WO2022220056A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022220056A1
WO2022220056A1 PCT/JP2022/014253 JP2022014253W WO2022220056A1 WO 2022220056 A1 WO2022220056 A1 WO 2022220056A1 JP 2022014253 W JP2022014253 W JP 2022014253W WO 2022220056 A1 WO2022220056 A1 WO 2022220056A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
temperature
compressor
refrigerant
cooling
Prior art date
Application number
PCT/JP2022/014253
Other languages
French (fr)
Japanese (ja)
Inventor
順基 平山
紘明 河野
康弘 横尾
好則 一志
幸久 伊集院
吉毅 加藤
芳生 林
騎士 武藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022220056A1 publication Critical patent/WO2022220056A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present disclosure relates to a refrigeration cycle device capable of cooling a heating element via a heat medium cooled using a refrigerant as a cold heat source.
  • Patent Document 1 is known as a technology related to a refrigeration cycle device that cools a heating element via a heat medium cooled using a refrigerant as a cold heat source.
  • the vehicular refrigerating cycle device described in Patent Document 1 is configured to cool water in a water circuit connected to vehicle running equipment as a heating element using an air-conditioning refrigerating cycle. The rotation speed of the compressor is controlled by the temperature of the water.
  • the present disclosure relates to a refrigeration cycle device capable of cooling a heating element via a heat medium cooled using a refrigerant as a cold heat source, and provides a refrigeration cycle device capable of suppressing blow-up of a compressor. aim.
  • a refrigerating cycle device includes a refrigerating cycle, a heat medium circuit, a temperature detector, and a controller.
  • the refrigeration cycle has a compressor, a condenser, a pressure reducing section, and a cooling evaporator.
  • the compressor draws in and discharges refrigerant.
  • the condenser releases heat from the refrigerant discharged from the compressor.
  • the decompression unit decompresses the refrigerant flowing out of the condenser.
  • the cooling evaporator evaporates the refrigerant decompressed by the decompression unit by exchanging heat with a heat medium for cooling the heating element.
  • the heat medium circuit is configured so that the heat medium cooled by the cooling evaporator using the refrigerant as a cold heat source circulates so as to exchange heat with the heating element.
  • the temperature detector detects a heat medium temperature, which is the temperature of the heat medium circulating in the heat medium circuit.
  • the controller controls the rotation speed of the compressor.
  • the control unit has a compressor control unit and a target temperature setting unit.
  • the compressor control section controls the rotation speed of the compressor based on the difference between the heat medium temperature detected by the temperature detection section and the target temperature.
  • the target temperature setting unit changes the target temperature so that the heat medium temperature gradually approaches the final target temperature from the initial temperature over time.
  • the initial temperature is the heat medium temperature at the start of cooling of the heating element.
  • the final target temperature is determined by the calorific value or temperature of the heating element.
  • the refrigerating cycle device controls the rotation speed of the compressor based on the difference between the heat medium temperature and the target temperature so that the heat medium temperature gradually approaches the final target temperature from the initial temperature over time. Change the target temperature. According to the refrigeration cycle device, even when the heating element is cooled via a heat medium having a large heat capacity, the temperature change of the heat medium is less than when the compressor is controlled according to the difference between the temperature of the heat medium and the final target temperature. and the rotational speed of the compressor can be balanced, and blow-up of the compressor can be suppressed.
  • FIG. 1 is a configuration diagram of a vehicle air conditioner according to one embodiment
  • FIG. 2 is a configuration diagram of an indoor air conditioning unit in a vehicle air conditioner according to one embodiment
  • FIG. 3 is a block diagram showing a control system of a vehicle air conditioner according to one embodiment
  • FIG. 4 is an explanatory diagram showing the content of the gradual change control of the compressor in one embodiment
  • FIG. 5 is an explanatory diagram showing a modified example (1) regarding the details of the gradual change control of the compressor
  • FIG. 6 is an explanatory diagram showing a modified example (2) regarding the details of the gradual change control of the compressor.
  • the refrigeration cycle device 1 is applied to a vehicle air conditioner 100 mounted on an electric vehicle that obtains driving force for vehicle travel from a travel electric motor.
  • the vehicle air conditioner 100 is configured to perform air conditioning for the vehicle interior of the electric vehicle, which is a space to be air-conditioned, and to perform temperature adjustment of the battery B as a heating element mounted on the electric vehicle and the in-vehicle equipment E.
  • a vehicle air conditioner 100 includes a refrigeration cycle device 1, and includes a refrigeration cycle 10, a heat medium circuit 20, a heating section 30, an indoor air conditioning unit 40, a control device 50, and the like. have.
  • the refrigeration cycle device 1 that constitutes the vehicle air conditioner 100 can switch between a cooling mode, a heating mode, and a dehumidifying heating mode as air conditioning operation modes for air conditioning the vehicle interior.
  • the cooling mode is an operation mode in which the air blown into the passenger compartment is cooled and blown out into the passenger compartment.
  • the heating mode is an operation mode in which the blown air is heated and blown into the passenger compartment.
  • the dehumidification/heating mode is an operation mode in which dehumidification/heating of the interior of the vehicle is performed by reheating cooled and dehumidified blast air and blowing the air into the interior of the vehicle.
  • the refrigeration cycle device 1 can switch whether or not to cool the heating element (battery B or vehicle-mounted device E) using the refrigeration cycle 10 regardless of the state of the air conditioning operation mode. Therefore, the operation mode of the refrigeration cycle 10 in the refrigeration cycle apparatus 1 can be defined by a combination of the state of the air conditioning operation mode and the presence or absence of cooling of the heating element.
  • the operation modes of the vehicle air conditioner 100 include seven operation modes: a cooling mode, a heating mode, a dehumidifying and heating mode, an independent cooling mode, a cooling and cooling mode, a cooling and heating mode, and a cooling and dehumidifying and heating mode.
  • the independent cooling mode is an operation mode in which the heating element is cooled using the refrigeration cycle 10 without air-conditioning the vehicle interior.
  • the cooling cooling mode is an operation mode in which the refrigerating cycle 10 is used to cool the vehicle interior and to cool the heating element.
  • the cooling/heating mode is an operation mode in which the refrigeration cycle 10 is used to heat the vehicle interior and cool the heating element.
  • the cooling/dehumidifying/heating mode is an operation mode in which the refrigerating cycle 10 is used to perform dehumidifying/heating in the passenger compartment and to cool the heating element.
  • the refrigerating cycle 10 employs an HFC-based refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigerating cycle in which the pressure of the refrigerant on the high-pressure side does not exceed the critical pressure of the refrigerant.
  • an HFO-based refrigerant for example, 1234yf
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant.
  • PAG oil polyalkylene glycol oil
  • a part of the refrigerating machine oil circulates through the cycle together with the refrigerant.
  • the refrigeration cycle 10 includes a compressor 11, a heat medium refrigerant heat exchanger 12, a first expansion valve 14a, a second expansion valve 14b, a cooling evaporator 15, and an air conditioning evaporator. It has a vessel 16 and an evaporation pressure regulating valve 17 .
  • the compressor 11 sucks, compresses, and discharges the refrigerant in the refrigeration cycle 10 .
  • Compressor 11 is located in the vehicle hood.
  • the compressor 11 is an electric compressor in which a fixed displacement type compression mechanism with a fixed displacement is rotationally driven by an electric motor.
  • the compressor 11 has its rotational speed (that is, refrigerant discharge capacity) controlled by a control signal output from the control device 50 .
  • a discharge port of the compressor 11 is connected to an inlet side of a refrigerant passage 12 a in the heat medium refrigerant heat exchanger 12 .
  • the heat medium refrigerant heat exchanger 12 radiates the heat of the high pressure refrigerant discharged from the compressor 11 to the high temperature side heat medium of the high temperature side heat medium circuit 31 constituting the heating unit 30, thereby heating the high temperature side heat medium. It is a heat exchanger that
  • the heat medium refrigerant heat exchanger 12 has a refrigerant passage 12a through which the refrigerant of the refrigerating cycle 10 flows, and a heat medium passage 12b through which the high temperature side heat medium of the high temperature side heat medium circuit 31 flows.
  • the heat medium/refrigerant heat exchanger 12 is made of the same kind of metal (for example, an aluminum alloy) with excellent heat transfer properties, and each component is integrated by brazing.
  • the heat-medium-refrigerant heat exchanger 12 is an example of a condenser that radiates heat of the high-pressure refrigerant, and constitutes a part of the heating unit 30, which will be described later.
  • a refrigerant branch portion 13a having a three-way joint structure is connected to the outlet of the refrigerant passage 12a of the heat medium refrigerant heat exchanger 12.
  • the refrigerant branching portion 13 a branches the flow of the liquid-phase refrigerant that has flowed out of the heat medium refrigerant heat exchanger 12 .
  • one of the three inflow/outlet ports is used as a refrigerant inflow port, and the remaining two are used as refrigerant outflow ports.
  • the refrigerant inlet side of the cooling evaporator 15 is connected to one refrigerant outlet port of the refrigerant branch portion 13a via the first expansion valve 14a.
  • the refrigerant inlet side of the air-conditioning evaporator 16 is connected to the other refrigerant outlet port of the refrigerant branch portion 13a via the second expansion valve 14b.
  • the first expansion valve 14a decompresses the refrigerant flowing out of one refrigerant outlet port of the refrigerant branch portion 13a at least in the operation mode or heating mode in which the refrigerating cycle 10 is used to cool a heat-generating body such as the battery B. Department.
  • the first expansion valve 14a is an electric variable throttle mechanism, and has a valve body and an electric actuator. That is, the first expansion valve 14a is configured by a so-called electric expansion valve and corresponds to an example of a decompression section.
  • the valve element of the first expansion valve 14a is configured to be able to change the passage opening (in other words, throttle opening) of the refrigerant passage.
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the operation of the first expansion valve 14 a is controlled by a control signal output from the control device 50 .
  • the first expansion valve 14a is composed of a variable throttle mechanism having a full-opening function of fully opening the refrigerant passage when the throttle opening is fully opened and a full-closing function of closing the refrigerant passage when the throttle opening is fully closed. It is In other words, the first expansion valve 14a can prevent the refrigerant from decompressing by fully opening the refrigerant passage.
  • the first expansion valve 14a can block the inflow of the refrigerant to the cooling evaporator 15 by closing the refrigerant passage. That is, the first expansion valve 14a has both a function as a decompression section that decompresses the refrigerant and a function as a refrigerant circuit switching section that switches the refrigerant circuit.
  • the refrigerant inlet side of the cooling evaporator 15 is connected to the outlet of the first expansion valve 14a.
  • the cooling evaporator 15 is a heat exchanger that exchanges heat between the low-pressure refrigerant decompressed by the first expansion valve 14a and the heat medium circulating in the heat medium circuit 20, and is configured as a so-called chiller.
  • the cooling evaporator 15 has a refrigerant passage 15a through which the low-pressure refrigerant decompressed by the first expansion valve 14a flows, and a heat medium passage 15b through which the heat medium circulating through the heat medium circuit 20 flows. Therefore, the cooling evaporator 15 is an evaporator that absorbs heat from the heat medium by evaporating the low-pressure refrigerant through heat exchange between the low-pressure refrigerant flowing through the refrigerant passage 15a and the heat medium flowing through the heat medium passage 15b.
  • the second expansion valve 14b is connected to the other refrigerant outlet port of the refrigerant branch portion 13a.
  • the second expansion valve 14b is a decompression section that decompresses the refrigerant flowing out from the other refrigerant outlet of the refrigerant branching section 13a at least in the operation mode in which the refrigeration cycle 10 is used to cool the blown air.
  • the second expansion valve 14b corresponds to an example of a decompression section.
  • the second expansion valve 14b is an electric variable throttle mechanism, and has a valve body and an electric actuator. That is, the second expansion valve 14b is composed of a so-called electric expansion valve and has a fully open function and a fully closed function.
  • the second expansion valve 14b can prevent the refrigerant from decompressing by fully opening the refrigerant passage. Further, the second expansion valve 14b can block the inflow of the refrigerant to the air-conditioning evaporator 16 by closing the refrigerant passage. That is, the second expansion valve 14b has both a function as a decompression section that decompresses the refrigerant and a function as a refrigerant circuit switching section that switches the refrigerant circuit.
  • the refrigerant inlet side of the air-conditioning evaporator 16 is connected to the outlet of the second expansion valve 14b.
  • the air-conditioning evaporator 16 evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed by the second expansion valve 14b and the blown air W in the cooling mode or the dehumidifying/heating mode, thereby cooling the blown air W.
  • It is a vessel.
  • the air-conditioning evaporator 16 is arranged inside a casing 41 of the indoor air-conditioning unit 40 .
  • Evaporation pressure regulating valve 17 maintains the refrigerant evaporation pressure in air-conditioning evaporator 16 at a predetermined reference pressure or higher in order to suppress frost formation on air-conditioning evaporator 16 .
  • the evaporating pressure regulating valve 17 is composed of a mechanical variable throttle mechanism that increases the valve opening as the pressure of the refrigerant on the outlet side of the air-conditioning evaporator 16 rises. As a result, the evaporation pressure regulating valve 17 maintains the refrigerant evaporation temperature in the air-conditioning evaporator 16 at a frost suppression temperature (in this embodiment, 1° C.) or higher at which frost formation on the air-conditioning evaporator 16 can be suppressed. ing.
  • a frost suppression temperature in this embodiment, 1° C.
  • the refrigerant outlet side of the cooling evaporator 15 is connected to the other refrigerant inlet side of the refrigerant junction portion 13b.
  • the outlet of the evaporating pressure regulating valve 17 is connected to one refrigerant inlet side of the refrigerant junction 13b.
  • the refrigerant merging portion 13b has a three-way joint structure similar to that of the refrigerant branching portion 13a, with two of the three inlets and outlets serving as refrigerant inlets and the remaining one serving as a refrigerant outlet.
  • the refrigerant merging portion 13b joins the flow of refrigerant flowing out of the evaporator 15 for cooling and the flow of refrigerant flowing out of the evaporator 16 for air conditioning.
  • a suction port side of the compressor 11 is connected to a refrigerant outlet of the refrigerant junction portion 13b.
  • the refrigeration cycle device 1 adjusts the temperatures of the battery B and the in-vehicle equipment E by circulating the heat medium in the heat medium circuit 20 .
  • a heat medium for the heat medium circuit 20 a solution containing ethylene glycol, an antifreeze solution, or the like can be used.
  • the heat medium circuit 20 includes a battery heat exchanger 21, an equipment heat exchanger 22, an outside air heat exchanger 23, a first heat medium pump 24, a second heat medium pump 25, and a first four-way valve 26. and the second four-way valve 27 are connected by a heat medium flow path.
  • the first heat medium pump 24 is a heat medium pump arranged in the heat medium circuit 20 so as to discharge the heat medium toward the heat medium inlet side of the cooling evaporator 15 .
  • the first heat medium pump 24 is an electric pump whose rotational speed (that is, pumping capacity) is controlled by a control voltage output from the control device 50 .
  • a heat medium inlet/outlet of the first four-way valve 26 is connected to the heat medium outlet side of the cooling evaporator 15 .
  • the first four-way valve 26 is composed of an electric four-way flow control valve having four inlets and outlets. One side of the heat medium inlet/outlet of the first four-way valve 26 is connected to the inlet side of the heat medium passage 21 a of the battery heat exchanger 21 . The other of the heat medium inlet/outlet of the first four-way valve 26 is connected to a heat medium flow path extending to the suction port side of the second heat medium pump 25 and the heat medium inlet side of the outside air heat exchanger 23. .
  • a second four-way valve 27 is connected to another heat medium inlet/outlet of the first four-way valve 26 .
  • the first four-way valve 26 changes the combination of the inlet/outlet through which the heat medium flows and the inlet/outlet through which the heat medium flows out, according to the control signal from the control device 50 . Therefore, the first four-way valve 26 can switch the flow destination of the heat medium pressure-fed from the first heat medium pump 24 in the heat medium circuit 20 .
  • the battery heat exchanger 21 is a heat exchanger for adjusting the temperature of the battery B by exchanging heat between the heat medium flowing through the heat medium passage 21a and the battery cells forming the battery B.
  • the heat medium passage 21a in the battery heat exchanger 21 has a passage configuration in which a plurality of passages are connected in parallel inside the exclusive case of the battery B. As shown in FIG.
  • the battery B supplies power to various electric devices in the electric vehicle, and for example, a rechargeable secondary battery (lithium ion battery in this embodiment) is adopted.
  • Battery B is a so-called assembled battery formed by stacking a plurality of battery cells and electrically connecting these battery cells in series or in parallel.
  • the heat medium passage 21a of the battery heat exchanger 21 adopts a parallel-connected passage configuration, so that the waste heat of the battery B can be absorbed evenly from the entire area of the battery B. It is
  • Such a battery heat exchanger 21 may be formed by arranging the heat medium passages 21a between the stacked battery cells. Also, the battery heat exchanger 21 may be formed integrally with the battery B. As shown in FIG. For example, it may be formed integrally with the battery B by providing the heat medium passage 21a in a dedicated case that accommodates the stacked battery cells.
  • the second heat medium pump 25 is composed of an electric pump, like the first heat medium pump 24.
  • a discharge port of the second heat medium pump 25 is connected to a heat medium inlet side of the equipment heat exchanger 22 .
  • the equipment heat exchanger 22 is a heat exchanger for adjusting the temperature of the onboard equipment E by exchanging heat between the heat medium flowing through the heat medium passage 22a and the onboard equipment E mounted on the electric vehicle. be.
  • the in-vehicle equipment E is composed of the in-vehicle equipment installed in the electric vehicle that generates heat incidentally with the operation for the purpose of running.
  • an inverter and a motor generator are adopted as the in-vehicle device E.
  • An inverter is a power converter that converts direct current to alternating current.
  • the motor generator When supplied with electric power, the motor generator outputs driving force for running, and also generates regenerative electric power during deceleration or the like.
  • the heat medium passage 22a of the equipment heat exchanger 22 is formed so as to cool each component by circulating the heat medium.
  • a transaxle device is a device that integrates a transmission, a final gear, and a differential gear (differential gear).
  • the outside air heat exchanger 23 is connected to one of the heat medium inlets and outlets of the first four-way valve 26 .
  • the outside air heat exchanger 23 is a heat exchanger that exchanges heat between the heat medium flowing out from the inlet/outlet of the first four-way valve 26 and the outside air OA blown by an outside air fan (not shown).
  • the outside air heat exchanger 23 is arranged on the front side in the drive unit room of the electric vehicle. Therefore, when the vehicle is running, the outside air heat exchanger 23 can be exposed to running wind.
  • a second four-way valve 27 is connected to the outlet side of the heat medium passage 22 a and the outlet side of the outside air heat exchanger 23 in the equipment heat exchanger 22 .
  • the second four-way valve 27 is composed of an electric four-way flow control valve having four inlets and outlets.
  • One side of the heat medium inlet/outlet of the second four-way valve 27 is connected to the outlet side of the outside air heat exchanger 23 .
  • the other side of the heat medium inlet/outlet of the second four-way valve 27 is connected to the outlet side of the heat medium passage 22 a of the equipment heat exchanger 22 .
  • Another heat medium inlet/outlet of the second four-way valve 27 is connected to the inlet of the first heat medium pump 24 together with the outlet side of the heat medium passage 21a in the battery heat exchanger 21 .
  • the first four-way valve 26 is connected to another inlet/outlet of the second four-way valve 27 .
  • the flow of the heat medium passing through the first heat medium pump 24 and the cooling evaporator 15 includes the battery heat exchanger 21, the equipment heat exchanger 22, and the outside air heat. Exchangers 23 are connected in parallel with each other.
  • the heat medium circuit 20 configured in this way can switch the heat medium flow in the heat medium circuit 20 by controlling the operation of the first four-way valve 26 and the second four-way valve 27 .
  • the inlets and outlets of the first four-way valve 26 the inlets and outlets on the cooling evaporator 15 side, the battery heat exchanger 21 side, and the equipment heat exchanger 22 side are opened, and the second four-way valve 27 side is opened. Close the inlet and outlet.
  • the inflow/outlet ports of the second four-way valve 27 the inflow/outlet ports on the first four-way valve 26 side and the outside air heat exchanger 23 side are closed, and the battery heat exchanger 21 side and the first heat medium pump 24 side are communicated.
  • the heat medium in the heat medium circuit 20 is arranged in parallel with the battery heat exchanger 21, the equipment heat exchanger 22, and the outside air heat exchanger 23 with respect to the flow of the heat medium that has passed through the cooling evaporator 15. It can be circulated in a connected manner.
  • the inlets and outlets on the cooling evaporator 15 side and the battery heat exchanger 21 side are communicated, and the remaining inlets and outlets are closed. Then, of the inflow/outlet of the second four-way valve 27, the equipment heat exchanger 22 side and the outside air heat exchanger 23 side are communicated with each other, and the rest are closed.
  • two heat medium circulation paths are formed in the heat medium circuit 20 .
  • the heat medium flows and circulates through the first heat medium pump 24, the cooling evaporator 15, the first four-way valve 26, the battery heat exchanger 21, and the first heat medium pump 24 in this order.
  • the low-pressure refrigerant of the refrigerating cycle 10 can be used as a cold heat source to cool the battery B as a heating element via a heat medium.
  • the heat medium flows and circulates through the second heat medium pump 25, the equipment heat exchanger 22, the second four-way valve 27, the outside air heat exchanger 23, and the second heat medium pump 25 in this order.
  • the heat medium can exchange heat with the outside air OA in the outside air heat exchanger 23 .
  • the heating unit 30 in the vehicle air conditioner 100 is configured to heat the blast air W supplied to the air-conditioned space using the high-pressure refrigerant in the refrigeration cycle 10 as a heat source.
  • the heating unit 30 has a high temperature side heat medium circuit 31, and includes a heat medium passage 12b of the heat medium refrigerant heat exchanger 12, a heater core 32, a high temperature side pump 33, and the like.
  • the high-temperature-side heat medium circuit 31 is a heat-medium circuit for circulating a high-temperature-side heat medium, and as the high-temperature-side heat medium, a solution containing ethylene glycol, antifreeze, or the like can be used.
  • the high temperature side pump 33 is a heat medium pump that pumps to circulate the high temperature side heat medium in the high temperature side heat medium circuit 31 .
  • the high temperature side pump 33 is an electric pump whose number of revolutions (that is, pumping capacity) is controlled by a control voltage output from the control device 50 .
  • An inlet of the heat medium passage 12b of the heat medium refrigerant heat exchanger 12 is connected to the discharge port of the high temperature side pump 33 .
  • the high temperature side heat medium is heated by heat exchange with the high pressure refrigerant flowing through the refrigerant passage 12a. That is, the high temperature side heat medium is heated using the heat pumped up by the refrigeration cycle 10 .
  • a heat medium inlet of the heater core 32 is connected to the outlet of the heat medium passage 12 b of the heat medium refrigerant heat exchanger 12 .
  • the heater core 32 is a heat exchanger that heats the air W that has passed through the air-conditioning evaporator 16 by exchanging heat between the high temperature side heat medium heated by the heat medium-refrigerant heat exchanger 12 and the air W that has passed through.
  • the heater core 32 is arranged inside a casing 41 of the indoor air conditioning unit 40 .
  • a heat medium outlet of the heater core 32 is connected to a suction port of the high temperature side pump 33 .
  • the heat of the high pressure refrigerant pumped up by the refrigeration cycle 10 can be used as a heat source to heat the blown air W via the high temperature side heat medium. Therefore, the heat medium refrigerant heat exchanger 12 and the high temperature side heat medium circuit 31 correspond to an example of a heating section.
  • the indoor air conditioning unit 40 of the vehicle air conditioner 100 is a unit for blowing off the blowing air W temperature-controlled by the refrigerating cycle 10 to appropriate locations in the vehicle interior in the vehicle air conditioner 100 .
  • the interior air-conditioning unit 40 is arranged inside the instrument panel (that is, the instrument panel) at the forefront of the vehicle interior.
  • the indoor air-conditioning unit 40 accommodates a blower 42, an air-conditioning evaporator 16, a heater core 32, etc. in an air passage formed inside a casing 41 that forms its outer shell.
  • the casing 41 forms an air passage for blowing air W blown into the vehicle interior.
  • the casing 41 is molded from a resin (specifically, polypropylene) having a certain degree of elasticity and excellent strength.
  • an inside/outside air switching device 43 is arranged on the most upstream side of the blowing air flow of the casing 41 .
  • the inside/outside air switching device 43 switches and introduces inside air (vehicle interior air) and outside air (vehicle exterior air) into the casing 41 .
  • the inside/outside air switching device 43 continuously adjusts the opening areas of the inside air introduction port for introducing inside air into the casing 41 and the outside air introduction port for introducing outside air into the casing 41 by means of the inside/outside air switching door, thereby adjusting the amount of introduced inside air and the amount of outside air. Change the introduction ratio with the introduction air volume.
  • the inside/outside air switching door is driven by an electric actuator for inside/outside air switching door. The operation of this electric actuator is controlled by a control signal output from the control device 50 .
  • a blower 42 is arranged downstream of the inside/outside air switching device 43 in the blown air flow.
  • the blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the blower 42 blows the air sucked through the inside/outside air switching device 43 into the vehicle interior.
  • the blower 42 has its rotation speed (ie, blowing capacity) controlled by a control voltage output from the control device 50 .
  • the air-conditioning evaporator 16 and the heater core 32 are arranged in this order with respect to the flow of the blown air on the downstream side of the blown air flow of the blower 42 . That is, the air-conditioning evaporator 16 is arranged upstream of the heater core 32 in the blown air flow.
  • a cold air bypass passage 45 is formed in the casing 41 .
  • the cold-air bypass passage 45 is an air passage through which the blown air W that has passed through the air-conditioning evaporator 16 bypasses the heater core 32 and flows downstream.
  • An air mix door 44 is arranged on the downstream side of the air conditioning evaporator 16 in the blown air flow and upstream of the heater core 32 in the blown air flow.
  • the air mix door 44 adjusts the air volume ratio between the air volume passing through the heater core 32 and the air volume passing through the cold air bypass passage 45 in the blown air W after passing through the air conditioning evaporator 16 .
  • the air mix door 44 is driven by an electric actuator for driving the air mix door.
  • the operation of the electric actuator is controlled by a control signal output from the control device 50 .
  • a mixing space is provided downstream of the heater core 32 in the blown air flow. In the mixing space, the blast air W heated by the heater core 32 and the blast air W that has passed through the cold air bypass passage 45 and is not heated by the heater core 32 are mixed.
  • an opening hole is arranged to blow out the blown air (air-conditioned air) mixed in the mixing space into the vehicle interior.
  • opening holes a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided.
  • the face opening hole is an opening hole for blowing air conditioning air toward the upper body of the passenger inside the vehicle.
  • the foot opening hole is an opening hole for blowing the conditioned air toward the passenger's feet.
  • the defroster opening hole is an opening hole for blowing the conditioned air toward the inner surface of the window glass on the front of the vehicle.
  • face opening hole, foot opening hole, and defroster opening hole are connected to the face outlet, foot outlet, and defroster outlet (none of which are shown) provided in the passenger compartment via ducts that form air passages. )It is connected to the.
  • the air mix door 44 adjusts the air volume ratio between the air volume passing through the heater core 32 and the air volume passing through the cold air bypass passage 45, thereby adjusting the temperature of the conditioned air mixed in the mixing space. As a result, the temperature of the blown air (air-conditioned air) blown into the vehicle interior from each outlet is also adjusted.
  • a face door, a foot door, and a defroster door are arranged on the upstream sides of the face opening hole, the foot opening hole, and the defroster opening hole, respectively.
  • the face door adjusts the opening area of the face opening hole.
  • the foot door adjusts the opening area of the foot opening hole.
  • the defroster door adjusts the opening area of the defroster opening hole.
  • the face door, foot door, and defroster door constitute a blowout mode switching device that switches the blowout port from which the conditioned air blows out.
  • the face door, foot door, and defroster door are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction with each other. The operation of this electric actuator is controlled by a control signal output from the control device 50 .
  • the control device 50 of the vehicle air conditioner 100 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits.
  • control device 50 performs various calculations and processes based on the control program stored in the ROM, and controls the operation of various controlled devices connected to its output side.
  • the devices to be controlled include the compressor 11, the first expansion valve 14a, the second expansion valve 14b, the first heat medium pump 24, the second heat medium pump 25, the first four-way valve 26, the second four-way valve 27, the high temperature side A pump 33, a blower 42, etc. are included.
  • a control sensor group is connected to the input side of the control device 50 .
  • the control sensor group includes an outside air temperature sensor 52a, an inside air temperature sensor 52b, a solar radiation sensor 52c, a high pressure sensor 52d, and an evaporator temperature sensor 52e.
  • the outside air temperature sensor 52a is an outside air temperature detection unit that detects the vehicle outside temperature (outside air temperature) Tam.
  • the outside air temperature sensor 52a is arranged to detect the temperature of the outside air OA supplied to the outside air heat exchanger 23 in the drive room.
  • the internal air temperature sensor 52b is an internal air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr.
  • the solar radiation amount sensor 52c is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
  • the high-pressure sensor 52d is a refrigerant pressure detection unit that detects the high-pressure refrigerant pressure Pd in the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 14a or the second expansion valve 14b.
  • the evaporator temperature sensor 52e is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Te in the air conditioning evaporator 16.
  • a battery temperature sensor 53a, a device temperature sensor 53b, and a blown air temperature sensor 53c are connected to the input side of the control device 50.
  • the battery temperature sensor 53a is a battery temperature detection unit that detects the battery temperature, which is the temperature of the battery B.
  • FIG. The battery temperature sensor 53a has a plurality of temperature detection units and detects temperatures at a plurality of locations in the battery B. FIG. Therefore, the control device 50 can also detect the temperature difference between the parts of the battery B.
  • the battery temperature sensor 53a may detect the temperature of the heat medium flowing through the battery heat exchanger 21 and estimate the temperature of the battery B based on the temperature of the heat medium.
  • the device temperature sensor 53b is a device temperature detection unit that detects the temperature of the vehicle-mounted device E, which is a heating element. Like the battery temperature sensor 53a, the device temperature sensor 53b has a plurality of temperature detection units, and detects temperatures at a plurality of locations in the vehicle-mounted device E.
  • FIG. The blown air temperature sensor 53c is a blown air temperature detector that detects the temperature TAV of blown air blown into the vehicle interior.
  • a temperature sensor 54e is connected.
  • the first heat medium temperature sensor 54a detects the temperature of the heat medium flowing through the heat medium circuit 20 (heat medium temperature Tw).
  • the first heat medium temperature sensor 54 a is arranged in the heat medium flow path of the heat medium circuit 20 between the outlet of the heat medium passage 15 b of the cooling evaporator 15 and the inlet/outlet of the first four-way valve 26 .
  • the first heat medium temperature sensor 54a corresponds to an example of a temperature detection section.
  • the second heat medium temperature sensor 54b is arranged at the outlet of the heat medium passage 21a in the battery heat exchanger 21, and detects the temperature of the heat medium that has passed through the battery heat exchanger 21.
  • the third heat medium temperature sensor 54c is arranged at the outlet portion of the heat medium passage 22a in the equipment heat exchanger 22, and detects the temperature of the heat medium that has passed through the equipment heat exchanger 22.
  • the fourth heat medium temperature sensor 54 d is arranged at the heat medium outlet portion of the outside air heat exchanger 23 and detects the temperature of the heat medium flowing out of the outside air heat exchanger 23 .
  • the fifth heat medium temperature sensor 54 e is arranged at the outlet portion of the heat medium passage 12 b of the heat medium/refrigerant heat exchanger 12 and detects the temperature of the high temperature side heat medium flowing out of the heat medium/refrigerant heat exchanger 12 .
  • the control device 50 of the vehicle air conditioner 100 refers to the detection results of the first heat medium temperature sensor 54a to the fifth heat medium temperature sensor 54e to determine the flow of the heat medium in the heat medium circuit 20 and the high temperature side heat.
  • the flow of the high temperature side heat medium in the medium circuit 31 is switched. Accordingly, the vehicle air conditioner 100 can manage the heat in the vehicle using the heat medium circuit 20 and the high temperature side heat medium circuit 31 .
  • control device 50 receives operation signals from the plurality of operation switches.
  • Various operation switches on the operation panel 51 include an auto switch, a cooling switch, an air volume setting switch, a temperature setting switch, and the like.
  • the auto switch is operated when setting or canceling the automatic control operation of the vehicle air conditioner 100 .
  • the cooling switch is operated when requesting cooling of the passenger compartment.
  • the air volume setting switch is operated when manually setting the air volume of the blower 42 .
  • the temperature setting switch is operated when setting the air conditioning target temperature Tset in the passenger compartment.
  • control unit 50 a control unit for controlling various controlled devices connected to the output side thereof is integrally configured. It constitutes a control unit that controls the operation of each controlled device.
  • control device 50 adjusts the rotation speed of the compressor 11 (that is, the refrigerant discharge capacity) according to the difference between the heat medium temperature Tw detected by the first heat medium temperature sensor 54a and the target temperature To.
  • the configuration constitutes a compressor control unit 50a.
  • the compressor control unit 50a controls the refrigerant evaporation temperature Te so that it approaches the target evaporation temperature by a feedback control method.
  • the rotation speed of the compressor 11 is adjusted.
  • the compressor control unit 50a adjusts the rotation speed of the compressor 11 based on the heat medium temperature Tw according to the operating conditions of the vehicle air conditioner 100, and adjusts the rotation speed of the compressor 11 for refrigerant evaporation. and evaporator temperature control adjusted based on the temperature Te.
  • condition determination section 50b the configuration for determining whether or not the execution condition for performing the gradual change control for suppressing the occurrence of blow-up of the compressor 11 is satisfied constitutes the condition determination section 50b.
  • the condition for executing the gradual change control by the condition determination unit 50b will be described later in detail.
  • the final target value of the heat medium temperature Tw in the gradual change control is set according to the temperature or the amount of heat generated by the heating element (for example, the battery B).
  • the configuration for setting the temperature Tof constitutes the final target temperature setting section 50c.
  • the target temperature To is set so as to gradually approach the final target temperature Tof from the initial temperature Ts, which is the heat medium temperature Tw at the start of the gradual change control.
  • the configuration constitutes a target temperature setting unit 50d.
  • the operation mode can be appropriately switched from a plurality of operation modes. These operation modes are switched by executing a control program pre-stored in the control device 50 .
  • the operation modes of the vehicle air conditioner 100 include the cooling mode, the heating mode, the dehumidifying heating mode, the independent cooling mode, the cooling cooling mode, the cooling heating mode, and the cooling dehumidifying heating mode. Each operation mode will be described below.
  • Cooling Mode In the cooling mode, the air-conditioning evaporator 16 cools the blown air W and blows it into the vehicle interior without cooling the heating elements (the battery B and the vehicle-mounted device E) using the refrigeration cycle 10. Driving mode. In this cooling mode, the controller 50 fully closes the first expansion valve 14a and opens the second expansion valve 14b to a predetermined throttle opening.
  • the cooling mode corresponds to an example of the single mode.
  • the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the cooling mode, according to the detection results of the control sensor group. Specifically, the control device 50 controls the refrigerant discharge capacity of the compressor 11, the throttle opening degree of the second expansion valve 14b, the air blowing capacity of the blower 42, the opening degree of the air mix door 44, and the like.
  • the heat medium passing through the equipment heat exchanger 22 and the outside air heat exchanger 23 passes through the outside air heat exchanger 23. It can be circulated to pass through. Also, in the cooling mode, it is possible to stop the circulation of the heat medium in the heat medium circuit 20 .
  • the vehicle interior can be cooled by blowing the blown air W cooled by the air-conditioning evaporator 16 into the vehicle interior. Further, the refrigeration cycle device 1 can perform temperature adjustment of the battery B and the like by exchanging heat between the heat medium of the heat medium circuit 20 and the outside air OA in the outside air heat exchanger 23 .
  • the heating mode is an operation mode in which the heater core 32 heats the blown air W and blows it into the passenger compartment without cooling the heating element using the refrigeration cycle 10 .
  • the control device 50 opens the first expansion valve 14a to a predetermined throttle opening and fully closes the second expansion valve 14b.
  • a refrigerant circulation circuit is configured in which the refrigerant circulates in the order of the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11. be done. Therefore, the heating mode corresponds to an example of a single mode.
  • the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the heating mode according to the detection results of the control sensor group.
  • the heat medium is circulated so that the heat medium flowing out from the cooling evaporator 15 passes through the outside air heat exchanger 23 .
  • the refrigerating cycle device 1 can draw the heat absorbed by the heat medium from the outside air OA in the outside air heat exchanger 23 into the refrigerating cycle 10 and use it as a heat source for heating.
  • (c) Dehumidification and heating mode In the dehumidification and heating mode, the heater core 32 heats the air W cooled by the air conditioning evaporator 16 without cooling the heating element using the refrigeration cycle 10 and blows it into the passenger compartment. Driving mode. In the dehumidification/heating mode, the control device 50 opens the first expansion valve 14a and the second expansion valve 14b with a predetermined throttle opening.
  • the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11 in that order.
  • the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the second expansion valve 14b, the air conditioning evaporator 16, the evaporation pressure control valve 17, and the compressor 11 in this order.
  • the dehumidifying heating mode corresponds to an example of the combined mode.
  • the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the dehumidification and heating mode, according to the detection results of the control sensor group.
  • the control device 50 circulates the heat medium so that the heat medium that has passed through the cooling evaporator 15 passes through the outside air heat exchanger 23 .
  • the refrigerating cycle device 1 in the dehumidifying heating mode pumps up the heat absorbed from the outside air OA in the heat medium circuit 20 in the refrigerating cycle 10, and sends the cooled blown air W through the high temperature side heat medium circuit 31. Heating dehumidification heating can be realized.
  • the independent cooling mode is an operation mode in which the heating element is cooled using the refrigerating cycle 10 without air-conditioning the vehicle interior.
  • the control device 50 opens the first expansion valve 14a to a predetermined throttle opening and fully closes the second expansion valve 14b.
  • a refrigerant circulation circuit is formed in which the refrigerant circulates in the order of the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11. Configured.
  • the single cooling mode corresponds to an example of the single mode.
  • the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the independent cooling mode, according to the detection results of the control sensor group.
  • control device 50 causes the heat medium that has passed through the cooling evaporator 15 to circulate through at least one of the battery heat exchanger 21 and the device heat exchanger 22.
  • the components of the heat medium circuit 20 are controlled so as to do so.
  • the refrigeration cycle apparatus 1 in the single cooling mode transfers the heat medium cooled by heat exchange with the low-pressure refrigerant in the cooling evaporator 15 to at least one of the battery heat exchanger 21 and the equipment heat exchanger 22. Since it is circulated, the heating element can be cooled using the refrigeration cycle 10 .
  • Cooling/cooling mode is an operation mode in which the air-conditioning evaporator 16 cools the blown air W and blows it into the passenger compartment in parallel with cooling the heating element using the refrigerating cycle.
  • the control device 50 opens the first expansion valve 14a and the second expansion valve 14b to a predetermined throttle opening.
  • the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11 in this order.
  • the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the second expansion valve 14b, the air conditioning evaporator 16, the evaporation pressure control valve 17, and the compressor 11 in this order. That is, in the refrigerating cycle 10 in the cooling cooling mode, the refrigerant circulation circuit in which the air conditioning evaporator 16 and the cooling evaporator 15 are connected in parallel with respect to the flow of refrigerant flowing out of the heat medium refrigerant heat exchanger 12. is configured. Therefore, the cooling cooling mode corresponds to an example of the combined mode.
  • the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the cooling mode according to the detection results of the control sensor group.
  • the control device 50 causes the heat medium that has passed through the cooling evaporator 15 to circulate through at least one of the battery heat exchanger 21 and the device heat exchanger 22.
  • the components of the heat medium circuit 20 are controlled so as to do so.
  • the refrigeration cycle device 1 in the cooling cooling mode allows the heat medium cooled by heat exchange with the low-pressure refrigerant in the cooling evaporator 15 to flow through the battery heat exchanger 21 and the equipment heat exchanger 22. Therefore, the heating element can be cooled.
  • the refrigerating cycle device 1 in the cooling cooling mode can improve comfort by cooling the heating element using the refrigerating cycle 10 and cooling the passenger compartment.
  • the cooling/heating mode is an operation mode in which the heater core 32 heats the blast air W and blows it into the passenger compartment in parallel with the cooling of the heating element using the refrigeration cycle 10 .
  • the control device 50 opens the first expansion valve 14a to a predetermined throttle opening and fully closes the second expansion valve 14b. Therefore, in the refrigeration cycle 10 in the cooling/heating mode, a refrigerant circulation circuit is formed in which the refrigerant circulates in the order of the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11. Configured.
  • the cooling/heating mode corresponds to an example of a single mode.
  • the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the cooling and heating mode according to the detection results of the control sensor group.
  • the control device 50 causes the heat medium that has passed through the cooling evaporator 15 to circulate through at least one of the battery heat exchanger 21 and the device heat exchanger 22.
  • the components of the heat medium circuit 20 are controlled so as to do so.
  • the refrigeration cycle device 1 in the cooling/heating mode allows the heat medium cooled by heat exchange with the low-pressure refrigerant in the cooling evaporator 15 to flow through the battery heat exchanger 21 and the device heat exchanger 22. Therefore, the heating element can be cooled.
  • the refrigeration cycle 10 draws up the waste heat of the heating element and the heater core 32 dissipates the heat to the blown air W, thereby realizing heating of the passenger compartment. Therefore, the refrigeration cycle device 1 in the cooling/heating mode can improve comfort by cooling the heating element using the refrigeration cycle 10 and heating the passenger compartment using the waste heat of the heating element as a heat source.
  • Cooling Dehumidifying Heating Mode In the cooling dehumidifying heating mode, in parallel with the cooling of the heating element using the refrigeration cycle 10, the blast air W cooled by the air conditioning evaporator 16 is heated by the heater core 32 to enter the vehicle interior. This is an operation mode that blows air.
  • the controller 50 opens the first expansion valve 14a and the second expansion valve 14b to a predetermined throttle opening.
  • the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11 in that order.
  • the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the second expansion valve 14b, the air conditioning evaporator 16, the evaporation pressure control valve 17, and the compressor 11 in this order.
  • the cooling evaporator 15 and the air-conditioning evaporator 16 are connected in parallel with respect to the flow of the refrigerant flowing out of the heat medium refrigerant heat exchanger 12.
  • a circuit is constructed. Therefore, the cooling/dehumidifying/heating mode corresponds to an example of the combined mode.
  • control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the cooling/dehumidifying/heating mode according to the detection results of the control sensor group.
  • the control device 50 causes the heat medium that has passed through the cooling evaporator 15 to pass through at least one of the battery heat exchanger 21 and the device heat exchanger 22.
  • the components of the heat medium circuit 20 are controlled so as to circulate.
  • the refrigeration cycle device 1 in the cooling dehumidification heating mode distributes the heat medium cooled by heat exchange with the low-pressure refrigerant in the cooling evaporator 15 to the battery heat exchanger 21 and the equipment heat exchanger 22. Therefore, the heating element can be cooled.
  • the refrigerating cycle 10 draws up the waste heat of the heating element and dissipates the heat to the blown air W cooled by the air-conditioning evaporator 16, thereby realizing dehumidifying and heating in the passenger compartment. can be done. Therefore, the refrigeration cycle device 1 in the cooling, dehumidifying and heating mode can improve comfort by cooling the heating element using the refrigerating cycle 10 and dehumidifying and heating the passenger compartment using the waste heat of the heating element as a heat source.
  • the mode of operation control of the compressor 11 is switched according to the operation mode of the vehicle air conditioner 100 .
  • the refrigerant discharge capacity of the compressor 11 is determined based on the heat medium temperature Tw detected by the first heat medium temperature sensor 54a.
  • a heat medium temperature control that adjusts (rotational speed) is applied.
  • the cooling capacity of the cooling evaporator 15 is insufficient for the target value.
  • the rotation speed of the machine 11 is controlled to increase.
  • the cooling capacity of the cooling evaporator 15 is excessive with respect to the target value. is controlled to lower
  • the refrigerant discharge capacity of the compressor 11 is controlled by the heat medium temperature control. be.
  • the evaporator adjusts the refrigerant discharge capacity of the compressor 11 based on the refrigerant evaporation temperature Te detected by the evaporator temperature sensor 52e. Vessel temperature control is applied.
  • the compressor 11 In the evaporator temperature control, based on the deviation between the refrigerant evaporation temperature Te detected by the evaporator temperature sensor 52e and the evaporation target temperature, the compressor 11 is adjusted so that the refrigerant evaporation temperature Te approaches the evaporation target temperature by a feedback control method. is controlled. In the operation modes of the vehicle air conditioner 100 described above, the refrigerant discharge capacity of the compressor 11 is controlled by the evaporator temperature control in the cooling mode and the dehumidifying/heating mode.
  • the rotation speed of the compressor 11 is controlled depending on the magnitude relationship between the heat medium temperature Tw and the target value. Therefore, at the start of cooling, the heat medium temperature Tw is slow to drop, so the rotation speed of the compressor 11 increases. Then, after a certain point in time, the heat medium temperature Tw drops sharply, so the rotational speed of the compressor 11 temporarily becomes excessive with respect to the degree of cooling of the heat medium.
  • the durability of the compressor 11 is greatly affected by the rise in the refrigerant pressure in the compressor 11 .
  • the rotation speed of the compressor 11 is controlled based on the lowered heat medium temperature Tw, so the rotation speed of the compressor 11 decreases.
  • the rotation speed of the compressor 11 is maintained for a certain period of time after the heat medium temperature Tw suddenly drops. It becomes an excessive state, causing excessive cooling of the heating element (battery B, etc.).
  • the vehicle air conditioner 100 it is determined whether or not the conditions for execution of the gradual change control for suppressing the blow-up of the compressor 11 are satisfied, and when the conditions for execution are satisfied, compression is performed. Gradual change control is performed to gradually change the refrigerant discharge capacity of the machine 11 toward the final target value.
  • the execution condition for the gradual change control is such that it is highly likely that the compressor 11 will blow up under the operating conditions of the vehicle air conditioner 100 .
  • execution conditions for the gradual change control for example, it is possible to assume that the operation mode is switched, or that the target value or refrigerant state has changed significantly.
  • One of the execution conditions is a case where the operating state of the vehicle air conditioner 100 is switched from a stopped state in which the operation is stopped to a state in which the operation is performed under heat medium temperature control. .
  • the vehicle air conditioner 100 when any one of the single cooling mode, the cooling cooling mode, the cooling heating mode, and the cooling dehumidifying heating mode is started from the stopped state, it is determined that the execution condition is satisfied.
  • the control device 50 starts gradual change control to suppress blow-up of the compressor 11 .
  • the target value of the final heat medium temperature Tw (hereinafter referred to as the final target temperature Tof) required for cooling the heating element is set by the control device 50. Determined.
  • the final target temperature Tof is determined according to the temperature or heat generation amount of the heating element (battery B or vehicle-mounted device E), and is determined according to the temperature of the battery B in this embodiment.
  • the control device 50 specifies the initial temperature Ts from the detection result of the first heat medium temperature sensor 54a.
  • the initial temperature Ts means the heat medium temperature Tw at the start of the gradual change control (in other words, at the start of cooling of the heat medium by the refrigeration cycle 10).
  • the control device 50 determines a plurality of target temperatures To so that the heat medium temperature Tw reaches the final target temperature Tof at the predetermined expected completion time tf.
  • the target temperature To is determined to linearly and gradually change from the initial temperature Ts to the final target temperature Tof in a set time.
  • the set time is defined by dividing the period from the start of the gradual change control to the expected completion time tf into a plurality of sections.
  • the length of the set time may be the same length, or may be changed according to the elapsed time or the like.
  • the target temperature To1 indicates the target temperature To at the first set time
  • the target temperature Ton indicates the target temperature To at the n-th set time. It shows a value close to the temperature Tof. That is, the target temperature To is set to be small so as to gradually approach the final target temperature Tof as time elapses from the start of the gradual change control.
  • the control device 50 controls the rotation speed of the compressor 11 according to the magnitude relationship between the determined target temperature To and the heat medium temperature Tw.
  • the target temperature To is changed so as to gradually approach the final target temperature Tof as time elapses from the start of the gradual change control.
  • the vehicle air conditioner 100 even when cooling a heat medium having a large heat capacity, the divergence between the heat medium temperature Tw and the target temperature To can be kept small. rise can be suppressed.
  • the operating state of the vehicle air conditioner 100 changes from a state in which it is operating under evaporator temperature control to a state in which it is operating under heat medium temperature control.
  • the vehicle air conditioner 100 switches from the cooling mode or the dehumidifying and heating mode to any of the independent cooling mode, the cooling cooling mode, the cooling and heating mode, and the cooling and dehumidifying heating mode, it is determined that the execution condition is satisfied. be done.
  • the control device 50 When it is determined that the execution condition is satisfied, the control device 50 starts gradual change control to suppress blow-up of the compressor 11 .
  • this execution condition is satisfied, from the viewpoint of cooling of the heat medium by the refrigeration cycle 10, it is the same as when the heat medium temperature control is started from the stopped state. For this reason, a re-explanation of the processing contents of the gradual change control is omitted.
  • the vehicle air conditioner 100 can suppress the blow-up of the compressor 11 when switching the operation mode from the cooling mode or the like to the cooling mode or the like.
  • one of the execution conditions for the gradual change control is the case where the final target temperature Tof is changed while the operation is being performed under heat medium temperature control.
  • the final target temperature Tof is changed while the operation is being performed under heat medium temperature control.
  • rapid charging of battery B is started while battery B, which is a heating element, is being cooled.
  • the amount of heat generated by the battery B in the case of rapid charging is very large, and there may be a case where it cannot be dealt with unless the final target temperature Tof is changed.
  • the two execution conditions described above can be considered in terms of cooling the heat medium using the refrigeration cycle 10 so that the heat medium temperature Tw is even lower than the current temperature. That is, when the heat medium is cooled in the refrigerating cycle 10 so that the heat medium temperature Tw becomes even lower, the compressor 11 blows up due to the relationship between the heat capacity of the heat medium and the heat medium temperature control of the compressor 11. may occur. Therefore, in order to suppress the blow-up of the compressor 11, the above-described gradual change control is executed also in this case. The re-explanation of the processing contents of the gradual change control is omitted.
  • the vehicle air conditioner 100 reduces the blow-up of the compressor 11 when the final target temperature Tof is changed while the operation is being performed under the heat medium temperature control. can be suppressed.
  • the amount of change in the heat medium temperature Tw detected by the first heat medium temperature sensor 54a is predetermined while the operation is being performed under the heat medium temperature control.
  • the case where it is equal to or higher than the reference value specified can be mentioned.
  • the heat medium temperature Tw detected by the first heat medium temperature sensor 54a is affected by the amount of heat generated by the battery B.
  • the heat medium that has passed through the equipment heat exchanger 22 flows through the outside air heat exchanger 23 .
  • the waste heat of the in-vehicle device E is radiated to the outside air OA via the heat medium.
  • the amount of heat radiation to the outside air OA in the outside air heat exchanger 23 depends on the relationship with the outside air temperature, it is assumed that the waste heat of the in-vehicle equipment E cannot be sufficiently radiated by the outside air heat dissipation. In this case, the temperature of the heat medium circulating through the device heat exchanger 22 and the outside air heat exchanger 23 will rise due to the waste heat of the vehicle-mounted device E.
  • the circulation path of the heat medium in the heat medium circuit 20 is switched in order to cool the in-vehicle equipment E by the refrigeration cycle 10 having a higher cooling capacity. That is, by controlling the operation of the first four-way valve 26 and the second four-way valve 27, the heat medium passing through the cooling evaporator 15 circulates through the battery heat exchanger 21 and the device heat exchanger 22. A path is constructed.
  • the vehicle air conditioner 100 executes the gradual change control so that the amount of change in the heat medium temperature Tw is equal to or greater than the predetermined reference value while the operation is being performed under the heat medium temperature control.
  • the blow-up of the compressor 11 in this case can be suppressed.
  • the vehicle air conditioner 100 has the refrigeration cycle device 1 .
  • the refrigeration cycle device 1 in heat medium temperature control for controlling the rotational speed of the compressor 11 based on the difference between the heat medium temperature Tw and the target temperature To, the target temperature To can be gradually changed.
  • the target temperature is changed such that the heat medium temperature gradually approaches the final target temperature from the initial temperature over time.
  • the compressor 11 is controlled according to the difference between the heat medium temperature Tw and the final target temperature Tof. , the temperature change of the heat medium and the rotational speed of the compressor 11 can be balanced. That is, the refrigerating cycle device 1 can suppress blow-up of the compressor 11 due to the time difference between the temperature change of the heat medium and the rotational speed of the compressor 11 .
  • the refrigeration cycle apparatus 1 executes gradual change control of the target temperature To when the heat medium temperature control is started from the shutdown state.
  • the heat medium temperature control is started from the operation stop state, since the heat medium with a large heat capacity is to be cooled, it is assumed that the heat medium undergoes a sudden temperature change, and the compressor 11 blows up. . Therefore, the refrigeration cycle apparatus 1 can suppress blow-up of the compressor 11 when the heat medium temperature control is started from the shutdown state by performing the gradual change control of the target temperature To.
  • the refrigeration cycle apparatus 1 has an air-conditioning evaporator 16 in addition to the cooling evaporator 15, and the heat medium temperature
  • the gradual change control of the target temperature To is performed.
  • a heat medium with a large heat capacity is to be cooled. It is thought that blow-up occurs. Therefore, the refrigeration cycle apparatus 1 performs gradual change control of the target temperature To to suppress blow-up of the compressor 11 when switching from operation under evaporator temperature control to operation under heat medium temperature control. be able to.
  • the operation mode of the refrigeration cycle apparatus 1 includes a combination mode in which the refrigerant is circulated through both the cooling evaporator 15 and the air conditioning evaporator 16, and either the cooling evaporator 15 or the air conditioning evaporator 16.
  • a single mode is included that circulates the refrigerant through one. Therefore, various operation modes can be realized with respect to cooling of the heating element and cooling of the blast air.
  • an evaporating pressure regulating valve 17 is arranged on the outlet side of the air conditioning evaporator 16.
  • the operation of the compressor 11 can be controlled so that the cooling capacity of the cooling evaporator 15 corresponds to the calorific value of the heating element while ensuring the air conditioning capacity of the air conditioning evaporator 16. It becomes possible. It is possible to switch to heat medium temperature control while preventing frost formation on the air-conditioning evaporator 16 by means of the evaporating pressure regulating valve 17 .
  • the refrigeration cycle apparatus 1 performs gradual change control of the target temperature To when the final target temperature Tof is changed while the operation is being performed under heat medium temperature control.
  • the final target temperature Tof a heat medium having a large heat capacity is targeted for cooling, and the compressor 11 is controlled under the conditions after the change. It is considered that the aircraft 11 will blow up. Therefore, the refrigeration cycle apparatus 1 performs gradual change control of the target temperature To to suppress blow-up of the compressor 11 when the final target temperature Tof is changed during operation under heat medium temperature control. can be done.
  • the refrigerating cycle apparatus 1 performs gradual change control of the target temperature To when the amount of change in the heat medium temperature Tw becomes equal to or greater than a reference value while the operation is being performed under the heat medium temperature control. .
  • the heat medium temperature Tw changes by an amount equal to or greater than the reference value
  • the refrigeration cycle apparatus 1 performs gradual change control of the target temperature To, so that the compressor 11 can Blow-up can be suppressed.
  • the plurality of target temperatures To are set so as to form two or more straight lines.
  • the slope of the straight line with respect to the target temperature To on the initial temperature Ts side is preferably smaller than the slope of the straight line with respect to the target temperature To on the final target temperature Tof side.
  • the amount of change (that is, the slope) of the target temperature To at the start of the gradual change control, it is possible to cool the heat medium while suppressing blow-up of the compressor 11 . Then, when the heat medium temperature Tw clearly shows a decrease with the passage of a certain amount of time, if the amount of change (that is, the slope) of the target temperature To is increased, the final target temperature Tof is reached. can be expedited.
  • the gradual change speed of the target temperature To in the gradual change control is determined by the required value of the cooling speed of the heating element (for example, the battery B or the in-vehicle device E) that is the object to be cooled via the heat medium.
  • the gradual change speed of the target temperature To is not limited to this mode. You can adjust the speed.
  • the final target temperature Tof is determined according to the heat generation amount or temperature of the heating element during the gradual change control, but it is not limited to this aspect.
  • the configuration outputs a cooling request for cooling via a heat medium when the temperature of the heating element exceeds the standard
  • the final target temperature Tof can be a predetermined specified value. is.
  • the first heat medium temperature sensor 54a arranged on the outlet side of the heat medium passage 15b in the cooling evaporator 15 is used as the temperature of the heat medium to be referred to when controlling the heat medium temperature.
  • the temperature of the heat medium on the inlet side of the heat medium passage 15b in the cooling evaporator 15 may be used.
  • the temperature of the heating element for example, the battery B or the in-vehicle device E itself.
  • the refrigerating cycle 10 has a configuration including the cooling evaporator 15 and the air conditioning evaporator 16, but it is not limited to this aspect.
  • an evaporator in the refrigerating cycle 10 an evaporator other than the cooling evaporator 15 and the air conditioning evaporator 16 can be added.
  • the cooling evaporator 15, the battery heat exchanger 21, the equipment heat exchanger 22, and the outside air heat exchanger 23 are arranged in the heat medium circuit 20, but the configuration is limited to this. not something.
  • the heat medium circuit 20 may use the heat medium cooled by the cooling evaporator 15 to cool the heating element. For example, it is possible to configure cooling by circulating a heat medium through a water jacket or the like of the heating element without passing through the battery heat exchanger 21 or the equipment heat exchanger 22 .
  • a solution containing ethylene glycol, an antifreeze solution, or the like is used as the heat medium of the heat medium circuit 20, but it is not limited to this aspect.
  • the heat medium of the heat medium circuit 20 for example, water, LLC, or the like can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A refrigeration cycle device (1) has a refrigeration cycle (10), a heat medium circuit (20), a temperature detection unit (54a), and a control unit (50). The refrigeration cycle has a compressor (11), a condenser (12), a decompression unit (14a), and a cooling evaporator (15). The cooling evaporator evaporates a refrigerant decompressed by the decompression unit by exchanging heat with a heat medium for cooling a heating element (B). The heat medium circuit is configured so that the heat medium cooled by the cooling evaporator using the refrigerant as a cold source circulates so as to exchange heat with the heating element. The control unit has a compressor control unit (50a) and a target temperature setting unit (50d). The compressor control unit controls the rotational speed of the compressor according to the difference between a target temperature (To) and a heat medium temperature detected by the temperature detection unit. The target temperature setting unit changes the target temperature so that the heat medium temperature gradually approaches a final target temperature (Tof) from an initial temperature (Ts) over time.

Description

冷凍サイクル装置refrigeration cycle equipment 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年4月16日に出願された日本特許出願2021-069643号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2021-069643 filed on April 16, 2021, and the contents thereof are incorporated herein.
 本開示は、冷媒を冷熱源として冷却される熱媒体を介して、発熱体を冷却することができる冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device capable of cooling a heating element via a heat medium cooled using a refrigerant as a cold heat source.
 従来、冷媒を冷熱源として冷却される熱媒体を介して、発熱体を冷却する冷凍サイクル装置に関する技術として、特許文献1に記載された技術が知られている。特許文献1に記載された車両用冷凍サイクル装置は、空調用冷凍サイクルを用いて、発熱体としての車両走行用機器に繋がった水回路の水を冷却するように構成されており、水回路の水の温度によって圧縮機の回転数を制御している。 Conventionally, the technology described in Patent Document 1 is known as a technology related to a refrigeration cycle device that cools a heating element via a heat medium cooled using a refrigerant as a cold heat source. The vehicular refrigerating cycle device described in Patent Document 1 is configured to cool water in a water circuit connected to vehicle running equipment as a heating element using an air-conditioning refrigerating cycle. The rotation speed of the compressor is controlled by the temperature of the water.
特開2019-209938号公報JP 2019-209938 A
 ここで、特許文献1のように圧縮機の回転数を制御する構成において、水のように熱容量の大きな熱媒体を冷却しようとすると、冷却開始時には温度が下がりにくく、或る時点を過ぎると、急激に温度が低下するという現象が起きる。この現象を踏まえると、冷却開始時には、水の温度の下がりが遅い為、圧縮機の回転数が上昇する。そして、或る時点を超えると、水の温度が急激に低下し、水の冷え具合に対して、圧縮機の回転数が一時的に過剰になる状態(圧縮機の吹き上がり)が生じると考えられる。 Here, in the configuration for controlling the rotation speed of the compressor as in Patent Document 1, when trying to cool a heat medium with a large heat capacity such as water, the temperature is difficult to decrease at the start of cooling, and after a certain point, A phenomenon occurs in which the temperature drops rapidly. Considering this phenomenon, since the temperature of the water drops slowly at the start of cooling, the rotational speed of the compressor increases. After a certain point, the temperature of the water drops sharply, and it is thought that a situation (compressor blow-up) will occur in which the rotation speed of the compressor becomes temporarily excessive in relation to the degree of cooling of the water. be done.
 圧縮機の吹き上がりが生じると、冷媒圧力の上昇により圧縮機の耐久性に影響を及ぼすことが考えられる。又、圧縮機の吹き上がりに際して、水の温度が急激に低下することになる為、冷却対象物(発熱体)の冷却が過剰になることが考えられる。これらの事象は、冷却対象物の冷却頻度が高くなったり、冷却対象物の発熱量が大きくなったりすることによって、より顕著になることが想定される。 If the compressor blows up, it is possible that the increase in refrigerant pressure will affect the durability of the compressor. Moreover, since the temperature of the water drops rapidly when the compressor blows up, it is conceivable that the object to be cooled (heating element) is cooled excessively. These phenomena are expected to become more prominent as the cooling frequency of the object to be cooled increases or the amount of heat generated by the object to be cooled increases.
 本開示は、上記点に鑑み、冷媒を冷熱源として冷却される熱媒体を介して、発熱体を冷却可能な冷凍サイクル装置に関し、圧縮機の吹き上がりを抑制できる冷凍サイクル装置を提供することを目的とする。 In view of the above points, the present disclosure relates to a refrigeration cycle device capable of cooling a heating element via a heat medium cooled using a refrigerant as a cold heat source, and provides a refrigeration cycle device capable of suppressing blow-up of a compressor. aim.
 本開示の一態様に係る冷凍サイクル装置は、冷凍サイクルと、熱媒体回路と、温度検出部と、制御部と、を有している。冷凍サイクルは、圧縮機と、凝縮器と、減圧部と、冷却用蒸発器と、を有する。圧縮機は冷媒を吸入して吐出する。凝縮器は圧縮機から吐出された冷媒を放熱させる。減圧部は凝縮器から流出した冷媒を減圧させる。冷却用蒸発器は減圧部で減圧された冷媒を、発熱体を冷却する為の熱媒体と熱交換させて蒸発させる。 A refrigerating cycle device according to one aspect of the present disclosure includes a refrigerating cycle, a heat medium circuit, a temperature detector, and a controller. The refrigeration cycle has a compressor, a condenser, a pressure reducing section, and a cooling evaporator. The compressor draws in and discharges refrigerant. The condenser releases heat from the refrigerant discharged from the compressor. The decompression unit decompresses the refrigerant flowing out of the condenser. The cooling evaporator evaporates the refrigerant decompressed by the decompression unit by exchanging heat with a heat medium for cooling the heating element.
 熱媒体回路は、冷却用蒸発器にて冷媒を冷熱源として冷却された熱媒体が、発熱体と熱交換するように循環するように構成されている。温度検出部は、熱媒体回路を循環する熱媒体の温度である熱媒体温度を検出する。制御部は、圧縮機の回転数を制御する。 The heat medium circuit is configured so that the heat medium cooled by the cooling evaporator using the refrigerant as a cold heat source circulates so as to exchange heat with the heating element. The temperature detector detects a heat medium temperature, which is the temperature of the heat medium circulating in the heat medium circuit. The controller controls the rotation speed of the compressor.
 制御部は、圧縮機制御部と、目標温度設定部と、を有する。圧縮機制御部は、温度検出部により検出された熱媒体温度と、目標温度との差によって圧縮機の回転数を制御する。目標温度設定部は、熱媒体温度が初期温度から最終目標温度に時間経過に伴って徐々に近づくように、目標温度を変更する。初期温度は発熱体の冷却開始時点における熱媒体温度である。最終目標温度は発熱体の発熱量又は温度により定められる。 The control unit has a compressor control unit and a target temperature setting unit. The compressor control section controls the rotation speed of the compressor based on the difference between the heat medium temperature detected by the temperature detection section and the target temperature. The target temperature setting unit changes the target temperature so that the heat medium temperature gradually approaches the final target temperature from the initial temperature over time. The initial temperature is the heat medium temperature at the start of cooling of the heating element. The final target temperature is determined by the calorific value or temperature of the heating element.
 冷凍サイクル装置は、熱媒体温度と目標温度との差によって圧縮機の回転数を制御している状態において、熱媒体温度が初期温度から最終目標温度に時間経過に伴って徐々に近づくように、目標温度を変更する。冷凍サイクル装置によれば、熱容量の大きな熱媒体を介して発熱体を冷却する場合でも、熱媒体温度と最終目標温度との差に応じて圧縮機を制御する場合に比べ、熱媒体の温度変化と圧縮機の回転数とのバランスをとることができ、圧縮機の吹き上がりを抑制できる。 The refrigerating cycle device controls the rotation speed of the compressor based on the difference between the heat medium temperature and the target temperature so that the heat medium temperature gradually approaches the final target temperature from the initial temperature over time. Change the target temperature. According to the refrigeration cycle device, even when the heating element is cooled via a heat medium having a large heat capacity, the temperature change of the heat medium is less than when the compressor is controlled according to the difference between the temperature of the heat medium and the final target temperature. and the rotational speed of the compressor can be balanced, and blow-up of the compressor can be suppressed.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、一実施形態に係る車両用空調装置の構成図であり、 図2は、一実施形態に係る車両用空調装置における室内空調ユニットの構成図であり、 図3は、一実施形態に係る車両用空調装置の制御系を示すブロック図であり、 図4は、一実施形態における圧縮機の徐変制御の内容を示す説明図であり、 図5は、圧縮機の徐変制御の内容に関する変形例(1)を示す説明図であり、 図6は、圧縮機の徐変制御の内容に関する変形例(2)を示す説明図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the accompanying drawings:
FIG. 1 is a configuration diagram of a vehicle air conditioner according to one embodiment, FIG. 2 is a configuration diagram of an indoor air conditioning unit in a vehicle air conditioner according to one embodiment; FIG. 3 is a block diagram showing a control system of a vehicle air conditioner according to one embodiment; FIG. 4 is an explanatory diagram showing the content of the gradual change control of the compressor in one embodiment, FIG. 5 is an explanatory diagram showing a modified example (1) regarding the details of the gradual change control of the compressor, FIG. 6 is an explanatory diagram showing a modified example (2) regarding the details of the gradual change control of the compressor.
 以下に、図面を参照しながら本開示を実施するための形態について、図面を参照して説明する。一実施形態においては、本開示に係る冷凍サイクル装置1を、車両走行用の駆動力を走行用電動モータから得る電気自動車に搭載された車両用空調装置100に適用している。車両用空調装置100は、空調対象空間としての電気自動車の車室内に対する空調を行うと共に、電気自動車に搭載されている発熱体としての電池Bや車載機器Eの温度調整を実行可能に構成されている。 A mode for carrying out the present disclosure will be described below with reference to the drawings. In one embodiment, the refrigeration cycle device 1 according to the present disclosure is applied to a vehicle air conditioner 100 mounted on an electric vehicle that obtains driving force for vehicle travel from a travel electric motor. The vehicle air conditioner 100 is configured to perform air conditioning for the vehicle interior of the electric vehicle, which is a space to be air-conditioned, and to perform temperature adjustment of the battery B as a heating element mounted on the electric vehicle and the in-vehicle equipment E. there is
 図1に示すように、車両用空調装置100は、冷凍サイクル装置1を有して構成されており、冷凍サイクル10、熱媒体回路20、加熱部30、室内空調ユニット40、制御装置50等を有している。 As shown in FIG. 1, a vehicle air conditioner 100 includes a refrigeration cycle device 1, and includes a refrigeration cycle 10, a heat medium circuit 20, a heating section 30, an indoor air conditioning unit 40, a control device 50, and the like. have.
 車両用空調装置100を構成する冷凍サイクル装置1は、車室内の空調を行う空調運転モードとして、冷房モードと、暖房モードと、除湿暖房モードとを切り替えることができる。冷房モードは、車室内へ送風される送風空気を冷却して車室内へ吹き出す運転モードである。暖房モードは、送風空気を加熱して車室内へ吹き出す運転モードである。除湿暖房モードは、冷却して除湿された送風空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。 The refrigeration cycle device 1 that constitutes the vehicle air conditioner 100 can switch between a cooling mode, a heating mode, and a dehumidifying heating mode as air conditioning operation modes for air conditioning the vehicle interior. The cooling mode is an operation mode in which the air blown into the passenger compartment is cooled and blown out into the passenger compartment. The heating mode is an operation mode in which the blown air is heated and blown into the passenger compartment. The dehumidification/heating mode is an operation mode in which dehumidification/heating of the interior of the vehicle is performed by reheating cooled and dehumidified blast air and blowing the air into the interior of the vehicle.
 又、冷凍サイクル装置1は、空調運転モードの状態によらずに、冷凍サイクル10を利用した発熱体(電池Bや車載機器E)の冷却の有無を切り替えることができる。従って、冷凍サイクル装置1における冷凍サイクル10の運転モードは、空調運転モードの状態及び発熱体の冷却の有無の組み合わせによって定義することができる。 In addition, the refrigeration cycle device 1 can switch whether or not to cool the heating element (battery B or vehicle-mounted device E) using the refrigeration cycle 10 regardless of the state of the air conditioning operation mode. Therefore, the operation mode of the refrigeration cycle 10 in the refrigeration cycle apparatus 1 can be defined by a combination of the state of the air conditioning operation mode and the presence or absence of cooling of the heating element.
 この為、車両用空調装置100の運転モードには、冷房モード、暖房モード、除湿暖房モード、単独冷却モード、冷却冷房モード、冷却暖房モード、冷却除湿暖房モードの7つの運転モードが含まれる。 Therefore, the operation modes of the vehicle air conditioner 100 include seven operation modes: a cooling mode, a heating mode, a dehumidifying and heating mode, an independent cooling mode, a cooling and cooling mode, a cooling and heating mode, and a cooling and dehumidifying and heating mode.
 単独冷却モードは、車室内の空調を行うことなく、冷凍サイクル10を利用して発熱体の冷却を行う運転モードである。冷却冷房モードは、冷凍サイクル10を利用して、車室内の冷房を行うと共に、発熱体の冷却を行う運転モードである。冷却暖房モードは、冷凍サイクル10を利用して、車室内の暖房を行うと共に、発熱体の冷却を行う運転モードである。冷却除湿暖房モードは、冷凍サイクル10を利用して、車室内の除湿暖房を行うと共に、発熱体の冷却を行う運転モードである。 The independent cooling mode is an operation mode in which the heating element is cooled using the refrigeration cycle 10 without air-conditioning the vehicle interior. The cooling cooling mode is an operation mode in which the refrigerating cycle 10 is used to cool the vehicle interior and to cool the heating element. The cooling/heating mode is an operation mode in which the refrigeration cycle 10 is used to heat the vehicle interior and cool the heating element. The cooling/dehumidifying/heating mode is an operation mode in which the refrigerating cycle 10 is used to perform dehumidifying/heating in the passenger compartment and to cool the heating element.
 尚、冷凍サイクル10では、冷媒として、HFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷媒として、HFO系冷媒(例えば、1234yf)を採用しても良い。冷媒には、圧縮機11を潤滑する為の冷凍機油が混入されている。冷凍機油としては、液相冷媒に相溶性を有するPAGオイル(ポリアルキレングリコールオイル)が採用されている。冷凍機油の一部は冷媒と共にサイクルを循環している。 The refrigerating cycle 10 employs an HFC-based refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigerating cycle in which the pressure of the refrigerant on the high-pressure side does not exceed the critical pressure of the refrigerant. As the refrigerant, an HFO-based refrigerant (for example, 1234yf) may be used. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. PAG oil (polyalkylene glycol oil), which is compatible with the liquid-phase refrigerant, is used as the refrigerating machine oil. A part of the refrigerating machine oil circulates through the cycle together with the refrigerant.
 次に、冷凍サイクル装置1を構成する各構成機器について説明する。図1に示すように、冷凍サイクル10は、圧縮機11と、熱媒体冷媒熱交換器12と、第1膨張弁14aと、第2膨張弁14bと、冷却用蒸発器15と、空調用蒸発器16と、蒸発圧力調整弁17とを有している。 Next, each constituent device that configures the refrigeration cycle apparatus 1 will be described. As shown in FIG. 1, the refrigeration cycle 10 includes a compressor 11, a heat medium refrigerant heat exchanger 12, a first expansion valve 14a, a second expansion valve 14b, a cooling evaporator 15, and an air conditioning evaporator. It has a vessel 16 and an evaporation pressure regulating valve 17 .
 圧縮機11は、冷凍サイクル10において、冷媒を吸入し圧縮して吐出する。圧縮機11は車両ボンネット内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、制御装置50から出力される制御信号によって、回転数(即ち、冷媒吐出能力)が制御される。 The compressor 11 sucks, compresses, and discharges the refrigerant in the refrigeration cycle 10 . Compressor 11 is located in the vehicle hood. The compressor 11 is an electric compressor in which a fixed displacement type compression mechanism with a fixed displacement is rotationally driven by an electric motor. The compressor 11 has its rotational speed (that is, refrigerant discharge capacity) controlled by a control signal output from the control device 50 .
 そして、圧縮機11の吐出口には、熱媒体冷媒熱交換器12における冷媒通路12aの入口側が接続されている。熱媒体冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒が有する熱を、加熱部30を構成する高温側熱媒体回路31の高温側熱媒体に放熱し、高温側熱媒体を加熱する熱交換器である。 A discharge port of the compressor 11 is connected to an inlet side of a refrigerant passage 12 a in the heat medium refrigerant heat exchanger 12 . The heat medium refrigerant heat exchanger 12 radiates the heat of the high pressure refrigerant discharged from the compressor 11 to the high temperature side heat medium of the high temperature side heat medium circuit 31 constituting the heating unit 30, thereby heating the high temperature side heat medium. It is a heat exchanger that
 熱媒体冷媒熱交換器12は、冷凍サイクル10の冷媒を流通させる冷媒通路12aと、高温側熱媒体回路31の高温側熱媒体を流通させる熱媒体通路12bを有している。熱媒体冷媒熱交換器12は、伝熱性に優れる同種の金属(例えば、アルミニウム合金)で形成されており、各構成部材は、ロウ付け接合によって一体化されている。 The heat medium refrigerant heat exchanger 12 has a refrigerant passage 12a through which the refrigerant of the refrigerating cycle 10 flows, and a heat medium passage 12b through which the high temperature side heat medium of the high temperature side heat medium circuit 31 flows. The heat medium/refrigerant heat exchanger 12 is made of the same kind of metal (for example, an aluminum alloy) with excellent heat transfer properties, and each component is integrated by brazing.
 これにより、冷媒通路12aを流通する高圧冷媒と熱媒体通路12bを流通する高温側熱媒体は、互いに熱交換することができる。熱媒体冷媒熱交換器12は、高圧冷媒の有する熱を放熱させる凝縮器の一例であり、後述する加熱部30の一部を構成する。 As a result, the high pressure refrigerant flowing through the refrigerant passage 12a and the high temperature side heat medium flowing through the heat medium passage 12b can exchange heat with each other. The heat-medium-refrigerant heat exchanger 12 is an example of a condenser that radiates heat of the high-pressure refrigerant, and constitutes a part of the heating unit 30, which will be described later.
 熱媒体冷媒熱交換器12の冷媒通路12aの出口には、三方継手構造の冷媒分岐部13aが接続されている。冷媒分岐部13aは、熱媒体冷媒熱交換器12から流出した液相冷媒の流れを分岐する。冷媒分岐部13aでは、3つの流入出口の内の1つを冷媒流入口とし、残りの2つを冷媒流出口としている。 A refrigerant branch portion 13a having a three-way joint structure is connected to the outlet of the refrigerant passage 12a of the heat medium refrigerant heat exchanger 12. The refrigerant branching portion 13 a branches the flow of the liquid-phase refrigerant that has flowed out of the heat medium refrigerant heat exchanger 12 . In the refrigerant branching portion 13a, one of the three inflow/outlet ports is used as a refrigerant inflow port, and the remaining two are used as refrigerant outflow ports.
 冷媒分岐部13aの一方の冷媒流出口には、第1膨張弁14aを介して、冷却用蒸発器15の冷媒入口側が接続されている。冷媒分岐部13aの他方の冷媒流出口には、第2膨張弁14bを介して、空調用蒸発器16の冷媒入口側が接続されている。 The refrigerant inlet side of the cooling evaporator 15 is connected to one refrigerant outlet port of the refrigerant branch portion 13a via the first expansion valve 14a. The refrigerant inlet side of the air-conditioning evaporator 16 is connected to the other refrigerant outlet port of the refrigerant branch portion 13a via the second expansion valve 14b.
 第1膨張弁14aは、少なくとも冷凍サイクル10を利用して電池B等の発熱体の冷却を行う運転モードや暖房モードにおいて、冷媒分岐部13aの一方の冷媒流出口から流出した冷媒を減圧させる減圧部である。第1膨張弁14aは、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。即ち、第1膨張弁14aは、いわゆる電気式膨張弁によって構成されており、減圧部の一例に相当する。 The first expansion valve 14a decompresses the refrigerant flowing out of one refrigerant outlet port of the refrigerant branch portion 13a at least in the operation mode or heating mode in which the refrigerating cycle 10 is used to cool a heat-generating body such as the battery B. Department. The first expansion valve 14a is an electric variable throttle mechanism, and has a valve body and an electric actuator. That is, the first expansion valve 14a is configured by a so-called electric expansion valve and corresponds to an example of a decompression section.
 第1膨張弁14aの弁体は、冷媒通路の通路開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。第1膨張弁14aは、制御装置50から出力される制御信号によって、その作動が制御される。 The valve element of the first expansion valve 14a is configured to be able to change the passage opening (in other words, throttle opening) of the refrigerant passage. The electric actuator has a stepping motor that changes the throttle opening of the valve body. The operation of the first expansion valve 14 a is controlled by a control signal output from the control device 50 .
 又、第1膨張弁14aは、絞り開度を全開した際に冷媒通路を全開する全開機能と、絞り開度を全閉した際に冷媒通路を閉塞する全閉機能を有する可変絞り機構で構成されている。つまり、第1膨張弁14aは、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。 In addition, the first expansion valve 14a is composed of a variable throttle mechanism having a full-opening function of fully opening the refrigerant passage when the throttle opening is fully opened and a full-closing function of closing the refrigerant passage when the throttle opening is fully closed. It is In other words, the first expansion valve 14a can prevent the refrigerant from decompressing by fully opening the refrigerant passage.
 そして、第1膨張弁14aは、冷媒通路を閉塞することで、冷却用蒸発器15に対する冷媒の流入を遮断できる。即ち、第1膨張弁14aは、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える冷媒回路切替部としての機能とを兼ね備えている。 The first expansion valve 14a can block the inflow of the refrigerant to the cooling evaporator 15 by closing the refrigerant passage. That is, the first expansion valve 14a has both a function as a decompression section that decompresses the refrigerant and a function as a refrigerant circuit switching section that switches the refrigerant circuit.
 第1膨張弁14aの出口には、冷却用蒸発器15の冷媒入口側が接続されている。冷却用蒸発器15は、第1膨張弁14aにて減圧された低圧冷媒と、熱媒体回路20を循環する熱媒体とを熱交換させる熱交換器であり、いわゆるチラーとして構成されている。 The refrigerant inlet side of the cooling evaporator 15 is connected to the outlet of the first expansion valve 14a. The cooling evaporator 15 is a heat exchanger that exchanges heat between the low-pressure refrigerant decompressed by the first expansion valve 14a and the heat medium circulating in the heat medium circuit 20, and is configured as a so-called chiller.
 冷却用蒸発器15は、第1膨張弁14aにて減圧された低圧冷媒を流通させる冷媒通路15aと、熱媒体回路20を循環する熱媒体を流通させる熱媒体通路15bとを有している。従って、冷却用蒸発器15は、冷媒通路15aを流通する低圧冷媒と熱媒体通路15bを流通する熱媒体との熱交換によって、低圧冷媒を蒸発させて熱媒体から吸熱する蒸発器である。 The cooling evaporator 15 has a refrigerant passage 15a through which the low-pressure refrigerant decompressed by the first expansion valve 14a flows, and a heat medium passage 15b through which the heat medium circulating through the heat medium circuit 20 flows. Therefore, the cooling evaporator 15 is an evaporator that absorbs heat from the heat medium by evaporating the low-pressure refrigerant through heat exchange between the low-pressure refrigerant flowing through the refrigerant passage 15a and the heat medium flowing through the heat medium passage 15b.
 図1に示すように、冷媒分岐部13aにおける他方の冷媒流出口には、第2膨張弁14bが接続されている。第2膨張弁14bは、少なくとも冷凍サイクル10を用いて送風空気を冷却する運転モードにおいて、冷媒分岐部13aの他方の冷媒流出口から流出した冷媒を減圧させる減圧部である。第2膨張弁14bは減圧部の一例に相当する。 As shown in FIG. 1, the second expansion valve 14b is connected to the other refrigerant outlet port of the refrigerant branch portion 13a. The second expansion valve 14b is a decompression section that decompresses the refrigerant flowing out from the other refrigerant outlet of the refrigerant branching section 13a at least in the operation mode in which the refrigeration cycle 10 is used to cool the blown air. The second expansion valve 14b corresponds to an example of a decompression section.
 第2膨張弁14bは、第1膨張弁14aと同様に、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。即ち、第2膨張弁14bは、いわゆる電気式膨張弁によって構成されており、全開機能と全閉機能を有している。 Like the first expansion valve 14a, the second expansion valve 14b is an electric variable throttle mechanism, and has a valve body and an electric actuator. That is, the second expansion valve 14b is composed of a so-called electric expansion valve and has a fully open function and a fully closed function.
 つまり、第2膨張弁14bは、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。又、第2膨張弁14bは、冷媒通路を閉塞することで、空調用蒸発器16に対する冷媒の流入を遮断することができる。即ち、第2膨張弁14bは、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える冷媒回路切替部としての機能とを兼ね備えている。 That is, the second expansion valve 14b can prevent the refrigerant from decompressing by fully opening the refrigerant passage. Further, the second expansion valve 14b can block the inflow of the refrigerant to the air-conditioning evaporator 16 by closing the refrigerant passage. That is, the second expansion valve 14b has both a function as a decompression section that decompresses the refrigerant and a function as a refrigerant circuit switching section that switches the refrigerant circuit.
 第2膨張弁14bの出口には、空調用蒸発器16の冷媒入口側が接続されている。空調用蒸発器16は、冷房モードや除湿暖房モードにおいて、第2膨張弁14bにて減圧された低圧冷媒と送風空気Wとを熱交換させて低圧冷媒を蒸発させ、送風空気Wを冷却する蒸発器である。図2に示すように、空調用蒸発器16は、室内空調ユニット40のケーシング41内に配置されている。 The refrigerant inlet side of the air-conditioning evaporator 16 is connected to the outlet of the second expansion valve 14b. The air-conditioning evaporator 16 evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed by the second expansion valve 14b and the blown air W in the cooling mode or the dehumidifying/heating mode, thereby cooling the blown air W. It is a vessel. As shown in FIG. 2 , the air-conditioning evaporator 16 is arranged inside a casing 41 of the indoor air-conditioning unit 40 .
 図1に示すように、空調用蒸発器16の冷媒出口側には、蒸発圧力調整弁17の入口側が接続されている。蒸発圧力調整弁17は、空調用蒸発器16の着霜を抑制するために、空調用蒸発器16における冷媒蒸発圧力を、予め定めた基準圧力以上に維持する。 As shown in FIG. 1, the inlet side of an evaporating pressure regulating valve 17 is connected to the refrigerant outlet side of the air conditioning evaporator 16 . Evaporation pressure regulating valve 17 maintains the refrigerant evaporation pressure in air-conditioning evaporator 16 at a predetermined reference pressure or higher in order to suppress frost formation on air-conditioning evaporator 16 .
 蒸発圧力調整弁17は、空調用蒸発器16の出口側冷媒の圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構で構成されている。これにより、蒸発圧力調整弁17は、空調用蒸発器16における冷媒蒸発温度を、空調用蒸発器16の着霜を抑制可能な着霜抑制温度(本実施形態では、1℃)以上に維持している。 The evaporating pressure regulating valve 17 is composed of a mechanical variable throttle mechanism that increases the valve opening as the pressure of the refrigerant on the outlet side of the air-conditioning evaporator 16 rises. As a result, the evaporation pressure regulating valve 17 maintains the refrigerant evaporation temperature in the air-conditioning evaporator 16 at a frost suppression temperature (in this embodiment, 1° C.) or higher at which frost formation on the air-conditioning evaporator 16 can be suppressed. ing.
 そして、冷却用蒸発器15の冷媒出口側には、冷媒合流部13bの他方の冷媒入口側が接続されている。又、蒸発圧力調整弁17の出口には、冷媒合流部13bの一方の冷媒入口側が接続されている。 The refrigerant outlet side of the cooling evaporator 15 is connected to the other refrigerant inlet side of the refrigerant junction portion 13b. The outlet of the evaporating pressure regulating valve 17 is connected to one refrigerant inlet side of the refrigerant junction 13b.
 ここで、冷媒合流部13bは、冷媒分岐部13aと同様の三方継手構造のもので、3つの流入出口のうち2つを冷媒入口とし、残りの1つを冷媒出口としたものである。冷媒合流部13bは、冷却用蒸発器15から流出した冷媒の流れと空調用蒸発器16から流出した冷媒の流れとを合流させる。そして、冷媒合流部13bの冷媒出口には、圧縮機11の吸入口側が接続されている。 Here, the refrigerant merging portion 13b has a three-way joint structure similar to that of the refrigerant branching portion 13a, with two of the three inlets and outlets serving as refrigerant inlets and the remaining one serving as a refrigerant outlet. The refrigerant merging portion 13b joins the flow of refrigerant flowing out of the evaporator 15 for cooling and the flow of refrigerant flowing out of the evaporator 16 for air conditioning. A suction port side of the compressor 11 is connected to a refrigerant outlet of the refrigerant junction portion 13b.
 続いて、冷凍サイクル装置1における熱媒体回路20の構成について説明する。冷凍サイクル装置1は、熱媒体回路20の熱媒体を循環させることによって、電池Bや車載機器Eの温度調整を行う。熱媒体回路20の熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用することができる。 Next, the configuration of the heat medium circuit 20 in the refrigeration cycle device 1 will be described. The refrigeration cycle device 1 adjusts the temperatures of the battery B and the in-vehicle equipment E by circulating the heat medium in the heat medium circuit 20 . As a heat medium for the heat medium circuit 20, a solution containing ethylene glycol, an antifreeze solution, or the like can be used.
 熱媒体回路20は、電池用熱交換器21と、機器用熱交換器22と、外気熱交換器23と、第1熱媒体ポンプ24と、第2熱媒体ポンプ25と、第1四方弁26と、第2四方弁27とを、熱媒体流路で接続して構成されている。 The heat medium circuit 20 includes a battery heat exchanger 21, an equipment heat exchanger 22, an outside air heat exchanger 23, a first heat medium pump 24, a second heat medium pump 25, and a first four-way valve 26. and the second four-way valve 27 are connected by a heat medium flow path.
 第1熱媒体ポンプ24は、熱媒体回路20において、冷却用蒸発器15の熱媒体入口側に向かって熱媒体を吐出するように配置された熱媒体ポンプである。第1熱媒体ポンプ24は、制御装置50から出力される制御電圧によって、回転数(即ち、圧送能力)が制御される電動ポンプである。 The first heat medium pump 24 is a heat medium pump arranged in the heat medium circuit 20 so as to discharge the heat medium toward the heat medium inlet side of the cooling evaporator 15 . The first heat medium pump 24 is an electric pump whose rotational speed (that is, pumping capacity) is controlled by a control voltage output from the control device 50 .
 冷却用蒸発器15の熱媒体出口側には、第1四方弁26の熱媒体流入出口が接続されている。第1四方弁26は、4つの流入出口を有する電気式の四方流量調整弁によって構成されている。第1四方弁26における熱媒体流入出口の一方には、電池用熱交換器21の熱媒体通路21aにおける流入口側が接続されている。そして、第1四方弁26における熱媒体流入出口の他方には、第2熱媒体ポンプ25の吸込口側及び外気熱交換器23の熱媒体流入口側へ伸びる熱媒体流路が接続されている。そして、第1四方弁26における更に別の熱媒体流入出口には、第2四方弁27が接続されている。 A heat medium inlet/outlet of the first four-way valve 26 is connected to the heat medium outlet side of the cooling evaporator 15 . The first four-way valve 26 is composed of an electric four-way flow control valve having four inlets and outlets. One side of the heat medium inlet/outlet of the first four-way valve 26 is connected to the inlet side of the heat medium passage 21 a of the battery heat exchanger 21 . The other of the heat medium inlet/outlet of the first four-way valve 26 is connected to a heat medium flow path extending to the suction port side of the second heat medium pump 25 and the heat medium inlet side of the outside air heat exchanger 23. . A second four-way valve 27 is connected to another heat medium inlet/outlet of the first four-way valve 26 .
 そして、第1四方弁26は、制御装置50からの制御信号によって、熱媒体が流入する流入出口と、熱媒体が流出する流入出口の組み合わせを変更する。従って、第1四方弁26は、熱媒体回路20にて第1熱媒体ポンプ24から圧送された熱媒体の流通先を切り替えることができる。 Then, the first four-way valve 26 changes the combination of the inlet/outlet through which the heat medium flows and the inlet/outlet through which the heat medium flows out, according to the control signal from the control device 50 . Therefore, the first four-way valve 26 can switch the flow destination of the heat medium pressure-fed from the first heat medium pump 24 in the heat medium circuit 20 .
 電池用熱交換器21は、熱媒体通路21aを流通する熱媒体と、電池Bを構成する電池セルとを熱交換させることによって、電池Bの温度を調整する為の熱交換器である。電池用熱交換器21における熱媒体通路21aは、電池Bの専用ケースの内部で複数の通路を並列的に接続した通路構成となっている。 The battery heat exchanger 21 is a heat exchanger for adjusting the temperature of the battery B by exchanging heat between the heat medium flowing through the heat medium passage 21a and the battery cells forming the battery B. The heat medium passage 21a in the battery heat exchanger 21 has a passage configuration in which a plurality of passages are connected in parallel inside the exclusive case of the battery B. As shown in FIG.
 ここで、電池Bは、電気自動車における各種電気機器に電力を供給するもので、例えば、充放電可能な二次電池(本実施形態では、リチウムイオン電池)が採用される。電池Bは、複数の電池セルを積層配置し、これらの電池セルを電気的に直列或いは並列に接続することによって形成された、いわゆる組電池である。 Here, the battery B supplies power to various electric devices in the electric vehicle, and for example, a rechargeable secondary battery (lithium ion battery in this embodiment) is adopted. Battery B is a so-called assembled battery formed by stacking a plurality of battery cells and electrically connecting these battery cells in series or in parallel.
 この種の電池Bは、低温になると内部抵抗が増加して出力が低下しやすく、高温になると各電池セルの劣化が進行しやすい。そして、電池Bは、充放電に際して発熱する為、電池Bの温度が電池Bの充放電容量を充分に活用できる適切な温度範囲内(例えば、10℃以上かつ40℃以下)に維持されている必要がある。 In this type of battery B, when the temperature drops, the internal resistance increases and the output tends to decrease, and when the temperature rises, the deterioration of each battery cell tends to progress. Since the battery B generates heat during charge/discharge, the temperature of the battery B is maintained within an appropriate temperature range (for example, 10° C. or higher and 40° C. or lower) in which the charge/discharge capacity of the battery B can be fully utilized. There is a need.
 上述したように、電池用熱交換器21の熱媒体通路21aは、並列的に接続した通路構成を採用しているので、電池Bの全域から電池Bの廃熱を均等に吸熱できるように形成されている。 As described above, the heat medium passage 21a of the battery heat exchanger 21 adopts a parallel-connected passage configuration, so that the waste heat of the battery B can be absorbed evenly from the entire area of the battery B. It is
 このような電池用熱交換器21は、積層配置された電池セル同士の間に熱媒体通路21aを配置することによって形成すればよい。又、電池用熱交換器21は、電池Bに一体的に形成されていてもよい。例えば、積層配置された電池セルを収容する専用ケースに熱媒体通路21aを設けることによって、電池Bに一体的に形成されていてもよい。 Such a battery heat exchanger 21 may be formed by arranging the heat medium passages 21a between the stacked battery cells. Also, the battery heat exchanger 21 may be formed integrally with the battery B. As shown in FIG. For example, it may be formed integrally with the battery B by providing the heat medium passage 21a in a dedicated case that accommodates the stacked battery cells.
 第2熱媒体ポンプ25は、第1熱媒体ポンプ24と同様に、電動ポンプによって構成されている。第2熱媒体ポンプ25の吐出口には、機器用熱交換器22の熱媒体流入口側が接続されている。機器用熱交換器22は、熱媒体通路22aを流通する熱媒体と、電気自動車に搭載された車載機器Eとを熱交換させることによって、車載機器Eの温度を調整する為の熱交換器である。 The second heat medium pump 25 is composed of an electric pump, like the first heat medium pump 24. A discharge port of the second heat medium pump 25 is connected to a heat medium inlet side of the equipment heat exchanger 22 . The equipment heat exchanger 22 is a heat exchanger for adjusting the temperature of the onboard equipment E by exchanging heat between the heat medium flowing through the heat medium passage 22a and the onboard equipment E mounted on the electric vehicle. be.
 ここで、車載機器Eとは、電気自動車に搭載された車載機器の内、走行等を目的とした作動に伴って付随的に発熱する機器によって構成されている。具体的に、車載機器Eとしては、インバータ、モータジェネレータが採用されている。インバータは、直流電流を交流電流に変換する電力変換部である。そして、モータジェネレータは、電力が供給されることによって走行用の駆動力を出力すると共に、減速時等には回生電力を発生させるものである。そして、機器用熱交換器22の熱媒体通路22aは、熱媒体を流通させることで、それぞれの構成機器を冷却できるように形成されている。 Here, the in-vehicle equipment E is composed of the in-vehicle equipment installed in the electric vehicle that generates heat incidentally with the operation for the purpose of running. Specifically, as the in-vehicle device E, an inverter and a motor generator are adopted. An inverter is a power converter that converts direct current to alternating current. When supplied with electric power, the motor generator outputs driving force for running, and also generates regenerative electric power during deceleration or the like. The heat medium passage 22a of the equipment heat exchanger 22 is formed so as to cool each component by circulating the heat medium.
 尚、車載機器Eとして、トランスアクスル装置を採用して温度調整を行うことも可能である。トランスアクスル装置は、トランスミッションとファイナルギア・ディファレンシャルギア(デフギア)を一体化した装置である。 It should be noted that it is also possible to adopt a transaxle device as the in-vehicle device E to adjust the temperature. A transaxle device is a device that integrates a transmission, a final gear, and a differential gear (differential gear).
 上述したように、第1四方弁26における熱媒体流入出口の一つには、外気熱交換器23が接続されている。そして、外気熱交換器23は、第1四方弁26の流入出口から流出した熱媒体と、図示しない外気ファンにより送風された外気OAとを熱交換させる熱交換器である。外気熱交換器23は、電気自動車における駆動装置室内の前方側に配置されている。このため、車両走行時には、外気熱交換器23に走行風を当てることができる。 As described above, the outside air heat exchanger 23 is connected to one of the heat medium inlets and outlets of the first four-way valve 26 . The outside air heat exchanger 23 is a heat exchanger that exchanges heat between the heat medium flowing out from the inlet/outlet of the first four-way valve 26 and the outside air OA blown by an outside air fan (not shown). The outside air heat exchanger 23 is arranged on the front side in the drive unit room of the electric vehicle. Therefore, when the vehicle is running, the outside air heat exchanger 23 can be exposed to running wind.
 そして、機器用熱交換器22における熱媒体通路22aの出口側及び外気熱交換器23の流出口側には、第2四方弁27が接続されている。第2四方弁27は、第1四方弁26と同様に、4つの流入出口を有する電気式の四方流量調整弁によって構成されている。 A second four-way valve 27 is connected to the outlet side of the heat medium passage 22 a and the outlet side of the outside air heat exchanger 23 in the equipment heat exchanger 22 . Like the first four-way valve 26, the second four-way valve 27 is composed of an electric four-way flow control valve having four inlets and outlets.
 第2四方弁27における熱媒体流入出口の一方には、外気熱交換器23の流出口側が接続されている。第2四方弁27における熱媒体流入出口の他方には、機器用熱交換器22における熱媒体通路22aの流出口側が接続されている。そして、第2四方弁27における別の熱媒体流入出口には、電池用熱交換器21における熱媒体通路21aの流出口側と共に、第1熱媒体ポンプ24の吸込口に接続されている。又、第2四方弁27の更に別の流入出口には、第1四方弁26が接続されている。 One side of the heat medium inlet/outlet of the second four-way valve 27 is connected to the outlet side of the outside air heat exchanger 23 . The other side of the heat medium inlet/outlet of the second four-way valve 27 is connected to the outlet side of the heat medium passage 22 a of the equipment heat exchanger 22 . Another heat medium inlet/outlet of the second four-way valve 27 is connected to the inlet of the first heat medium pump 24 together with the outlet side of the heat medium passage 21a in the battery heat exchanger 21 . Further, the first four-way valve 26 is connected to another inlet/outlet of the second four-way valve 27 .
 図1に示すように、熱媒体回路20では、第1熱媒体ポンプ24及び冷却用蒸発器15を通過する熱媒体の流れに関して、電池用熱交換器21、機器用熱交換器22、外気熱交換器23が相互に並列になるように接続されている。 As shown in FIG. 1, in the heat medium circuit 20, the flow of the heat medium passing through the first heat medium pump 24 and the cooling evaporator 15 includes the battery heat exchanger 21, the equipment heat exchanger 22, and the outside air heat. Exchangers 23 are connected in parallel with each other.
 このように構成された熱媒体回路20は、第1四方弁26、第2四方弁27の作動を制御することで、熱媒体回路20における熱媒体の流れを切り替えることができる。例えば、第1四方弁26の流入出口の内、冷却用蒸発器15側、電池用熱交換器21側、機器用熱交換器22側の流入出口を開状態にし、第2四方弁27側の流入出口を閉じる。又、第2四方弁27の流入出口の内、第1四方弁26側、外気熱交換器23側の流入出口を閉じ、電池用熱交換器21側と第1熱媒体ポンプ24側とを連通させる。この場合、熱媒体回路20における熱媒体は、冷却用蒸発器15を通過した熱媒体の流れに関して、電池用熱交換器21、機器用熱交換器22及び外気熱交換器23が相互に並列に接続された態様で循環させることができる。 The heat medium circuit 20 configured in this way can switch the heat medium flow in the heat medium circuit 20 by controlling the operation of the first four-way valve 26 and the second four-way valve 27 . For example, among the inlets and outlets of the first four-way valve 26, the inlets and outlets on the cooling evaporator 15 side, the battery heat exchanger 21 side, and the equipment heat exchanger 22 side are opened, and the second four-way valve 27 side is opened. Close the inlet and outlet. In addition, among the inflow/outlet ports of the second four-way valve 27, the inflow/outlet ports on the first four-way valve 26 side and the outside air heat exchanger 23 side are closed, and the battery heat exchanger 21 side and the first heat medium pump 24 side are communicated. Let In this case, the heat medium in the heat medium circuit 20 is arranged in parallel with the battery heat exchanger 21, the equipment heat exchanger 22, and the outside air heat exchanger 23 with respect to the flow of the heat medium that has passed through the cooling evaporator 15. It can be circulated in a connected manner.
 又、第1四方弁26において、冷却用蒸発器15側及び電池用熱交換器21側の流入出口を連通させ、残りの流入出口を閉状態にする。そして、第2四方弁27の流入出口の内、機器用熱交換器22側及び外気熱交換器23側を連通させ、残りを閉状態にする。 In addition, in the first four-way valve 26, the inlets and outlets on the cooling evaporator 15 side and the battery heat exchanger 21 side are communicated, and the remaining inlets and outlets are closed. Then, of the inflow/outlet of the second four-way valve 27, the equipment heat exchanger 22 side and the outside air heat exchanger 23 side are communicated with each other, and the rest are closed.
 この場合、熱媒体回路20に2つの熱媒体の循環径路が2つ形成される。一方の循環径路においては、熱媒体は、第1熱媒体ポンプ24、冷却用蒸発器15、第1四方弁26、電池用熱交換器21、第1熱媒体ポンプ24の順に流れて循環する。この循環径路によれば、冷凍サイクル10の低圧冷媒を冷熱源として、熱媒体を介して、発熱体としての電池Bを冷却することができる。 In this case, two heat medium circulation paths are formed in the heat medium circuit 20 . In one circulation path, the heat medium flows and circulates through the first heat medium pump 24, the cooling evaporator 15, the first four-way valve 26, the battery heat exchanger 21, and the first heat medium pump 24 in this order. According to this circulation path, the low-pressure refrigerant of the refrigerating cycle 10 can be used as a cold heat source to cool the battery B as a heating element via a heat medium.
 他方の循環径路では、熱媒体は、第2熱媒体ポンプ25、機器用熱交換器22、第2四方弁27、外気熱交換器23、第2熱媒体ポンプ25の順に流れて循環する。この循環径路によれば、熱媒体は外気熱交換器23で外気OAと熱交換することができる。そして、この構成によれば、独立した2つの循環径路を形成することができる為、電池Bと、車載機器Eを異なる温度帯に温度調整することも可能となる。 In the other circulation path, the heat medium flows and circulates through the second heat medium pump 25, the equipment heat exchanger 22, the second four-way valve 27, the outside air heat exchanger 23, and the second heat medium pump 25 in this order. According to this circulation path, the heat medium can exchange heat with the outside air OA in the outside air heat exchanger 23 . Further, according to this configuration, it is possible to form two independent circulation paths, so that it is also possible to adjust the temperature of the battery B and the in-vehicle device E in different temperature ranges.
 続いて、車両用空調装置100における加熱部30について説明する。加熱部30は、冷凍サイクル10における高圧冷媒を熱源として、空調対象空間に供給される送風空気Wを加熱する為の構成である。 Next, the heating unit 30 in the vehicle air conditioner 100 will be described. The heating unit 30 is configured to heat the blast air W supplied to the air-conditioned space using the high-pressure refrigerant in the refrigeration cycle 10 as a heat source.
 加熱部30は、高温側熱媒体回路31を有しており、熱媒体冷媒熱交換器12の熱媒体通路12b、ヒータコア32、高温側ポンプ33等を備えている。高温側熱媒体回路31は、高温側熱媒体を循環させる熱媒体回路であり、高温側熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用することができる。 The heating unit 30 has a high temperature side heat medium circuit 31, and includes a heat medium passage 12b of the heat medium refrigerant heat exchanger 12, a heater core 32, a high temperature side pump 33, and the like. The high-temperature-side heat medium circuit 31 is a heat-medium circuit for circulating a high-temperature-side heat medium, and as the high-temperature-side heat medium, a solution containing ethylene glycol, antifreeze, or the like can be used.
 高温側ポンプ33は、高温側熱媒体回路31における高温側熱媒体を循環させる為に圧送する熱媒体ポンプである。高温側ポンプ33は、制御装置50から出力される制御電圧によって、回転数(即ち、圧送能力)が制御される電動ポンプである。高温側ポンプ33の吐出口には、熱媒体冷媒熱交換器12の熱媒体通路12bにおける流入口が接続されている。 The high temperature side pump 33 is a heat medium pump that pumps to circulate the high temperature side heat medium in the high temperature side heat medium circuit 31 . The high temperature side pump 33 is an electric pump whose number of revolutions (that is, pumping capacity) is controlled by a control voltage output from the control device 50 . An inlet of the heat medium passage 12b of the heat medium refrigerant heat exchanger 12 is connected to the discharge port of the high temperature side pump 33 .
 上述したように、熱媒体冷媒熱交換器12の熱媒体通路12bにおいては、高温側熱媒体が、冷媒通路12aを流通する高圧冷媒との熱交換によって加熱される。即ち、高温側熱媒体は、冷凍サイクル10で汲み上げられた熱を用いて加熱される。 As described above, in the heat medium passage 12b of the heat medium refrigerant heat exchanger 12, the high temperature side heat medium is heated by heat exchange with the high pressure refrigerant flowing through the refrigerant passage 12a. That is, the high temperature side heat medium is heated using the heat pumped up by the refrigeration cycle 10 .
 熱媒体冷媒熱交換器12の熱媒体通路12bにおける流出口には、ヒータコア32における熱媒体流入口が接続されている。ヒータコア32は、熱媒体冷媒熱交換器12で加熱された高温側熱媒体と空調用蒸発器16を通過した送風空気Wとを熱交換させて、送風空気Wを加熱する熱交換器である。図2に示すように、ヒータコア32は、室内空調ユニット40のケーシング41内に配置されている。そして、ヒータコア32の熱媒体流出口には、高温側ポンプ33の吸込口が接続されている。 A heat medium inlet of the heater core 32 is connected to the outlet of the heat medium passage 12 b of the heat medium refrigerant heat exchanger 12 . The heater core 32 is a heat exchanger that heats the air W that has passed through the air-conditioning evaporator 16 by exchanging heat between the high temperature side heat medium heated by the heat medium-refrigerant heat exchanger 12 and the air W that has passed through. As shown in FIG. 2 , the heater core 32 is arranged inside a casing 41 of the indoor air conditioning unit 40 . A heat medium outlet of the heater core 32 is connected to a suction port of the high temperature side pump 33 .
 従って、車両用空調装置100によれば、冷凍サイクル10にて汲み上げた高圧冷媒の熱を熱源として、高温側熱媒体を介して、送風空気Wを加熱することができる。この為、熱媒体冷媒熱交換器12及び高温側熱媒体回路31は加熱部の一例に相当する。 Therefore, according to the vehicle air conditioner 100, the heat of the high pressure refrigerant pumped up by the refrigeration cycle 10 can be used as a heat source to heat the blown air W via the high temperature side heat medium. Therefore, the heat medium refrigerant heat exchanger 12 and the high temperature side heat medium circuit 31 correspond to an example of a heating section.
 次に、車両用空調装置100の室内空調ユニット40について、図2を参照して説明する。室内空調ユニット40は、車両用空調装置100において、冷凍サイクル10によって温度調整された送風空気Wを車室内の適切な箇所へ吹き出すためのユニットである。室内空調ユニット40は、車室内最前部の計器盤(即ち、インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 40 of the vehicle air conditioner 100 will be described with reference to FIG. The indoor air conditioning unit 40 is a unit for blowing off the blowing air W temperature-controlled by the refrigerating cycle 10 to appropriate locations in the vehicle interior in the vehicle air conditioner 100 . The interior air-conditioning unit 40 is arranged inside the instrument panel (that is, the instrument panel) at the forefront of the vehicle interior.
 室内空調ユニット40は、その外殻を形成するケーシング41の内部に形成される空気通路に、送風機42、空調用蒸発器16、ヒータコア32等を収容している。ケーシング41は、車室内に送風される送風空気Wの空気通路を形成している。ケーシング41は、或る程度の弾性を有し、強度的にも優れた樹脂(具体的には、ポリプロピレン)にて成形されている。 The indoor air-conditioning unit 40 accommodates a blower 42, an air-conditioning evaporator 16, a heater core 32, etc. in an air passage formed inside a casing 41 that forms its outer shell. The casing 41 forms an air passage for blowing air W blown into the vehicle interior. The casing 41 is molded from a resin (specifically, polypropylene) having a certain degree of elasticity and excellent strength.
 図2に示すように、ケーシング41の送風空気流れ最上流側には、内外気切替装置43が配置されている。内外気切替装置43は、ケーシング41内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。 As shown in FIG. 2, an inside/outside air switching device 43 is arranged on the most upstream side of the blowing air flow of the casing 41 . The inside/outside air switching device 43 switches and introduces inside air (vehicle interior air) and outside air (vehicle exterior air) into the casing 41 .
 内外気切替装置43は、ケーシング41内へ内気を導入させる内気導入口及び外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、制御装置50から出力される制御信号によって、その作動が制御される。 The inside/outside air switching device 43 continuously adjusts the opening areas of the inside air introduction port for introducing inside air into the casing 41 and the outside air introduction port for introducing outside air into the casing 41 by means of the inside/outside air switching door, thereby adjusting the amount of introduced inside air and the amount of outside air. Change the introduction ratio with the introduction air volume. The inside/outside air switching door is driven by an electric actuator for inside/outside air switching door. The operation of this electric actuator is controlled by a control signal output from the control device 50 .
 内外気切替装置43の送風空気流れ下流側には、送風機42が配置されている。送風機42は、遠心多翼ファンを電動モータにて駆動する電動送風機によって構成されている。送風機42は、内外気切替装置43を介して吸入した空気を車室内へ向けて送風する。送風機42は、制御装置50から出力される制御電圧によって、回転数(即ち、送風能力)が制御される。 A blower 42 is arranged downstream of the inside/outside air switching device 43 in the blown air flow. The blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The blower 42 blows the air sucked through the inside/outside air switching device 43 into the vehicle interior. The blower 42 has its rotation speed (ie, blowing capacity) controlled by a control voltage output from the control device 50 .
 送風機42の送風空気流れ下流側には、空調用蒸発器16及びヒータコア32が、送風空気の流れに対して、この順に配置されている。つまり、空調用蒸発器16は、ヒータコア32よりも送風空気流れ上流側に配置されている。 The air-conditioning evaporator 16 and the heater core 32 are arranged in this order with respect to the flow of the blown air on the downstream side of the blown air flow of the blower 42 . That is, the air-conditioning evaporator 16 is arranged upstream of the heater core 32 in the blown air flow.
 又、ケーシング41内には、冷風バイパス通路45が形成されている。冷風バイパス通路45は、空調用蒸発器16を通過した送風空気Wを、ヒータコア32を迂回させて下流側へ流す空気通路である。 Also, a cold air bypass passage 45 is formed in the casing 41 . The cold-air bypass passage 45 is an air passage through which the blown air W that has passed through the air-conditioning evaporator 16 bypasses the heater core 32 and flows downstream.
 空調用蒸発器16の送風空気流れ下流側であって、且つ、ヒータコア32の送風空気流れ上流側には、エアミックスドア44が配置されている。エアミックスドア44は、空調用蒸発器16を通過後の送風空気Wのうち、ヒータコア32を通過させる風量と冷風バイパス通路45を通過させる風量との風量割合を調整する。 An air mix door 44 is arranged on the downstream side of the air conditioning evaporator 16 in the blown air flow and upstream of the heater core 32 in the blown air flow. The air mix door 44 adjusts the air volume ratio between the air volume passing through the heater core 32 and the air volume passing through the cold air bypass passage 45 in the blown air W after passing through the air conditioning evaporator 16 .
 エアミックスドア44は、エアミックスドア駆動用の電動アクチュエータによって駆動される。電動アクチュエータは、制御装置50から出力される制御信号により、その作動が制御される。 The air mix door 44 is driven by an electric actuator for driving the air mix door. The operation of the electric actuator is controlled by a control signal output from the control device 50 .
 ヒータコア32の送風空気流れ下流側には、混合空間が設けられている。混合空間では、ヒータコア32にて加熱された送風空気Wと冷風バイパス通路45を通過してヒータコア32にて加熱されていない送風空気Wとが混合される。 A mixing space is provided downstream of the heater core 32 in the blown air flow. In the mixing space, the blast air W heated by the heater core 32 and the blast air W that has passed through the cold air bypass passage 45 and is not heated by the heater core 32 are mixed.
 更に、ケーシング41の送風空気流れ最下流部には、混合空間にて混合された送風空気(空調風)を車室内へ吹き出す開口穴が配置されている。開口穴としては、フェイス開口穴、フット開口穴、及びデフロスタ開口穴(いずれも図示せず)が設けられている。 Furthermore, at the most downstream portion of the blown air flow of the casing 41, an opening hole is arranged to blow out the blown air (air-conditioned air) mixed in the mixing space into the vehicle interior. As opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided.
 フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面の窓ガラスにおける内側面に向けて空調風を吹き出すための開口穴である。 The face opening hole is an opening hole for blowing air conditioning air toward the upper body of the passenger inside the vehicle. The foot opening hole is an opening hole for blowing the conditioned air toward the passenger's feet. The defroster opening hole is an opening hole for blowing the conditioned air toward the inner surface of the window glass on the front of the vehicle.
 これらのフェイス開口穴、フット開口穴、及びデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 These face opening hole, foot opening hole, and defroster opening hole are connected to the face outlet, foot outlet, and defroster outlet (none of which are shown) provided in the passenger compartment via ducts that form air passages. )It is connected to the.
 従って、エアミックスドア44が、ヒータコア32を通過させる風量と冷風バイパス通路45を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される送風空気(空調風)の温度も調整される。 Therefore, the air mix door 44 adjusts the air volume ratio between the air volume passing through the heater core 32 and the air volume passing through the cold air bypass passage 45, thereby adjusting the temperature of the conditioned air mixed in the mixing space. As a result, the temperature of the blown air (air-conditioned air) blown into the vehicle interior from each outlet is also adjusted.
 そして、フェイス開口穴、フット開口穴、及びデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイスドア、フットドア、デフロスタドア(いずれも図示せず)が配置されている。フェイスドアは、フェイス開口穴の開口面積を調整する。フットドアは、フット開口穴の開口面積を調整する。デフロスタドアは、デフロスタ開口穴の開口面積を調整する。 A face door, a foot door, and a defroster door (none of which are shown) are arranged on the upstream sides of the face opening hole, the foot opening hole, and the defroster opening hole, respectively. The face door adjusts the opening area of the face opening hole. The foot door adjusts the opening area of the foot opening hole. The defroster door adjusts the opening area of the defroster opening hole.
 これらのフェイスドア、フットドア、デフロスタドアは、空調風が吹き出される吹出口を切り替える吹出モード切替装置を構成する。フェイスドア、フットドア、デフロスタドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。この電動アクチュエータは、制御装置50から出力される制御信号によって、その作動が制御される。 The face door, foot door, and defroster door constitute a blowout mode switching device that switches the blowout port from which the conditioned air blows out. The face door, foot door, and defroster door are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction with each other. The operation of this electric actuator is controlled by a control signal output from the control device 50 .
 続いて、車両用空調装置100の制御系について、図3を参照して説明する。車両用空調装置100の制御装置50は、CPU、ROM及びRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。 Next, the control system of the vehicle air conditioner 100 will be described with reference to FIG. The control device 50 of the vehicle air conditioner 100 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits.
 そして、制御装置50は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器の作動を制御する。制御対象機器には、圧縮機11、第1膨張弁14a、第2膨張弁14b、第1熱媒体ポンプ24、第2熱媒体ポンプ25、第1四方弁26、第2四方弁27、高温側ポンプ33、送風機42等が含まれている。 Then, the control device 50 performs various calculations and processes based on the control program stored in the ROM, and controls the operation of various controlled devices connected to its output side. The devices to be controlled include the compressor 11, the first expansion valve 14a, the second expansion valve 14b, the first heat medium pump 24, the second heat medium pump 25, the first four-way valve 26, the second four-way valve 27, the high temperature side A pump 33, a blower 42, etc. are included.
 図3に示すように、制御装置50の入力側には、制御用センサ群が接続されている。制御用センサ群には、外気温センサ52a、内気温センサ52b、日射量センサ52c、高圧センサ52d、蒸発器温度センサ52eが含まれている。 As shown in FIG. 3, a control sensor group is connected to the input side of the control device 50 . The control sensor group includes an outside air temperature sensor 52a, an inside air temperature sensor 52b, a solar radiation sensor 52c, a high pressure sensor 52d, and an evaporator temperature sensor 52e.
 外気温センサ52aは、車室外温度(外気温)Tamを検出する外気温検出部である。外気温センサ52aは、駆動装置室内の外気熱交換器23に供給される外気OAの温度を検出するように配置されている。内気温センサ52bは、車室内温度(内気温)Trを検出する内気温検出部である。日射量センサ52cは、車室内へ照射される日射量Asを検出する日射量検出部である。 The outside air temperature sensor 52a is an outside air temperature detection unit that detects the vehicle outside temperature (outside air temperature) Tam. The outside air temperature sensor 52a is arranged to detect the temperature of the outside air OA supplied to the outside air heat exchanger 23 in the drive room. The internal air temperature sensor 52b is an internal air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr. The solar radiation amount sensor 52c is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
 高圧センサ52dは、圧縮機11の吐出口側から第1膨張弁14a或いは第2膨張弁14bの入口側へ至る冷媒流路の高圧冷媒圧力Pdを検出する冷媒圧力検出部である。蒸発器温度センサ52eは、空調用蒸発器16における冷媒蒸発温度(蒸発器温度)Teを検出する蒸発器温度検出部である。 The high-pressure sensor 52d is a refrigerant pressure detection unit that detects the high-pressure refrigerant pressure Pd in the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 14a or the second expansion valve 14b. The evaporator temperature sensor 52e is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Te in the air conditioning evaporator 16. FIG.
 又、制御装置50の入力側には、電池温度センサ53a、機器温度センサ53b、送風空気温度センサ53cが接続されている。電池温度センサ53aは、電池Bの温度である電池温度を検出する電池温度検出部である。電池温度センサ53aは、複数の温度検出部を有し、電池Bにおける複数の箇所の温度を検出している。この為、制御装置50では、電池Bにおける各部の温度差を検出することもできる。 A battery temperature sensor 53a, a device temperature sensor 53b, and a blown air temperature sensor 53c are connected to the input side of the control device 50. The battery temperature sensor 53a is a battery temperature detection unit that detects the battery temperature, which is the temperature of the battery B. FIG. The battery temperature sensor 53a has a plurality of temperature detection units and detects temperatures at a plurality of locations in the battery B. FIG. Therefore, the control device 50 can also detect the temperature difference between the parts of the battery B. FIG.
 更に、電池温度としては、複数の温度検出部における検出値の平均値を採用している。尚、電池温度センサ53aは、電池用熱交換器21を流通する熱媒体の温度を検出し、熱媒体の温度を基にして電池Bの温度を推定しても良い。 Furthermore, as the battery temperature, the average value of the detection values of multiple temperature detection units is used. The battery temperature sensor 53a may detect the temperature of the heat medium flowing through the battery heat exchanger 21 and estimate the temperature of the battery B based on the temperature of the heat medium.
 機器温度センサ53bは、発熱体である車載機器Eの温度を検出する機器温度検出部である。機器温度センサ53bは、電池温度センサ53aと同様に、複数の温度検出部を有しており、車載機器Eにおける複数の箇所の温度を検出している。そして、送風空気温度センサ53cは、車室内へ送風される送風空気温度TAVを検出する送風空気温度検出部である。 The device temperature sensor 53b is a device temperature detection unit that detects the temperature of the vehicle-mounted device E, which is a heating element. Like the battery temperature sensor 53a, the device temperature sensor 53b has a plurality of temperature detection units, and detects temperatures at a plurality of locations in the vehicle-mounted device E. FIG. The blown air temperature sensor 53c is a blown air temperature detector that detects the temperature TAV of blown air blown into the vehicle interior.
 更に、制御用センサ群の入力側には、熱媒体回路20の熱媒体や高温側熱媒体回路31の高温側熱媒体の温度を検出する為の第1熱媒体温度センサ54a~第5熱媒体温度センサ54eが接続されている。 Further, on the input side of the group of control sensors, there are provided a first heat medium temperature sensor 54a to a fifth heat medium temperature sensor 54a for detecting the temperature of the heat medium of the heat medium circuit 20 and the temperature of the high temperature side heat medium of the high temperature side heat medium circuit 31. A temperature sensor 54e is connected.
 第1熱媒体温度センサ54aは、熱媒体回路20を流通する熱媒体の温度(熱媒体温度Tw)を検出する。第1熱媒体温度センサ54aは、熱媒体回路20の熱媒体流路において、冷却用蒸発器15における熱媒体通路15bの流出口と第1四方弁26の流入出口の間に配置されている。第1熱媒体温度センサ54aは温度検出部の一例に相当する。 The first heat medium temperature sensor 54a detects the temperature of the heat medium flowing through the heat medium circuit 20 (heat medium temperature Tw). The first heat medium temperature sensor 54 a is arranged in the heat medium flow path of the heat medium circuit 20 between the outlet of the heat medium passage 15 b of the cooling evaporator 15 and the inlet/outlet of the first four-way valve 26 . The first heat medium temperature sensor 54a corresponds to an example of a temperature detection section.
 第2熱媒体温度センサ54bは、電池用熱交換器21における熱媒体通路21aの出口部分に配置されており、電池用熱交換器21を通過した熱媒体の温度を検出する。第3熱媒体温度センサ54cは、機器用熱交換器22における熱媒体通路22aの出口部分に配置されており、機器用熱交換器22を通過した熱媒体の温度を検出する。 The second heat medium temperature sensor 54b is arranged at the outlet of the heat medium passage 21a in the battery heat exchanger 21, and detects the temperature of the heat medium that has passed through the battery heat exchanger 21. The third heat medium temperature sensor 54c is arranged at the outlet portion of the heat medium passage 22a in the equipment heat exchanger 22, and detects the temperature of the heat medium that has passed through the equipment heat exchanger 22.
 そして、第4熱媒体温度センサ54dは、外気熱交換器23の熱媒体出口部分に配置されており、外気熱交換器23から流出した熱媒体の温度を検出する。第5熱媒体温度センサ54eは、熱媒体冷媒熱交換器12の熱媒体通路12bにおける出口部分に配置されており、熱媒体冷媒熱交換器12から流出する高温側熱媒体の温度を検出する。 The fourth heat medium temperature sensor 54 d is arranged at the heat medium outlet portion of the outside air heat exchanger 23 and detects the temperature of the heat medium flowing out of the outside air heat exchanger 23 . The fifth heat medium temperature sensor 54 e is arranged at the outlet portion of the heat medium passage 12 b of the heat medium/refrigerant heat exchanger 12 and detects the temperature of the high temperature side heat medium flowing out of the heat medium/refrigerant heat exchanger 12 .
 そして、車両用空調装置100の制御装置50は、第1熱媒体温度センサ54a~第5熱媒体温度センサ54eの検出結果を参照して、熱媒体回路20における熱媒体の流れや、高温側熱媒体回路31における高温側熱媒体の流れを切り替える。これにより、車両用空調装置100は、熱媒体回路20や高温側熱媒体回路31を用いて、車両における熱を管理することができる。 Then, the control device 50 of the vehicle air conditioner 100 refers to the detection results of the first heat medium temperature sensor 54a to the fifth heat medium temperature sensor 54e to determine the flow of the heat medium in the heat medium circuit 20 and the high temperature side heat. The flow of the high temperature side heat medium in the medium circuit 31 is switched. Accordingly, the vehicle air conditioner 100 can manage the heat in the vehicle using the heat medium circuit 20 and the high temperature side heat medium circuit 31 .
 更に、制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル51が接続されている。操作パネル51には、複数の操作スイッチが配置されている。従って、制御装置50には、この複数の操作スイッチからの操作信号が入力される。操作パネル51における各種操作スイッチとしては、オートスイッチ、冷房スイッチ、風量設定スイッチ、温度設定スイッチ等がある。 Furthermore, the input side of the control device 50 is connected to an operation panel 51 arranged near the instrument panel in the front part of the passenger compartment. A plurality of operation switches are arranged on the operation panel 51 . Therefore, the control device 50 receives operation signals from the plurality of operation switches. Various operation switches on the operation panel 51 include an auto switch, a cooling switch, an air volume setting switch, a temperature setting switch, and the like.
 オートスイッチは、車両用空調装置100の自動制御運転を設定或いは解除する際に操作される。冷房スイッチは、車室内の冷房を行うことを要求する際に操作される。風量設定スイッチは、送風機42の風量をマニュアル設定する際に操作される。そして、温度設定スイッチは、車室内の空調目標温度Tsetを設定する際に操作される。 The auto switch is operated when setting or canceling the automatic control operation of the vehicle air conditioner 100 . The cooling switch is operated when requesting cooling of the passenger compartment. The air volume setting switch is operated when manually setting the air volume of the blower 42 . The temperature setting switch is operated when setting the air conditioning target temperature Tset in the passenger compartment.
 尚、制御装置50では、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されているが、それぞれの制御対象機器の作動を制御する構成(ハードウェア及びソフトウェア)がそれぞれの制御対象機器の作動を制御する制御部を構成している。 In addition, in the control device 50, a control unit for controlling various controlled devices connected to the output side thereof is integrally configured. It constitutes a control unit that controls the operation of each controlled device.
 例えば、制御装置50のうち、第1熱媒体温度センサ54aで検出される熱媒体温度Twと目標温度Toとの差に応じて、圧縮機11の回転数(即ち、冷媒吐出能力)を調整する構成は、圧縮機制御部50aを構成する。 For example, the control device 50 adjusts the rotation speed of the compressor 11 (that is, the refrigerant discharge capacity) according to the difference between the heat medium temperature Tw detected by the first heat medium temperature sensor 54a and the target temperature To. The configuration constitutes a compressor control unit 50a.
 又、圧縮機制御部50aは、蒸発器温度センサ52eで検出される冷媒蒸発温度Teと蒸発目標温度との偏差に基づき、フィードバック制御手法により、冷媒蒸発温度Teが蒸発目標温度に近づくように、圧縮機11の回転数を調整する。 Further, based on the deviation between the refrigerant evaporation temperature Te detected by the evaporator temperature sensor 52e and the target evaporation temperature, the compressor control unit 50a controls the refrigerant evaporation temperature Te so that it approaches the target evaporation temperature by a feedback control method. The rotation speed of the compressor 11 is adjusted.
 圧縮機制御部50aは、車両用空調装置100の運転状況に対応して、圧縮機11の回転数を熱媒体温度Twに基づき調整する熱媒体温度制御と、圧縮機11の回転数を冷媒蒸発温度Teに基づき調整する蒸発器温度制御と、を切り替える。 The compressor control unit 50a adjusts the rotation speed of the compressor 11 based on the heat medium temperature Tw according to the operating conditions of the vehicle air conditioner 100, and adjusts the rotation speed of the compressor 11 for refrigerant evaporation. and evaporator temperature control adjusted based on the temperature Te.
 そして、制御装置50のうち、圧縮機11の吹き上がりの発生を抑制する為の徐変制御を行う実行条件を満たすか否かを判定する構成は、条件判定部50bを構成する。条件判定部50bによる徐変制御の実行条件については後に詳細に説明する。 In the control device 50, the configuration for determining whether or not the execution condition for performing the gradual change control for suppressing the occurrence of blow-up of the compressor 11 is satisfied constitutes the condition determination section 50b. The condition for executing the gradual change control by the condition determination unit 50b will be described later in detail.
 制御装置50のうち、徐変制御を実行する際に、発熱体(例えば、電池B)の温度又は発熱量に応じて、徐変制御における熱媒体温度Twの最終的な目標値である最終目標温度Tofを設定する構成は、最終目標温度設定部50cを構成する。 When the control device 50 executes the gradual change control, the final target value of the heat medium temperature Tw in the gradual change control is set according to the temperature or the amount of heat generated by the heating element (for example, the battery B). The configuration for setting the temperature Tof constitutes the final target temperature setting section 50c.
 又、制御装置50のうち、徐変制御を実行する際に、徐変制御開始時における熱媒体温度Twである初期温度Tsから最終目標温度Tofに徐々に近づくように、目標温度Toを設定する構成は、目標温度設定部50dを構成する。 Further, when the gradual change control is executed in the controller 50, the target temperature To is set so as to gradually approach the final target temperature Tof from the initial temperature Ts, which is the heat medium temperature Tw at the start of the gradual change control. The configuration constitutes a target temperature setting unit 50d.
 続いて、冷凍サイクル装置1を含む車両用空調装置100の作動について説明する。上述したように、車両用空調装置100では、複数の運転モードから適宜運転モードを切り替えることができる。これらの運転モードの切り替えは、制御装置50に予め記憶された制御プログラムが実行されることによって行われる。 Next, the operation of the vehicle air conditioner 100 including the refrigeration cycle device 1 will be described. As described above, in the vehicle air conditioner 100, the operation mode can be appropriately switched from a plurality of operation modes. These operation modes are switched by executing a control program pre-stored in the control device 50 .
 上述したように、車両用空調装置100の運転モードには、冷房モード、暖房モード、除湿暖房モード、単独冷却モード、冷却冷房モード、冷却暖房モード、冷却除湿暖房モードが含まれる。以下に、各運転モードについて説明する。 As described above, the operation modes of the vehicle air conditioner 100 include the cooling mode, the heating mode, the dehumidifying heating mode, the independent cooling mode, the cooling cooling mode, the cooling heating mode, and the cooling dehumidifying heating mode. Each operation mode will be described below.
 (a)冷房モード
 冷房モードは、冷凍サイクル10を利用した発熱体(電池Bや車載機器E)の冷却を行うことなく、空調用蒸発器16により送風空気Wを冷却して車室内に送風する運転モードである。この冷房モードでは、制御装置50は、第1膨張弁14aを全閉し、第2膨張弁14bを予め定められた絞り開度で開く。
(a) Cooling Mode In the cooling mode, the air-conditioning evaporator 16 cools the blown air W and blows it into the vehicle interior without cooling the heating elements (the battery B and the vehicle-mounted device E) using the refrigeration cycle 10. Driving mode. In this cooling mode, the controller 50 fully closes the first expansion valve 14a and opens the second expansion valve 14b to a predetermined throttle opening.
 従って、冷房モードの冷凍サイクル10では、圧縮機11、熱媒体冷媒熱交換器12、第2膨張弁14b、空調用蒸発器16、蒸発圧力調整弁17、圧縮機11の順で流れる冷媒の循環回路が構成される。従って、冷房モードは単独モードの一例に相当する。 Therefore, in the refrigeration cycle 10 in the cooling mode, the circulation of the refrigerant flowing through the compressor 11, the heat medium refrigerant heat exchanger 12, the second expansion valve 14b, the air-conditioning evaporator 16, the evaporation pressure control valve 17, and the compressor 11 in this order. A circuit is constructed. Therefore, the cooling mode corresponds to an example of the single mode.
 そして、このサイクル構成で、制御装置50は、制御用センサ群の検出結果等に従って、出力側に接続された各種制御対象機器の作動を冷房モードに適した態様となるように制御する。具体的には、制御装置50は、圧縮機11の冷媒吐出能力、第2膨張弁14bの絞り開度、送風機42の送風能力、エアミックスドア44の開度等を制御する。 Then, in this cycle configuration, the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the cooling mode, according to the detection results of the control sensor group. Specifically, the control device 50 controls the refrigerant discharge capacity of the compressor 11, the throttle opening degree of the second expansion valve 14b, the air blowing capacity of the blower 42, the opening degree of the air mix door 44, and the like.
 尚、冷房モードの熱媒体回路20では、冷却用蒸発器15に低圧冷媒が流入していない為、機器用熱交換器22、外気熱交換器23を経由した熱媒体が外気熱交換器23を通過するように循環させることができる。又、冷房モードにおいては、熱媒体回路20における熱媒体の循環を停止させた状態にすることも可能である。 In the heat medium circuit 20 in the cooling mode, since the low-pressure refrigerant does not flow into the cooling evaporator 15, the heat medium passing through the equipment heat exchanger 22 and the outside air heat exchanger 23 passes through the outside air heat exchanger 23. It can be circulated to pass through. Also, in the cooling mode, it is possible to stop the circulation of the heat medium in the heat medium circuit 20 .
 従って、冷房モードの冷凍サイクル装置1では、空調用蒸発器16にて冷却された送風空気Wを車室内へ吹き出すことによって、車室内の冷房を行うことができる。又、冷凍サイクル装置1は、外気熱交換器23にて、熱媒体回路20の熱媒体と外気OAとの熱交換を行うことによって、電池B等の温度調整を行うことができる。 Therefore, in the refrigeration cycle device 1 in the cooling mode, the vehicle interior can be cooled by blowing the blown air W cooled by the air-conditioning evaporator 16 into the vehicle interior. Further, the refrigeration cycle device 1 can perform temperature adjustment of the battery B and the like by exchanging heat between the heat medium of the heat medium circuit 20 and the outside air OA in the outside air heat exchanger 23 .
 (b)暖房モード
 暖房モードは、冷凍サイクル10を用いた発熱体の冷却を行うことなく、ヒータコア32により送風空気Wを加熱して車室内に送風する運転モードである。暖房モードでは、制御装置50は、第1膨張弁14aを所定の絞り開度で開き、第2膨張弁14bを全閉状態にする。
(b) Heating Mode The heating mode is an operation mode in which the heater core 32 heats the blown air W and blows it into the passenger compartment without cooling the heating element using the refrigeration cycle 10 . In the heating mode, the control device 50 opens the first expansion valve 14a to a predetermined throttle opening and fully closes the second expansion valve 14b.
 従って、暖房モードの冷凍サイクル10では、圧縮機11、熱媒体冷媒熱交換器12、第1膨張弁14a、冷却用蒸発器15、圧縮機11の順で冷媒が循環する冷媒の循環回路が構成される。従って、暖房モードは単独モードの一例に相当する。このサイクル構成で、制御装置50は、制御用センサ群の検出結果等に従って、出力側に接続された各種制御対象機器の作動を暖房モードに適した態様となるように制御する。 Therefore, in the refrigeration cycle 10 in the heating mode, a refrigerant circulation circuit is configured in which the refrigerant circulates in the order of the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11. be done. Therefore, the heating mode corresponds to an example of a single mode. With this cycle configuration, the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the heating mode according to the detection results of the control sensor group.
 又、暖房モードの熱媒体回路20については、冷却用蒸発器15から流出した熱媒体が外気熱交換器23を経由するように、熱媒体を循環させる。これにより、冷凍サイクル装置1は、外気熱交換器23にて外気OAから熱媒体に吸熱した熱を、冷凍サイクル10で汲み上げ、暖房用の熱源として利用することができる。 Also, in the heating mode heat medium circuit 20 , the heat medium is circulated so that the heat medium flowing out from the cooling evaporator 15 passes through the outside air heat exchanger 23 . As a result, the refrigerating cycle device 1 can draw the heat absorbed by the heat medium from the outside air OA in the outside air heat exchanger 23 into the refrigerating cycle 10 and use it as a heat source for heating.
 (c)除湿暖房モード
 除湿暖房モードは、冷凍サイクル10を利用した発熱体の冷却を行うことなく、空調用蒸発器16で冷却された送風空気Wをヒータコア32で加熱して車室内に送風する運転モードである。除湿暖房モードでは、制御装置50は、第1膨張弁14a及び第2膨張弁14bをそれぞれ所定の絞り開度で開く。
(c) Dehumidification and heating mode In the dehumidification and heating mode, the heater core 32 heats the air W cooled by the air conditioning evaporator 16 without cooling the heating element using the refrigeration cycle 10 and blows it into the passenger compartment. Driving mode. In the dehumidification/heating mode, the control device 50 opens the first expansion valve 14a and the second expansion valve 14b with a predetermined throttle opening.
 従って、除湿暖房モードの冷凍サイクル10では、圧縮機11、熱媒体冷媒熱交換器12、第1膨張弁14a、冷却用蒸発器15、圧縮機11の順で冷媒が循環する。同時に、圧縮機11、熱媒体冷媒熱交換器12、第2膨張弁14b、空調用蒸発器16、蒸発圧力調整弁17、圧縮機11の順に冷媒が循環する。 Therefore, in the refrigeration cycle 10 in the dehumidifying and heating mode, the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11 in that order. At the same time, the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the second expansion valve 14b, the air conditioning evaporator 16, the evaporation pressure control valve 17, and the compressor 11 in this order.
 つまり、除湿暖房モードの冷凍サイクル10では、熱媒体冷媒熱交換器12から流出した冷媒の流れに対して、冷却用蒸発器15及び空調用蒸発器16が並列的に接続された冷媒の循環回路が構成される。従って、除湿暖房モードは併用モードの一例に相当する。 That is, in the refrigerating cycle 10 in the dehumidifying and heating mode, a refrigerant circulation circuit in which the cooling evaporator 15 and the air conditioning evaporator 16 are connected in parallel with respect to the flow of refrigerant flowing out of the heat medium refrigerant heat exchanger 12. is configured. Therefore, the dehumidifying heating mode corresponds to an example of the combined mode.
 このサイクル構成で、制御装置50は、制御用センサ群の検出結果等に従って、出力側に接続された各種制御対象機器の作動を除湿暖房モードに適した態様となるように制御する。そして、除湿暖房モードの熱媒体回路20については、制御装置50は、冷却用蒸発器15を経由した熱媒体が外気熱交換器23を通過するように、熱媒体を循環させる。 With this cycle configuration, the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the dehumidification and heating mode, according to the detection results of the control sensor group. As for the heat medium circuit 20 in the dehumidifying and heating mode, the control device 50 circulates the heat medium so that the heat medium that has passed through the cooling evaporator 15 passes through the outside air heat exchanger 23 .
 これにより、除湿暖房モードの冷凍サイクル装置1は、熱媒体回路20にて外気OAから吸熱した熱を冷凍サイクル10で汲み上げて、冷却された送風空気Wを、高温側熱媒体回路31を介して加熱する除湿暖房を実現することができる。 As a result, the refrigerating cycle device 1 in the dehumidifying heating mode pumps up the heat absorbed from the outside air OA in the heat medium circuit 20 in the refrigerating cycle 10, and sends the cooled blown air W through the high temperature side heat medium circuit 31. Heating dehumidification heating can be realized.
 (d)単独冷却モード
 単独冷却モードは、車室内の空調運転を行うことなく、冷凍サイクル10を用いた発熱体の冷却を行う運転モードである。この単独冷却モードでは、制御装置50は、第1膨張弁14aを所定の絞り開度で開き、第2膨張弁14bを全閉状態にする。
(d) Independent cooling mode The independent cooling mode is an operation mode in which the heating element is cooled using the refrigerating cycle 10 without air-conditioning the vehicle interior. In this independent cooling mode, the control device 50 opens the first expansion valve 14a to a predetermined throttle opening and fully closes the second expansion valve 14b.
 従って、単独冷却モードの冷凍サイクル10では、圧縮機11、熱媒体冷媒熱交換器12、第1膨張弁14a、冷却用蒸発器15、圧縮機11の順で冷媒が循環する冷媒の循環回路が構成される。単独冷却モードは単独モードの一例に相当する。このサイクル構成で、制御装置50は、制御用センサ群の検出結果等に従って、出力側に接続された各種制御対象機器の作動を単独冷却モードに適した態様となるように制御する。 Therefore, in the refrigeration cycle 10 in the independent cooling mode, a refrigerant circulation circuit is formed in which the refrigerant circulates in the order of the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11. Configured. The single cooling mode corresponds to an example of the single mode. With this cycle configuration, the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the independent cooling mode, according to the detection results of the control sensor group.
 そして、単独冷却モードの熱媒体回路20については、制御装置50は、冷却用蒸発器15を経由した熱媒体が電池用熱交換器21及び機器用熱交換器22の少なくとも一方を経由して循環するように、熱媒体回路20の構成機器を制御する。 For the heat medium circuit 20 in the single cooling mode, the control device 50 causes the heat medium that has passed through the cooling evaporator 15 to circulate through at least one of the battery heat exchanger 21 and the device heat exchanger 22. The components of the heat medium circuit 20 are controlled so as to do so.
 これにより、単独冷却モードの冷凍サイクル装置1は、冷却用蒸発器15における低圧冷媒との熱交換によって冷却された熱媒体を、電池用熱交換器21及び機器用熱交換器22の少なくとも一方に流通させる為、冷凍サイクル10を利用して発熱体を冷却できる。 As a result, the refrigeration cycle apparatus 1 in the single cooling mode transfers the heat medium cooled by heat exchange with the low-pressure refrigerant in the cooling evaporator 15 to at least one of the battery heat exchanger 21 and the equipment heat exchanger 22. Since it is circulated, the heating element can be cooled using the refrigeration cycle 10 .
 (e)冷却冷房モード
 冷却冷房モードは、冷凍サイクルを利用した発熱体の冷却と並行して、空調用蒸発器16により送風空気Wを冷却して車室内に送風する運転モードである。この冷却冷房モードでは、制御装置50は、第1膨張弁14a及び第2膨張弁14bをそれぞれ所定の絞り開度で開く。
(e) Cooling/cooling mode The cooling/cooling mode is an operation mode in which the air-conditioning evaporator 16 cools the blown air W and blows it into the passenger compartment in parallel with cooling the heating element using the refrigerating cycle. In this cooling cooling mode, the control device 50 opens the first expansion valve 14a and the second expansion valve 14b to a predetermined throttle opening.
 従って、冷却冷房モードの冷凍サイクル10では、圧縮機11、熱媒体冷媒熱交換器12、第1膨張弁14a、冷却用蒸発器15、圧縮機11の順で冷媒が循環する。同時に、圧縮機11、熱媒体冷媒熱交換器12、第2膨張弁14b、空調用蒸発器16、蒸発圧力調整弁17、圧縮機11の順に冷媒が循環する。つまり、冷却冷房モードの冷凍サイクル10では、熱媒体冷媒熱交換器12から流出した冷媒の流れに対して、空調用蒸発器16及び冷却用蒸発器15が並列的に接続された冷媒の循環回路が構成される。従って、冷却冷房モードは併用モードの一例に相当する。 Therefore, in the refrigeration cycle 10 in the cooling cooling mode, the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11 in this order. At the same time, the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the second expansion valve 14b, the air conditioning evaporator 16, the evaporation pressure control valve 17, and the compressor 11 in this order. That is, in the refrigerating cycle 10 in the cooling cooling mode, the refrigerant circulation circuit in which the air conditioning evaporator 16 and the cooling evaporator 15 are connected in parallel with respect to the flow of refrigerant flowing out of the heat medium refrigerant heat exchanger 12. is configured. Therefore, the cooling cooling mode corresponds to an example of the combined mode.
 このサイクル構成で、制御装置50は、制御用センサ群の検出結果等に従って、出力側に接続された各種制御対象機器の作動を冷却冷房モードに適した態様となるように制御する。そして、冷却冷房モードの熱媒体回路20については、制御装置50は、冷却用蒸発器15を通過した熱媒体が電池用熱交換器21及び機器用熱交換器22の少なくとも一方を経由して循環するように、熱媒体回路20の構成機器を制御する。 With this cycle configuration, the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the cooling mode according to the detection results of the control sensor group. For the heat medium circuit 20 in the cooling cooling mode, the control device 50 causes the heat medium that has passed through the cooling evaporator 15 to circulate through at least one of the battery heat exchanger 21 and the device heat exchanger 22. The components of the heat medium circuit 20 are controlled so as to do so.
 これにより、冷却冷房モードの冷凍サイクル装置1は、冷却用蒸発器15における低圧冷媒との熱交換によって冷却された熱媒体を、電池用熱交換器21、機器用熱交換器22に流通させることができるので、発熱体を冷却することができる。 As a result, the refrigeration cycle device 1 in the cooling cooling mode allows the heat medium cooled by heat exchange with the low-pressure refrigerant in the cooling evaporator 15 to flow through the battery heat exchanger 21 and the equipment heat exchanger 22. Therefore, the heating element can be cooled.
 又、冷却冷房モードでは、空調用蒸発器16における送風空気Wとの熱交換により、低圧冷媒を蒸発させて送風空気Wを冷却して車室内の冷房を実現できる。従って、冷却冷房モードの冷凍サイクル装置1は、冷凍サイクル10を用いた発熱体の冷却と共に、車室内の冷房によって快適性を向上させることができる。 Also, in the cooling mode, heat exchange with the blown air W in the air-conditioning evaporator 16 evaporates the low-pressure refrigerant to cool the blown air W, thereby cooling the vehicle interior. Therefore, the refrigerating cycle device 1 in the cooling cooling mode can improve comfort by cooling the heating element using the refrigerating cycle 10 and cooling the passenger compartment.
 (f)冷却暖房モード
 冷却暖房モードは、冷凍サイクル10を利用した発熱体の冷却と並行して、ヒータコア32により送風空気Wを加熱して車室内に送風する運転モードである。この冷却暖房モードでは、制御装置50は、第1膨張弁14aを所定の絞り開度で開き、第2膨張弁14bを全閉状態にする。従って、冷却暖房モードの冷凍サイクル10では、圧縮機11、熱媒体冷媒熱交換器12、第1膨張弁14a、冷却用蒸発器15、圧縮機11の順で冷媒が循環する冷媒の循環回路が構成される。冷却暖房モードは単独モードの一例に相当する。
(f) Cooling/heating mode The cooling/heating mode is an operation mode in which the heater core 32 heats the blast air W and blows it into the passenger compartment in parallel with the cooling of the heating element using the refrigeration cycle 10 . In this cooling/heating mode, the control device 50 opens the first expansion valve 14a to a predetermined throttle opening and fully closes the second expansion valve 14b. Therefore, in the refrigeration cycle 10 in the cooling/heating mode, a refrigerant circulation circuit is formed in which the refrigerant circulates in the order of the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11. Configured. The cooling/heating mode corresponds to an example of a single mode.
 このサイクル構成で、制御装置50は、制御用センサ群の検出結果等に従って、出力側に接続された各種制御対象機器の作動を冷却暖房モードに適した態様となるように制御する。そして、冷却暖房モードの熱媒体回路20については、制御装置50は、冷却用蒸発器15を通過した熱媒体が電池用熱交換器21及び機器用熱交換器22の少なくとも一方を経由して循環するように、熱媒体回路20の構成機器を制御する。 With this cycle configuration, the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the cooling and heating mode according to the detection results of the control sensor group. For the heat medium circuit 20 in the cooling/heating mode, the control device 50 causes the heat medium that has passed through the cooling evaporator 15 to circulate through at least one of the battery heat exchanger 21 and the device heat exchanger 22. The components of the heat medium circuit 20 are controlled so as to do so.
 これにより、冷却暖房モードの冷凍サイクル装置1は、冷却用蒸発器15における低圧冷媒との熱交換によって冷却された熱媒体を、電池用熱交換器21、機器用熱交換器22に流通させることができるので、発熱体を冷却することができる。 As a result, the refrigeration cycle device 1 in the cooling/heating mode allows the heat medium cooled by heat exchange with the low-pressure refrigerant in the cooling evaporator 15 to flow through the battery heat exchanger 21 and the device heat exchanger 22. Therefore, the heating element can be cooled.
 又、冷却暖房モードでは、冷凍サイクル10にて発熱体の廃熱を汲み上げて、ヒータコア32にて送風空気Wへ放熱することで、車室内の暖房を実現できる。従って、冷却暖房モードの冷凍サイクル装置1は、冷凍サイクル10を用いた発熱体の冷却と共に、発熱体の廃熱を熱源として利用した車室内の暖房によって快適性を向上させることができる。 In addition, in the cooling/heating mode, the refrigeration cycle 10 draws up the waste heat of the heating element and the heater core 32 dissipates the heat to the blown air W, thereby realizing heating of the passenger compartment. Therefore, the refrigeration cycle device 1 in the cooling/heating mode can improve comfort by cooling the heating element using the refrigeration cycle 10 and heating the passenger compartment using the waste heat of the heating element as a heat source.
 (g)冷却除湿暖房モード
 冷却除湿暖房モードは、冷凍サイクル10を利用した発熱体の冷却と並行して、空調用蒸発器16で冷却された送風空気Wをヒータコア32で加熱して車室内に送風する運転モードである。この冷却除湿暖房モードでは、制御装置50は、第1膨張弁14a及び第2膨張弁14bをそれぞれ所定の絞り開度で開く。
(g) Cooling Dehumidifying Heating Mode In the cooling dehumidifying heating mode, in parallel with the cooling of the heating element using the refrigeration cycle 10, the blast air W cooled by the air conditioning evaporator 16 is heated by the heater core 32 to enter the vehicle interior. This is an operation mode that blows air. In this cooling/dehumidifying/heating mode, the controller 50 opens the first expansion valve 14a and the second expansion valve 14b to a predetermined throttle opening.
 従って、冷却除湿暖房モードの冷凍サイクル10では、圧縮機11、熱媒体冷媒熱交換器12、第1膨張弁14a、冷却用蒸発器15、圧縮機11の順で冷媒が循環する。同時に、圧縮機11、熱媒体冷媒熱交換器12、第2膨張弁14b、空調用蒸発器16、蒸発圧力調整弁17、圧縮機11の順に冷媒が循環する。つまり、冷却除湿暖房モードの冷凍サイクル10では、熱媒体冷媒熱交換器12から流出した冷媒の流れに対して、冷却用蒸発器15及び空調用蒸発器16が並列的に接続された冷媒の循環回路が構成される。従って、冷却除湿暖房モードは併用モードの一例に相当する。 Therefore, in the refrigeration cycle 10 in the cooling/dehumidifying/heating mode, the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the first expansion valve 14a, the cooling evaporator 15, and the compressor 11 in that order. At the same time, the refrigerant circulates through the compressor 11, the heat medium refrigerant heat exchanger 12, the second expansion valve 14b, the air conditioning evaporator 16, the evaporation pressure control valve 17, and the compressor 11 in this order. That is, in the refrigeration cycle 10 in the cooling, dehumidifying, and heating mode, the cooling evaporator 15 and the air-conditioning evaporator 16 are connected in parallel with respect to the flow of the refrigerant flowing out of the heat medium refrigerant heat exchanger 12. A circuit is constructed. Therefore, the cooling/dehumidifying/heating mode corresponds to an example of the combined mode.
 このサイクル構成で、制御装置50は、制御用センサ群の検出結果等に従って、出力側に接続された各種制御対象機器の作動を冷却除湿暖房モードに適した態様となるように制御する。 With this cycle configuration, the control device 50 controls the operation of various controlled devices connected to the output side so as to be suitable for the cooling/dehumidifying/heating mode according to the detection results of the control sensor group.
 そして、冷却除湿暖房モードの熱媒体回路20については、制御装置50は、冷却用蒸発器15を通過した熱媒体が電池用熱交換器21及び機器用熱交換器22の少なくとも一方を経由して循環するように、熱媒体回路20の構成機器を制御する。 As for the heat medium circuit 20 in the cooling, dehumidifying, and heating mode, the control device 50 causes the heat medium that has passed through the cooling evaporator 15 to pass through at least one of the battery heat exchanger 21 and the device heat exchanger 22. The components of the heat medium circuit 20 are controlled so as to circulate.
 これにより、冷却除湿暖房モードの冷凍サイクル装置1は、冷却用蒸発器15における低圧冷媒との熱交換によって冷却された熱媒体を、電池用熱交換器21、機器用熱交換器22に流通させることができるので、発熱体を冷却することができる。 As a result, the refrigeration cycle device 1 in the cooling dehumidification heating mode distributes the heat medium cooled by heat exchange with the low-pressure refrigerant in the cooling evaporator 15 to the battery heat exchanger 21 and the equipment heat exchanger 22. Therefore, the heating element can be cooled.
 又、冷却除湿暖房モードでは、冷凍サイクル10にて発熱体の廃熱を汲み上げて、空調用蒸発器16にて冷却された送風空気Wへ放熱することで、車室内の除湿暖房を実現することができる。従って、冷却除湿暖房モードの冷凍サイクル装置1は、冷凍サイクル10を用いた発熱体の冷却と共に、発熱体の廃熱を熱源として利用した車室内の除湿暖房によって快適性を向上させることができる。 In the cooling, dehumidifying and heating mode, the refrigerating cycle 10 draws up the waste heat of the heating element and dissipates the heat to the blown air W cooled by the air-conditioning evaporator 16, thereby realizing dehumidifying and heating in the passenger compartment. can be done. Therefore, the refrigeration cycle device 1 in the cooling, dehumidifying and heating mode can improve comfort by cooling the heating element using the refrigerating cycle 10 and dehumidifying and heating the passenger compartment using the waste heat of the heating element as a heat source.
 ここで、上述したように、車両用空調装置100においては、車両用空調装置100の運転モードに応じて、圧縮機11の作動制御の態様が切り替えられる。具体的には、冷凍サイクル10において冷却用蒸発器15を経由して冷媒が循環する運転モードでは、第1熱媒体温度センサ54aで検出される熱媒体温度Twに基づき圧縮機11の冷媒吐出能力(回転数)を調整する熱媒体温度制御が適用される。 Here, as described above, in the vehicle air conditioner 100 , the mode of operation control of the compressor 11 is switched according to the operation mode of the vehicle air conditioner 100 . Specifically, in the operation mode in which the refrigerant circulates through the cooling evaporator 15 in the refrigeration cycle 10, the refrigerant discharge capacity of the compressor 11 is determined based on the heat medium temperature Tw detected by the first heat medium temperature sensor 54a. A heat medium temperature control that adjusts (rotational speed) is applied.
 熱媒体温度制御において、第1熱媒体温度センサ54aで検出された熱媒体温度Twが目標値よりも大きければ、冷却用蒸発器15における冷却能力が目標値に対して不足している為、圧縮機11の回転数を上げるように制御される。一方、第1熱媒体温度センサ54aで検出された熱媒体温度Twが目標値よりも小さければ、冷却用蒸発器15の冷却能力が目標値に対して過剰である為、圧縮機11の回転数を下げるように制御される。 In the heat medium temperature control, if the heat medium temperature Tw detected by the first heat medium temperature sensor 54a is higher than the target value, the cooling capacity of the cooling evaporator 15 is insufficient for the target value. The rotation speed of the machine 11 is controlled to increase. On the other hand, if the heat medium temperature Tw detected by the first heat medium temperature sensor 54a is lower than the target value, the cooling capacity of the cooling evaporator 15 is excessive with respect to the target value. is controlled to lower
 従って、上述した車両用空調装置100の運転モードのうち、単独冷却モード、冷却冷房モード、冷却暖房モード、冷却除湿暖房モードについては、熱媒体温度制御によって、圧縮機11の冷媒吐出能力が制御される。 Therefore, among the operation modes of the vehicle air conditioner 100 described above, in the individual cooling mode, the cooling cooling mode, the cooling heating mode, and the cooling dehumidifying heating mode, the refrigerant discharge capacity of the compressor 11 is controlled by the heat medium temperature control. be.
 そして、冷凍サイクル10において、空調用蒸発器16を経由して冷媒が循環する運転モードでは、蒸発器温度センサ52eで検出される冷媒蒸発温度Teに基づき圧縮機11の冷媒吐出能力を調整する蒸発器温度制御が適用される。 In the refrigerating cycle 10, in the operation mode in which the refrigerant circulates via the air-conditioning evaporator 16, the evaporator adjusts the refrigerant discharge capacity of the compressor 11 based on the refrigerant evaporation temperature Te detected by the evaporator temperature sensor 52e. Vessel temperature control is applied.
 蒸発器温度制御では、蒸発器温度センサ52eで検出される冷媒蒸発温度Teと蒸発目標温度との偏差に基づき、フィードバック制御手法により、冷媒蒸発温度Teが蒸発目標温度に近づくように、圧縮機11の回転数が制御される。上述した車両用空調装置100の運転モードでは、冷房モード、除湿暖房モードの場合に、蒸発器温度制御で、圧縮機11の冷媒吐出能力が制御される。 In the evaporator temperature control, based on the deviation between the refrigerant evaporation temperature Te detected by the evaporator temperature sensor 52e and the evaporation target temperature, the compressor 11 is adjusted so that the refrigerant evaporation temperature Te approaches the evaporation target temperature by a feedback control method. is controlled. In the operation modes of the vehicle air conditioner 100 described above, the refrigerant discharge capacity of the compressor 11 is controlled by the evaporator temperature control in the cooling mode and the dehumidifying/heating mode.
 ここで、圧縮機11の吹き上がりについて説明する。熱容量の大きな熱媒体を、冷凍サイクル10を用いて冷却する場合、熱媒体の温度は、冷凍サイクル10による冷却開始時には温度が下がりにくく、或る時点を過ぎると急激に温度が低下する。 Here, the blow-up of the compressor 11 will be explained. When a heat medium having a large heat capacity is cooled using the refrigeration cycle 10, the temperature of the heat medium does not easily drop when the refrigeration cycle 10 starts cooling, and after a certain point, the temperature drops rapidly.
 上述したように、熱媒体温度制御の場合、熱媒体温度Twと目標値との大小関係によって、圧縮機11の回転数が制御される。この為、冷却開始時点では、熱媒体温度Twの下がりが遅い為、圧縮機11の回転数は上昇する。そして、或る時点を経過すると、熱媒体温度Twが急激に低下する為、熱媒体の冷え具合に対して、圧縮機11の回転数が一時的に過剰になる。圧縮機11の吹き上がりが生じると、圧縮機11における冷媒圧力の上昇によって圧縮機11の耐久性に大きな影響を及ぼすことが考えられる。 As described above, in the case of heat medium temperature control, the rotation speed of the compressor 11 is controlled depending on the magnitude relationship between the heat medium temperature Tw and the target value. Therefore, at the start of cooling, the heat medium temperature Tw is slow to drop, so the rotation speed of the compressor 11 increases. Then, after a certain point in time, the heat medium temperature Tw drops sharply, so the rotational speed of the compressor 11 temporarily becomes excessive with respect to the degree of cooling of the heat medium. When the compressor 11 blows up, it is conceivable that the durability of the compressor 11 is greatly affected by the rise in the refrigerant pressure in the compressor 11 .
 又、熱媒体温度Twが急激に低下した後は、低下した熱媒体温度Twに基づいて、圧縮機11の回転数が制御される為、圧縮機11の回転数は下がっていく。しかしながら、圧縮機11の吹き上がりによって高くなっている状態から下げていくことになる為、圧縮機11の回転数は、熱媒体温度Twが急激に低下した時点から、或る程度の期間、能力過剰な状態となり、発熱体(電池B等)の過剰冷却を引き起こす。 Also, after the heat medium temperature Tw drops rapidly, the rotation speed of the compressor 11 is controlled based on the lowered heat medium temperature Tw, so the rotation speed of the compressor 11 decreases. However, since the compressor 11 blows up and the high speed is lowered, the rotation speed of the compressor 11 is maintained for a certain period of time after the heat medium temperature Tw suddenly drops. It becomes an excessive state, causing excessive cooling of the heating element (battery B, etc.).
 これらの点に鑑み、車両用空調装置100においては、圧縮機11の吹き上がりを抑制する為の徐変制御を行う実行条件を満たすか否かを判定し、実行条件を満たした場合に、圧縮機11の冷媒吐出能力を最終的な目標値に向かって徐変する徐変制御を行う。 In view of these points, in the vehicle air conditioner 100, it is determined whether or not the conditions for execution of the gradual change control for suppressing the blow-up of the compressor 11 are satisfied, and when the conditions for execution are satisfied, compression is performed. Gradual change control is performed to gradually change the refrigerant discharge capacity of the machine 11 toward the final target value.
 徐変制御に係る実行条件は、車両用空調装置100の運転状況において、圧縮機11の吹き上がりが発生する可能性が高いと考えられる状況となっていることに換言することができる。そして、徐変制御に係る実行条件は、例えば、運転モードの切り替えや、目標値や冷媒の状態が大きく変化した場合を想定することができる。 In other words, the execution condition for the gradual change control is such that it is highly likely that the compressor 11 will blow up under the operating conditions of the vehicle air conditioner 100 . As execution conditions for the gradual change control, for example, it is possible to assume that the operation mode is switched, or that the target value or refrigerant state has changed significantly.
 実行条件の一つとして、車両用空調装置100の運転状態が、運転を停止している停止状態から、熱媒体温度制御での運転を実行している状態に切り替えられた場合を挙げることができる。換言すると、車両用空調装置100において、停止状態から、単独冷却モード、冷却冷房モード、冷却暖房モード、冷却除湿暖房モードの何れかが開始された場合、実行条件を満たすと判定される。 One of the execution conditions is a case where the operating state of the vehicle air conditioner 100 is switched from a stopped state in which the operation is stopped to a state in which the operation is performed under heat medium temperature control. . In other words, in the vehicle air conditioner 100, when any one of the single cooling mode, the cooling cooling mode, the cooling heating mode, and the cooling dehumidifying heating mode is started from the stopped state, it is determined that the execution condition is satisfied.
 実行条件を満たすと判定された場合、制御装置50は、圧縮機11の吹き上がりを抑制する為に徐変制御を開始する。ここで、熱媒体温度制御での運転を実行する際には、制御装置50によって、発熱体を冷却する為に必要な最終的な熱媒体温度Twの目標値(以下、最終目標温度Tof)が定められる。最終目標温度Tofは、発熱体(電池Bや車載機器E)の温度又は発熱量に因って定められ、本実施形態では電池Bの温度に従って定められる。 When it is determined that the execution condition is satisfied, the control device 50 starts gradual change control to suppress blow-up of the compressor 11 . Here, when executing the operation with the heat medium temperature control, the target value of the final heat medium temperature Tw (hereinafter referred to as the final target temperature Tof) required for cooling the heating element is set by the control device 50. Determined. The final target temperature Tof is determined according to the temperature or heat generation amount of the heating element (battery B or vehicle-mounted device E), and is determined according to the temperature of the battery B in this embodiment.
 又、徐変制御を開始する際に、制御装置50は、第1熱媒体温度センサ54aの検出結果から、初期温度Tsを特定する。初期温度Tsは、徐変制御開始時点(換言すると、冷凍サイクル10による熱媒体の冷却開始時点)における熱媒体温度Twを意味する。 Also, when starting the gradual change control, the control device 50 specifies the initial temperature Ts from the detection result of the first heat medium temperature sensor 54a. The initial temperature Ts means the heat medium temperature Tw at the start of the gradual change control (in other words, at the start of cooling of the heat medium by the refrigeration cycle 10).
 続いて、制御装置50は、予め定められた完了予定時間tfの時点で、熱媒体温度Twが最終目標温度Tofになるように、複数の目標温度Toを定める。第1実施形態では、初期温度Tsから最終目標温度Tofまで、目標温度Toが設定時間でリニアに徐変するように定められる。 Subsequently, the control device 50 determines a plurality of target temperatures To so that the heat medium temperature Tw reaches the final target temperature Tof at the predetermined expected completion time tf. In the first embodiment, the target temperature To is determined to linearly and gradually change from the initial temperature Ts to the final target temperature Tof in a set time.
 設定時間とは、徐変制御の開始時点から完了予定時間tfまでの期間を複数に区分して定められる期間である。設定時間の長さは、全て同じ長さであっても良いが、経過時間等に応じて長短を変更しても良い。 The set time is defined by dividing the period from the start of the gradual change control to the expected completion time tf into a plurality of sections. The length of the set time may be the same length, or may be changed according to the elapsed time or the like.
 図4に示すように、目標温度To1は、1番目の設定時間における目標温度Toを示しており、目標温度Tonは、n番目の設定時間における目標温度Toを示し、目標温度To1よりも最終目標温度Tofに近い値を示している。つまり、目標温度Toは、徐変制御の開始時点からの時間経過に伴って、徐々に最終目標温度Tofに近づくように小さく定められている。 As shown in FIG. 4, the target temperature To1 indicates the target temperature To at the first set time, and the target temperature Ton indicates the target temperature To at the n-th set time. It shows a value close to the temperature Tof. That is, the target temperature To is set to be small so as to gradually approach the final target temperature Tof as time elapses from the start of the gradual change control.
 従って、徐変制御において、制御装置50は、定められた目標温度Toと熱媒体温度Twとの大小関係に応じて、圧縮機11の回転数を制御する。徐変制御では、徐変制御の開始からの時間経過に伴って、目標温度Toが、徐々に最終目標温度Tofに近づくように変更されていく。 Therefore, in the gradual change control, the control device 50 controls the rotation speed of the compressor 11 according to the magnitude relationship between the determined target temperature To and the heat medium temperature Tw. In the gradual change control, the target temperature To is changed so as to gradually approach the final target temperature Tof as time elapses from the start of the gradual change control.
 この為、車両用空調装置100によれば、熱容量の大きな熱媒体を冷却する場合であっても、熱媒体温度Twと目標温度Toとの乖離を小さく抑えることができる為、圧縮機11の吹き上がりを抑制することができる。 Therefore, according to the vehicle air conditioner 100, even when cooling a heat medium having a large heat capacity, the divergence between the heat medium temperature Tw and the target temperature To can be kept small. rise can be suppressed.
 そして、徐変制御の実行条件の一つとして、車両用空調装置100の運転状態が、蒸発器温度制御での運転をしている状態から、熱媒体温度制御での運転を実行している状態に切り替えられた場合を挙げることができる。換言すると、車両用空調装置100にて、冷房モード又は除湿暖房モードから、単独冷却モード、冷却冷房モード、冷却暖房モード、冷却除湿暖房モードの何れかに切り替えられた場合、実行条件を満たすと判定される。 Then, as one of the conditions for executing the gradual change control, the operating state of the vehicle air conditioner 100 changes from a state in which it is operating under evaporator temperature control to a state in which it is operating under heat medium temperature control. can be cited. In other words, when the vehicle air conditioner 100 switches from the cooling mode or the dehumidifying and heating mode to any of the independent cooling mode, the cooling cooling mode, the cooling and heating mode, and the cooling and dehumidifying heating mode, it is determined that the execution condition is satisfied. be done.
 実行条件を満たすと判定された場合、制御装置50は、圧縮機11の吹き上がりを抑制する為に徐変制御を開始する。この実行条件を満たす場合、冷凍サイクル10による熱媒体の冷却という観点では、停止状態から熱媒体温度制御を開始する場合と同様である。この為、徐変制御の処理内容については、再度の説明を省略する。 When it is determined that the execution condition is satisfied, the control device 50 starts gradual change control to suppress blow-up of the compressor 11 . When this execution condition is satisfied, from the viewpoint of cooling of the heat medium by the refrigeration cycle 10, it is the same as when the heat medium temperature control is started from the stopped state. For this reason, a re-explanation of the processing contents of the gradual change control is omitted.
 従って、車両用空調装置100は、徐変制御を実行することにより、冷房モード等から冷却冷房モード等に運転モードを切り替える際の圧縮機11の吹き上がりを抑制することができる。 Therefore, by executing the gradual change control, the vehicle air conditioner 100 can suppress the blow-up of the compressor 11 when switching the operation mode from the cooling mode or the like to the cooling mode or the like.
 続いて、徐変制御に関する実行条件の一つとして、熱媒体温度制御での運転を実行している状態で、最終目標温度Tofが変更された場合を挙げることができる。例えば、発熱体である電池Bを冷却している状態で、電池Bの急速充電が開始される場合を想定することができる。急速充電を行った場合の電池Bの発熱量は非常に大きく、最終目標温度Tofを変更しなければ対応できない場合が生じ得る。 Next, one of the execution conditions for the gradual change control is the case where the final target temperature Tof is changed while the operation is being performed under heat medium temperature control. For example, it can be assumed that rapid charging of battery B is started while battery B, which is a heating element, is being cooled. The amount of heat generated by the battery B in the case of rapid charging is very large, and there may be a case where it cannot be dealt with unless the final target temperature Tof is changed.
 このような場合において、現状よりも更に低い熱媒体温度Twになるように冷凍サイクル10を用いて熱媒体を冷却するという点で、上述した2つの実行条件と同様に考えることができる。つまり、更に低い熱媒体温度Twになるように冷凍サイクル10で熱媒体を冷却する際に、熱媒体の熱容量と、圧縮機11の熱媒体温度制御との関係から、圧縮機11の吹き上がりが生じることが考えられる。従って、圧縮機11の吹き上がりを抑制する為、この場合においても、上述した徐変制御が実行される。徐変制御の処理内容については再度の説明を省略する。 In such a case, the two execution conditions described above can be considered in terms of cooling the heat medium using the refrigeration cycle 10 so that the heat medium temperature Tw is even lower than the current temperature. That is, when the heat medium is cooled in the refrigerating cycle 10 so that the heat medium temperature Tw becomes even lower, the compressor 11 blows up due to the relationship between the heat capacity of the heat medium and the heat medium temperature control of the compressor 11. may occur. Therefore, in order to suppress the blow-up of the compressor 11, the above-described gradual change control is executed also in this case. The re-explanation of the processing contents of the gradual change control is omitted.
 つまり、車両用空調装置100は、徐変制御を実行することにより、熱媒体温度制御での運転を実行している状態で、最終目標温度Tofが変更された際の圧縮機11の吹き上がりを抑制することができる。 That is, by executing the gradual change control, the vehicle air conditioner 100 reduces the blow-up of the compressor 11 when the final target temperature Tof is changed while the operation is being performed under the heat medium temperature control. can be suppressed.
 次に、徐変制御に関する実行条件の一つとして、熱媒体温度制御での運転を実行している状態で、第1熱媒体温度センサ54aで検出される熱媒体温度Twの変化量が予め定められた基準値以上である場合を挙げることができる。 Next, as one of the execution conditions for the gradual change control, the amount of change in the heat medium temperature Tw detected by the first heat medium temperature sensor 54a is predetermined while the operation is being performed under the heat medium temperature control. The case where it is equal to or higher than the reference value specified can be mentioned.
 具体例として、熱媒体回路20において、冷却用蒸発器15及び電池用熱交換器21を介して熱媒体が循環する循環径路と、機器用熱交換器22及び外気熱交換器23を経由して循環する循環径路が独立して存在している場合を挙げる。 As a specific example, in the heat medium circuit 20, through a circulation path in which the heat medium circulates through the cooling evaporator 15 and the battery heat exchanger 21, and through the equipment heat exchanger 22 and the outside air heat exchanger 23 A case where the circulating circulation path exists independently will be mentioned.
 この場合、冷却用蒸発器15で冷却された熱媒体が電池用熱交換器21を流通する為、冷凍サイクル10で冷却された熱媒体で電池Bを冷却している。従って、この状態で、第1熱媒体温度センサ54aで検出される熱媒体温度Twは、電池Bの発熱量の影響を受けている。 In this case, since the heat medium cooled by the cooling evaporator 15 flows through the battery heat exchanger 21, the battery B is cooled by the heat medium cooled by the refrigeration cycle 10. Therefore, in this state, the heat medium temperature Tw detected by the first heat medium temperature sensor 54a is affected by the amount of heat generated by the battery B.
 一方、熱媒体回路20における別の循環径路では、機器用熱交換器22を通過した熱媒体が外気熱交換器23を流通している。つまり、熱媒体を介して、車載機器Eの廃熱を外気OAへと放熱している。 On the other hand, in another circulation path in the heat medium circuit 20 , the heat medium that has passed through the equipment heat exchanger 22 flows through the outside air heat exchanger 23 . In other words, the waste heat of the in-vehicle device E is radiated to the outside air OA via the heat medium.
 ここで、外気熱交換器23における外気OAへの放熱量は外気温との関係に依存する為、外気放熱では、車載機器Eの廃熱を充分に放熱することができない場合が想定される。この場合、機器用熱交換器22及び外気熱交換器23を循環する熱媒体の温度が、車載機器Eの廃熱によって上昇していくことになる。 Here, since the amount of heat radiation to the outside air OA in the outside air heat exchanger 23 depends on the relationship with the outside air temperature, it is assumed that the waste heat of the in-vehicle equipment E cannot be sufficiently radiated by the outside air heat dissipation. In this case, the temperature of the heat medium circulating through the device heat exchanger 22 and the outside air heat exchanger 23 will rise due to the waste heat of the vehicle-mounted device E.
 この場合には、より冷却能力が高い冷凍サイクル10によって車載機器Eの冷却を行う為に、熱媒体回路20における熱媒体の循環径路が切り替えられる。即ち、第1四方弁26、第2四方弁27の作動を制御して、冷却用蒸発器15を経由した熱媒体が電池用熱交換器21、機器用熱交換器22を介して循環する循環径路が構成される。 In this case, the circulation path of the heat medium in the heat medium circuit 20 is switched in order to cool the in-vehicle equipment E by the refrigeration cycle 10 having a higher cooling capacity. That is, by controlling the operation of the first four-way valve 26 and the second four-way valve 27, the heat medium passing through the cooling evaporator 15 circulates through the battery heat exchanger 21 and the device heat exchanger 22. A path is constructed.
 この時、機器用熱交換器22側を循環していた熱媒体と、冷却用蒸発器15及び電池用熱交換器21を循環した熱媒体が合流することになる為、第1熱媒体温度センサ54aで検出される熱媒体温度Twは大きく上昇する。 At this time, the heat medium circulating in the device heat exchanger 22 side and the heat medium circulating in the cooling evaporator 15 and the battery heat exchanger 21 join together. The heat medium temperature Tw detected at 54a rises significantly.
 このような場合において、大きく上昇した熱媒体温度Twを当初の目標値になるように、冷凍サイクル10を用いて熱媒体を冷却すると、上述した各実行条件と同様に、圧縮機の吹き上がりが生じることが考えられる。従って、圧縮機11の吹き上がりを抑制する為、この場合においても、上述した徐変制御が実行される。徐変制御の処理内容については再度の説明を省略する。 In such a case, if the heat medium is cooled using the refrigeration cycle 10 so that the greatly increased heat medium temperature Tw reaches the initial target value, blowing up of the compressor occurs as in the above-described execution conditions. may occur. Therefore, in order to suppress the blow-up of the compressor 11, the above-described gradual change control is executed also in this case. The re-explanation of the processing contents of the gradual change control is omitted.
 つまり、車両用空調装置100は、徐変制御を実行することにより、熱媒体温度制御での運転を実行している状態で、熱媒体温度Twの変化量が予め定められた基準値以上である場合の圧縮機11の吹き上がりを抑制することができる。 That is, the vehicle air conditioner 100 executes the gradual change control so that the amount of change in the heat medium temperature Tw is equal to or greater than the predetermined reference value while the operation is being performed under the heat medium temperature control. The blow-up of the compressor 11 in this case can be suppressed.
 以上説明したように、本実施形態に係る車両用空調装置100は、冷凍サイクル装置1を有している。冷凍サイクル装置1によれば、熱媒体温度Twと目標温度Toとの差によって圧縮機11の回転数を制御する熱媒体温度制御において、目標温度Toの徐変制御を行うことができる。徐変制御では、熱媒体温度が初期温度から最終目標温度に時間経過に伴って徐々に近づくように、目標温度を変更される。 As described above, the vehicle air conditioner 100 according to this embodiment has the refrigeration cycle device 1 . According to the refrigeration cycle device 1, in heat medium temperature control for controlling the rotational speed of the compressor 11 based on the difference between the heat medium temperature Tw and the target temperature To, the target temperature To can be gradually changed. In the gradual change control, the target temperature is changed such that the heat medium temperature gradually approaches the final target temperature from the initial temperature over time.
 従って、冷凍サイクル装置1によれば、熱容量の大きな熱媒体を介して発熱体を冷却する場合でも、熱媒体温度Twと最終目標温度Tofとの差に応じて圧縮機11を制御する場合に比べ、熱媒体の温度変化と圧縮機11の回転数とのバランスをとることができる。即ち、冷凍サイクル装置1は、熱媒体の温度変化と圧縮機11の回転数との時間差に起因する圧縮機11の吹き上がりを抑制できる。 Therefore, according to the refrigerating cycle device 1, even when cooling the heating element via a heat medium having a large heat capacity, the compressor 11 is controlled according to the difference between the heat medium temperature Tw and the final target temperature Tof. , the temperature change of the heat medium and the rotational speed of the compressor 11 can be balanced. That is, the refrigerating cycle device 1 can suppress blow-up of the compressor 11 due to the time difference between the temperature change of the heat medium and the rotational speed of the compressor 11 .
 又、冷凍サイクル装置1は、運転停止状態から熱媒体温度制御が開始された場合に、目標温度Toの徐変制御を実行する。運転停止状態から熱媒体温度制御を開始する場合、熱容量の大きな熱媒体を冷却対象とする為、熱媒体に急激な温度変化が生じることが想定され、圧縮機11の吹き上がりが生じると考えられる。この為、冷凍サイクル装置1は、目標温度Toの徐変制御を行うことで、運転停止状態から熱媒体温度制御が開始された場合における圧縮機11の吹き上がりを抑制することができる。 Also, the refrigeration cycle apparatus 1 executes gradual change control of the target temperature To when the heat medium temperature control is started from the shutdown state. When the heat medium temperature control is started from the operation stop state, since the heat medium with a large heat capacity is to be cooled, it is assumed that the heat medium undergoes a sudden temperature change, and the compressor 11 blows up. . Therefore, the refrigeration cycle apparatus 1 can suppress blow-up of the compressor 11 when the heat medium temperature control is started from the shutdown state by performing the gradual change control of the target temperature To.
 図1に示すように、冷凍サイクル装置1は、冷却用蒸発器15に加えて、空調用蒸発器16を有しており、蒸発器温度制御での運転をしている状態から、熱媒体温度制御での運転を実行している状態に切り替える場合に、目標温度Toの徐変制御を実行する。蒸発器温度制御での運転から、熱媒体温度制御での運転に切り替える場合、熱容量の大きな熱媒体を冷却対象とする為、熱媒体の急激な温度変化が生じることが想定され、圧縮機11の吹き上がりが生じると考えられる。この為、冷凍サイクル装置1は、目標温度Toの徐変制御を行うことで、蒸発器温度制御での運転から熱媒体温度制御での運転に切り替えられる場合における圧縮機11の吹き上がりを抑制することができる。 As shown in FIG. 1, the refrigeration cycle apparatus 1 has an air-conditioning evaporator 16 in addition to the cooling evaporator 15, and the heat medium temperature When switching to the state in which the controlled operation is being performed, the gradual change control of the target temperature To is performed. When switching from operation under evaporator temperature control to operation under heat medium temperature control, a heat medium with a large heat capacity is to be cooled. It is thought that blow-up occurs. Therefore, the refrigeration cycle apparatus 1 performs gradual change control of the target temperature To to suppress blow-up of the compressor 11 when switching from operation under evaporator temperature control to operation under heat medium temperature control. be able to.
 そして、冷凍サイクル装置1の運転モードには、冷却用蒸発器15及び空調用蒸発器16の両方を介して冷媒を循環させる併用モードと、冷却用蒸発器15及び空調用蒸発器16の何れか一方を介して冷媒を循環させる単独モードが含まれている。従って、発熱体の冷却と送風空気の冷却に関して、多様な運転モードを実現することができる。 The operation mode of the refrigeration cycle apparatus 1 includes a combination mode in which the refrigerant is circulated through both the cooling evaporator 15 and the air conditioning evaporator 16, and either the cooling evaporator 15 or the air conditioning evaporator 16. A single mode is included that circulates the refrigerant through one. Therefore, various operation modes can be realized with respect to cooling of the heating element and cooling of the blast air.
 又、冷凍サイクル10において、空調用蒸発器16の流出口側には、蒸発圧力調整弁17が配置されている。これにより、併用モードにおいて、空調用蒸発器16における空調能力を確保しつつ、冷却用蒸発器15の冷却能力を発熱体の発熱量に対応させるように、圧縮機11の作動を制御することが可能となる。蒸発圧力調整弁17によって空調用蒸発器16の着霜を防止しつつ、熱媒体温度制御への切り替えを実現することができる。 In addition, in the refrigeration cycle 10, an evaporating pressure regulating valve 17 is arranged on the outlet side of the air conditioning evaporator 16. As a result, in the combined mode, the operation of the compressor 11 can be controlled so that the cooling capacity of the cooling evaporator 15 corresponds to the calorific value of the heating element while ensuring the air conditioning capacity of the air conditioning evaporator 16. It becomes possible. It is possible to switch to heat medium temperature control while preventing frost formation on the air-conditioning evaporator 16 by means of the evaporating pressure regulating valve 17 .
 そして、冷凍サイクル装置1は、熱媒体温度制御での運転が行われている状態で、最終目標温度Tofが変更された場合に、目標温度Toの徐変制御を実行する。最終目標温度Tofが変更された場合、熱容量の大きな熱媒体を冷却対象として、変更後の条件で圧縮機11の制御が行われる為、熱媒体に急激な温度変化が生じることが想定され、圧縮機11の吹き上がりが生じると考えられる。この為、冷凍サイクル装置1は、目標温度Toの徐変制御を行うことで、熱媒体温度制御での運転中に最終目標温度Tofが変更された場合における圧縮機11の吹き上がりを抑制することができる。 Then, the refrigeration cycle apparatus 1 performs gradual change control of the target temperature To when the final target temperature Tof is changed while the operation is being performed under heat medium temperature control. When the final target temperature Tof is changed, a heat medium having a large heat capacity is targeted for cooling, and the compressor 11 is controlled under the conditions after the change. It is considered that the aircraft 11 will blow up. Therefore, the refrigeration cycle apparatus 1 performs gradual change control of the target temperature To to suppress blow-up of the compressor 11 when the final target temperature Tof is changed during operation under heat medium temperature control. can be done.
 又、冷凍サイクル装置1は、熱媒体温度制御での運転が行われている状態で、熱媒体温度Twの変化量が基準値以上になった場合に、目標温度Toの徐変制御を実行する。熱媒体温度Twが基準値以上の変化量で変化した場合、当初の目標値になるように、冷凍サイクル10を用いて熱媒体を冷却しようとすると、圧縮機11の吹き上がりが生じると考えられる。この為、冷凍サイクル装置1は、目標温度Toの徐変制御を行うことで、熱媒体温度制御での運転中に熱媒体温度Twの変化量が基準値以上になった場合における圧縮機11の吹き上がりを抑制することができる。 Further, the refrigerating cycle apparatus 1 performs gradual change control of the target temperature To when the amount of change in the heat medium temperature Tw becomes equal to or greater than a reference value while the operation is being performed under the heat medium temperature control. . When the heat medium temperature Tw changes by an amount equal to or greater than the reference value, if the heat medium is cooled using the refrigeration cycle 10 so as to reach the initial target value, it is considered that the compressor 11 blows up. . For this reason, the refrigeration cycle apparatus 1 performs gradual change control of the target temperature To, so that the compressor 11 can Blow-up can be suppressed.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as follows without departing from the scope of the present disclosure.
 上述した実施形態では、徐変制御において、初期温度Tsから最終目標温度Tofに近づくように複数の目標温度Toを設定する際に、図4に示すように、線形性を有する一本の直線状に定めていたが、これに限定されるものではない。 In the above-described embodiment, in the gradual change control, when setting a plurality of target temperatures To so as to approach the final target temperature Tof from the initial temperature Ts, a single linear linear However, it is not limited to this.
 例えば、図5に示すように、初期温度Tsから最終目標温度Tofに近づくように複数の目標温度Toを設定する際に、2本以上の直線状になるように、複数の目標温度Toを定めても良い。この場合、初期温度Ts側の目標温度Toに関する直線の傾きは、最終目標温度Tof側における目標温度Toに関する直線の傾きよりも小さいことが望ましい。 For example, as shown in FIG. 5, when setting a plurality of target temperatures To so as to approach the final target temperature Tof from the initial temperature Ts, the plurality of target temperatures To are set so as to form two or more straight lines. can be In this case, the slope of the straight line with respect to the target temperature To on the initial temperature Ts side is preferably smaller than the slope of the straight line with respect to the target temperature To on the final target temperature Tof side.
 徐変制御開始時点における目標温度Toの変化量(即ち、傾き)を小さくすることで、圧縮機11の吹き上がりを抑制しつつ、熱媒体を冷却することができる。そして、或る程度の時間の経過に伴って、熱媒体温度Twの低下が明確に表れた時点で、目標温度Toの変化量(即ち、傾き)を大きくすれば、最終目標温度Tofへの到達を早めることができる。 By reducing the amount of change (that is, the slope) of the target temperature To at the start of the gradual change control, it is possible to cool the heat medium while suppressing blow-up of the compressor 11 . Then, when the heat medium temperature Tw clearly shows a decrease with the passage of a certain amount of time, if the amount of change (that is, the slope) of the target temperature To is increased, the final target temperature Tof is reached. can be expedited.
 尚、或る程度の時間の経過とは、熱媒体温度Twと最終目標温度Tofの温度差が、圧縮機11の吹き上がりが起こらない温度差になるまでと言い換えることができる。 It should be noted that the elapse of a certain amount of time can be rephrased as until the temperature difference between the heat medium temperature Tw and the final target temperature Tof reaches a temperature difference at which blow-up of the compressor 11 does not occur.
 又、図4、図5に示す例では、初期温度Tsから最終目標温度Tofに近づくように複数の目標温度Toを設定する際に、線形性を有する態様で定めていたが、この態様に限定されるものではない。 In addition, in the examples shown in FIGS. 4 and 5, when setting the plurality of target temperatures To so as to approach the final target temperature Tof from the initial temperature Ts, they are set in a manner having linearity, but the present invention is limited to this manner. not to be
 即ち、図6に示すように、初期温度Tsから最終目標温度Tofに近づくように複数の目標温度Toを設定する際に、目標温度Toの傾きを曲線的になるように定めることも可能である。この場合において、熱媒体温度Twと最終目標温度Tofとの温度差になるまでは、曲線的に変化する目標温度Toの傾きは緩やかであることが望ましい。 That is, as shown in FIG. 6, when setting a plurality of target temperatures To so as to approach the final target temperature Tof from the initial temperature Ts, it is also possible to set the slope of the target temperature To to be curved. . In this case, it is desirable that the gradient of the target temperature To, which changes in a curve, is gentle until the temperature difference between the heat medium temperature Tw and the final target temperature Tof is reached.
 又、徐変制御における目標温度Toの徐変速度については、熱媒体を介した冷却対象物である発熱体(例えば、電池Bや車載機器E)の冷却速度の要求値によって定められる。目標温度Toの徐変速度については、この態様に限定されることはなく、熱媒体温度Twの検出値によって徐変速度を変化させ、発熱体の冷却と圧縮機11の吹き上がり防止に対する適正な速度に調整しても良い。 Also, the gradual change speed of the target temperature To in the gradual change control is determined by the required value of the cooling speed of the heating element (for example, the battery B or the in-vehicle device E) that is the object to be cooled via the heat medium. The gradual change speed of the target temperature To is not limited to this mode. You can adjust the speed.
 そして、上述した実施形態では、徐変制御の際に、最終目標温度Tofを発熱体の発熱量又は温度に応じて定めるように構成していたが、この態様に限定されるものではない。例えば、発熱体の温度等が基準を超えた場合に、熱媒体を介した冷却についての冷却要求が出力される構成であれば、最終目標温度Tofは予め定められた規定値とすることも可能である。 In the above-described embodiment, the final target temperature Tof is determined according to the heat generation amount or temperature of the heating element during the gradual change control, but it is not limited to this aspect. For example, if the configuration outputs a cooling request for cooling via a heat medium when the temperature of the heating element exceeds the standard, the final target temperature Tof can be a predetermined specified value. is.
 又、上述した実施形態においては、熱媒体温度制御の際に参照する熱媒体の温度として、冷却用蒸発器15における熱媒体通路15bの出口側に配置された第1熱媒体温度センサ54aを採用していたが、この態様に限定されるものではない。例えば、冷却用蒸発器15における熱媒体通路15bの入口側の熱媒体の温度を採用しても良い。又、発熱体(例えば、電池Bや車載機器E)自体の温度を採用することも可能である。 Further, in the above-described embodiment, the first heat medium temperature sensor 54a arranged on the outlet side of the heat medium passage 15b in the cooling evaporator 15 is used as the temperature of the heat medium to be referred to when controlling the heat medium temperature. However, it is not limited to this aspect. For example, the temperature of the heat medium on the inlet side of the heat medium passage 15b in the cooling evaporator 15 may be used. Moreover, it is also possible to employ the temperature of the heating element (for example, the battery B or the in-vehicle device E) itself.
 そして、上述した実施形態においては、冷凍サイクル10は、冷却用蒸発器15と、空調用蒸発器16とを有する構成であったが、この態様に限定されるものではない。冷凍サイクル10における蒸発器として、冷却用蒸発器15、空調用蒸発器16以外の蒸発器を追加することも可能である。 In the above-described embodiment, the refrigerating cycle 10 has a configuration including the cooling evaporator 15 and the air conditioning evaporator 16, but it is not limited to this aspect. As an evaporator in the refrigerating cycle 10, an evaporator other than the cooling evaporator 15 and the air conditioning evaporator 16 can be added.
 上述した実施形態においては、熱媒体回路20に、冷却用蒸発器15、電池用熱交換器21、機器用熱交換器22、外気熱交換器23を配置していたが、この構成に限定されるものではない。熱媒体回路20は、冷却用蒸発器15で冷却された熱媒体を利用して、発熱体を冷却可能であれば良い。電池用熱交換器21や機器用熱交換器22を介することなく、例えば、発熱体のウォータージャケット等に熱媒体を流通させて冷却する構成とすることも可能である。 In the above-described embodiment, the cooling evaporator 15, the battery heat exchanger 21, the equipment heat exchanger 22, and the outside air heat exchanger 23 are arranged in the heat medium circuit 20, but the configuration is limited to this. not something. The heat medium circuit 20 may use the heat medium cooled by the cooling evaporator 15 to cool the heating element. For example, it is possible to configure cooling by circulating a heat medium through a water jacket or the like of the heating element without passing through the battery heat exchanger 21 or the equipment heat exchanger 22 .
 又、上述した実施形態では、熱媒体回路20の熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用していたが、この態様に限定されるものではない。熱媒体回路20の熱媒体として、例えば、水やLLC等を採用することも可能である。 In addition, in the above-described embodiment, a solution containing ethylene glycol, an antifreeze solution, or the like is used as the heat medium of the heat medium circuit 20, but it is not limited to this aspect. As the heat medium of the heat medium circuit 20, for example, water, LLC, or the like can be used.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (7)

  1.  冷媒を吸入して吐出する圧縮機(11)と、前記圧縮機から吐出された前記冷媒を放熱させる凝縮器(12)と、前記凝縮器から流出した前記冷媒を減圧させる減圧部(14a)と、前記減圧部で減圧された前記冷媒を、発熱体(B)を冷却する為の熱媒体と熱交換させて蒸発させる冷却用蒸発器(15)と、を有する冷凍サイクル(10)と、
     前記冷却用蒸発器にて前記冷媒を冷熱源として冷却された前記熱媒体が、前記発熱体と熱交換するように循環する熱媒体回路(20)と、
     前記熱媒体回路を循環する前記熱媒体の温度である熱媒体温度(Tw)を検出する温度検出部(54a)と、
     前記圧縮機の回転数を制御する制御部(50)と、を有し、
     前記制御部は、
     前記温度検出部により検出された前記熱媒体温度と、目標温度(To)との差によって、前記圧縮機の回転数を制御する圧縮機制御部(50a)と、
     前記熱媒体温度が、前記発熱体の冷却開始時点における前記熱媒体温度である初期温度(Ts)から、前記発熱体の発熱量又は温度により定められる最終目標温度(Tof)に時間経過に伴って徐々に近づくように、前記目標温度を変更する目標温度設定部(50d)と、を有する冷凍サイクル装置。
    a compressor (11) for sucking and discharging refrigerant, a condenser (12) for dissipating heat from the refrigerant discharged from the compressor, and a decompression section (14a) for decompressing the refrigerant discharged from the condenser. a cooling evaporator (15) for exchanging heat with a heat medium for cooling the heating element (B) to evaporate the refrigerant decompressed by the decompression unit; and
    a heat medium circuit (20) in which the heat medium cooled by the cooling evaporator using the refrigerant as a cold heat source circulates so as to exchange heat with the heating element;
    a temperature detection unit (54a) for detecting a heat medium temperature (Tw), which is the temperature of the heat medium circulating in the heat medium circuit;
    a control unit (50) for controlling the rotation speed of the compressor,
    The control unit
    a compressor control unit (50a) that controls the rotation speed of the compressor based on the difference between the heat medium temperature detected by the temperature detection unit and a target temperature (To);
    The heat medium temperature changes from the initial temperature (Ts), which is the heat medium temperature at the start of cooling of the heat generating element, to the final target temperature (Tof) determined by the heat generation amount or temperature of the heat generating element with the passage of time. A refrigeration cycle apparatus comprising a target temperature setting section (50d) that changes the target temperature so as to gradually approach the target temperature.
  2.  前記制御部は、前記冷凍サイクルにおける前記冷媒の循環が停止している運転停止状態から、前記冷凍サイクルの運転モードのうち、前記温度検出部による前記熱媒体温度を用いて前記圧縮機の回転数が制御される運転モードに切り替わった場合に、
     前記目標温度設定部によって、前記熱媒体温度(Tw)が前記初期温度(Ts)から、前記最終目標温度(Tof)に時間経過に伴って徐々に近づくように前記目標温度(To)を変更する態様で、前記圧縮機制御部による前記圧縮機の回転数の制御を行う請求項1に記載の冷凍サイクル装置。
    The control unit detects the rotational speed of the compressor using the temperature of the heat medium detected by the temperature detection unit, among the operation modes of the refrigeration cycle, from a shutdown state in which the circulation of the refrigerant in the refrigeration cycle is stopped. is switched to a controlled operating mode,
    The target temperature setting unit changes the target temperature (To) so that the heat medium temperature (Tw) gradually approaches the final target temperature (Tof) from the initial temperature (Ts) over time. 2. The refrigerating cycle apparatus according to claim 1, wherein the compressor control section controls the rotation speed of the compressor.
  3.  前記冷凍サイクルは、前記減圧部で減圧された前記冷媒を、空調対象空間へ送風される送風空気と熱交換させて蒸発させる空調用蒸発器(16)を有し、
     前記冷凍サイクルの運転モードのうち、前記空調用蒸発器における冷媒蒸発温度に応じて前記圧縮機の回転数が制御される運転モードから、前記温度検出部による前記熱媒体温度を用いて前記圧縮機の回転数が制御される運転モードに切り替わった場合に、
     前記目標温度設定部によって、前記熱媒体温度(Tw)が前記初期温度(Ts)から、前記最終目標温度(Tof)に時間経過に伴って徐々に近づくように前記目標温度(To)を変更する態様で、前記圧縮機制御部による前記圧縮機の回転数の制御を行う請求項1又は2に記載の冷凍サイクル装置。
    The refrigerating cycle has an air-conditioning evaporator (16) that evaporates the refrigerant decompressed by the decompression unit by exchanging heat with air blown to the air-conditioned space,
    From the operation mode of the refrigeration cycle in which the rotation speed of the compressor is controlled according to the refrigerant evaporation temperature in the air-conditioning evaporator, the temperature of the heat medium detected by the temperature detection unit is used to control the compressor. When switching to the operation mode in which the rotation speed of is controlled,
    The target temperature setting unit changes the target temperature (To) so that the heat medium temperature (Tw) gradually approaches the final target temperature (Tof) from the initial temperature (Ts) over time. 3. The refrigerating cycle apparatus according to claim 1, wherein the compressor control unit controls the rotation speed of the compressor in the above-described mode.
  4.  前記制御部は、前記冷凍サイクルの運転モードとして、
     前記減圧部で減圧された前記冷媒を、前記冷却用蒸発器及び前記空調用蒸発器の両方を介して循環させる併用モードと、
     前記減圧部で減圧された前記冷媒を、前記冷却用蒸発器及び前記空調用蒸発器の何れか一方を介して循環させる単独モードと、に切り替えることができる請求項3に記載の冷凍サイクル装置。
    The control unit, as the operation mode of the refrigeration cycle,
    a combination mode in which the refrigerant decompressed by the decompression unit is circulated through both the cooling evaporator and the air conditioning evaporator;
    4. The refrigeration cycle apparatus according to claim 3, wherein the refrigerant decompressed by the decompression unit can be switched between a single mode in which the refrigerant is circulated through either one of the cooling evaporator and the air conditioning evaporator.
  5.  前記冷凍サイクルは、前記空調用蒸発器の流出口側に接続され、前記空調用蒸発器から流出した前記冷媒を減圧して前記空調用蒸発器における冷媒蒸発圧力を調整する蒸発圧力調整弁(17)を有している請求項3又は4に記載の冷凍サイクル装置。 The refrigeration cycle is connected to an outlet side of the air-conditioning evaporator, and an evaporation pressure regulating valve (17) for decompressing the refrigerant flowing out of the air-conditioning evaporator to adjust the refrigerant evaporation pressure in the air-conditioning evaporator. ), the refrigeration cycle apparatus according to claim 3 or 4.
  6.  前記制御部は、前記熱媒体温度と前記目標温度(To)との差によって、前記圧縮機の回転数を制御している状態で、前記最終目標温度(Tof)が変更された場合、
     前記目標温度設定部によって、前記熱媒体温度(Tw)が変更された前記最終目標温度(Tof)に時間経過に伴って徐々に近づくように、新たに前記目標温度(To)を設定して、前記圧縮機制御部による前記圧縮機の回転数の制御を行う請求項1ないし5の何れか1つに記載の冷凍サイクル装置。
    When the final target temperature (Tof) is changed in a state in which the control unit controls the rotation speed of the compressor based on the difference between the heat medium temperature and the target temperature (To),
    The target temperature setting unit newly sets the target temperature (To) so that the heat medium temperature (Tw) gradually approaches the changed final target temperature (Tof) over time, The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the compressor control section controls the rotation speed of the compressor.
  7.  前記制御部は、前記熱媒体温度と前記目標温度(To)との差によって、前記圧縮機の回転数を制御している状態で、前記温度検出部で検出される前記熱媒体温度(Tw)の変化量が予め定められた基準値以上である場合、
     前記目標温度設定部によって、前記熱媒体温度(Tw)が前記初期温度(Ts)から前記最終目標温度(Tof)に時間経過に伴って徐々に近づくように前記目標温度(To)を新たに設定して、前記圧縮機制御部による前記圧縮機の回転数の制御を行う請求項1ないし6の何れか1つに記載の冷凍サイクル装置。
    The control unit controls the rotation speed of the compressor based on the difference between the heat medium temperature and the target temperature (To), and controls the heat medium temperature (Tw) detected by the temperature detection unit. If the amount of change in is greater than or equal to a predetermined reference value,
    The target temperature (To) is newly set by the target temperature setting unit so that the heat medium temperature (Tw) gradually approaches the final target temperature (Tof) from the initial temperature (Ts) over time. 7. The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the compressor control section controls the rotation speed of the compressor.
PCT/JP2022/014253 2021-04-16 2022-03-25 Refrigeration cycle device WO2022220056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-069643 2021-04-16
JP2021069643A JP2022164260A (en) 2021-04-16 2021-04-16 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022220056A1 true WO2022220056A1 (en) 2022-10-20

Family

ID=83640603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014253 WO2022220056A1 (en) 2021-04-16 2022-03-25 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2022164260A (en)
WO (1) WO2022220056A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320167A (en) * 1995-05-25 1996-12-03 Sanyo Electric Co Ltd Air conditioner
JP2011169559A (en) * 2010-02-22 2011-09-01 Iseki & Co Ltd Food refrigerator
JP2015190751A (en) * 2014-03-31 2015-11-02 ダイキン工業株式会社 Air conditioning control system
JP2019209938A (en) * 2018-06-08 2019-12-12 株式会社デンソー Refrigeration cycle device for vehicle
JP2020085382A (en) * 2018-11-28 2020-06-04 株式会社デンソー Refrigeration cycle device
JP2021037856A (en) * 2019-09-04 2021-03-11 株式会社デンソー Air conditioner for vehicle
WO2021053924A1 (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320167A (en) * 1995-05-25 1996-12-03 Sanyo Electric Co Ltd Air conditioner
JP2011169559A (en) * 2010-02-22 2011-09-01 Iseki & Co Ltd Food refrigerator
JP2015190751A (en) * 2014-03-31 2015-11-02 ダイキン工業株式会社 Air conditioning control system
JP2019209938A (en) * 2018-06-08 2019-12-12 株式会社デンソー Refrigeration cycle device for vehicle
JP2020085382A (en) * 2018-11-28 2020-06-04 株式会社デンソー Refrigeration cycle device
JP2021037856A (en) * 2019-09-04 2021-03-11 株式会社デンソー Air conditioner for vehicle
WO2021053924A1 (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2022164260A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP6997558B2 (en) Vehicle air conditioner
US20190111756A1 (en) Refrigeration cycle device
JP7230642B2 (en) refrigeration cycle equipment
US11718156B2 (en) Refrigeration cycle device
US10899198B2 (en) Air conditioner for vehicle
US20110167850A1 (en) Air conditioner for vehicle
US20150295285A1 (en) Refrigeration cycle device
JP6838518B2 (en) Refrigeration cycle equipment
WO2017022512A1 (en) Air conditioning device for vehicle
JP6075058B2 (en) Refrigeration cycle equipment
JP6669042B2 (en) Vehicle air conditioner
WO2020050038A1 (en) Refrigeration cycle device
WO2020050040A1 (en) Refrigeration cycle device
WO2019194027A1 (en) Battery cooling device
JP2019217947A (en) Air conditioner
CN111491815A (en) Vehicle heating device
WO2021200997A1 (en) Battery temperature control device
WO2020050039A1 (en) Refrigeration cycle device
JP2014034301A (en) Refrigeration cycle device
WO2021220661A1 (en) Vehicle air conditioning device
JP6958317B2 (en) Vehicle air conditioner
WO2022181110A1 (en) Air conditioning device
WO2022220056A1 (en) Refrigeration cycle device
WO2021251110A1 (en) Vehicle air conditioning system
JP2016008792A (en) Heat pump cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787981

Country of ref document: EP

Kind code of ref document: A1