JP6432869B2 - Refractory brick manufacturing method - Google Patents

Refractory brick manufacturing method Download PDF

Info

Publication number
JP6432869B2
JP6432869B2 JP2015254384A JP2015254384A JP6432869B2 JP 6432869 B2 JP6432869 B2 JP 6432869B2 JP 2015254384 A JP2015254384 A JP 2015254384A JP 2015254384 A JP2015254384 A JP 2015254384A JP 6432869 B2 JP6432869 B2 JP 6432869B2
Authority
JP
Japan
Prior art keywords
refractory
refractory brick
carbon fiber
carbon
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015254384A
Other languages
Japanese (ja)
Other versions
JP2017114748A (en
Inventor
佳 谷口
佳 谷口
久宏 松永
久宏 松永
雄太 日野
雄太 日野
赤津 隆
隆 赤津
陽亮 佐藤
陽亮 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Tokyo Institute of Technology NUC
Original Assignee
JFE Steel Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Tokyo Institute of Technology NUC filed Critical JFE Steel Corp
Priority to JP2015254384A priority Critical patent/JP6432869B2/en
Publication of JP2017114748A publication Critical patent/JP2017114748A/en
Application granted granted Critical
Publication of JP6432869B2 publication Critical patent/JP6432869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐火原料を混練、成形、乾燥して製造する耐火れんがの製造方法およびそれにより製造される耐火れんがに関する。   The present invention relates to a method for producing a refractory brick produced by kneading, molding and drying a refractory raw material, and a refractory brick produced thereby.

図2は、従来の耐火れんがの製造方法の一例を説明するためのフローチャートである。図2に示す例おいて、耐火れんがは、一般に、酸化物や炭化物などの耐火原料(ここではMgO骨材、MgO微粉、炭素原料、金属(Al、Si))およびバインダー(ここではフェノール樹脂)と呼称されるつなぎ成分を同時にミキサーで混練し、プレス成形した後、乾燥することによって製造される。必要に応じて、上記工程にて製造された耐火れんがをさらに焼成する場合もある。そして、前記耐火原料は、骨材(5mm以下程度)と微粉(150μm以下程度)とで構成されており、混練してこれらの原料を均一に分散させることで、緻密な耐火れんがを製造することができる。ここで、耐火原料が不均一に分散すると、耐火れんがの耐熱衝撃性が著しく低下する。   FIG. 2 is a flowchart for explaining an example of a conventional method for manufacturing a refractory brick. In the example shown in FIG. 2, refractory bricks are generally refractory raw materials such as oxides and carbides (here, MgO aggregate, MgO fine powder, carbon raw material, metal (Al, Si)) and binder (here, phenol resin). It is manufactured by simultaneously kneading the binder component called "" with a mixer, press-molding, and drying. If necessary, the refractory brick produced in the above process may be further fired. And the said refractory raw material is comprised with the aggregate (about 5 mm or less) and the fine powder (about 150 micrometers or less), knead | mixing and disperse | distributing these raw materials uniformly, and manufacturing dense refractory bricks. Can do. Here, if the refractory raw material is unevenly dispersed, the thermal shock resistance of the refractory brick is significantly reduced.

転炉や、電気炉、取鍋などに用いられる耐火れんがは、耐食性および耐熱衝撃性が要求される。そのため、これらの精錬炉などに使われている耐火れんがは、高融点のマグネシア、アルミナ等の塩基性材料およびスラグにぬれ難く熱伝導率が大きい炭素原料を用いるのが普通である。   Refractory bricks used in converters, electric furnaces, ladles, etc. are required to have corrosion resistance and thermal shock resistance. For this reason, refractory bricks used in these refining furnaces and the like are usually made of a basic material such as high melting point magnesia or alumina and a carbon raw material that is difficult to wet with slag and has a high thermal conductivity.

しかし、底吹き転炉の羽口れんがなど、加熱や冷却が繰り返される部位に用いられるものについては、熱衝撃によって亀裂が発生し進展することで、れんがの剥離損傷を招きやすいため、このことが炉寿命の決定要因となっている。これらの対策として、耐火れんがの耐熱衝撃性向上を目的として、炭素原料の一部として炭素繊維を添加する様々な試みがなされてきたが、未だ不十分であった。   However, for those used in parts where heating and cooling are repeated, such as tuyered bricks in bottom-blown converters, this is likely to cause delamination damage due to cracks generated by thermal shock and progress. It is a determinant of furnace life. As these measures, various attempts have been made to add carbon fiber as a part of the carbon raw material for the purpose of improving the thermal shock resistance of the refractory brick, but it is still insufficient.

特開平8−12456号公報JP-A-8-12456 特開2007−55876号公報JP 2007-55876 A

例えば、特許文献1は、マグネシア・カーボンれんがに炭素繊維を添加するに際し、炭素繊維の表面に有機樹脂を被覆する手段を提案している。しかし、この技術では、10mmよりも短い短繊維しか添加できず、炭素繊維添加量も最大で5mass%にとどまっていた。そのため、炭素繊維を添加しても、耐熱衝撃性を向上させた耐火れんがを得ることができなかった。また、この技術は、図2に示すとおり、耐火れんが製造時の混練に際し、耐火原料およびバインダーと炭素繊維とを同時に混合して成形する方法であった。   For example, Patent Document 1 proposes a means for coating an organic resin on the surface of carbon fiber when carbon fiber is added to magnesia / carbon brick. However, with this technique, only short fibers shorter than 10 mm can be added, and the amount of carbon fiber added is limited to 5 mass% at the maximum. Therefore, even if carbon fiber is added, a refractory brick with improved thermal shock resistance cannot be obtained. Further, as shown in FIG. 2, this technique was a method in which refractory bricks were mixed and molded simultaneously with a refractory raw material, a binder, and carbon fibers during kneading during manufacture.

また、特許文献2は、マグネシア・カーボンれんがにサイジングによりエポキシ樹脂をコートした炭素繊維を添加する手法を提案している。しかし、エポキシ樹脂は、高温で溶融するため、乾燥時や使用時にれんが内部に隙間ができるという問題点があった。また、耐熱衝撃性の評価は、30×30×120mmの試料を電気炉(Arガス中、1300℃)で5分間加熱した後、液体窒素中に投下して急冷し、その後に曲げ試験をして行っている。しかし、この方法は、実炉での耐火物における損傷形態を模しているとは言えず、効果には疑問が残っていた。さらに、炭素繊維の添加量が5mass%に留まっており、炭素繊維を添加しても、耐熱衝撃性に優れた耐火れんがを得ることができなかった。さらにまた、この方法は、図2に示すように、混練に際し、耐火原料およびバインダーと炭素繊維とを同時に混合し成形する方法であった。   Patent Document 2 proposes a method in which magnesia carbon brick is added with carbon fiber coated with an epoxy resin by sizing. However, since the epoxy resin melts at a high temperature, there is a problem that a gap is formed inside the brick at the time of drying or use. The thermal shock resistance was evaluated by heating a 30 × 30 × 120 mm sample in an electric furnace (in Ar gas, 1300 ° C.) for 5 minutes, then dropping it in liquid nitrogen and quenching, and then performing a bending test. Is going. However, this method cannot be said to mimic the form of damage in a refractory in an actual furnace, and the effect remained questionable. Furthermore, the amount of carbon fiber added remained at 5 mass%, and even when carbon fiber was added, refractory bricks excellent in thermal shock resistance could not be obtained. Furthermore, as shown in FIG. 2, this method was a method in which a refractory raw material, a binder and carbon fiber were mixed and molded at the time of kneading.

本発明は、従来の技術が抱えている前述した事情に鑑み提案するものであって、炭素繊維の分散性を向上させて耐熱衝撃性を向上させることができる耐火れんがの新規な製造方法および耐火れんがを提案することを目的とする。   The present invention is proposed in view of the above-described circumstances of the prior art, and is a novel method for manufacturing a refractory brick capable of improving the thermal shock resistance by improving the dispersibility of carbon fibers and the refractory resistance. The purpose is to propose bricks.

発明者らは、従来技術の上記の問題点を解消した耐火れんがを得るべく、種々の検討を行った。その結果、原料を混練するにあたり、従来のように耐火原料、炭素繊維およびバインダーを一度に混練するのではなく、まず、骨材以外の耐火原料、炭素繊維およびバインダーを有機溶媒に分散させた懸濁液とし、次に、この懸濁液を乾燥させて微粉の混合物とし、その後、この微粉の混合物を骨材とともに混練することにより、耐火れんが中の炭素繊維の分散性が向上して耐熱衝撃性が向上した耐火れんがを得ることができることを見出して、本発明を提案するに至った。   The inventors have conducted various studies in order to obtain a refractory brick that has solved the above-described problems of the prior art. As a result, in kneading the raw materials, instead of kneading the refractory raw material, carbon fiber and binder at the same time as in the prior art, first, the refractory raw material other than aggregate, carbon fiber and binder are dispersed in an organic solvent. Then, the suspension is dried to obtain a fine powder mixture, and then the fine powder mixture is kneaded with the aggregate to improve the dispersibility of the carbon fiber in the refractory brick and to improve the thermal shock. The inventors have found that a fireproof brick having improved properties can be obtained, and have proposed the present invention.

即ち、本発明は、耐火原料およびバインダーを混練、成形、乾燥して耐火れんがを得る耐火れんがの製造方法において、炭素繊維を、骨材以外の耐火原料およびバインダーとともに予め有機溶媒中に分散させて懸濁液とし、この懸濁液を乾燥させて微粉の混合物とし、次にその微粉の混合物を骨材とともに混練し、成形し、乾燥することを特徴とする耐火れんがの製造方法にある。   That is, the present invention relates to a method for producing a refractory brick in which a refractory raw material and a binder are kneaded, molded, and dried to obtain a refractory brick. A method for producing a refractory brick is characterized in that a suspension is formed, the suspension is dried to obtain a mixture of fine powder, and then the mixture of fine powder is kneaded together with aggregate, formed, and dried.

また、本発明は、上述した製造方法で製造された耐火れんがにおいて、耐火れんが中に加える炭素繊維の量が0.5〜14.0mass%であることを特徴とする耐火れんがである。   Further, the present invention is a refractory brick characterized in that, in the refractory brick manufactured by the above-described manufacturing method, the amount of carbon fiber added to the refractory brick is 0.5 to 14.0 mass%.

なお、本発明に係る耐火れんがの製造方法においては、前記懸濁液中の固体分として、炭素繊維を1.8〜50.0mass%、鱗状黒鉛を5.4〜64.3mass%、および、電融マグネシアを28.6〜82.1mass%を混合すること、が好ましい解決手段となるものと考えられる。   In the method for producing a refractory brick according to the present invention, as a solid content in the suspension, 1.8 to 50.0 mass% of carbon fiber, 5.4 to 64.3 mass% of scaly graphite, and It is considered that mixing 28.6 to 82.1 mass% of electrofused magnesia is a preferable solution.

本発明によれば、炭素繊維を、骨材以外の耐火原料およびバインダーとともに予め有機溶媒に分散させた懸濁液とし、この懸濁液を乾燥させて微粉の混合物とし、この微粉の混合物を骨材とともに混練することにより、耐火れんが中の炭素繊維の分散性を良好にすることができ、その結果、耐熱衝撃性の大きい耐火れんがを製造することができる。   According to the present invention, carbon fiber is made into a suspension in which an organic solvent is dispersed in advance together with a refractory raw material other than aggregate and a binder, and the suspension is dried to obtain a fine powder mixture. By kneading together with the material, the dispersibility of the carbon fibers in the refractory brick can be improved, and as a result, a refractory brick having a high thermal shock resistance can be produced.

本発明の耐火れんがの製造方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the manufacturing method of the refractory brick of this invention. 従来の耐火れんがの製造方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the manufacturing method of the conventional refractory brick.

図1は、本発明の耐火れんがの製造方法の一例を説明するためのフローチャートである。以下、図1に従って本発明の耐火れんがの製造方法を説明する。まず、炭素繊維を、骨材以外の耐火原料(ここでは、MgO微粉、その他の炭素原料)およびバインダーとともに、有機溶媒に分散させて懸濁液を調整する。例えば、これらの原料等を超音波洗浄機等によって撹拌することで均一に分散させた懸濁液を得る。次に、上記懸濁液を、例えばロータリーエバポレーター等を用いて減圧下で乾燥し、微粉の混合物とする。その後、得られた微粉の混合物を、MgO骨材とともに混練し、次いで成形した後、400℃以下の温度で熱処理して乾燥する。以上の工程により、耐火れんがに炭素繊維を均一に分散させることができる。その結果、耐熱衝撃性の良好な耐火れんがを得ることができる。   FIG. 1 is a flowchart for explaining an example of a method for producing a refractory brick according to the present invention. Hereinafter, the method for producing a refractory brick according to the present invention will be described with reference to FIG. First, carbon fiber is dispersed in an organic solvent together with a refractory raw material other than the aggregate (here, MgO fine powder, other carbon raw materials) and a binder to prepare a suspension. For example, a suspension in which these raw materials are uniformly dispersed is obtained by stirring with an ultrasonic cleaner or the like. Next, the suspension is dried under reduced pressure using, for example, a rotary evaporator to obtain a fine powder mixture. Thereafter, the obtained mixture of fine powders is kneaded together with MgO aggregate, then molded, and then heat treated at a temperature of 400 ° C. or lower and dried. Through the above steps, the carbon fibers can be uniformly dispersed in the refractory brick. As a result, a refractory brick with good thermal shock resistance can be obtained.

なお、本発明に係る耐火れんがの製造方法において、上述した懸濁液中の固体分として、炭素繊維を1.8〜50.0mass%、鱗状黒鉛(炭素原料)を5.4〜64.3mass%、および、電融マグネシア(MgO微粉)を28.6〜82.1mass%を含有させることが好ましい。   In the method for producing a refractory brick according to the present invention, 1.8 to 50.0 mass% of carbon fiber and 5.4 to 64.3 mass of scaly graphite (carbon raw material) are used as the solid content in the suspension described above. %, And 28.6 to 82.1 mass% of electrofused magnesia (MgO fine powder) is preferably contained.

そして、製造された耐火れんがにおいては、耐火れんが中の炭素繊維が0.5〜14.0mass%含まれていることが好ましい。   And in the manufactured refractory brick, it is preferable that the carbon fiber in a refractory brick is contained 0.5 to 14.0 mass%.

本発明で使用可能な炭素繊維は、強度や弾性率など特定の物性に優れた市販の製品を用いる。例えば、PAN系、等方性ピッチ系もしくは異方性ピッチ系のいずれの炭素繊維も耐火物より高強度かつ高弾性率を示すため、使用が可能である。従って、本発明においては、炭素繊維の種類は特に限定する必要はない。ただし、使用する炭素繊維は、例えば、長さが1〜300mmで直径が5〜18μmのサイズのものから、作製するれんがの形状を考慮して選択すればよい。炭素繊維の使用量は、0.5〜14.0mass%であることが好ましい。   As the carbon fiber that can be used in the present invention, a commercial product excellent in specific physical properties such as strength and elastic modulus is used. For example, any carbon fiber of PAN, isotropic pitch, or anisotropic pitch can be used because it exhibits higher strength and higher elastic modulus than refractory. Therefore, in the present invention, the type of carbon fiber is not particularly limited. However, the carbon fiber to be used may be selected from those having a length of 1 to 300 mm and a diameter of 5 to 18 μm in consideration of the shape of the brick to be produced. The amount of carbon fiber used is preferably 0.5 to 14.0 mass%.

本発明でMgO骨材およびMgO微粉として使用するマグネシア材料は、電融マグネシア、焼結マグネシア、天然マグネシアなどの単独もしくは2種以上を組み合わせて使用できる。これらのマグネシア材料の塩基性耐火物としての使用量は、80〜95mass%であることが好ましい。   The magnesia material used as the MgO aggregate and the MgO fine powder in the present invention can be used alone or in combination of two or more kinds such as electrofused magnesia, sintered magnesia and natural magnesia. The amount of these magnesia materials used as basic refractories is preferably 80 to 95 mass%.

本発明で使用する炭素繊維以外の炭素材料は、特に限定しないが、鱗状黒鉛、特殊黒鉛、土状黒鉛、人造黒鉛、カーボンブラック、石油コークス、ピッチ等の材料が炭素繊維以外の炭素材料として使用できる。炭素材料の使用量は、5〜20mass%であることが好ましい。   Carbon materials other than carbon fibers used in the present invention are not particularly limited, but materials such as scale graphite, special graphite, earth graphite, artificial graphite, carbon black, petroleum coke, and pitch are used as carbon materials other than carbon fibers. it can. It is preferable that the usage-amount of a carbon material is 5-20 mass%.

本発明で使用するバインダーは、特に限定しないが、フェノール樹脂、PVA(ポリビニルアルコール)、ピッチ、エチルシリケート、アルミニウムアルコレート、けい酸ソーダ、乳酸アルミ、水硬性アルミ、アルミナセメント、アルミン酸ソーダ、シリカゾルおよびアルミナゾル等の材料がバインダーとして使用できる。バインダーの使用量は、練土の状況を見て適宜決定することができる。   The binder used in the present invention is not particularly limited, but phenol resin, PVA (polyvinyl alcohol), pitch, ethyl silicate, aluminum alcoholate, sodium silicate, aluminum lactate, hydraulic aluminum, alumina cement, sodium aluminate, silica sol In addition, materials such as alumina sol can be used as the binder. The usage-amount of a binder can be suitably determined in view of the state of clay.

本発明で使用する有機溶媒としては、例えばエタノールなどの有機溶媒が好ましく、水などマグネシアと水和反応する物質を用いてはならない。   As the organic solvent used in the present invention, for example, an organic solvent such as ethanol is preferable, and a substance that hydrates with magnesia such as water must not be used.

本発明の製造方法で作製するれんがは、酸化防止剤として、アルミニウム、シリコン、マグネシウム等の金属やその合金あるいはBC等を必要に応じて適宜添加することができる。 In the brick produced by the production method of the present invention, a metal such as aluminum, silicon and magnesium, an alloy thereof, B 4 C, or the like can be appropriately added as an antioxidant.

以下に、本発明の実施形態を実施例によって説明する。
本発明の製造方法で作製した耐火れんがおよび比較用の耐火れんがを用意した。以下、本発明の製造方法に従った本発明例として、表1に検討した試料の懸濁液の配合例1〜8(MgO−5mass%C微粉用)、表2に検討した試料の懸濁液の配合例9〜16(MgO−10mass%C微粉用)、表3に検討した試料の懸濁液の配合例17〜24(MgO−15mass%C微粉用)、表4に検討した試料の懸濁液の配合例25〜32、の電融マグネシア、鱗状黒鉛量、炭素繊維量およびフェノール樹脂量を一覧にして示すとともに、本発明の製造方法に従ったが炭素繊維を入れない比較例として、表5に比較例試料の懸濁液の配合例33〜36の電融マグネシア、鱗状黒鉛量、炭素繊維量およびフェノール樹脂量を一覧にして示す。
Hereinafter, embodiments of the present invention will be described by way of examples.
A refractory brick produced by the production method of the present invention and a refractory brick for comparison were prepared. Hereinafter, as examples of the present invention according to the production method of the present invention, formulation examples 1 to 8 (for MgO-5 mass% C fine powder) of the suspensions of the samples examined in Table 1, and suspensions of the samples examined in Table 2 Liquid formulation examples 9 to 16 (for MgO-10 mass% C fine powder), sample suspension examples 17 to 24 (for MgO-15 mass% C fine powder) examined in Table 3, and sample samples examined in Table 4 As a comparative example in which the fusing magnesia, the amount of scaly graphite, the amount of carbon fiber, and the amount of phenol resin of the suspension blending examples 25 to 32 are listed, and according to the production method of the present invention, no carbon fiber is added. Table 5 shows a list of electrofused magnesia, scaly graphite amount, carbon fiber amount, and phenol resin amount in the blending examples 33 to 36 of the suspension of the comparative example sample.

ここで、本発明例において炭素繊維は、繊維長3mm、繊維径7μmのPAN系炭素繊維を用いた。表1〜5に示す懸濁液をロータリーエバポレーターを用いて乾燥して微粉の混合物を作製した。作製した微粉の混合物を、骨材およびバインダーに対し外配で2mass%添加し、混練、成形および乾燥することで、本発明例および比較例の耐火れんがを製造した。評価は、さらに1400℃で3時間の還元焼成を行った試料で実施した。   Here, in the examples of the present invention, PAN-based carbon fibers having a fiber length of 3 mm and a fiber diameter of 7 μm were used as the carbon fibers. The suspensions shown in Tables 1 to 5 were dried using a rotary evaporator to prepare a fine powder mixture. The prepared fine powder mixture was added to the aggregate and the binder in an amount of 2 mass%, and kneaded, molded and dried to produce the refractory bricks of the inventive examples and the comparative examples. The evaluation was performed on a sample that was further subjected to reduction firing at 1400 ° C. for 3 hours.

Figure 0006432869
Figure 0006432869

Figure 0006432869
Figure 0006432869

Figure 0006432869
Figure 0006432869

Figure 0006432869
Figure 0006432869

Figure 0006432869
Figure 0006432869

評価は、炭素繊維の分散性に関しては、作製した試料のいずれかの部分を切断し、その断面の断面観察を実施し、炭素繊維が4本以上平行に存在した場合、不均一に分散していると判断した。また、実炉における耐火物の熱衝撃による破壊を考慮して、ASTM D 5045−99「プラスチック材料の平面ひずみ破壊靭性およびひずみエネルギー解放率」に準拠して、予亀裂を導入したSENB試験片の3点曲げ試験を実施し、破壊エネルギーを算出した。ここで、試験片は全長18mm×幅4mm×厚さ3mmの形状のものを用い、スパン長は16mmで、予亀裂長さは1.5mmとした。破壊エネルギーは、荷重-変位曲線の面積Uを断面積の2倍で除した値を用いた。また、圧縮試験片は、8mm×4mm×4mmの形状で4mm×4mmの断面に印加した。   Regarding the dispersibility of the carbon fiber, cut any part of the prepared sample, observe the cross section of the cross section, and when four or more carbon fibers exist in parallel, disperse unevenly. It was judged that In addition, considering the destruction of refractories due to thermal shock in an actual furnace, in accordance with ASTM D 5045-99 "Plane strain fracture toughness and strain energy release rate of plastic materials" A three-point bending test was performed to calculate the fracture energy. Here, the test piece was 18 mm long, 4 mm wide and 3 mm thick, the span length was 16 mm, and the precrack length was 1.5 mm. As the fracture energy, a value obtained by dividing the area U of the load-displacement curve by twice the cross-sectional area was used. Moreover, the compression test piece was applied to the cross section of 4 mm x 4 mm in the shape of 8 mm x 4 mm x 4 mm.

表6に、表1に配合例を示したMgO−5mass%C耐火れんがにおける実施例および比較例を示す。ここで、比較例2および比較例3は、通常の耐火れんが製造方法と同様に、炭素繊維を事前処理を経ずに配合し、混練、成形、乾燥および評価用に熱処理した耐火れんがである。なお、破壊エネルギーおよび圧縮強度は、それぞれのC含有量ごとに炭素繊維を含まない、表5に示す配合例33〜配合例36で作製した耐火れんがの物性値で規格化して指数標記で示す。例えば、表6のgO−5mass%C耐火れんがでは、表5の配合例33を用いて製造した耐火れんがである比較例1の破壊エネルギーおよび圧縮強度を100とした。そして、繊維分散状況として、破壊エネルギーおよび圧縮強度の指数のいずれもが100を超えたものを○として表し、いずれもが100未満であったものを×として表記した。 Table 6 shows examples and comparative examples in the MgO-5 mass% C refractory bricks shown in Table 1. Here, Comparative Example 2 and Comparative Example 3 are refractory bricks in which carbon fibers are blended without pretreatment and heat-treated for kneading, molding, drying, and evaluation, in the same manner as in ordinary refractory brick manufacturing methods. In addition, fracture energy and compressive strength are normalized by the physical property values of the refractory bricks prepared in Formulation Example 33 to Formulation Example 36 shown in Table 5 that do not include carbon fiber for each C content, and are indicated by index notation. For example, the M gO-5mass% C refractory bricks in Table 6, and the fracture energy and the compressive strength of Comparative Example 1 is a refractory brick made with the formulation example 33 in Table 5 and 100. And as a fiber dispersion | distribution state, what both the fracture | rupture energy and the index of compressive strength exceeded 100 was represented as (circle), and what was less than 100 was described as x.

Figure 0006432869
Figure 0006432869

以下、同様に、表7に表2に配合例を示したMgO−10mass%C耐火れんがにおける実施例および比較例を示し、表8に表3に配合例を示したMgO−mass15%C耐火れんがにおける実施例および比較例を示し、表9に表4に配合例を示したMgO−20mass%C耐火れんがにおける実施例および比較例を示す。   Hereinafter, similarly, Table 7 shows examples and comparative examples in the MgO-10 mass% C refractory bricks shown in Table 2 and Table 8 shows MgO-mass 15% C refractory bricks shown in Table 3. Examples and comparative examples are shown, and Table 9 shows examples and comparative examples of MgO-20 mass% C refractory bricks shown in Table 4 as formulation examples.

Figure 0006432869
Figure 0006432869

Figure 0006432869
Figure 0006432869

Figure 0006432869
Figure 0006432869

表6〜表9の結果より、本発明に適合する製造方法に従って作製した耐火れんがは、炭素繊維がよく分散しており、破壊エネルギーが大きいことがわかった。また、バインダー添加量は、3.4〜7.6mass%の範囲では物性値の変化は見られなかった。一方、通常の製造方法で作製した耐火れんが(比較例)は、炭素繊維の分散が悪く、また破壊エネルギーも小さいことがわかった。このことから、本発明に係る製造方法によって耐火れんがを作製した場合、炭素繊維を均一分散させることができ、耐火れんがの耐熱衝撃性を大きく向上させることができる。これによって、耐火れんがの損耗を抑止できる。   From the results of Tables 6 to 9, it was found that the refractory bricks produced according to the production method suitable for the present invention had well dispersed carbon fibers and a large breaking energy. Moreover, the change of a physical-property value was not seen in the binder addition amount in the range of 3.4-7.6 mass%. On the other hand, it was found that the refractory brick produced by a normal manufacturing method (Comparative Example) was poorly dispersed in carbon fiber and had a small breaking energy. From this, when a refractory brick is produced by the manufacturing method according to the present invention, carbon fibers can be uniformly dispersed, and the thermal shock resistance of the refractory brick can be greatly improved. Thereby, the wear of the refractory brick can be suppressed.

本発明の耐火れんがの製造方法によれば、耐火れんが中の炭素繊維の分散性を良好にすることができ、その結果、耐熱衝撃性が大きい耐火れんがを得ることができるため、これらを例えば転炉底吹き羽口に使用することで、炉寿命を向上させることができ、その工業的価値は大きい。   According to the method for producing a refractory brick of the present invention, the dispersibility of the carbon fibers in the refractory brick can be improved, and as a result, a refractory brick having a high thermal shock resistance can be obtained. By using it in the furnace bottom blowing tuyere, the furnace life can be improved and its industrial value is great.

Claims (1)

MgO骨材、MgO微粉、炭素繊維以外の炭素材料からなる耐火原料およびバインダーを混練、成形、乾燥して耐火れんがを得る耐火れんがの製造方法において、
炭素繊維を、MgO骨材以外の耐火原料(MgO微粉、炭素繊維以外の炭素材料)およびバインダーとともに予め有機溶媒中に分散させた懸濁液であって、懸濁液中の固体分として、炭素繊維を1.8〜50.0mass%、鱗状黒鉛を5.4〜64.3mass%、および、電融マグネシアを28.6〜82.1mass%を混合させた懸濁液とし、この懸濁液を乾燥させて微粉の混合物とし、次にその微粉の混合物をMgO骨材とともに混練し、成形し、乾燥することを特徴とする耐火れんがの製造方法。
In the manufacturing method of refractory bricks obtained by kneading, forming, and drying refractory raw materials and binders made of carbon materials other than MgO aggregate, MgO fine powder, and carbon fiber,
A suspension in which carbon fiber is previously dispersed in an organic solvent together with a refractory raw material other than MgO aggregate (MgO fine powder, carbon material other than carbon fiber) and a binder, and as a solid content in the suspension, carbon This suspension is prepared by mixing 1.8 to 50.0 mass% of fibers, 5.4 to 64.3 mass% of scaly graphite, and 28.6 to 82.1 mass% of electrofused magnesia. A method for producing a refractory brick, characterized in that a mixture of fine powder is dried, and then the fine powder mixture is kneaded with MgO aggregate, molded, and dried.
JP2015254384A 2015-12-25 2015-12-25 Refractory brick manufacturing method Active JP6432869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015254384A JP6432869B2 (en) 2015-12-25 2015-12-25 Refractory brick manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015254384A JP6432869B2 (en) 2015-12-25 2015-12-25 Refractory brick manufacturing method

Publications (2)

Publication Number Publication Date
JP2017114748A JP2017114748A (en) 2017-06-29
JP6432869B2 true JP6432869B2 (en) 2018-12-05

Family

ID=59231341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015254384A Active JP6432869B2 (en) 2015-12-25 2015-12-25 Refractory brick manufacturing method

Country Status (1)

Country Link
JP (1) JP6432869B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315568B (en) * 2018-03-15 2023-11-24 中钢洛耐科技股份有限公司 Wind eye brick for refining converter for smelting copper

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433037A (en) * 1987-04-13 1989-02-02 Onoda Cement Co Ltd Method for dispersing fiber for reinforcement
JPH0641391B2 (en) * 1990-06-01 1994-06-01 品川白煉瓦株式会社 Method for manufacturing fiber-containing refractory
JP4571522B2 (en) * 2005-02-28 2010-10-27 黒崎播磨株式会社 Conductive amorphous refractories for DC electric furnace hearth stamp construction

Also Published As

Publication number Publication date
JP2017114748A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6818022B2 (en) Sintered zirconia mullite refractory composite, its production method, and its use
JP4634263B2 (en) Magnesia carbon brick
KR100967408B1 (en) Carbon containing eco-friendly refractory material composition
KR102264264B1 (en) Magnesia carbon brick and its manufacturing method
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
JP2019078337A (en) Heat insulation material and manufacturing method thereof
CN108585797A (en) A kind of magnesia pushing off the slag sliding plate brick of self-lubricating and preparation method thereof of addition boron nitride
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
WO2011125536A1 (en) Refractory containing thick flake graphite
JP6432869B2 (en) Refractory brick manufacturing method
JP2012072051A (en) Powder composition for fireproof castable, and fireproof castable using the same
KR100491123B1 (en) High intensity castable refractories with good adiabatic and high thermal shock resistance
JP2012192430A (en) Alumina carbon-based slide gate plate
JP2021147275A (en) Magnesia-spinel refractory brick
JP3327883B2 (en) Refractories containing massive graphite
KR101672470B1 (en) Refractory for slag dart, slag dart including the same and manufacturing method of slag dart
JP6386317B2 (en) Silica brick for hot repair
JP6375555B2 (en) Manufacturing method of magnesia carbon brick
WO2024047881A1 (en) Magnesia-alumina castable and refractory block
JP2009001462A (en) Shaped refractory and method for producing the same
KR101203630B1 (en) Improvement of oxidation resistance of pitch for castable refractories
Li et al. Preparation of porous spodumene/zircon composite ceramics and its thermal and mechanical properties
JP2015193510A (en) MgO-TiO2-NiO CLINKER AND BURNT BASIC BRICK USING THE SAME
JP6100197B2 (en) Ceramic aggregate for refractory and method for producing the same
JP5706767B2 (en) Thermal insulation castable powder composition and thermal insulation castable using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181026

R150 Certificate of patent or registration of utility model

Ref document number: 6432869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250