低温酸化(熱分解,加水分解)により得られる酸化チタン微粒子が用いられる。結晶系としてはアナターゼ型,ルチル型,これらの混晶型,アモルファスのいずれのものも用いることができる。
そしてアルミナ微粉体であれば、バイヤー法、改良バイヤー法、エチレンクロルヒドリン法、水中火花放電法、有機アルミニウム加水分解法、アルミニウムミョウバン熱分解法、アンモニウムアルミニウム炭酸塩熱分解法、塩化アルミニウムの火焔分解法により得られるアルミナ微粉体が用いられる。結晶系としてはα,β,γ,δ,ξ,η,θ,κ,χ,ρ型、これらの混晶型、アモルファスのいずれのものも用いられ、α,δ,γ,θ,混晶型,アモルファスのものが好ましく用いられる。
上記無機微粉体の疎水化方法としては、無機微粉体と反応あるいは物理吸着する有機ケイ素化合物等で化学的、または物理的に処理することによって付与される。
好ましい方法としては、ケイ素ハロゲン化合物の蒸気相酸化により生成されたシリカ微粉体を有機ケイ素化合物で処理する。そのような有機ケイ素化合物の例は、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、アリルフェニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、α−クロルエチルトリクロルシラン、β−クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、ヘキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフェニルテトラメチルジシロキサンおよび1分子当り2から12個のシロキサン単位を有し末端に位置する単位にそれぞれ1個宛のSiに結合した水酸基を含有するジメチルポリシロキサン等がある。これらは1種あるいは2種以上の混合物で用いられる。
本発明に使用できる無機微粒子として、前述した湿式法シリカや乾式法シリカを、アミノ基を有するカップリング剤或いは、シリコーンオイルで処理したものを本発明の目的を達成するために必要に応じて用いてもかまわない。
流動性向上のための外添剤としては、BET比表面積が50m2/g以上400m2/g以下の無機微粉体が好ましい。
トナー粒子と外添剤との混合は、ヘンシェルミキサーの如き公知の混合機を用いることができる。
<非晶性樹脂A/B構成>
本発明のトナーは、結着樹脂として、芳香族ジオールを主成分とする重量平均分子量が小さいポリエステル樹脂Aと芳香族ジオールを主成分とする重量平均分子量が大きいポリエステル樹脂Bを含有している。
重量平均分子量の異なる2つのポリエステルを結着樹脂に用いることで、重量平均分子量が小さいポリエステルによりトナーの低温定着性を向上させ、重量平均分子量が高いポリエステルによりトナーの耐ホットオフセット性を向上させることができる。
結着樹脂100質量部に対するポリエステル樹脂Aとポリエステル樹脂Bの含有量の和が90質量部以上であることが好ましい。
本発明において、該ポリエステル樹脂Aに対する該ポリエステル樹脂Bの含有比率(A/B)は質量基準で80/20以上60/40以下であることが好ましい。(A/B)がこの範囲であると、低温定着性と耐ホットオフセット性のバランスが良好である。
ポリエステル樹脂Aとポリエステル樹脂Bはともに、多価アルコールユニットと多価カルボン酸ユニットを有している。本発明において多価アルコールユニットというのは、ポリエステルの縮重合の際に使用した多価アルコール成分に由来する構成要素である。また、本発明において多価カルボン酸ユニットというのは、ポリエステルの縮重合の際に使用した多価カルボン酸またはその無水物、低級アルキルエステルに由来する構成要素のことである。
本発明のポリエステル樹脂Aとポリエステル樹脂Bはともに、多価アルコールユニットと多価カルボン酸ユニットを有し、多価アルコールユニットの総モル数に対し、芳香族ジオールに由来する多価アルコールユニットを90mol%以上含有することを特徴とする。多価アルコールユニットの総モル数に対し、芳香族ジオールに由来する多価アルコールユニットが90mol%未満であると、カブリが悪化する。
ポリエステル樹脂Aの多価アルコールユニットが、ポリエステル樹脂Bと共通した芳香族ジオールに由来する構造を有しているため相溶しやすく、ポリエステルAとポリエステルBの分散性が向上する。
芳香族ジオールに由来する成分としては、例えば式(1)で表されるビスフェノール及びその誘導体が挙げられる。
Figure 0006448392
(式中、Rはエチレンまたはプロピレン基であり、x、yはそれぞれ0以上の整数であり、かつ、x+yの平均値は0〜10である。)
中でも、ポリエステル樹脂Aとポリエステル樹脂Bの式(1)中のRが同じであると溶融混練時に相溶しやすいため好ましい。さらに、Rがともにプロピレン基であり、x+yの平均値が2〜4であるようなビスフェノールAのプロピレンオキシド付加物が帯電安定性の点で好ましい。
ポリエステル樹脂を主成分とするならば他の樹脂成分を含有するハイブリッド樹脂であっても良い。例えば、ポリエステル樹脂とビニル系樹脂とのハイブリッド樹脂が挙げられる。ハイブリッド樹脂のような、ビニル系樹脂やビニル系共重合ユニットとポリエステル樹脂の反応生成物を得る方法としては、ビニル系樹脂やビニル系共重合ユニット及びポリエステル樹脂のそれぞれと反応しうるモノマー成分を含むポリマーが存在しているところで、どちらか一方もしくは両方の樹脂の重合反応を行う方法が好ましい。
例えば、ポリエステル樹脂成分を構成するモノマーのうちビニル系共重合体と反応し得るものとしては、例えば、フタル酸、マレイン酸、シトラコン酸、イタコン酸の如き不飽和ジカルボン酸又はその無水物等が挙げられる。ビニル系共重合体成分を構成するモノマーのうちポリエステル樹脂成分と反応し得るものとしては、カルボキシル基又はヒドロキシ基を有するものや、アクリル酸もしくはメタクリル酸エステル類が挙げられる。
また、本発明では結着樹脂として、ポリエステル樹脂を主成分とするならば、上記のビニル系樹脂以外にも、従来より結着樹脂として知られている種々の樹脂化合物を併用することができる。このような樹脂化合物としては、例えばフェノール樹脂、天然樹脂変性フェノール樹脂、天然樹脂変性マレイン樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル樹脂、シリコーン樹脂、ポリエステル樹脂、ポリウレタン、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テルペン樹脂、クマロインデン樹脂、石油系樹脂等が挙げられる。
高分子量の結着樹脂のピーク分子量は10000以上20000以下であることが、耐ホットオフセット性の観点から好ましい。また、高分子量の結着樹脂の酸価は15mgKOH/g以上30mgKOH/g以下であることが、高温高湿環境下における帯電安定性の観点から好ましい。
低分子量の結着樹脂の数平均分子量は1500以上3500以下であることが、低温定着性の観点から好ましい。また、低分子量の結着樹脂の酸価は10mgKOH/g以下であることが、高温高湿環境下における帯電安定性の観点から好ましい。
<非晶性樹脂B>
本発明のポリエステル樹脂Bは、多価アルコールユニットの総モル数に対し、多価アルコールユニットの総モル数に対し、ノボラック型フェノール樹脂のオキシアルキレンエーテルに由来する多価アルコールユニットを0.1mol%以上10.0mol%以下含有することが好ましい。
ノボラック型フェノール樹脂のオキシアルキレンエーテルは、3価以上のアルコール性水酸基価を有し、酸成分と反応して網目の広い柔軟な架橋構造をとる。そのため、トナーの溶融混練工程においてポリエステル樹脂BがポリエステルAと混合される際、ポリエステルAの架橋構造の架橋点付近における立体障害が軽減され、ポリエステルBが絡みやすい。その結果、ポリエステル樹脂Bがポリエステル樹脂A中によく分散され、かつ結晶性ポリエステルの分散性も向上し、結晶性ポリエステルの結晶がきれいに分散された状態になり易い。
ノボラック型フェノール樹脂のオキシアルキレンエーテルは、ノボラック型フェノール樹脂と分子中1個のエポキシ環を有する化合物との反応物である。
ノボラック型フェノール樹脂としては、例えばエンサイクロベディア・オブ・ポリマーサイエンス・アンド・テクノロジー(インターサイエンス・パブリッシャーズ)第10巻1頁のフエノリツク・レジンズの項に記載されるように、塩酸、リン酸、硫酸などの無機酸又はパラトルエンスルホン酸、シュウ酸などの有機酸又は酢酸亜鉛などの金属塩を触媒としてフェノール類とアルデヒド類からの重縮合により製造されるものが挙げられる。フェノール類としては、フェノールや炭素数1以上35以下の炭化水素基及び/又はハロゲン基を1個以上置換基として有する置換フェノールが挙げられる。置換フェノールの具体例としては、クレゾール(オルソ体、メタ体もしくはパラ体)、エチルフェノール、ノニルフェノール、オクチルフェノール、フェニルフェノール、スチレン化フェノール、イソプロペニルフェノール、3−クロルフェノール、3−ブロムフェノール、3,5−キシレノール、2,4−キシレノール、2,6−キシレノール、3,5−ジクロルフェノール、2,4−ジクロルフェノール、3−クロル−5−メチルフェノ−ル、ジクロルキシレノール、ジブロムキシレノール、2,4,5−トリクロルフェノール、6−フェニル−2−クロルフェノール等が挙げられる。フェノール類は2種以上併用してよい。これらの中ではフェノール及び炭化水素基で置換された置換フェノールが好ましく、その中でも特にフェノール、クレゾール、t−ブチルフェノールおよびノニルフェノールが好ましい。フェノールとクレゾールは価格及びトナーの耐オフセット性を付与する点で好ましく、t−ブチルフェノール及びノニルフェノールに代表される炭化水素基で置換された置換フェノールはトナーの帯電量の温度依存性を小さくする点で好ましい。アルデヒド類としては、ホルマリン(各種濃度のホルムアルデヒド溶液)、パラホルムアルデヒド、トリオキサン、ヘキサメチレンテトラミン等が挙げられる。ノボラック型フェノール樹脂の数平均分子量は通常300以上8000以下、好ましくは450以上3000以下、更に好ましくは400以上2000以下である。
ノボラック型フェノール樹脂中の数平均のフェノール類の核体数は通常3以上60以下、好ましくは3以上20以下、更に好ましくは4以上15以下である。また軟化点(JIS K2531;環球法)は、通常40℃以上180℃以下、好ましくは40℃以上150℃以下、更に好ましくは50℃以上130℃以下である。軟化点が40℃未満では常温でブロッキングし取り扱いが困難となる。また軟化点が180℃を超えるとポリエステル樹脂の製造過程でゲル化を引き起こし好ましくない。
分子中1個のエポキシ環を有する化合物の具体例としては、エチレンオキサイド(EO)、1,2−プロピレンオキサイド(PO)、1,2−ブチレンオキサイド、2,3−ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン等を挙げることができる。また炭素数1以上20以下の脂肪族1価アルコールもしくは1価フェノールのグリシジルエーテルも使用できる。これらの中ではEOおよび/またはPOが好ましい。ノボラック型フェノール樹脂1モルに対する、分子中1個のエポキシ環を有する化合物の付加モル数は通常1モル以上30モル以下、好ましくは2モル以上15モル以下、更に好ましくは2.5モル以上10モル以下である。また、ノボラック型フェノール樹脂中のフェノール性水酸基1個に対する分子中1個のエポキシ環を有する化合物の平均付加モル数は通常0.1モル以上10モル以下、好ましくは0.1モル以上4モル以下、更に好ましくは0.2モル以上2モル以下である。
本発明で特に好ましく用いられるノボラック型フェノール樹脂のオキシアルキレンエーテルの構造を例示する。
Figure 0006448392
(式中Rはエチレンまたはプロピレン基であり、xは0以上の数で、y1〜y3は0以上の同一又は異なった数である。)
ノボラック型フェノール樹脂のオキシアルキレンエーテルの数平均分子量は通常300以上10000以下、好ましくは350以上5000以下、更に好ましくは450以上3000以下である。数平均分子量が300未満ではトナーの耐ホットオフセット性が充分確保できず、10000を超えるとポリエステル樹脂Aの製造過程でゲル化を引き起こして好ましくない。
ノボラック型フェノール樹脂のオキシアルキレンエーテルの水酸基価(アルコール性及びフェノール性水酸基の合計)は通常10mgKOH/g以上550mgKOH/g以下、好ましくは50mgKOH/g以上500mgKOH/g以下、更に好ましくは100mgKOH/g以上450mgKOH/g以下である。また、水酸基価のうち、フェノール性水酸基価は通常0mgKOH/g以上500mgKOH/g以下、好ましくは0mgKOH/g以上350mgKOH/g以下、更に好ましくは5mgKOH/g以上250mgKOH/g以下である。
ノボラック型フェノール樹脂のオキシアルキレンエーテルの製法を例示すると、必要により触媒(塩基性触媒又は酸性触媒)の存在下、ノボラック型フェノール樹脂に分子中1個のエポキシ環を有する化合物を付加反応させることにより得られる。反応温度は通常20℃以上250℃以下、好ましくは70℃以上〜200℃以下であり、常圧下、又は加圧下、更には減圧下においても行うことができる。また反応は溶媒(例えばキシレン、ジメチルホルムアミドなど)あるいは他の2価アルコール類及び/又は他の3価以上のアルコール類の存在下で行うこともできる。
ポリエステル樹脂Bのノボラック型フェノール樹脂のオキシアルキレンエーテルに由来する多価アルコールユニットが0.1mol%未満であると、前述した網目の広い柔軟な架橋構造部分が少なくなる。そのため、ポリエステル樹脂Aと結晶性ポリエステルとの分散性が向上しにくい。一方、10mol%を超えると、ポリエステル樹脂Bのゲル分が多くなりすぎるため、溶融混練時にポリエステルAと結晶性ポリエステルが混ざりにくくなり、やはり結晶性ポリエステルの分散性が良くなりにくい。
ポリエステル樹脂Bの多価アルコールユニットを構成する成分としては、前記芳香族ジオールや、前記ノボラック型フェノール樹脂のオキシアルキレンエーテル以外に、必要に応じて、以下の多価アルコール成分を使用することができる。エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−ブテンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ソルビット、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセリン、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン。
本発明のポリエステル樹脂Bは、多価カルボン酸ユニットの総モル数に対し、炭素数4以上16以下の直鎖状炭化水素を主鎖として両末端にカルボキシル基を有する脂肪族ジカルボン酸に由来する多価カルボン酸ユニットを15mol%以上50mol%以下含有するのが樹脂同士の分散性が向上するので好ましい。
炭素数4以上16以下の直鎖状炭化水素を主鎖として両末端にカルボキシル基を有する脂肪族ジカルボン酸は、アルコール成分と反応すると、ポリエステルの主鎖内に直鎖状の炭化水素構造を有するため、主鎖が部分的に柔軟な構造となる。そのため、トナーの溶融混練工程において、軟化点の低いポリエステル樹脂Aは、この柔軟な構造を起点に軟化点の高いポリエステル樹脂Bと混合され、架橋点ポリエステル樹脂Aの主鎖と絡み合って分散性が向上し、結晶性ポリエステルの分散性も向上する。
炭素数4以上16以下の直鎖状炭化水素を主鎖として両末端にカルボキシル基を有する脂肪族ジカルボン酸は、例えば、アジピン酸、アゼライン酸、セバシン酸、テトラデカン二酸やオクタデカン二酸などのアルキルジカルボン酸やその無水物、低級アルキルエステルなどが挙げられる。また、それらの主鎖の一部がメチル基やエチル基、オクチル基などのアルキル基、またはアルキレン基で分岐した構造を持つ化合物が挙げられる。該直鎖状炭化水素の炭素数は好ましくは4以上12以下であり、さらに好ましくは4以上10以下である。
該ポリエステル樹脂Bに含有されるその他の多価カルボン酸ユニットとしては、フタル酸、イソフタル酸及びテレフタル酸の如き芳香族ジカルボン酸類又はその無水物;炭素数6以上18以下のアルキル基又はアルケニル基で置換されたコハク酸もしくはその無水物;フマル酸、マレイン酸及びシトラコン酸の如き不飽和ジカルボン酸類又はその無水物が挙げられる。これらの中でも、テレフタル酸、イソフタル酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸やそれらの無水物のような、芳香環をもつカルボン酸またはその誘導体が、耐ホットオフセット性が向上しやすいため好ましく用いられる。
<非晶性樹脂A>
本発明のポリエステル樹脂Aは、多価アルコールユニットと多価カルボン酸ユニットを有し、多価アルコールユニットの総モル数に対し、芳香族ジオールに由来する多価アルコールユニットを90mol%以上含有することが好ましい。多価アルコールユニットの総モル数に対し、芳香族ジオールに由来する多価アルコールユニットが90mol%未満であると、カブリが悪化する。本発明におけるポリエステルBとの相溶性を確保するため、95mol%以上であることが好ましく、さらに好ましくは100mol%である。
ポリエステル樹脂Bの多価アルコールユニットを形成する芳香族ジオール以外の成分としては、以下の多価アルコール成分を使用することができる。エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−ブテンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ソルビット、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセリン、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン。
本発明のポリエステル樹脂Aは、多価カルボン酸ユニットの総モル数に対し、芳香族ジカルボン酸またはその誘導体に由来する多価カルボン酸ユニットを90mol%以上含有することが好ましい。
芳香族ジカルボン酸またはその誘導体に由来する多価カルボン酸ユニットが上記範囲であると、ポリエステルAとの相溶性が向上し、長時間印刷後の濃度変動やカブリを抑制できる。
芳香族ジカルボン酸またはその誘導体としては、フタル酸、イソフタル酸及びテレフタル酸の如き芳香族ジカルボン酸類又はその無水物が挙げられる。
また、多価カルボン酸ユニットの総モル数に対し、脂肪族ジカルボン酸またはその誘導体に由来する多価カルボン酸ユニットを0.1mol%以上10.0mol%以下含有すると、トナーの低温定着性がより良化するため好ましい。
脂肪族ジカルボン酸またはその誘導体としては、コハク酸、アジピン酸、セバシン酸及びアゼライン酸の如きアルキルジカルボン酸類又はその無水物;炭素数6以上18以下のアルキル基又はアルケニル基で置換されたコハク酸もしくはその無水物;フマル酸、マレイン酸及びシトラコン酸の如き不飽和ジカルボン酸類又はその無水物が挙げられる。中でも、コハク酸、アジピン酸、フマル酸やその酸無水物、低級アルキルエステルが好ましく用いられる。
これら以外の多価カルボン酸ユニットとしては、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸やその無水物等の3価または4価のカルボン酸等が挙げられる。
<その他の結着樹脂>
本発明のトナーに使用される結着樹脂としては、顔料分散性を向上させたり、トナーの帯電安定性、耐ブロッキング性を改善したりする目的で上記ポリエステル樹脂A、ポリエステル樹脂B以外に下記の重合体を本発明の効果を阻害しない量で添加することも可能である。
本発明のトナーの結着樹脂に用いられるその他の樹脂としては、例えば以下の樹脂が挙げられる。ポリスチレン、ポリ−p−クロルスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体;スチレン−p−クロルスチレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルエチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−アクリロニトリル−インデン共重合体などのスチレン系共重合体;ポリ塩化ビニル、フェノール樹脂、天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂、ポリエステル樹脂、ポリウレタン、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テルペン樹脂、クマロン−インデン樹脂、石油系樹脂等が挙げられる。
<離型剤(WAX)>
本発明のトナーに用いられるワックスとしては、例えば以下のものが挙げられる。低分子量ポリエチレン、低分子量ポリプロピレン、アルキレン共重合体、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックスの如き炭化水素系ワックス;酸化ポリエチレンワックスの如き炭化水素系ワックスの酸化物又はそれらのブロック共重合物;カルナバワックスの如き脂肪酸エステルを主成分とするワックス類;脱酸カルナバワックスの如き脂肪酸エステル類を一部又は全部を脱酸化したもの。さらに、以下のものが挙げられる。パルミチン酸、ステアリン酸、モンタン酸の如き飽和直鎖脂肪酸類;ブラシジン酸、エレオステアリン酸、バリナリン酸の如き不飽和脂肪酸類;ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコールの如き飽和アルコール類;ソルビトールの如き多価アルコール類;パルミチン酸、ステアリン酸、ベヘン酸、モンタン酸の如き脂肪酸類と、ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコールの如きアルコール類とのエステル類;リノール酸アミド、オレイン酸アミド、ラウリン酸アミドの如き脂肪酸アミド類;メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミドの如き飽和脂肪酸ビスアミド類;エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’ジオレイルアジピン酸アミド、N,N’ジオレイルセバシン酸アミドの如き不飽和脂肪酸アミド類;m−キシレンビスステアリン酸アミド、N,N’ジステアリルイソフタル酸アミドの如き芳香族系ビスアミド類;ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムの如き脂肪族金属塩(一般に金属石けんといわれているもの);脂肪族炭化水素系ワックスにスチレンやアクリル酸の如きビニル系モノマーを用いてグラフト化させたワックス類;ベヘニン酸モノグリセリドの如き脂肪酸と多価アルコールの部分エステル化物;植物性油脂の水素添加によって得られるヒドロキシル基を有するメチルエステル化合物。
これらのワックスの中でも、低温定着性、耐ホットオフセット性を向上させるという観点で、パラフィンワックス、フィッシャートロプシュワックスの如き炭化水素系ワックス、もしくはカルナバワックスの如き脂肪酸エステル系ワックスが好ましい。本発明においては、耐ホットオフセット性がより向上する点で、炭化水素系ワックスがより好ましい。
本発明では、ワックスは、結着樹脂100質量部あたり1質量部以上20質量部以下で使用されることが好ましい。
また、示差走査熱量測定(DSC)装置で測定される昇温時の吸熱曲線において、ワックスの最大吸熱ピークのピーク温度としては45℃以上140℃以下であることが好ましい。ワックスの最大吸熱ピークのピーク温度が上記範囲内であるとトナーの保存性と耐ホットオフセット性を両立できるため好ましい。
<着色剤>
トナーに含有できる着色剤としては、以下のものが挙げられる。
黒色着色剤としては、カーボンブラック;イエロー着色剤とマゼンタ着色剤及びシアン着色剤とを用いて黒色に調色したものが挙げられる。着色剤には、顔料を単独で使用してもかまわないが、染料と顔料とを併用してその鮮明度を向上させた方がフルカラー画像の画質の点からより好ましい。
マゼンタトナー用顔料としては、以下のものが挙げられる。C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48:2、48:3,48:4、49、50、51、52、53、54、55、57:1、58、60、63、64、68、81:1、83、87、88、89、90、112、114、122、123、146、147、150、163、184、202、206、207、209、238、269、282;C.I.ピグメントバイオレット19;C.I.バットレッド1、2、10、13、15、23、29、35。
マゼンタトナー用染料としては、以下のものが挙げられる。C.I.ソルベントレッド1、3、8、23、24、25、27、30、49、81、82、83、84、100、109、121;C.I.ディスパースレッド9;C.I.ソルベントバイオレット8、13、14、21、27;C.I.ディスパーバイオレット1の如き油溶染料、C.I.ベーシックレッド1、2、9、12、13、14、15、17、18、22、23、24、27、29、32、34、35、36、37、38、39、40;C.I.ベーシックバイオレット1、3、7、10、14、15、21、25、26、27、28の如き塩基性染料。
シアントナー用顔料としては、以下のものが挙げられる。C.I.ピグメントブルー2、3、15:2、15:3、15:4、16、17;C.I.バットブルー6;C.I.アシッドブルー45、フタロシアニン骨格にフタルイミドメチル基を1〜5個置換した銅フタロシアニン顔料。
シアントナー用染料としては、C.I.ソルベントブルー70がある。
イエロートナー用顔料としては、以下のものが挙げられる。C.I.ピグメントイエロー1、2、3、4、5、6、7、10、11、12、13、14、15、16、17、23、62、65、73、74、83、93、94、95、97、109、110、111、120、127、128、129、147、151、154、155、168、174、175、176、180、181、185;C.I.バットイエロー1、3、20。
イエロートナー用染料としては、C.I.ソルベントイエロー162がある。
着色剤の使用量は、結着樹脂100質量部に対して0.1質量部以上30質量部以下で使用されることが好ましい。
<荷電制御剤>
トナーには、必要に応じて荷電制御剤を含有させることもできる。トナーに含有される荷電制御剤としては、公知のものが利用できるが、特に、無色でトナーの帯電スピードが速く且つ一定の帯電量を安定して保持できる芳香族カルボン酸の金属化合物が好ましい。
ネガ系荷電制御剤としては、サリチル酸金属化合物、ナフトエ酸金属化合物、ジカルボン酸金属化合物、スルホン酸又はカルボン酸を側鎖に持つ高分子型化合物、スルホン酸塩或いはスルホン酸エステル化物を側鎖に持つ高分子型化合物、カルボン酸塩或いはカルボン酸エステル化物を側鎖に持つ高分子型化合物、ホウ素化合物、尿素化合物、ケイ素化合物、カリックスアレーンが挙げられる。ポジ系荷電制御剤としては、四級アンモニウム塩、前記四級アンモニウム塩を側鎖に有する高分子型化合物、グアニジン化合物、イミダゾール化合物が挙げられる。荷電制御剤はトナー粒子に対して内添しても良いし外添しても良い。荷電制御剤の添加量は、結着樹脂100質量部に対し0.2質量部以上10質量部以下が好ましい。
<結晶性樹脂>
本発明のトナーは結晶性ポリエステルを含有し微分散で存在させることで、よりトナーとしての機能を高めることができる。
本発明のトナーにおいて、トナー粒子に含まれる結晶性ポリエステルは、炭素数2以上22以下の脂肪族ジオールと、炭素数2以上22以下の脂肪族ジカルボン酸とを主成分として含む単量体組成物を重縮合反応させることにより得られる。
炭素数2以上22以下(より好ましくは炭素数2以上12以下)の脂肪族ジオールとしては、特に限定されないが、鎖状(より好ましくは直鎖状)の脂肪族ジオールであることが好ましく、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、ジプロピレングリコール、1,4−ブタンジオール、1,4−ブタジエングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、ノナメチレングリコール、デカメチレングリコール、ネオペンチルグリコールが挙げられる。これらの中でも、特にエチレングリコール、ジエチレングリコール、1,4−ブタンジオール、及び1,6−ヘキサンジオールの如き直鎖脂肪族、α,ω−ジオールが好ましく例示される。
上記アルコール成分のうち、好ましくは50質量%以上、より好ましくは70質量%以上が、炭素数2以上22以下の脂肪族ジオールから選ばれるアルコールである。
本発明において、上記脂肪族ジオール以外の多価アルコール単量体を用いることもできる。該多価アルコール単量体のうち2価アルコール単量体としては、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールA等の芳香族アルコール;1,4−シクロヘキサンジメタノール等が挙げられる。また、該多価アルコール単量体のうち3価以上の多価アルコール単量体としては、1,3,5−トリヒドロキシメチルベンゼン等の芳香族アルコール;ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセリン、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン等の脂肪族アルコール等が挙げられる。
さらに、本発明において、結晶性ポリエステルの特性を損なわない程度に1価のアルコ−ルを用いてもよい。該1価のアルコールとしては、例えばn−ブタノール、イソブタノール、sec−ブタノール、n−ヘキサノール、n−オクタノール、ラウリルアルコール、2−エチルヘキサノール、デカノール、シクロヘキサノール、ベンジルアルコール、ドデシルアルコール等の1官能性アルコールなどが挙げられる。
一方、炭素数2以上22以下(より好ましくは炭素数4以上14以下)の脂肪族ジカルボン酸としては、特に限定されないが、鎖状(より好ましくは直鎖状)の脂肪族ジカルボン酸であることが好ましい。具体例としてはシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、グルタコン酸、アゼライン酸、セバシン酸、ノナンジカルボン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、マレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸が挙げられ、これらの酸無水物または低級アルキルエステルを加水分解したものなども含まれる。
本発明において、上記カルボン酸成分のうち、好ましくは50質量%以上、より好ましくは70質量%以上が、炭素数2以上22以下の脂肪族ジカルボン酸から選ばれるカルボン酸である。
本発明において、上記炭素数2以上22以下の脂肪族ジカルボン酸以外の多価カルボン酸を用いることもできる。その他の多価カルボン酸単量体のうち、2価のカルボン酸としては、イソフタル酸、テレフタル酸等の芳香族カルボン酸;n−ドデシルコハク酸、n−ドデセニルコハク酸の脂肪族カルボン酸;シクロヘキサンジカルボン酸などの脂環式カルボン酸が挙げられ、これらの酸無水物または低級アルキルエステルなども含まれる。また、その他のカルボン酸単量体のうち、3価以上の多価カルボン酸としては、1,2,4−ベンゼントリカルボン酸(トリメリット酸)、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、ピロメリット酸等の芳香族カルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチル−2−メチレンカルボキシプロパン、等の脂肪族カルボン酸が挙げられ、これらの酸無水物または低級アルキルエステル等の誘導体等も含まれる。
さらに、本発明において、結晶性ポリエステルの特性を損なわない程度に1価のカルボン酸を含有していてもよい。1価のカルボン酸としては、例えば安息香酸、ナフタレンカルボン酸、サリチル酸、4−メチル安息香酸、3−メチル安息香酸、フェノキシ酢酸、ビフェニルカルボン酸、酢酸、プロピオン酸、酪酸、オクタン酸、デカン酸、ドデカン酸、ステアリン酸などのモノカルボン酸が挙げられる。
本発明における結晶性ポリエステルは、通常のポリエステル合成法に従って製造することができる。例えば、前記したカルボン酸単量体とアルコ−ル単量体とをエステル化反応、またはエステル交換反応せしめた後、減圧下または窒素ガスを導入して常法に従って重縮合反応させることで所望の結晶性ポリエステルを得ることができる。
上記エステル化またはエステル交換反応は、必要に応じて硫酸、チタンブトキサイド、ジブチルスズオキサイド、酢酸マンガン、酢酸マグネシウムなどの通常のエステル化触媒またはエステル交換触媒を用いて行うことができる。
また、上記重縮合反応は、通常の重合触媒、例えばチタンブトキサイド、ジブチルスズオキサイド、酢酸スズ、酢酸亜鉛、二硫化スズ、三酸化アンチモン、二酸化ゲルマニウムなど公知の触媒を使用して行うことができる。重合温度、触媒量は特に限定されるものではなく、適宜に決めればよい。
エステル化もしくはエステル交換反応または重縮合反応において、得られる結晶性ポリエステルの強度を上げるために全単量体を一括仕込みしたり、低分子量成分を少なくするために2価の単量体を先ず反応させた後、3価以上の単量体を添加して反応させたりする等の方法を用いてもよい。
<現像剤>
本発明のトナーは、一成分系現像剤としても使用できるが、ドット再現性をより向上させるために、磁性キャリアと混合して、二成分系現像剤として用いることが、また長期にわたり安定した画像が得られるという点で好ましい。
磁性キャリアとしては、例えば、表面を酸化した鉄粉、或いは、未酸化の鉄粉や、鉄、リチウム、カルシウム、マグネシウム、ニッケル、銅、亜鉛、コバルト、マンガン、クロム、希土類の如き金属粒子、それらの合金粒子、酸化物粒子、フェライト等の磁性体や、磁性体と、この磁性体を分散した状態で保持するバインダー樹脂とを含有する磁性体分散樹脂キャリア(いわゆる樹脂キャリア)等、一般に公知のものを使用できる。
本発明のトナーを磁性キャリアと混合して二成分系現像剤として使用する場合、その際のキャリア混合比率は、二成分系現像剤中のトナー濃度として、2質量%以上15質量%以下、好ましくは4質量%以上13質量%以下にすると通常良好な結果が得られる。
<製造方法>
トナー粒子を製造する方法としては、結着樹脂と、着色剤と、ワックスを溶融混練する必要があることから、結着樹脂と、着色剤と、ワックスを溶融混練し、混練物を冷却後、粉砕及び分級する粉砕法が好ましい。
以下、粉砕法でのトナー製造手順について説明する。
原料混合工程では、トナー粒子を構成する材料として、例えば、結着樹脂及びワックス、着色剤、必要に応じて荷電制御剤等の他の成分を所定量秤量して配合し、混合する。混合装置の一例としては、ダブルコン・ミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウタミキサ、メカノハイブリッド(日本コークス工業株式会社製)などが挙げられる。
次に、混合した材料を溶融混練して、結着樹脂中にワックス等を分散させる。その溶融混練工程では、加圧ニーダー、バンバリィミキサーの如きバッチ式練り機や、連続式の練り機を用いることができ、連続生産できる優位性から、1軸又は2軸押出機が主流となっている。例えば、KTK型2軸押出機(神戸製鋼所社製)、TEM型2軸押出機(東芝機械社製)、PCM混練機(池貝鉄工製)、2軸押出機(ケイ・シー・ケイ社製)、コ・ニーダー(ブス社製)、ニーデックス(日本コークス工業株式会社製)などが挙げられる。更に、溶融混練することによって得られる樹脂組成物は、2本ロール等で圧延され、冷却工程で水などによって冷却してもよい。
ついで、樹脂組成物の冷却物は、粉砕工程で所望の粒径にまで粉砕される。粉砕工程では、例えば、クラッシャー、ハンマーミル、フェザーミルの如き粉砕機で粗粉砕した後、更に、例えば、クリプトロンシステム(川崎重工業社製)、スーパーローター(日清エンジニアリング社製)、ターボ・ミル(ターボ工業製)やエアージェット方式による微粉砕機で微粉砕する。
その後、必要に応じて慣性分級方式のエルボージェット(日鉄鉱業社製)、遠心力分級方式のターボプレックス(ホソカワミクロン社製)、TSPセパレータ(ホソカワミクロン社製)、ファカルティ(ホソカワミクロン社製)の如き分級機や篩分機を用いて分級し、分級品(トナー粒子)を得る。中でも、ファカルティ(ホソカワミクロン社製)は、分級と同時にトナー粒子の球形化処理を行うことができ、転写効率の向上という点で好ましい。
更に必要に応じて、トナー粒子の表面に外添剤が外添処理される。外添剤を外添処理する方法としては、分級されたトナーと公知の各種外添剤を所定量配合し、ダブルコン・ミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウタミキサ、メカノハイブリッド(日本コークス工業株式会社製)、ノビルタ(ホソカワミクロン株式会社製)等の混合装置を外添機として用いて、撹拌・混合する方法が挙げられる。
トナー及び原材料の各種物性の測定法について以下に説明する。
<外添剤の個数平均粒径の測定方法>
外添剤の平均一次粒子径(個数平均粒径)は、透過電子顕微鏡「H−800」(日立製作所社製)で観察し、最大200万倍に拡大した視野において、100個の一次粒子の長径を測定して平均一次粒子径を求める。観察倍率は、外添剤の大きさによって適宜調整する。走査型電子顕微鏡としては、S−4800(日立製作所製)を用いた。
<樹脂の重量平均分子量の測定方法>
樹脂のTHF可溶分の分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)により、以下のようにして測定した。
まず、室温で24時間かけて、トナーをテトラヒドロフラン(THF)に溶解した。その後得られた溶液を、ポア径が0.2μmの耐溶剤性メンブランフィルター「マエショリディスク」(東ソー社製)で濾過してサンプル溶液を得た。尚、サンプル溶液は、THFに可溶な成分の濃度が約0.8質量%となるように調整した。このサンプル溶液を用いて、以下の条件で測定した。
装置:HLC8120 GPC(検出器:RI)(東ソー社製)
カラム:Shodex KF−801、802、803、804、805、806、807の7連(昭和電工社製)
溶離液:テトラヒドロフラン(THF)
流速:1.0ml/min
オーブン温度:40.0℃
試料注入量:0.10ml
試料の分子量の算出にあたっては、標準ポリスチレン樹脂(例えば、商品名「TSKスタンダード ポリスチレン F−850、F−450、F−288、F−128、F−80、F−40、F−20、F−10、F−4、F−2、F−1、A−5000、A−2500、A−1000、A−500」、東ソ−社製)を用いて作成した分子量校正曲線を使用した。
<無機微粒子のBET比表面積の測定>
無機微粒子のBET比表面積の測定は、JIS Z8830(2001年)に準じて行なう。具体的な測定方法は、以下の通りである。
測定装置としては、定容法によるガス吸着法を測定方式として採用している「自動比表面積・細孔分布測定装置 TriStar3000(島津製作所社製)」を用いる。測定条件の設定および測定データの解析は、本装置に付属の専用ソフト「TriStar3000 Version4.00」を用いて行い、また装置には真空ポンプ、窒素ガス配管、ヘリウムガス配管が接続される。窒素ガスを吸着ガスとして用い、BET多点法により算出した値を本発明における無機微粒子のBET比表面積とする。
尚、BET比表面積は以下のようにして算出する。
まず、無機微粒子に窒素ガスを吸着させ、その時の試料セル内の平衡圧力P(Pa)と外添剤の窒素吸着量Va(モル・g-1)を測定する。そして、試料セル内の平衡圧力P(Pa)を窒素の飽和蒸気圧Po(Pa)で除した値である相対圧Prを横軸とし、窒素吸着量Va(モル・g-1)を縦軸とした吸着等温線を得る。次いで、外添剤の表面に単分子層を形成するのに必要な吸着量である単分子層吸着量Vm(モル・g-1)を、下記のBET式を適用して求める。
Pr/Va(1−Pr)=1/(Vm×C)+(C−1)×Pr/(Vm×C)
(ここで、CはBETパラメーターであり、測定サンプル種、吸着ガス種、吸着温度により変動する変数である。)
BET式は、X軸をPr、Y軸をPr/Va(1−Pr)とすると、傾きが(C−1)/(Vm×C)、切片が1/(Vm×C)の直線と解釈できる(この直線をBETプロットという)。
直線の傾き=(C−1)/(Vm×C)
直線の切片=1/(Vm×C)
Prの実測値とPr/Va(1−Pr)の実測値をグラフ上にプロットして最小二乗法により直線を引くと、その直線の傾きと切片の値が算出できる。これらの値を用いて該の傾きと切片の連立方程式を解くと、VmとCが算出できる。
さらに、該で算出したVmと窒素分子の分子占有断面積(0.162nm2)から、下記の式に基づいて、無機微粒子のBET比表面積S(m2/g)を算出する。
S=Vm×N×0.162×10-18
(ここで、Nはアボガドロ数(モル-1)である。)
本装置を用いた測定は、装置に付属の「TriStar3000 取扱説明書V4.0」に従うが、具体的には、以下の手順で測定する。
充分に洗浄、乾燥した専用のガラス製試料セル(ステム直径3/8インチ、容積約5ml)の風袋を精秤する。そして、ロートを使ってこの試料セルの中に約0.1gの外添剤を入れる。
無機微粒子を入れた該試料セルを真空ポンプと窒素ガス配管を接続した「前処理装置 バキュプレップ061(島津製作所社製)」にセットし、23℃にて真空脱気を約10時間継続する。尚、真空脱気の際には、無機微粒子が真空ポンプに吸引されないよう、バルブを調整しながら徐々に脱気する。セル内の圧力は脱気とともに徐々に下がり、最終的には約0.4Pa(約3ミリトール)となる。真空脱気終了後、窒素ガスを徐々に注入して試料セル内を大気圧に戻し、試料セルを前処理装置から取り外す。そして、この試料セルの質量を精秤し、風袋との差から外添剤の正確な質量を算出する。尚、この際に、試料セル内の外添剤が大気中の水分等で汚染されないように、秤量中はゴム栓で試料セルに蓋をしておく。
次に、無機微粒子が入った該試料セルのステム部に専用の「等温ジャケット」を取り付ける。そして、この試料セル内に専用のフィラーロッドを挿入し、該装置の分析ポートに試料セルをセットする。尚、等温ジャケットとは、毛細管現象により液体窒素を一定レベルまで吸い上げることが可能な、内面が多孔性材料、外面が不浸透性材料で構成された筒状の部材である。
続いて、接続器具を含む試料セルのフリースペースの測定を行なう。フリースペースは、23℃においてヘリウムガスを用いて試料セルの容積を測定し、続いて液体窒素で試料セルを冷却した後の試料セルの容積を、同様にヘリウムガスを用いて測定して、これらの容積の差から換算して算出する。また、窒素の飽和蒸気圧Po(Pa)は、装置に内蔵されたPoチューブを使用して、別途に自動で測定される。
次に、試料セル内の真空脱気を行った後、真空脱気を継続しながら試料セルを液体窒素で冷却する。その後、窒素ガスを試料セル内に段階的に導入してトナーに窒素分子を吸着させる。この際、平衡圧力P(Pa)を随時計測することにより該吸着等温線が得られるので、この吸着等温線をBETプロットに変換する。尚、データを収集する相対圧Prのポイントは、0.05、0.10、0.15、0.20、0.25、0.30の合計6ポイントに設定する。得られた測定データに対して最小二乗法により直線を引き、その直線の傾きと切片からVmを算出する。さらに、このVmの値を用いて、上述したように無機微粒子のBET比表面積を算出する。
<トナー粒子の重量平均粒径(D4)の測定方法>
トナー粒子の重量平均粒径(D4)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出した。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
尚、測定、解析を行う前に、以下のように前記専用ソフトの設定を行なった。
前記専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定した。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定した。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れた。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μm以上60μm以下に設定した。
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行なった。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡をあらかじめ除去した。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加えた。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispension System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加した。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させた。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整した。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させた。そして、さらに60秒間超音波分散処理を継続した。尚、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節した。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整した。そして、測定粒子数が50000個になるまで測定を行なった。
(7)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)を算出した。尚、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。
<トナーの平均円形度>
トナーの平均円形度は、フロー式粒子像分析装置「FPIA−3000型」(シスメックス社製)によって、校正作業時の測定・解析条件で測定した。
フロー式粒子像分析装置「FPIA−3000型」(シスメックス社製)の測定原理は、流れている粒子を静止画像として撮像し、画像解析を行うというものである。試料チャンバーへ加えられた試料は、試料吸引シリンジによって、フラットシースフローセルに送り込まれる。フラットシースフローに送り込まれた試料は、シース液に挟まれて扁平な流れを形成する。フラットシースフローセル内を通過する試料に対しては、1/60秒間隔でストロボ光が照射されており、流れている粒子を静止画像として撮影することが可能である。また、扁平な流れであるため、焦点の合った状態で撮像される。粒子像はCCDカメラで撮像され、撮像された画像は、1視野が512画素×512画素であり、1画素あたり0.37×0.37μmの画像処理解像度で画像処理され、各粒子像の輪郭抽出を行い、粒子像の投影面積や周囲長等が計測される。
次に、各粒子像の投影面積Sと周囲長Lを求める。上記面積Sと周囲長Lを用いて円相当径と円形度を求める。円形当径とは、粒子像の投影面積と同じ面積を持つ円の直径のことであり、円形度は、円形当径から求めた円の周囲長を粒子投影像の周囲長で割った値として定義され、次式で算出される。
円形度C=2×(π×S)1/2/L
粒子像が真円形の時に円形度は1.000になり、粒子像の外周の凹凸の程度が大きくなるほど円形度は小さい値になる。
各粒子の円形度を算出後、円形度0.2〜1.0の範囲を800分割したチャンネルに振り分け、各チャンネルの中心値を代表値として平均値を計算し平均円形度の算出を行う。
具体的な測定方法としては、イオン交換水20mlに、分散剤として界面活性剤、好ましくはドデシルベンゼンスルホン酸ナトリウムを0.02g加えた後、測定試料0.02gを加え、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散機(例えば「VS−150」(ヴェルヴォクリーア社製など)を用いて2分間分散処理を行い、測定用の分散液とした。その際、分散液の温度が10℃以上40℃以下となる様に適宜冷却する。
測定には、標準対物レンズ(10倍)を搭載した前記フロー式粒子像分析装置を用い、シース液にはパーティクルシース「PSE−900A」(シスメックス社製)を使用した。前記手順に従い調整した分散液を前記フロー式粒子像分析装置に導入し、HPF測定モードで、トータルカウントモードにて3000個のトナー粒子を計測して、粒子解析時の2値化閾値を85%とし、解析粒子径を円相当径2.00μm以上200.00μm以下に限定し、トナーの平均円形度を求めた。
測定にあたっては、測定開始前に標準ラテックス粒子(例えばDuke Scientific社製5200Aをイオン交換水で希釈)を用いて自動焦点調整を行う。その後、測定開始から2時間毎に焦点調整を実施することが好ましい。
なお、本願実施例では、シスメックス社が発行する校正証明書の発行を受けたフロー式粒子像分析装置を使用し、解析粒子径を円相当径2.00μm以上200.00μm以下に限定した以外は、校正証明を受けた時の測定及び解析条件で測定を行った。
<TEM観察による結晶性ポリエステルの結晶状態の評価>
前記トナーの透過型電子顕微鏡(TEM)による断面観察及び結晶性ポリエステルドメインの評価は、以下のようにして実施した。
トナー断面をルテニウム染色することによって、結晶性ポリエステル樹脂が明瞭なコントラストとして得られる。結晶性ポリエステル樹脂はトナー内部を構成する有機成分よりも、弱く染色される。これは、結晶性ポリエステル樹脂の中への染色材料の染み込みが、密度の差などが有るために、トナー内部の有機成分よりも弱いためと考えられる。
染色の強弱によって、ルテニウム原子の量が異なるため、強く染色される部分は、これらの原子が多く存在し、電子線が透過せずに、観察像上では黒くなり、弱く染色される部分は、電子線が透過されやすく、観察像上では白くなる。
オスミウム・プラズマコーター(filgen社、OPC80T)を用いて、保護膜としてトナーにOs膜(5nm)およびナフタレン膜(20nm)を施し、光硬化性樹脂D800(日本電子社)で包埋したのち、超音波ウルトラミクロトーム(Leica社、UC7)により、切削速度1mm/sで膜厚60nm(or70nm)のトナー断面を作製した。
得られた断面を、真空電子染色装置(filgen社、VSC4R1H)を用いてRuO4ガス500Pa雰囲気で15分間染色し、TEM(JEOL社、JEM2800)を用いてSTEM観察を行なった。
STEMのプローブサイズは1nm、画像サイズ1024×1024pixelで取得した。
得られた画像については、画像処理ソフト「Image−Pro Plus (Media Cybernetics社製)」にて 2値化(閾値120/255段階)を行なった。
得られた2値化前の断面画像を図1に示す。図1に見られるように、結晶性ポリエステルの結晶ドメインは黒く棒状に確認でき、得られた画像を2値化することで結晶ドメインを抽出した。無作為に選んだ20個のトナーについて、長さが測定可能な結晶性ポリエステルの結晶ドメインの長軸長さを全数計測し、計測した結晶ドメインの個数から、トナー中の結晶性ポリエステルの個数平均長軸長さを算出した。また、1.0μm間隔のメッシュでトナー断面を切り、1.0μm×1.0μmの視野(図3参照)の内部がすべてトナー内部からなるものを抽出し、その視野中におけるCPESが占める面積を求め、各視野のCPESが占める面積の標準偏差を算出した。
ここで、結晶性ポリエステルの結晶ドメインの長軸長さとは、図2に示すように、断面画像の結晶ドメインにおける最長距離(図2のa)であり、短軸長さは結晶長軸の中点位置での最短距離(図2のb)である。
なお、本発明における針状とは、細長く真直度が高い形状であり、短軸長さが25nm以下でかつ、アスペクト比が5以上でかつ、結晶の長軸方向両短部における短軸方向の中心点同士を直線で結んだ際、その直線からの結晶輪郭のずれが、結晶短軸長さの100%以内の長さに収まっている形状と定義した。代表的な元素である。
以上本発明の基本的な構成と特色について述べたが、以下実施例にもとづいて具体的に本発明について説明する。しかしながら、これによって本発明の実施の態様がなんら限定されるものではない。
<有機無機複合粒子1乃至3の製造例>
有機無機複合粒子は、WO2013/063291の実施例の記載にしたがって製造することができる。
後述の実施例において用いる有機無機複合粒子1乃至3としては、表1に示すシリカを用いてWO2013/063291の実施例1にしたがって製造したものを用意する。有機無機複合粒子の粒子径を表1に示す。表1に示す有機無機複合粒子は、いずれもその表面には無機微粒子(シリカ)に由来する凸部が複数存在している。
Figure 0006448392
<無機粒子1の製造例>
無機粒子1は、湿式法で一般的なゾルゲル法により得る。
撹拌機、滴下ロートおよび温度計を備えたガラス性反応器に、アルコール溶媒としてメタノール693.0g、水46.0gおよび5.4質量%アンモニア水溶液を55.3g添加し、メタノール,水,アンモニアの混合溶液を調製する。
得られた混合溶液を反応温度45℃に調整し、反応温度を保ちながら撹拌し、テトラメトキシシランの滴下時間を8時間として滴下する。なお、アンモニア水はテトラメトキシシランよりも1時間早く滴下が終了するよう調整する。滴下終了後、1時間撹拌することで加水分解反応させ、ゾルゲルシリカ微粒子のメタノール−水分散液を得る。
次に、該分散液を75℃に加熱し、メタノールを1320g留去し、その後、1320gの水を加える。そして、該分散液を90℃に加熱してメタノールを532.4g留去することにより、ゾルゲルシリカ微粒子の水性分散液を得る。
該水性分散液にメチルイソブチルケトンを1584g添加した後、100℃/15時間でメタノールと水を留去する。
得られたゾルゲルシリカのメチルイソブチルケトン分散液を25℃まで冷却した後、表面処理剤としてヘキサメチルジシラザンを322g(SiO2単位1モルに対して0.24モル)添加し、110℃/5時間反応させることにより、表面処理を施す。
この分散液から溶媒を80℃で減圧留去することにより、無機粒子1を得る。形状は球形である。物性を表2に示す。
<無機粒子2の製造例>
酸素ガスをバーナーに30Nm3/hで供給し、着火用バーナーに点火した後、水素ガスをバーナーに50Nm3/hで供給して火炎を形成する。これに原料である四塩化ケイ素を100kg/hで投入しガス化させ、滞留時間を0.010secに設定し、火炎加水分解反応を行わせ、生成したシリカ粉末を回収する。
その後、得られたシリカ粉末を電気炉に移し、薄層状に敷きつめた後、700℃で加熱処理を施し焼結,凝集させる。
次に得られたシリカ微粒子100質量部に対して、表面処理剤としてヘキサメチルジシラザン10質量部を添加することで、疎水化処理を施し、無機粒子2を得る。形状は球形−不定形まで混合状態で存在する。物性を表2に示す。
<無機粒子3>
無機粒子3は、ヒュームド法により得られた原体BET200mm2/g、一次粒子径15nmのシリカを用いる。形状は不定形である。物性を表2に示す。
<無機粒子4>
BET比表面積100m2/gのルチル型酸化チタンを使用した。形状は不定形である。物性を表2に示す。
<有機粒子1>
有機粒子1は、日本触媒社製エポスターを使用する。物性を表2に示す。
Figure 0006448392
<非晶性ポリエステル樹脂Aの製造例1>
・2,2−ビス(4−ヒドロキシフェニル)プロパン:64.7質量部(0.18モル;多価アルコール総モル数に対して100.0mol%)
・テレフタル酸:24.1質量部(0.15モル;多価カルボン酸総モル数に対して96.0mol%)
・チタンテトラブトキシド(エステル化触媒):0.5質量部
冷却管、撹拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、2時間反応させた。
さらに、反応槽内の圧力を8.3kPaに下げ、1時間維持した後、180℃まで冷却し、大気圧に戻した(第1反応工程)。
・アクリル酸:0.2質量部
・スチレン:8.2質量部
・2−エチルヘキシルアクリレート:1.6質量部
・ジブチルパーオキサイド(重合開始剤):1.5質量部
その後、上記混合物を滴下ロートにより1時間かけて滴下し、1時間保持した(StAc化反応工程)。
・無水トリメリット酸:
1.2質量部(0.01モル;多価カルボン酸総モル数に対して4.0mol%)
・tert−ブチルカテコール(重合禁止剤):0.1質量部
その後、上記材料を加え、反応槽内の圧力を8.3kPaに下げ、温度160℃に維持したまま、1時間反応させ(第2反応工程)、重量平均分子量(Mw)5000である非晶性樹脂A1を得た。
<非晶性ポリエステル樹脂Bの製造例1>
・2,2−ビス(4−ヒドロキシフェニル)プロパン:47.1質量部(0.13モル;多価アルコール総モル数に対して90.0mol%)
・ノボラック型フェノール樹脂(核体数約5のプロピレンオキシド5mol付加物):
11.9質量部(0.01モル;多価アルコール総モル数に対して10.0mol%)
・テレフタル酸:
16.3質量部(0.10モル;多価カルボン酸総モル数に対して80.0mol%)
・チタンテトラブトキシド(エステル化触媒):0.5質量部
冷却管、撹拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、2時間反応させた。
さらに、反応槽内の圧力を8.3kPaに下げ、1時間維持した後、180℃まで冷却し、大気圧に戻した(第1反応工程)。
・アクリル酸:0.5質量部
・スチレン:16.4質量部
・2−エチルヘキシルアクリレート:3.1質量部
・ジブチルパーオキサイド(重合開始剤):1.5質量部
その後、上記混合物を滴下ロートにより1時間かけて滴下し、1時間保持した(StAc化反応工程)。
・無水トリメリット酸:
6.4質量部(0.03モル;多価カルボン酸総モル数に対して20.0mol%)
・tert−ブチルカテコール(重合禁止剤):0.1質量部
その後、上記材料を加え、反応槽内の圧力を8.3kPaに下げ、温度160℃に維持したまま、15時間反応させ(第2反応工程)、重量平均分子量(Mw)100000である非晶性樹脂B1を得た。
<非晶性ポリエステル樹脂Bの製造例2>
ノボラック型フェノール樹脂(核体数約5のプロピレンオキシド5mol付加物)11.9質量部を0質量部にした以外は非晶性樹脂Bの製造例1と同様にして、重量平均分子量(Mw)100000である非晶性樹脂B2を得た。
<結晶性ポリエステル樹脂C製造例1>
・1,10−デカンジオール:
46.9質量部(0.27モル;多価アルコール総モル数に対して100.0mol%)
・セバシン酸:
53.1質量部(0.26モル;多価カルボン酸総モル数に対して100.0mol%)
冷却管、撹拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、140℃の温度で撹拌しつつ、3時間反応させた。
・2−エチルヘキサン酸錫:0.5質量部
その後、上記材料を加え、反応槽内の圧力を8.3kPaに下げ、温度200℃に維持したまま、4時間反応させ、結晶性ポリエステル樹脂C1を得た。
<トナー製造例1>
・ポリエステル樹脂A1 75質量部
・ポリエステル樹脂B1 25質量部
・結晶性ポリエステル樹脂C1 10質量部
・炭化水素ワックス(最大吸熱ピークのピーク温度78℃) 6質量部
・C.I.ピグメントブルー15:3 6.8質量部
・3,5−ジ−t−ブチルサリチル酸アルミニウム化合物 0.25質量部
上記材料をヘンシェルミキサー(FM−75型、三井鉱山(株)製)を用いて、回転数20s-1、回転時間5minで混合した後、温度130℃に設定した二軸混練機(PCM−30型、株式会社池貝製)にて吐出温度150℃にて混練した。得られた混練物を15℃/minの冷却速度で冷却し、ハンマーミルにて1mm以下に粗粉砕し、粗砕物を得た。得られた粗砕物を、機械式粉砕機(T−250、ターボ工業(株)製)にて微粉砕した。さらにファカルティF−300(ホソカワミクロン社製)を用い、分級を行い、トナー粒子を得た。運転条件は、分級ローター回転数を130s−1、分散ローター回転数を120s-1とした。
得られたトナー母体に有機無機複合粒子1を4.0質量部と無機粒子4を0.2質量部添加し、ヘンシェルミキサー(FM−75型、三井三池化工機(株)製)で回転数30s-1、回転時間10min混合して、トナー粒子1を得た(表3参照)。
トナー粒子1を図4で示す表面処理装置によって熱処理を行い熱処理トナー粒子1を得た。運転条件はフィード量=5kg/hrとし、また、熱風温度=160℃、熱風流量=6m3/min、冷風温度=−5℃、冷風流量=4m3/min、ブロワー風量=20m3/min、インジェクションエア流量=1m3/minとした。
さらに熱処理トナー粒子1を100質量部に対して、帯電性と流動性調整を目的として無機粒子3を0.2質量部、無機粒子4を0.2質量部をヘンシェルミキサー(FM−75型、三井三池化工機(株)製)で混合した。回転数30s-1、回転時間10minで混合して、トナー1を得た。トナー1の重量平均粒径(D4)は6.5μmであり、平均円形度は0.965であった。トナーの物性を表4に示した。
<トナー製造例2〜18>
樹脂Bの種類、結晶性樹脂C1の量、混練回転数、混練温度を振り、その他はトナー製造例1と同様にして表4に示すトナー2〜18を製造した。ただし、有機無機複合粒子をトナー粒子表面に固着させる熱風処理は、トナー粒子12、14、16には行わなかった。材料処方と製造条件を表3に示す。また使用した外添剤の種類と量も表3に合せて示す。
Figure 0006448392
Figure 0006448392
表4には結晶性樹脂C1を添加した際のTEM断面における結晶性ポリエステルの分散状態(個数平均長軸長さ、面積標準偏差)も示してある。
<磁性コア粒子の製造例>
工程1(秤量・混合工程):
Fe23 60.2質量%
MnCO3 33.9質量%
Mg(OH)2 4.8質量%
SrCO3 1.1質量%
となるようにフェライト原材料を秤量した。その後、ジルコニア(φ10mm)のボールを用いた乾式ボールミルで2時間粉砕・混合した。
工程2(仮焼成工程):
粉砕・混合した後、バーナー式焼成炉を用い大気中で1000℃で3時間焼成し、仮焼フェライトを作製した。フェライトの組成は、下記の通りである。
(MnO)a(MgO)b(SrO)c(Fe23)d
上記式において、a=0.39、b=0.11、c=0.01、d=0.50
工程3(粉砕工程):
クラッシャーで0.5mm程度に粉砕した後に、ジルコニア(φ10mm)のボールを用い、仮焼フェライト100質量部に対し、水を30質量部加え、湿式ボールミルで2時間粉砕した。
そのスラリーを、ジルコニアのビーズ(φ1.0mm)を用いた湿式ビーズミルで4時間粉砕し、フェライトスラリーを得た。
工程4(造粒工程):
フェライトスラリーに、バインダーとして仮焼フェライト100質量部に対してポリビニルアルコール2.0質量部を添加し、スプレードライヤー(製造元:大川原化工機)で、約36μmの球状粒子に造粒した。
工程5(本焼成工程):
焼成雰囲気をコントロールするために、電気炉にて窒素雰囲気下(酸素濃度1.00体積%以下)で、1150℃で4時間焼成した。
工程6(選別工程):
凝集した粒子を解砕した後に、目開き250μmの篩で篩分して粗大粒子を除去し、磁性コア粒子1を得た。
<コート樹脂の製造例>
シクロヘキシルメタクリレートモノマー 26.8質量部
メチルメタクリレートモノマー 0.2質量部
メチルメタクリレートマクロモノマー 8.4質量部
(片末端にメタクリロイル基を有する重量平均分子量5000のマクロモノマー)
トルエン 31.3質量部
メチルエチルケトン 31.3質量部
上記材料を、還流冷却器、温度計、窒素導入管及び撹拌装置を取り付けた四つ口のセパラブルフラスコに添加し、窒素ガスを導入して充分に窒素雰囲気にした。その後、80℃まで加温し、2.0質量部のアゾビスイソブチロニトリルを添加して5時間還流し重合させた。得られた反応物にヘキサンを注入して共重合体を沈殿析出させ、沈殿物を濾別後、真空乾燥してコート樹脂を得た。
<磁性キャリアの製造例>
コート樹脂 20.0質量%
トルエン 80.0質量%
上記材料をビーズミルで分散混合し、樹脂液を得た。
該磁性コア粒子100質量部をナウタミキサに投入し、さらに、該樹脂液を樹脂成分として2.0質量部になるようにナウタミキサに投入した。減圧下で温度70℃に加熱し、100rpmで混合し、4時間かけて溶媒除去及び塗布操作を行った。その後、得られた試料をジュリアミキサーに移し、窒素雰囲気下、温度100℃で2時間熱処理した後、目開き70μmの篩で分級して磁性キャリアを得た。得られた磁性キャリアの体積分布基準50%粒径(D50)は、38.2μmであった。
<二成分系現像剤の製造>
以上の磁性キャリアとトナー1〜18とで、トナー濃度が8.0質量%になるようにV型混合機(V−10型:株式会社徳寿製作所)で0.5s-1、回転時間5minで混合し、二成分系現像剤1〜18を得た。
〔実施例1〕
二成分系現像剤1を用いて、以下の評価を行った。
<耐久性評価 低印字率モード>
キヤノン製フルカラー複写機imageRUNNER ADVANCE C5051の現像器を空回転(トナー無補給)し現像剤にストレスを与えた後の画像評価を行った。この評価は低印字率、つまりはトナーの入れ替わりがほとんど無い状態での耐久性を促進的に評価する目的で行っている。具体的な手法としては高温多湿環境下(40℃/40%Rh)においてimageRUNNER ADVANCE用の現像空回転治具により5h空回転させた後の現像剤で画像を出力し、白斑点の発生状況を評価している。ここでいう白斑点とは現像時に現像キャリアがトナーと共に感光ドラム上に飛翔して、一次転写部でキャリア周辺のトナーが転写されないことで発生する現象である。これはトナーの現像性が著しく低下した時に起こり易い現象で、適正な画像濃度を出力する為の必要現像コントラストが増大してしまうため発生する。一般にはトナー−キャリア間の非静電的付着力が大きくなると電界による飛翔力に応答できなくなり現像性は低下する。この空回転評価ではトナーにストレスを加えることで、外添剤の埋没あるいは母体凹部への外添剤の落ち込み状態を促進的に作り出している。埋没、落ち込みが進行するとトナー母体が直接キャリアを接触する状態となるので、トナー−キャリア間の非静電付着力が増大し白斑点が発生する。画質評価はimageRUNNER ADVANCE C5051を用いて常温常湿(23℃50%)環境で行った。画像濃度はX−Riteカラー反射濃度計(500シリーズ:X−Rite社製)を使用し、紙上ベタ(FFh)濃度1.4となる条件で出力した。評価紙はCS−680(68.0g/m2)(キヤノンマーケティングジャパン株式会社より販売)を使用した。白斑点個数はA4サイズで17階調(00h〜FFh、各横帯10mm×290mm)を出力し発生個数をカウントした。
評価基準は以下の様にした。(5h空回転後 白斑点発生個数)
A:3個未満 (優れている)
B:3個以上10個未満 (少し優れている)
C:10個以上20個未満 (本発明において許容レベル)
D:20個以上 (本発明において許容出来ないレベル)
以上の評価方法・基準によりトナーを評価した結果を表5に示す。
<耐久性評価 高印字率モード>
キヤノン製フルカラー複写機imageRUNNER ADVANCE C5051の改造機を用いて高温多湿環境下(30℃/80%Rh)において高印字率(印字率40%)で耐久試験を行った。ここではトナーの外添剤が離脱し、それがキャリア表面に移行することでトナーの帯電性が低下する現象を見ている。高印字モードで耐久した方がトナーの補給量が多くなり、結果離脱外添剤総量も多くなるので外添剤によるキャリア表面スペント(キャリア帯電能低下に繋がる)を促進的に評価するのに適している。耐久中現像キャリアの入れ替え(オートリフレッシュ機構)は行っていない。トナーの帯電量変化は画像濃度変動に繋がるので好ましくない。
評価紙はCS−680(68.0g/m2)(キヤノンマーケティングジャパン株式会社より販売)を使用した。
耐久枚数はA4チャート、連続20000枚通紙した。帯電性の評価はホソカワミクロン社製E−スパートアナライザーを用いて現像剤中のトナー3000個のトナー平均帯電量を測定した。
評価基準は以下の様にした。
A:10%未満 (優れている)
B:10以上20%未満 (本発明において許容レベル)
C:20%以上 (本発明において許容出来ないレベル)
以上の評価方法・基準によりトナーを評価した結果を表5に示す。
〔実施例2〜11および比較例1〜7〕
二成分系現像剤を表5に記載の様に変更した以外は、実施例1と同様にして、評価を行った。評価結果を表5に示す。
Figure 0006448392
1.原料定量供給手段、2.圧縮気体流量調整手段、3.導入管、4.突起状部材、5.供給管、6.処理室、7.熱風供給手段、8.冷風供給手段、9.規制手段、10.回収手段、11.熱風供給手段出口、12.分配部材、13.旋回部材、
14.粉体粒子供給口

Claims (2)

  1. 結着樹脂及び有機無機複合粒子を含有するトナー粒子を含有するトナーの製造方法であって
    該トナーの製造方法は、
    該結着樹脂を含有するトナー母粒子と該有機無機複合粒子とを混合する工程、および
    熱風による表面処理によって、該トナー母粒子表面に該有機無機複合粒子を固着して、該有機無機複合粒子が表面に固着したトナー粒子を得る工程、
    を有し、
    該有機無機複合粒子は個数平均粒径が50nm以上200nm以下であり、該有機無機複合粒子は、ビニル系樹脂粒子に無機微粒子が埋め込まれた構造を有し、該有機無機複合粒子の表面には無機微粒子に由来する凸部が複数存在する、
    ことを特徴とするトナーの製造方法
  2. 該結着樹脂は、結晶性ポリエステル樹脂、非晶性ポリエステル樹脂を含有し、
    該トナー粒子のルテニウム染色処理された透過型電子顕微鏡(TEM)断面において、該結晶性ポリエステルがトナー粒子断面上で針状に観察される結晶を形成しており、該結晶の長軸長さの個数平均径(D1)が60nm以上250nm以下であり、該トナー粒子断面中の1.0μm×1.0μmの視野において該トナー粒子中の該結晶性ポリエステルの占める面積を求めたとき、面積の標準偏差が10.0%以下である、
    ことを特徴とする請求項1に記載のトナーの製造方法
JP2015014914A 2015-01-29 2015-01-29 トナーの製造方法 Active JP6448392B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015014914A JP6448392B2 (ja) 2015-01-29 2015-01-29 トナーの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015014914A JP6448392B2 (ja) 2015-01-29 2015-01-29 トナーの製造方法

Publications (2)

Publication Number Publication Date
JP2016139062A JP2016139062A (ja) 2016-08-04
JP6448392B2 true JP6448392B2 (ja) 2019-01-09

Family

ID=56560196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014914A Active JP6448392B2 (ja) 2015-01-29 2015-01-29 トナーの製造方法

Country Status (1)

Country Link
JP (1) JP6448392B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155828A (ja) 2017-03-16 2018-10-04 株式会社リコー トナー、トナーの製造方法、トナー収容ユニット、及び画像形成装置
JP7091033B2 (ja) 2017-08-04 2022-06-27 キヤノン株式会社 トナー
WO2019027039A1 (ja) * 2017-08-04 2019-02-07 キヤノン株式会社 トナー
JP2019032365A (ja) 2017-08-04 2019-02-28 キヤノン株式会社 トナー
JP7067147B2 (ja) 2018-03-12 2022-05-16 株式会社リコー トナー、画像形成装置、画像形成方法、及びトナー収容ユニット
JP2019215511A (ja) * 2018-06-11 2019-12-19 キヤノン株式会社 トナー
JP7492405B2 (ja) 2020-08-14 2024-05-29 キヤノン株式会社 トナーの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197965A (ja) * 1989-12-27 1991-08-29 Konica Corp 現像剤
JP2858900B2 (ja) * 1990-07-25 1999-02-17 コニカ株式会社 熱ローラ定着型静電像現像用トナー
JPH09101626A (ja) * 1995-10-04 1997-04-15 Matsushita Electric Ind Co Ltd トナー
JP4189586B2 (ja) * 2003-11-06 2008-12-03 コニカミノルタビジネステクノロジーズ株式会社 トナー及びトナー製造方法
JP2008145969A (ja) * 2006-12-13 2008-06-26 Ricoh Co Ltd トナー、現像剤、現像装置、プロセスカートリッジ、及び画像形成装置
US20090060598A1 (en) * 2007-08-27 2009-03-05 Konica Minolta Business Technologies, Inc. Image forming method
JP2011090168A (ja) * 2009-10-23 2011-05-06 Kyocera Mita Corp 静電荷像現像用トナー、静電荷像現像用現像剤、及び画像形成装置
JP2011145587A (ja) * 2010-01-18 2011-07-28 Konica Minolta Business Technologies Inc 電子写真用トナー及び電子写真用トナーの製造方法
JP5515909B2 (ja) * 2010-03-18 2014-06-11 株式会社リコー トナー、並びに現像剤、プロセスカートリッジ、画像形成方法、及び画像形成装置
JP5381914B2 (ja) * 2010-06-29 2014-01-08 日本ゼオン株式会社 静電荷像現像用トナー
JP5522540B2 (ja) * 2010-09-15 2014-06-18 株式会社リコー トナー、現像剤、現像剤容器、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2013015739A (ja) * 2011-07-06 2013-01-24 Ricoh Co Ltd 電子写真用トナー、トナーの製造方法、前記トナーを有する現像剤及び画像形成装置
JP2013092748A (ja) * 2011-10-26 2013-05-16 Cabot Corp 複合体粒子を含むトナー添加剤
JP5966517B2 (ja) * 2012-03-30 2016-08-10 株式会社リコー 画像形成方法及び該画像形成方法を用いた画像形成装置

Also Published As

Publication number Publication date
JP2016139062A (ja) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6448392B2 (ja) トナーの製造方法
JP5865032B2 (ja) トナー
JP6407020B2 (ja) トナーおよび二成分系現像剤
JP6444160B2 (ja) トナーおよび二成分系現像剤
JP2017003990A (ja) トナー及びトナーの製造方法
JP4979828B2 (ja) トナー
JP6532315B2 (ja) トナー
JP6238727B2 (ja) トナー
JP6282107B2 (ja) トナー
US20130236830A1 (en) Toner, binary developer, and image forming method
US20140113228A1 (en) Toner, two-component developer, and image forming method
JP6272027B2 (ja) トナーおよびトナーの製造方法
JP2016139063A (ja) トナー
JP6727803B2 (ja) トナーおよびトナーの製造方法
JP6282106B2 (ja) トナー
JP6245973B2 (ja) トナー
JP2017003980A (ja) トナー
JP6324104B2 (ja) トナー
JP2016212399A (ja) トナー
US10852652B2 (en) Toner
JP5419658B2 (ja) トナーキット及び画像形成方法
JP7346112B2 (ja) トナー
JP2019008145A (ja) トナーの製造方法
JP7341760B2 (ja) トナー
JP2017173673A (ja) トナーの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R151 Written notification of patent or utility model registration

Ref document number: 6448392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151