JP6432084B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP6432084B2
JP6432084B2 JP2015021409A JP2015021409A JP6432084B2 JP 6432084 B2 JP6432084 B2 JP 6432084B2 JP 2015021409 A JP2015021409 A JP 2015021409A JP 2015021409 A JP2015021409 A JP 2015021409A JP 6432084 B2 JP6432084 B2 JP 6432084B2
Authority
JP
Japan
Prior art keywords
air
temperature
set temperature
heater
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021409A
Other languages
Japanese (ja)
Other versions
JP2016141381A (en
Inventor
石田 修
修 石田
基紀 水島
基紀 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015021409A priority Critical patent/JP6432084B2/en
Publication of JP2016141381A publication Critical patent/JP2016141381A/en
Application granted granted Critical
Publication of JP6432084B2 publication Critical patent/JP6432084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

この発明は、PTC(Positive Temperature Coefficiet)ヒータを利用して暖房運転を行う車両用空調装置に関するものである。   The present invention relates to a vehicle air conditioner that performs a heating operation using a PTC (Positive Temperature Coefficient) heater.

エンジンを搭載する車両の多くは、エンジンの冷却水を用いて車室内の暖房が行われる。具体的には、車両用空調装置では、ヒータコアにエンジンの冷却水が導入され、送風空気をヒータコアとの間で熱交換し、昇温された空気を車室内に吹き出すようになっている。   In many vehicles equipped with an engine, the vehicle interior is heated using engine coolant. Specifically, in the vehicle air conditioner, engine cooling water is introduced into the heater core, heat exchange is performed between the blown air and the heater core, and the heated air is blown into the vehicle interior.

また、この種の車両用空調装置として、複数の室内エリア(例えば、運転席エリアと助手席エリア)に吹き出す空調空気の温度をそれぞれ独立して設定調整できる車両用空調装置が案出されている(特許文献1参照)。   Further, as this type of vehicle air conditioner, a vehicle air conditioner has been devised that can independently set and adjust the temperature of the conditioned air that is blown into a plurality of indoor areas (for example, the driver seat area and the passenger seat area). (See Patent Document 1).

特開昭58−122213号公報JP 58-122213 A

近年、エンジンを搭載しない電気自動車等の普及に伴い、車両用空調装置のヒータ手段として、PTCヒータの利用が検討されている。PTCヒータは、温度の上昇とともに抵抗値が増大する特性を持つPTC素子を内蔵するものであるため、不要な電力消費を抑制しつつ発熱体の温度を一定以下に維持することができる。   In recent years, with the widespread use of electric vehicles and the like that are not equipped with engines, the use of PTC heaters as heater means for vehicle air conditioners has been studied. Since the PTC heater incorporates a PTC element having a characteristic that the resistance value increases as the temperature rises, the temperature of the heating element can be maintained below a certain level while suppressing unnecessary power consumption.

現在、PTCヒータをヒータ手段として用いる車両用空調装置においても、特許文献1に記載の車両用空調装置と同様に、複数の室内エリアに吹き出す空調空気の温度をそれぞれ独立して設定調整できることが望まれている。この場合、各室内エリアに空調空気を吹き出す吹き出し通路にそれぞれPTCヒータを個別に設置することも考えられるが、PTCヒータを各吹き出し通路に個別に設置すると、部品点数の増加を来すとともに温度調整のための制御が複雑になる。   At present, in a vehicle air conditioner that uses a PTC heater as a heater means, as with the vehicle air conditioner described in Patent Document 1, it is hoped that the temperature of conditioned air blown into a plurality of indoor areas can be set and adjusted independently. It is rare. In this case, it may be possible to install PTC heaters individually in the outlet passages for blowing the conditioned air into each indoor area. However, if the PTC heaters are installed individually in each outlet passage, the number of parts increases and the temperature is adjusted. The control for becomes complicated.

また、この対策として、複数の吹き出し通路で共通のPTCヒータを用いることも考えられるが、この場合、共用するPTCヒータのヒータ能力を任意の目標温度に設定し、各吹き出し通路のPTCヒータの近傍部の温度をフィードバックして対応する通路のエアミックスドアの開度を制御することになる。   As a countermeasure, a common PTC heater may be used for a plurality of blowing passages. In this case, the heater capacity of the shared PTC heater is set to an arbitrary target temperature, and the vicinity of the PTC heater in each blowing passage. The opening of the air mix door in the corresponding passage is controlled by feeding back the temperature of the section.

しかし、このように各吹き出し通路のPTCヒータの近傍部の温度をフィードバックして対応するエアミックスドアの開度を制御する場合、一の室内エリアと残余の室内エリアの設定温度が異なるときに、設定温度の低い側のエアミックスドアの作動が不安定になり、乗員に違和感を与える可能性が高くなる。   However, when controlling the opening degree of the corresponding air mix door by feeding back the temperature in the vicinity of the PTC heater of each blowing passage in this way, when the set temperatures of one indoor area and the remaining indoor area are different, The operation of the air mix door on the lower set temperature side becomes unstable, and there is a high possibility that the passenger will feel uncomfortable.

即ち、例えば、PTCヒータのヒータ能力を任意に設定し、設定温度の高い側の吹き出し通路のエアミックスドアの開度を最大にする一方で、設定温度の低い側の吹き出し通路のエアミックスドアの開度を相対的に狭めると、設定温度の低い側の吹き出し通路でのPTCヒータの空気導入量が減少する結果、その吹き出し通路でのフィードバック温度が上昇してしまう。このため、この後に設定温度の低い側のエアミックスドアの開度がさらに狭められ、エアミックスドアの作動が不安定になってしまう。   That is, for example, the heater capacity of the PTC heater is arbitrarily set to maximize the opening degree of the air mix door in the blowout passage on the higher set temperature side, while the air mix door in the blowout passage on the lower set temperature side. If the opening degree is relatively narrowed, the amount of air introduced into the PTC heater in the blowing passage on the side where the set temperature is low decreases, and as a result, the feedback temperature in the blowing passage rises. For this reason, the opening degree of the air mix door on the lower set temperature side is further narrowed thereafter, and the operation of the air mix door becomes unstable.

そこでこの発明は、複数の室内エリアに吹き出す空調空気の温度を安定して制御することができる車両用空調装置を提供しようとするものである。   Therefore, the present invention is intended to provide a vehicle air conditioner that can stably control the temperature of conditioned air blown into a plurality of indoor areas.

この発明に係る車両用空調装置は、上記課題を解決するために、複数の室内エリア(例えば、実施形態の室内エリアDa,Aa)に対応して設けられ、各室内エリアに空調空気を個別に吹き出す複数の吹き出し通路(例えば、実施形態の吹き出し通路20D,20A)と、室内または室外から空気を取り込んで下流側に空気を送り込むブロア(例えば、実施形態のブロア52)と、複数の前記吹き出し通路に介装されて通過する空気を昇温するヒータ手段と、各前記吹き出し通路に設けられ、前記ヒータ手段を通過する前記ブロアの送風空気と前記ヒータ手段を通過しない前記ブロアの送風空気の割合を調整するエアミックスドア(例えば、実施形態のエアミックスドア54D,54A)と、を備え、前記室内エリアの空調空気の温度がそれぞれ独立して設定調整可能とされた車両用空調装置において、前記ヒータ手段は、PTC素子を有するPTCヒータによって構成され、一の室内エリアの設定温度と残余の室内エリアの設定温度が異なる場合には、設定温度の高い側の吹き出し通路のエアミックスドアの開度を任意の開度に設定して、前記PTCヒータのヒータ能力を、設定温度の高い側の室内エリアの設定温度に近づくように制御するとともに、設定温度の低い側の吹き出し通路のエアミックスドアの開度を、前記PTCヒータを通過する送風空気の割合が設定温度の高い側の吹き出し通路よりも小さくなる開度に固定するようにした。   In order to solve the above problems, the vehicle air conditioner according to the present invention is provided corresponding to a plurality of indoor areas (for example, the indoor areas Da and Aa in the embodiment), and individually supplies the conditioned air to each indoor area. A plurality of blow-out passages (for example, the blow-out passages 20D and 20A in the embodiment), a blower (for example, the blower 52 in the embodiment) that takes in air indoors or outdoors and sends the air downstream, and a plurality of the blow-out passages The heater means for raising the temperature of the air that passes through the heater means, and the ratio of the blower air that is provided in each of the blowing passages and that passes through the heater means and the blower air that does not pass through the heater means An air mix door to be adjusted (for example, the air mix doors 54D and 54A of the embodiment), and the temperature of the conditioned air in the indoor area is In the vehicle air conditioner that can be set and adjusted independently, the heater means is composed of a PTC heater having a PTC element, and the set temperature of one indoor area is different from the set temperature of the remaining indoor area. Set the opening of the air mix door in the blowing passage on the higher set temperature side to an arbitrary opening so that the heater capacity of the PTC heater approaches the set temperature of the indoor area on the higher set temperature side In addition to controlling, the opening degree of the air mix door in the blowing passage on the lower set temperature side is fixed to the opening degree in which the ratio of the blown air passing through the PTC heater is smaller than that in the blowing passage on the higher set temperature side. I made it.

この構成により、一の室内エリアの設定温度と残余の室内エリアの設定温度が異なる場合には、設定温度の高い側の吹き出し通路では、エアミックスドアの開度が任意の開度に設定され、PTCヒータのヒータ能力が、設定温度の高い側の室内エリアの設定温度に近づくように制御される。このとき、設定温度の低い側の吹き出し通路では、エアミックスドアの開度が、設定温度の高い側のエアミックスドアの開度よりも小さい開度に固定される。このため、設定温度の低い側の吹き出し通路においては、PTCヒータの温度変化の影響を受けることなく、ほぼ一定流量の空気がPTCヒータ方向に安定して流れることになる。したがって、エアミックスドアの不要な開度の変動が生じなくなるため、室内エリアにいる乗員に違和感を与えることもない。   With this configuration, when the set temperature of one indoor area and the set temperature of the remaining indoor area are different, the opening degree of the air mix door is set to an arbitrary opening degree in the blowing passage on the higher set temperature side, The heater capacity of the PTC heater is controlled so as to approach the set temperature of the indoor area on the higher set temperature side. At this time, the opening degree of the air mix door is fixed to an opening degree smaller than the opening degree of the air mix door on the higher set temperature side in the blowing passage on the lower set temperature side. For this reason, in the blowing passage on the side where the set temperature is low, the air with a substantially constant flow rate stably flows in the direction of the PTC heater without being affected by the temperature change of the PTC heater. Therefore, the opening degree of the air mix door does not fluctuate and the passenger in the indoor area does not feel uncomfortable.

設定温度の低い側の吹き出し通路のエアミックスドアの開度は、温度の高い側の設定温度と温度の低い側の設定温度の差に応じて、当該差が大きいほど設定温度の低い側の吹き出し通路における前記PTCヒータを通過する送風空気の割合が小さくなるように設定されることが望ましい。
この場合、迅速にかつ正確に各室内エリアの温度を制御することが可能になる。
Depending on the difference between the set temperature on the higher temperature side and the set temperature on the lower temperature side, the opening degree of the air mix door on the lower temperature setting side of the outlet passage is larger. It is desirable that the ratio of the blown air passing through the PTC heater in the passage is set to be small.
In this case, the temperature of each indoor area can be controlled quickly and accurately.

この発明によれば、一の室内エリアの設定温度と残余の室内エリアの設定温度が異なる場合に、設定温度の高い側の吹き出し通路で、エアミックスドアの開度が任意の開度に設定されて、PTCヒータのヒータ能力が、設定温度の高い側の室内エリアの設定温度に近づくように制御されるとともに、設定温度の低い側の吹き出し通路で、エアミックスドアの開度が、設定温度の高い側のエアミックスドアの開度よりも小さい開度に固定されるため、PTCヒータの温度変化の影響を受けることなく、複数の室内エリアに吹き出す空調空気の温度を安定して制御することができる。   According to this invention, when the set temperature of one indoor area is different from the set temperature of the remaining indoor area, the opening degree of the air mix door is set to an arbitrary opening degree in the blowing passage on the higher set temperature side. The heater capacity of the PTC heater is controlled so as to approach the set temperature of the indoor area on the higher set temperature side, and the opening of the air mix door is set to the set temperature in the blowout passage on the lower set temperature side. Since the opening is smaller than the opening of the higher air mix door, it is possible to stably control the temperature of the conditioned air blown to a plurality of indoor areas without being affected by the temperature change of the PTC heater. it can.

この発明の一実施形態に係る車両用空調装置の構成図である。It is a block diagram of the vehicle air conditioner which concerns on one Embodiment of this invention. この発明の一実施形態に係る空調ユニットの模式的な水平断面図である。It is a typical horizontal sectional view of an air-conditioning unit concerning one embodiment of this invention. この発明の一実施形態に係る車両用空調装置の構成図である。It is a block diagram of the vehicle air conditioner which concerns on one Embodiment of this invention. この発明の一実施形態に係る車両用空調装置の制御の一例を示すフローチャートである。It is a flowchart which shows an example of control of the vehicle air conditioner which concerns on one Embodiment of this invention. この発明の一実施形態に係るコンプレッサで利用可能な圧縮比−回転数領域を説明するための図である。It is a figure for demonstrating the compression ratio-rotation speed area | region which can be utilized with the compressor which concerns on one Embodiment of this invention.

以下、この発明の一実施形態を図面に基づいて説明する。
図1〜図3は、この実施形態に係る車両用空調装置10の構成を示す図である。
この実施形態に係る車両用空調装置10は、例えば、車両駆動源としてエンジン(内燃機関)を具備していない電気自動車等の電動車両に搭載される。車両用空調装置10は、車室内または車室外から空気を取り込み、その空気を温度調整して車室内に吹き出す空調ユニット11と、空調ユニット11を制御する空調制御装置15と、乗員による空調温度の設定操作や運転モードの設定操作を受け付ける空調設定部16と、を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1-3 is a figure which shows the structure of the vehicle air conditioner 10 which concerns on this embodiment.
The vehicle air conditioner 10 according to this embodiment is mounted on an electric vehicle such as an electric vehicle that does not include an engine (internal combustion engine) as a vehicle drive source. The vehicle air conditioner 10 takes in air from the passenger compartment or outside the passenger compartment, adjusts the temperature of the air and blows it out into the passenger compartment, an air conditioning controller 15 that controls the air conditioner unit 11, and the air conditioning temperature of the passenger. And an air-conditioning setting unit 16 that accepts setting operations and operation mode setting operations.

また、この車両用空調装置10は、運転席側の室内エリアDaに空調空気を吹き出す運転席側の吹き出し通路20Dと、助手席側の室内エリアAaに空調空気を吹き出す助手席側の吹き出し通路20Aを有し、運転席側の室内エリアDaの空調温度と助手席側の室内エリアAaの空調温度とをそれぞれ独立して設定調整可能とされている。空調設定部16は、運転席側の温度設定部16Dと助手席側の温度設定部16Aとを有している。   Further, the vehicle air conditioner 10 includes a driver-seat-side blowing passage 20D that blows conditioned air into the driver-seat-side indoor area Da and a passenger-seat-side blowing passage 20A that blows conditioned air into the passenger-seat-side indoor area Aa. The air conditioning temperature of the driver seat side indoor area Da and the air conditioning temperature of the passenger seat side indoor area Aa can be set and adjusted independently of each other. The air conditioning setting unit 16 includes a temperature setting unit 16D on the driver's seat side and a temperature setting unit 16A on the passenger seat side.

空調ユニット11は、下流側に空気を送り込むためのブロア52がユニット基部51に収容されている。ユニット基部51には、車両の内気を取り込むための空気取込口56aと、車両の外気を取り込むための空気取込口56bが設けられている。空気取込口56a,56bは、内気ドア72と外気ドア73によってそれぞれ開閉され、例えば、空調制御装置15による制御により内気ドア72と外気ドア73の開度が調整されることで、ユニット基部51内に流入する内気と外気の流量割合が調整される。   In the air conditioning unit 11, a blower 52 for sending air to the downstream side is accommodated in the unit base 51. The unit base 51 is provided with an air intake port 56a for taking in the inside air of the vehicle and an air intake port 56b for taking in the outside air of the vehicle. The air intake ports 56a and 56b are opened and closed by the inside air door 72 and the outside air door 73, respectively. For example, the unit base 51 is adjusted by adjusting the opening degree of the inside air door 72 and the outside air door 73 by the control of the air conditioning control device 15. The flow rate ratio between the inside air and the outside air flowing into the inside is adjusted.

空調ユニット11のユニット基部51には、ブロア52から吹き出された空気が導入される導風ダクト17が接続されている。導風ダクト17には、後述するヒートポンプサイクル12のエバポレータ53と室内コンデンサ55とが介装されるとともに、PTC(Positive Temperature Coefficiet)ヒータ18が介装されている。   An air guide duct 17 into which air blown from the blower 52 is introduced is connected to the unit base 51 of the air conditioning unit 11. The air guide duct 17 is provided with an evaporator 53 and an indoor condenser 55 of the heat pump cycle 12 described later, and a PTC (Positive Temperature Coefficient) heater 18 is interposed.

エバポレータ53は、ヒートポンプサイクル12内の低圧の冷媒と車室内雰囲気(空調ユニット11の導風ダクト17内の空気)との熱交換を行ない、冷媒が蒸発する際の吸熱によって、エバポレータ53を通過する空気を冷却する。
室内コンデンサ55は、ヒートポンプサイクル12内の高温かつ高圧の冷媒によって放熱可能であって、室内コンデンサ55を通過する空調空気を加熱する。
The evaporator 53 performs heat exchange between the low-pressure refrigerant in the heat pump cycle 12 and the vehicle interior atmosphere (air in the air guide duct 17 of the air conditioning unit 11), and passes through the evaporator 53 by heat absorption when the refrigerant evaporates. Cool the air.
The indoor condenser 55 can be radiated by the high-temperature and high-pressure refrigerant in the heat pump cycle 12 and heats the conditioned air passing through the indoor condenser 55.

空調ユニット11の導風ダクト17内においては、エバポレータ53がユニット基部51に近接する上流側に介装されている。導風ダクト17のエバポレータ53の介装部よりも下流側は、図2に示すように、その内部が仕切り板19によって左右に仕切られ、運転席側の吹き出し通路20Dと助手席側の吹き出し通路20Aとに分離されている。
PTCヒータ18と室内コンデンサ55とは、仕切り板19を貫通して運転席側の吹き出し通路20Dと助手席側の吹き出し通路20Aとに跨って配置されている。また、PTCヒータ18は、吹き出し通路20D,20A内の室内コンデンサ55よりも上流側に配置されている。
In the air guide duct 17 of the air conditioning unit 11, an evaporator 53 is interposed on the upstream side close to the unit base 51. As shown in FIG. 2, the inside of the air guide duct 17 downstream of the interposing portion of the evaporator 53 is partitioned into left and right by a partition plate 19, and the driver seat side blowing passage 20D and the passenger seat side blowing passage. It is separated into 20A.
The PTC heater 18 and the indoor condenser 55 are disposed so as to pass through the partition plate 19 and straddle the blowing passage 20D on the driver's seat side and the blowing passage 20A on the passenger seat side. Further, the PTC heater 18 is disposed upstream of the indoor condenser 55 in the blowing passages 20D and 20A.

運転席側の吹き出し通路20Dの内部は、PTCヒータ18や室内コンデンサ55の配置される昇温流路20D−1と、PTCヒータ18や室内コンデンサ55の配置されない迂回流路20D−2と、に分離されている。運転席側の吹き出し通路20Dの上流側には、昇温流路20D−aを通過するブロア52の送風空気と迂回流路20D−2を通過するブロア52の送風空気の割合を調整するエアミックスドア54Dが設置されている。また、運転席側の吹き出し通路20Dの下流側は、昇温流路20D−1と迂回流路20D−2とが合流して運転席側の室内エリアDaに臨む吹き出し口14Dに接続されている。   Inside the blowing passage 20D on the driver's seat side are a temperature rising flow path 20D-1 where the PTC heater 18 and the indoor condenser 55 are arranged, and a bypass flow path 20D-2 where the PTC heater 18 and the indoor condenser 55 are not arranged. It is separated. On the upstream side of the blowing passage 20D on the driver's seat side, an air mix that adjusts the ratio of the blown air of the blower 52 that passes through the temperature raising flow path 20D-a and the blown air of the blower 52 that passes through the bypass flow path 20D-2. A door 54D is installed. Further, the downstream side of the driver seat side outlet passage 20D is connected to the outlet port 14D facing the indoor area Da on the driver seat side where the heating channel 20D-1 and the bypass channel 20D-2 merge. .

同様に、助手席側の吹き出し通路20Aの内部は、PTCヒータ18や室内コンデンサ55の配置される昇温流路20A−1と、PTCヒータ18や室内コンデンサ55の配置されない迂回流路20A−2と、に分離されている。助手席側の吹き出し通路20Aの上流側には、昇温流路20A−aを通過するブロア52の送風空気と迂回流路20A−2を通過するブロア52の送風空気の割合を調整するエアミックスドア54Aが設置されている。そして、助手席側の吹き出し通路20Aの下流側は、昇温流路20A−1と迂回流路20A−2とが合流して助手席側の室内エリアAaに臨む吹き出し口14Aに接続されている。   Similarly, the inside of the blowing passage 20A on the passenger seat side is a temperature rising flow path 20A-1 in which the PTC heater 18 and the indoor condenser 55 are arranged, and a bypass flow path 20A-2 in which the PTC heater 18 and the indoor condenser 55 are not arranged. And are separated. On the upstream side of the blowing passage 20A on the passenger seat side, an air mix that adjusts the ratio of the blown air of the blower 52 that passes through the temperature rising flow path 20A-a and the blown air of the blower 52 that passes through the bypass flow path 20A-2. A door 54A is installed. Further, the downstream side of the blowing passage 20A on the passenger seat side is connected to the blowing port 14A facing the indoor area Aa on the passenger seat side where the heating channel 20A-1 and the bypass channel 20A-2 merge. .

運転席側の吹き出し口14Dと助手席側の吹き出し口14Aには、それぞれ空調空気の吹き出し側の温度を検出するための温度センサ13D,13Aが設置されている。これらの温度センサ13D,13Aで検出された温度信号は空調制御装置15に入力され、空調制御装置15による各種の制御に用いられる。空調制御装置15は、後に詳述するヒートポンプサイクル12やブロア52の運転を制御するとともに、PTCヒータ18のヒータ能力と運転席側及び助手席側のエアミックスドア54D,54Aの開度を制御する。なお、図1,図3中の符号18aは、PTCヒータ18のヒータ能力を調整するための調整回路である。なお、ヒータ能力の制御とは、例えば、PTC素子に通電する電流の制御である。   Temperature sensors 13 </ b> D and 13 </ b> A for detecting the temperature of the air-conditioning air blowing side are installed at the driver's side blowing port 14 </ b> D and the passenger's side blowing port 14 </ b> A, respectively. The temperature signals detected by these temperature sensors 13D and 13A are input to the air conditioning control device 15 and used for various controls by the air conditioning control device 15. The air-conditioning control device 15 controls the operation of the heat pump cycle 12 and the blower 52, which will be described in detail later, and also controls the heater capacity of the PTC heater 18 and the opening degrees of the air mix doors 54D and 54A on the driver side and passenger side. . 1 and 3 is an adjustment circuit for adjusting the heater capacity of the PTC heater 18. Note that the control of the heater capacity is, for example, control of the current that flows through the PTC element.

ヒートポンプサイクル12は、上述したエバポレータ53及び室内コンデンサ55と、冷媒を圧縮する電動式のコンプレッサ21と、暖房用減圧弁22と、冷房用電磁弁23と、室外熱交換器24と、三方弁25と、気液分離器26と、冷房用減圧弁27と、を備え、これら各構成部材が冷媒流路31を介して接続されている。   The heat pump cycle 12 includes the above-described evaporator 53 and indoor condenser 55, an electric compressor 21 that compresses refrigerant, a heating pressure reducing valve 22, a cooling electromagnetic valve 23, an outdoor heat exchanger 24, and a three-way valve 25. A gas-liquid separator 26 and a cooling pressure reducing valve 27, and these components are connected to each other through a refrigerant flow path 31.

コンプレッサ21は、気液分離器26と室内コンデンサ55との間に接続されている。コンプレッサ21は、例えば、空調制御装置15により制御されるモータによって駆動され、気液分離器26から気相の冷媒(冷媒ガス)を吸入するとともに、この冷媒を圧縮した後に高温かつ高圧の冷媒として上述した室内コンデンサ55に吐出する。   The compressor 21 is connected between the gas-liquid separator 26 and the indoor condenser 55. For example, the compressor 21 is driven by a motor controlled by the air-conditioning control device 15 and sucks a gas-phase refrigerant (refrigerant gas) from the gas-liquid separator 26 and compresses the refrigerant as a high-temperature and high-pressure refrigerant. It discharges to the indoor capacitor | condenser 55 mentioned above.

冷媒流路31の室内コンデンサ55の下流側には、暖房用減圧弁22と、冷房用電磁弁23とが並列に配置されている。
暖房用減圧弁22は、いわゆる絞り弁であって、室内コンデンサ55から吐出された冷媒を、減圧して膨張させた後、低温かつ低圧で気液2相(液相リッチ)の噴霧状の冷媒として室外熱交換器24に吐出する。
On the downstream side of the indoor condenser 55 in the refrigerant flow path 31, the heating pressure reducing valve 22 and the cooling electromagnetic valve 23 are arranged in parallel.
The heating pressure reducing valve 22 is a so-called throttle valve, and after the refrigerant discharged from the indoor condenser 55 is decompressed and expanded, it is a low temperature and low pressure gas-liquid two-phase (liquid phase rich) spray-like refrigerant. To the outdoor heat exchanger 24.

冷房用電磁弁23は、冷媒流路31上において、暖房用減圧弁22の両側に設けられた第1分岐部32aと第2分岐部32bの間を接続するとともに、暖房用減圧弁22を迂回する迂回流路32上に設けられ、例えば、空調制御装置15による制御により開閉される。なお、冷房用電磁弁23は、暖房運転には閉状態とされ、冷房運転の実行時には開状態とされる。
これにより、ヒートポンプサイクル12による暖房運転の実行時には、室内コンデンサ55から排出された冷媒は暖房用減圧弁22で大きく減圧され、低温かつ低圧の状態で室外熱交換器24に流入する。一方、冷房運転の実行時には、室内コンデンサ55から排出された冷媒は冷房用電磁弁23を通過して高温の状態で室外熱交換器24に流入する。
The cooling electromagnetic valve 23 connects the first branch portion 32a and the second branch portion 32b provided on both sides of the heating pressure reducing valve 22 on the refrigerant flow path 31 and bypasses the heating pressure reducing valve 22. For example, it is opened and closed by control by the air conditioning control device 15. The cooling electromagnetic valve 23 is closed during the heating operation, and is opened during the cooling operation.
Thereby, when the heating operation by the heat pump cycle 12 is executed, the refrigerant discharged from the indoor condenser 55 is greatly decompressed by the heating pressure reducing valve 22 and flows into the outdoor heat exchanger 24 in a low temperature and low pressure state. On the other hand, when the cooling operation is performed, the refrigerant discharged from the indoor condenser 55 passes through the cooling electromagnetic valve 23 and flows into the outdoor heat exchanger 24 in a high temperature state.

室外熱交換器24は、車室外に配置され、内部に流入した冷媒と車室外雰囲気との間で熱交換を行なう。暖房運転の実行時には、室外熱交換器24は内部に流入する低温かつ低圧の冷媒によって車室外雰囲気から吸熱可能であって、車室外雰囲気からの吸熱によって冷媒を昇温する。また、冷房運転の実行時には、室外熱交換器24は内部に流入する高温の冷媒によって車室外雰囲気へと放熱可能であって、車室外雰囲気への放熱及びコンデンサーファン24aの送風によって冷媒を冷却する。   The outdoor heat exchanger 24 is disposed outside the passenger compartment, and performs heat exchange between the refrigerant flowing into the interior and the atmosphere outside the passenger compartment. When the heating operation is performed, the outdoor heat exchanger 24 can absorb heat from the outside atmosphere of the vehicle by the low-temperature and low-pressure refrigerant flowing into the interior, and the temperature of the refrigerant is increased by the absorption of heat from the outside atmosphere of the vehicle. When the cooling operation is performed, the outdoor heat exchanger 24 can dissipate heat to the vehicle exterior atmosphere by the high-temperature refrigerant flowing into the interior, and cools the refrigerant by heat radiation to the vehicle exterior atmosphere and ventilation of the condenser fan 24a. .

三方弁25は、室外熱交換器24から流出した冷媒を気液分離器26または冷房用減圧弁27に切り換えて吐出する。具体的に、三方弁25は、室外熱交換器24と、気液分離器26側に配置された合流部33と、冷房用減圧弁27と、に接続され、例えば、空調制御装置15による制御により冷媒の流通方向が切換えられる。
暖房運転の実行時には、三方弁25は室外熱交換器24から流出した冷媒を気液分離器26側の合流部33に向けて吐出する。また、冷房運転の実行時には、三方弁25は室外熱交換器24から流出した冷媒を冷房用減圧弁27に向けて吐出する。
The three-way valve 25 switches the refrigerant flowing out of the outdoor heat exchanger 24 to the gas-liquid separator 26 or the cooling pressure reducing valve 27 and discharges it. Specifically, the three-way valve 25 is connected to the outdoor heat exchanger 24, the junction 33 disposed on the gas-liquid separator 26 side, and the cooling pressure reducing valve 27, and is controlled by the air conditioning control device 15, for example. Thus, the flow direction of the refrigerant is switched.
When the heating operation is performed, the three-way valve 25 discharges the refrigerant that has flowed out of the outdoor heat exchanger 24 toward the merging portion 33 on the gas-liquid separator 26 side. Further, when the cooling operation is performed, the three-way valve 25 discharges the refrigerant flowing out of the outdoor heat exchanger 24 toward the cooling pressure reducing valve 27.

気液分離器26は、冷媒流路31中の合流部33とコンプレッサ21との間に接続され、合流部33から流出した冷媒の気液を分離し、気相の冷媒(冷媒ガス)をコンプレッサ21に吸入させる。   The gas-liquid separator 26 is connected between the merging portion 33 in the refrigerant flow path 31 and the compressor 21, separates the gas-liquid refrigerant flowing out from the merging portion 33, and converts the gas-phase refrigerant (refrigerant gas) into the compressor. 21 inhale.

冷房用減圧弁27は、いわゆる絞り弁であって、三方弁25とエバポレータ53の流入口との間に接続され、例えば、空調制御装置15によって制御される弁開度に応じて三方弁25から流出した冷媒を減圧して膨張させた後、低温かつ低圧で気液2相(気相リッチ)の噴霧状の冷媒としてエバポレータ53に吐出する。
エバポレータ53は、冷房用減圧弁27と合流部33(気液分離器26)との間に接続されている。
The cooling pressure reducing valve 27 is a so-called throttle valve, and is connected between the three-way valve 25 and the inlet of the evaporator 53. For example, according to the valve opening controlled by the air conditioning control device 15, the three-way valve 25 After the refrigerant flowing out is decompressed and expanded, it is discharged to the evaporator 53 as a gas-liquid two-phase (vapor-phase rich) spray-like refrigerant at a low temperature and low pressure.
The evaporator 53 is connected between the cooling pressure reducing valve 27 and the merging portion 33 (gas-liquid separator 26).

ヒートポンプサイクル12による暖房運転を行う場合には、図1に示すように、冷房用電磁弁23が閉状態とされ、三方弁25が室外熱交換器24と合流部33とを接続する状態とされる。この場合、ヒートポンプサイクル12においては、コンプレッサ21から吐出された高温かつ高圧の冷媒が、室内コンデンサ55における放熱によって運転席用と助手席側の各吹き出し通路20D,20Aを通過する空調空気を加熱する。   When performing the heating operation by the heat pump cycle 12, as shown in FIG. 1, the cooling electromagnetic valve 23 is closed, and the three-way valve 25 is connected to the outdoor heat exchanger 24 and the junction 33. The In this case, in the heat pump cycle 12, the high-temperature and high-pressure refrigerant discharged from the compressor 21 heats the conditioned air passing through the blowing passages 20 </ b> D and 20 </ b> A for the driver seat and the passenger seat by the heat radiation in the indoor condenser 55. .

ヒートポンプサイクル12による冷房運転を行う場合には、図3に示すように、冷房用電磁弁23が開状態(暖房用減圧弁22が閉状態)とされ、三方弁25が室外熱交換器24と冷房用減圧弁27とを接続する状態とされる。なお、このとき各吹き出し通路20D,20Aのエアミックスドア54D,54Aは、例えば、室内コンデンサ55の存在する昇温流路20D−1,20A−1側を閉じた状態とされる。この場合、ヒートポンプサイクル12においては、コンプレッサ21から吐出された高温かつ高圧の冷媒が、室内コンデンサ55と冷房用電磁弁23を通過して、室外熱交換器24において車室外雰囲気へと放熱された後、冷房用減圧弁27に流入する。このとき、冷媒は、冷房用減圧弁27によって膨張させられて液相リッチの噴霧状とされ、次に、エバポレータ53における吸熱によって運転席用と助手席側の各吹き出し通路20D,20Aから吹き出される空調空気を冷却する。   When performing the cooling operation by the heat pump cycle 12, as shown in FIG. 3, the cooling electromagnetic valve 23 is opened (the heating pressure reducing valve 22 is closed), and the three-way valve 25 is connected to the outdoor heat exchanger 24. The cooling pressure reducing valve 27 is connected. At this time, the air mix doors 54D and 54A of the blowing passages 20D and 20A are closed, for example, on the temperature rising flow paths 20D-1 and 20A-1 side where the indoor condenser 55 exists. In this case, in the heat pump cycle 12, the high-temperature and high-pressure refrigerant discharged from the compressor 21 passes through the indoor condenser 55 and the cooling electromagnetic valve 23 and is radiated to the outdoor atmosphere in the outdoor heat exchanger 24. Thereafter, the refrigerant flows into the cooling pressure reducing valve 27. At this time, the refrigerant is expanded by the cooling pressure reducing valve 27 to form a liquid-rich spray, and then blown out from the blowing passages 20D and 20A on the driver's seat and on the passenger seat side due to heat absorption in the evaporator 53. Cool the conditioned air.

つづいて、この実施形態に係る車両用空調装置10のPTCヒータ18による暖房制御について説明する。
PTCヒータ18による暖房運転では、運転席側と助手席側の温度設定部16D,16Aの設定温度が同じ場合には、空調制御装置15が予め記憶されているマップにしたがって、PTCヒータ18のヒータ能力(例えば、通電電流)と、運転席側と助手席側の各エアミックスドア54D,54Aの開度を制御する。
Next, heating control by the PTC heater 18 of the vehicle air conditioner 10 according to this embodiment will be described.
In the heating operation by the PTC heater 18, when the set temperatures of the temperature setting units 16D and 16A on the driver seat side and the passenger seat side are the same, the heater of the PTC heater 18 according to the map stored in advance by the air conditioning control device 15 Ability (for example, energization current) and the opening degree of each air mix door 54D, 54A on the driver's seat side and the passenger seat side are controlled.

また、運転席側と助手席側の温度設定部16D,16Aの設定温度が異なる場合には、空調制御装置15は、PTCヒータ18と各エアミックスドア54D,54Aの開度を以下のように制御する。
即ち、今、運転席側の温度設定部16Dの設定温度が助手席側の温度設定部16Aの設定温度よりも高いものとすると、空調制御装置15は、設定温度の高い運転席側の吹き出し通路20Dのエアミックスドア54Dの開度を任意の開度(例えば、予めマップに記憶されている条件に応じた開度)に設定して、PTCヒータ18のヒータ能力を運転席側の温度設定部16Dの設定温度に近づくように制御するとともに、設定温度の低い助手席側の吹き出し通路20Aのエアミックスドア54Aの開度を、運転席側の吹き出し通路20Dのエアミックスドア54Dの開度よりも小さい設定開度(PTCヒータ18を通過する空調空気の割合が小さくなる設定開度)に固定する。なお、助手席側の温度設定部16Aの設定温度が運転席側の温度設定部16Dの設定温度よりも高い場合には、各部の制御が運転席側と助手席側とで逆になる。
When the set temperatures of the temperature setting units 16D and 16A on the driver's seat side and the passenger seat side are different, the air conditioning control device 15 sets the opening degrees of the PTC heater 18 and the air mix doors 54D and 54A as follows. Control.
That is, now, assuming that the setting temperature of the temperature setting unit 16D on the driver's seat side is higher than the setting temperature of the temperature setting unit 16A on the passenger seat side, the air conditioning control device 15 causes the blowing passage on the driver's seat side with a high setting temperature. The opening degree of the air mixing door 54D of 20D is set to an arbitrary opening degree (for example, an opening degree according to the conditions stored in the map in advance), and the heater capacity of the PTC heater 18 is set to the temperature setting unit on the driver's seat side. The opening of the air mix door 54A in the blowing passage 20A on the passenger seat side with a low setting temperature is controlled to approach the set temperature of 16D, and the opening of the air mixing door 54D in the blowing passage 20D on the driver seat side is lower. It is fixed at a small set opening (a set opening at which the ratio of conditioned air passing through the PTC heater 18 is small). In addition, when the set temperature of the temperature setting unit 16A on the passenger seat side is higher than the set temperature of the temperature setting unit 16D on the driver seat side, the control of each unit is reversed between the driver seat side and the passenger seat side.

ここで、設定温度の低い側の吹き出し通路20A(20D)のエアミックスドア54A(54D)の開度は、温度の高い側と低い側の設定温度の差に応じて、差が大きいほど開度が小さくなるように(PTCヒータ18を通過する送風空気の割合が小さくなるように)設定されている。このエアミックスドア54A(54D)の開度は、例えば、マップに予め記憶されている値に基づいて設定するようにしても良い。   Here, the opening degree of the air mix door 54A (54D) of the blowing passage 20A (20D) on the lower set temperature side is larger as the difference is larger depending on the difference between the higher temperature side and the lower set temperature. Is set to be small (so that the ratio of the blown air passing through the PTC heater 18 is small). The opening degree of the air mix door 54A (54D) may be set based on a value stored in advance in the map, for example.

車両用空調装置10のPTCヒータ18による暖房制御の一例を図4に示すフローチャートを参照して説明する。
ステップS101において、空調設定部16で温度設定操作が行われたものと判定されると、つづくステップS102において、運転席側と助手席側で設定温度が同じか否かを判定する。ここで同じである場合には、ステップS103に進み、異なる場合には、ステップS104へと進む。
ステップS103においては、予め記憶されているマップにしたがって、PTCヒータ18のヒータ能力と、運転席側と助手席側の各エアミックスドア54D,54Aの開度を制御する。
この結果、運転席側の室内エリアDaと助手席側の室内エリアAaは、同温度になるように速やかに制御される。
An example of heating control by the PTC heater 18 of the vehicle air conditioner 10 will be described with reference to a flowchart shown in FIG.
If it is determined in step S101 that the temperature setting operation has been performed by the air conditioning setting unit 16, it is determined in step S102 whether the set temperature is the same on the driver seat side and the passenger seat side. If they are the same, the process proceeds to step S103, and if they are different, the process proceeds to step S104.
In step S103, the heater capacity of the PTC heater 18 and the opening degrees of the air mix doors 54D and 54A on the driver seat side and the passenger seat side are controlled according to a map stored in advance.
As a result, the indoor area Da on the driver's seat side and the indoor area Aa on the passenger seat side are quickly controlled so as to have the same temperature.

一方、ステップS104に進んだ場合には、設定温度の高い側の吹き出し通路20D(20A)のエアミックスドア54D(54A)の開度を任意の開度(例えば、最大開度)に設定し、PTCヒータ18のヒータ能力を、温度センサ13D(13A)の検出信号をフィードバックして、温度の高い側の設定温度に近づくように制御する。
この後、ステップS105に進み、設定温度の低い側の吹き出し通路20A(20D)のエアミックスドア54A(54D)の開度を、設定温度の高い側のエアミックスドア54D(54A)の開度よりも小さい設定開度に固定する。
この結果、設定温度の低い側の吹き出し通路20A(20D)においては、PTCヒータ18の導風量の変化に伴う温度の変化の影響を受けることなく、ほぼ一定流量の空気がPTCヒータ18方向に安定して流れる。したがって、エアミックスドア54A(54D)の不要な開度の変動を招くことなく、運転席側と助手席側の各室内エリアDa,Aaの温度を設定温度に制御することができる。
On the other hand, when the process proceeds to step S104, the opening of the air mix door 54D (54A) of the blowing passage 20D (20A) on the higher set temperature side is set to an arbitrary opening (for example, the maximum opening), The heater capacity of the PTC heater 18 is controlled by feeding back a detection signal of the temperature sensor 13D (13A) so as to approach the set temperature on the higher temperature side.
Thereafter, the process proceeds to step S105, where the opening degree of the air mixing door 54A (54D) of the blowing passage 20A (20D) on the lower set temperature side is set to the opening degree of the air mixing door 54D (54A) on the higher setting temperature side. Is also fixed at a small opening.
As a result, in the blowing passage 20 </ b> A (20 </ b> D) on the side where the set temperature is low, the air at a substantially constant flow rate is stabilized in the direction of the PTC heater 18 without being affected by the change in the temperature accompanying the change in the air guide amount of the PTC heater 18. Then flow. Therefore, the temperature of each of the indoor areas Da and Aa on the driver's seat side and the passenger seat side can be controlled to the set temperature without causing unnecessary opening fluctuations of the air mix door 54A (54D).

以上のように、この実施形態に係る車両用空調装置10では、運転席側の室内エリアDaの設定温度と助手席側の室内エリアAaの設定温度が異なる場合に、設定温度の高い側の吹き出し通路20D(20A)でエアミックスドア54D(54A)の開度が任意の開度に設定されて、PTCヒータ18のヒータ能力が、設定温度の高い側の室内エリアDa(Aa)の設定温度に近づくように制御されるとともに、設定温度の低い側の吹き出し通路20A(20D)で、エアミックスドア54A(54D)の開度が、設定温度の高い側のエアミックスドア54D(54A)の開度よりも小さい開度に固定される。このため、この実施形態に係る車両用空調装置10においては、運転席側の室内エリアDaの設定温度と助手席側の室内エリアAaの設定温度が異なる場合にも、空気の導入量に応じたPTCヒータ18の温度変化の影響を受けることなく、運転席側の室内エリアDaと助手席側の室内エリアAaに吹き出す空調空気の温度を安定して制御することができる。   As described above, in the vehicle air conditioner 10 according to this embodiment, when the set temperature of the indoor area Da on the driver's seat side and the set temperature of the indoor area Aa on the passenger seat side are different, the blowing on the higher set temperature side The opening degree of the air mix door 54D (54A) is set to an arbitrary opening degree in the passage 20D (20A), and the heater capacity of the PTC heater 18 becomes the set temperature of the indoor area Da (Aa) on the higher set temperature side. The opening of the air mix door 54A (54D) is controlled so as to approach the opening 20A (20D) on the lower set temperature side, and the opening of the air mix door 54D (54A) on the higher set temperature side. Is fixed at a smaller opening. For this reason, in the vehicle air conditioner 10 according to this embodiment, even if the set temperature of the indoor area Da on the driver's seat side and the set temperature of the indoor area Aa on the front passenger seat are different, the amount of air introduced Without being influenced by the temperature change of the PTC heater 18, the temperature of the conditioned air blown out to the driver seat side indoor area Da and the passenger seat side indoor area Aa can be controlled stably.

また、この実施形態に係る車両用空調装置10においては、運転席側の室内エリアDaの設定温度と助手席側の室内エリアAaの設定温度が異なる場合に、設定温度の低い側の吹き出し通路20A(20D)のエアミックスドア54A(54D)の開度が、温度の高い側の設定温度と温度の低い側の設定温度の差が大きいほど開度が小さくなるように設定されている。このため、この車両用空調装置10においては、運転席側の室内エリアDaと助手席側の室内エリアAaに吹き出す空調空気の温度を迅速にかつ正確に所望の温度に調整することができる。   Further, in the vehicle air conditioner 10 according to this embodiment, when the set temperature in the driver seat side indoor area Da and the set temperature in the passenger seat side indoor area Aa are different, the blowout passage 20A on the lower set temperature side is provided. The opening degree of the air mixing door 54A (54D) of (20D) is set so that the opening degree decreases as the difference between the set temperature on the higher temperature side and the set temperature on the lower temperature side increases. For this reason, in this vehicle air conditioner 10, the temperature of the conditioned air blown out to the indoor area Da on the driver's seat side and the indoor area Aa on the passenger seat side can be quickly and accurately adjusted to a desired temperature.

ところで、この実施形態に係る車両用空調装置10においては、ヒートポンプサイクル12を循環する冷媒中に潤滑油が混入され、その潤滑油によってコンプレッサ21の回転部(ベアリング)や摩擦部(圧縮部)等の潤滑が行われるようになっている。しかし、コンプレッサ21の吸入側には圧力の低い状態で冷媒が導入されるため、運転状況によっては、コンプレッサ21の耐久面において厳しい状況となることがある。このため、この実施形態に係る車両用空調装置10においては、コンプレッサ21の回転数と圧縮比(吐出圧力/吸入圧力)に応じて後述する対策を講じている。   By the way, in the vehicle air conditioner 10 according to this embodiment, lubricating oil is mixed in the refrigerant circulating in the heat pump cycle 12, and the lubricating oil causes the rotating portion (bearing), the friction portion (compressing portion), and the like of the compressor 21 to be used. The lubrication is performed. However, since the refrigerant is introduced to the suction side of the compressor 21 at a low pressure, the durability of the compressor 21 may be severe depending on the operating conditions. For this reason, in the vehicle air conditioner 10 according to this embodiment, measures to be described later are taken according to the rotation speed of the compressor 21 and the compression ratio (discharge pressure / suction pressure).

図5は、コンプレッサ21の回転数と圧縮比の関係において、耐久面において厳しくなる境界ラインLを実験的に調べた図である。同図において、境界ラインLよりも下側となる領域は、冷媒中の潤滑油によって不具合なく各部の潤滑を行える領域(OK領域)であり、境界ラインLよりも上側の領域は、冷媒中の潤滑油が不足する領域(NG1領域、及び、NG2領域)である。NG1領域とNG2領域とは、コンプレッサ21の所定の回転数Nが境となっている。   FIG. 5 is a diagram in which a boundary line L, which becomes severe in terms of durability, is experimentally examined in the relationship between the rotation speed of the compressor 21 and the compression ratio. In the figure, the region below the boundary line L is a region (OK region) in which each part can be lubricated without failure by the lubricating oil in the refrigerant, and the region above the boundary line L is the region in the refrigerant. This is a region where the lubricating oil is insufficient (NG1 region and NG2 region). The NG1 region and the NG2 region are bordered by a predetermined rotational speed N of the compressor 21.

(NG1領域での対策)
NG1領域は、コンプレッサ21の運転回転数が低く、ヒートポンプサイクル12を循環する冷媒の流量自体が少ないため、コンプレッサ21の運転を停止する。
(Countermeasures in the NG1 area)
In the NG1 region, the operation speed of the compressor 21 is low, and the flow rate of the refrigerant circulating in the heat pump cycle 12 is small, so the operation of the compressor 21 is stopped.

(NG2領域での対策)
NG2領域は、コンプレッサ21の運転回転数が高過ぎ、冷媒の圧縮比も大きいため、図5中の矢印Aで示すように、OK領域に移行するようにコンプレッサ21の運転回転数を低減する。このとき、コンプレッサ21の運転回転数の低減に伴ってコンプレッサ21の圧縮比も減少する。
また、別の対策としては、図5中の矢印Bで示すように、OK領域に移行するように暖房用減圧弁や冷房用減圧弁の開度を増大することによってコンプレッサ21での圧縮比を減少させる。
これらの対策は運転状況等に応じて適宜選択する。
(Countermeasures in the NG2 area)
In the NG2 region, since the operating speed of the compressor 21 is too high and the compression ratio of the refrigerant is large, the operating speed of the compressor 21 is reduced so as to shift to the OK region as indicated by an arrow A in FIG. At this time, the compression ratio of the compressor 21 also decreases as the operating speed of the compressor 21 decreases.
As another countermeasure, as shown by an arrow B in FIG. 5, the compression ratio in the compressor 21 is increased by increasing the opening of the heating pressure reducing valve or the cooling pressure reducing valve so as to shift to the OK region. Decrease.
These measures are appropriately selected according to the driving situation.

なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、上記の実施形態においては、車両用空調装置は運転席側の室内エリアと助手席側の室内エリアに空調空気を吹き出す構成とされているが、空調空気は、車室内の他の室内エリアに吹き出すものであっても良い。また、空調空気を吹き出す室内エリアの数も2つに限らず3つ以上であっても良い。
さらに、車両用空調装置を適用する車両も電気自動車に限らず、燃料電池車両等の他の車両であっても良い。
In addition, this invention is not limited to said embodiment, A various design change is possible in the range which does not deviate from the summary. For example, in the above-described embodiment, the vehicle air conditioner is configured to blow conditioned air to the driver seat side indoor area and the passenger seat side indoor area. It may be blown out. Further, the number of indoor areas for blowing out the conditioned air is not limited to two, and may be three or more.
Furthermore, the vehicle to which the vehicle air conditioner is applied is not limited to an electric vehicle, and may be another vehicle such as a fuel cell vehicle.

10…車両用空調装置
18…PCTヒータ
19…仕切り板
20D,20A…吹き出し通路
52…ブロア
54D,54A…エアミックスドア
Da,Aa…室内エリア
DESCRIPTION OF SYMBOLS 10 ... Vehicle air conditioner 18 ... PCT heater 19 ... Partition plate 20D, 20A ... Outlet passage 52 ... Blower 54D, 54A ... Air mix door Da, Aa ... Indoor area

Claims (2)

複数の室内エリアに対応して設けられ、各室内エリアに空調空気を個別に吹き出す複数の吹き出し通路と、
室内または室外から空気を取り込んで下流側に空気を送り込むブロアと、
複数の前記吹き出し通路に介装されて通過する空気を昇温するヒータ手段と、
各前記吹き出し通路に設けられ、前記ヒータ手段を通過する前記ブロアの送風空気と前記ヒータ手段を通過しない前記ブロアの送風空気の割合を調整するエアミックスドアと、を備え、
前記室内エリアの空調空気の温度がそれぞれ独立して設定調整可能とされた車両用空調装置において、
前記ヒータ手段は、PTC素子を有するPTCヒータによって構成され、
一の室内エリアの設定温度と残余の室内エリアの設定温度が異なる場合には、
設定温度の高い側の吹き出し通路のエアミックスドアの開度を任意の開度に設定して、前記PTCヒータのヒータ能力を、設定温度の高い側の室内エリアの設定温度に近づくように制御するとともに、
設定温度の低い側の吹き出し通路のエアミックスドアの開度を、前記PTCヒータを通過する送風空気の割合が設定温度の高い側の吹き出し通路よりも小さくなる開度に固定することを特徴とする車両用空調装置。
A plurality of outlet passages provided corresponding to a plurality of indoor areas, and individually blowing out conditioned air to each indoor area;
A blower that takes in air indoors or outdoors and sends air downstream;
Heater means for raising the temperature of air passing through the plurality of blowing passages;
An air mix door that is provided in each of the blowing passages and adjusts the ratio of the blower air of the blower that passes through the heater means and the blower air of the blower that does not pass through the heater means,
In the vehicle air conditioner in which the temperature of the conditioned air in the indoor area can be independently set and adjusted,
The heater means is constituted by a PTC heater having a PTC element,
If the set temperature of one indoor area is different from the set temperature of the remaining indoor areas,
The opening degree of the air mix door of the blowing passage on the higher set temperature side is set to an arbitrary opening degree, and the heater capacity of the PTC heater is controlled to approach the set temperature of the indoor area on the higher set temperature side. With
The opening degree of the air mix door of the blowing passage on the lower set temperature side is fixed to an opening degree in which the ratio of the blown air passing through the PTC heater is smaller than that of the blowing passage on the higher set temperature side. Vehicle air conditioner.
設定温度の低い側の吹き出し通路のエアミックスドアの開度は、温度の高い側の設定温度と温度の低い側の設定温度の差に応じて、当該差が大きいほど設定温度の低い側の吹き出し通路における前記PTCヒータを通過する送風空気の割合が小さくなるように設定されることを特徴とする請求項1に記載の車両用空調装置。   Depending on the difference between the set temperature on the higher temperature side and the set temperature on the lower temperature side, the opening degree of the air mix door on the lower temperature setting side of the outlet passage is larger. The vehicle air conditioner according to claim 1, wherein a ratio of the blown air passing through the PTC heater in the passage is set to be small.
JP2015021409A 2015-02-05 2015-02-05 Air conditioner for vehicles Active JP6432084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021409A JP6432084B2 (en) 2015-02-05 2015-02-05 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021409A JP6432084B2 (en) 2015-02-05 2015-02-05 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2016141381A JP2016141381A (en) 2016-08-08
JP6432084B2 true JP6432084B2 (en) 2018-12-05

Family

ID=56569617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021409A Active JP6432084B2 (en) 2015-02-05 2015-02-05 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP6432084B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237432A (en) * 1994-03-02 1995-09-12 Nippon Climate Syst:Kk Method to control air conditioner for electric automobile
JP3289477B2 (en) * 1994-03-28 2002-06-04 株式会社デンソー Air conditioner
JP3610616B2 (en) * 1995-03-07 2005-01-19 株式会社デンソー Air conditioner for vehicles
FR2761305B1 (en) * 1997-03-25 1999-06-18 Valeo Climatisation HEATING-VENTILATION DEVICE FOR MOTOR VEHICLES WITH SELECTIVE CONTROL ACCORDING TO THE ZONES OF THE CABIN
JP3915218B2 (en) * 1998-01-13 2007-05-16 株式会社デンソー Air conditioner for vehicles
JP5403006B2 (en) * 2011-07-31 2014-01-29 株式会社デンソー Air conditioner for vehicles

Also Published As

Publication number Publication date
JP2016141381A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
US10611213B2 (en) Vehicular air-conditioning device having a dehumidifying and heating mode
US10018401B2 (en) Vehicle heat pump with defrosting mode
WO2015174035A1 (en) Air-conditioning device for vehicle
CN109715422B (en) Air conditioner for vehicle
US20180354342A1 (en) Vehicle Air Conditioning Device
US20050229615A1 (en) Air-conditioning control unit
US11192428B2 (en) Vehicle air-conditioning device
JP2019006330A (en) Air conditioner
WO2019235412A1 (en) Air conditioner
US20150122473A1 (en) Vehicle air conditioner
US10875379B2 (en) HVAC extended condensing capacity
JP2016049915A (en) Vehicle air conditioner
US20200148024A1 (en) Vehicle air-conditioning device
US9522589B2 (en) Vehicular heat pump system and control method
JP5510374B2 (en) Heat exchange system
JP2006335170A (en) Strong electricity system cooling device for vehicle
JP2017062065A (en) Heat exchange system
US11110777B2 (en) Vehicle HVAC system with auxiliary coolant loop for heating and cooling vehicle interior
JP6432084B2 (en) Air conditioner for vehicles
WO2019138807A1 (en) Vehicle air conditioning apparatus and control method for vehicle air conditioning apparatus
JP2001246929A (en) Air conditioner for vehicle
KR100457661B1 (en) An automobile air conditioner apparatus for both heating and cooling
JP6957954B2 (en) Vehicle air conditioner
WO2022220056A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6432084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150