JP6426072B2 - フィルタの故障検出装置、粒子状物質検出装置 - Google Patents

フィルタの故障検出装置、粒子状物質検出装置 Download PDF

Info

Publication number
JP6426072B2
JP6426072B2 JP2015184870A JP2015184870A JP6426072B2 JP 6426072 B2 JP6426072 B2 JP 6426072B2 JP 2015184870 A JP2015184870 A JP 2015184870A JP 2015184870 A JP2015184870 A JP 2015184870A JP 6426072 B2 JP6426072 B2 JP 6426072B2
Authority
JP
Japan
Prior art keywords
sensor
value
output value
heating
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015184870A
Other languages
English (en)
Other versions
JP2016075668A (ja
Inventor
弘宣 下川
弘宣 下川
小池 和彦
和彦 小池
健介 瀧澤
健介 瀧澤
学 吉留
学 吉留
田村 昌之
昌之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to CN201580053457.1A priority Critical patent/CN107076690B/zh
Priority to PCT/JP2015/078060 priority patent/WO2016052734A1/ja
Priority to EP15845761.4A priority patent/EP3203220B1/en
Priority to US15/516,163 priority patent/US10578518B2/en
Publication of JP2016075668A publication Critical patent/JP2016075668A/ja
Application granted granted Critical
Publication of JP6426072B2 publication Critical patent/JP6426072B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0266Investigating particle size or size distribution with electrical classification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/20Sensor having heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0277Average size only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関から排出される排気ガス中の粒子状物質を捕集するフィルタの故障検出装置及び排気ガス中の粒子状物質の量を検出する粒子状物質検出装置に関する。
従来、内燃機関から排出される排気ガス中の粒子状物質(パティキュレートマター、PM)の量を検出する装置の提案がある(例えば特許文献1参照)。特許文献1では、排気ガス中の粒子状物質の量に応じた値を出力する電気抵抗式のセンサの出力値を、排気温度、センサの温度や排気流量を用いて補正することが開示されている。これによれば、センサの出力値に対する温度や排気流量の影響を受けずに、高精度な粒子状物質の量を検出できるとしている。
特許第5240679号公報
ところで、本発明者らが調査した結果によると、内燃機関から排出される粒子状物質の粒子径によってもセンサの出力値が大きく変化することがわかった。特許文献1では、粒子状物質の粒子径を考慮していないので、その粒子径による出力値のばらつきを抑制できない。また、粒子状物質を捕集するフィルタの下流にセンサを配置して、そのセンサの出力値と閾値との比較に基づきフィルタ故障の診断を行う場合には、センサの出力値にばらつきがあると、その診断結果もばらついてしまう。
本発明は上記問題に鑑みてなされたものであり、粒子状物質の粒子径によるフィルタ故障の診断結果のばらつきを抑制できるフィルタの故障検出装置及び粒子径によるセンサの出力値のばらつきを抑制できる粒子状物質検出装置を提供することを課題とする。
上記課題を解決するために、本発明のフィルタの故障検出装置は、内燃機関(2)の排気通路(3)に設けられ、排気ガス中の粒子状物質を捕集するフィルタ(4)と、
前記排気通路の前記フィルタより下流に設けられ、排気ガス中の粒子状物質の量に応じた値を出力するセンサ(5)と、
排気ガス中の粒子状物質の平均粒子径を推定する粒子径推定手段(S4〜S8、S24〜S28、S44〜S48、S64〜S69、S85〜S90、S104〜S109、S125〜S130、S144〜S149、S165〜S170、61)と、
前記センサの出力値と閾値との比較に基づき前記フィルタの故障の有無を判定する故障判定手段(S2、S3、S10〜S12、S22、S23、S30〜S32、S42、S43、S50〜S52、S62、S63、S71〜S73、S82、S83、S92〜S94、S102、S103、S111〜S113、S122、S123、S132〜S134、S142、S143、S151〜S153、S162、S163、S172〜S174)と、
前記粒子径推定手段が推定した前記平均粒子径が小さいほど粒子状物質の量がより多いことを示す値となるように前記センサの出力値を補正するセンサ出力補正と、前記平均粒子径が小さいほど粒子状物質の量がより少ないことを示す値となるように前記閾値を補正する閾値補正の少なくとも一方を行う補正手段(S9、S29、S49、S70、S91、S110、S131、S150、S171)と、
を備えることを特徴とする。
本発明者らの調査結果によると、同一の粒子状物質の量が内燃機関から排出されたとしても、粒子状物質の平均粒子径が小さいほどセンサの出力値が小さくなる。本発明は、この調査結果に基づいてなされたものであり、粒子状物質の平均粒子径を推定し、その平均粒子径に応じてセンサの出力値の補正(センサ出力補正)と、閾値の補正(閾値補正)の少なくとも一方を行う。センサ出力補正では、平均粒子径が小さいほど粒子状物質の量がより多いことを示す値となるようにセンサの出力値を補正するので、平均粒子径が小さいときの出力値を、大きいときの出力値に近づけることができる。つまり、粒子径による出力値のばらつきを抑制できる。また、閾値補正では、平均粒子径が小さいほど粒子状物質の量がより少ないことを示す値となるように閾値を補正する。つまり、粒子径によりセンサの出力値がばらつく方向と同じ方向に閾値を補正する。その結果として、センサの出力値と閾値との比較において粒子径の影響を抑制できる。このように、本発明では、センサ出力補正と閾値補正の少なくとも一方を行ったうえで、フィルタの故障判定を行うので、粒子状物質の粒子径によるフィルタ故障の診断結果のばらつきを抑制できる。
また、本発明の粒子状物質検出装置は、内燃機関(2)の排気通路(3)に設けられ、排気ガス中の粒子状物質の量に応じた値を出力するセンサ(5)と、
排気ガス中の粒子状物質の平均粒子径を推定する粒子径推定手段(S4〜S8、S44〜S48、S64〜S69、S85〜S90、S144〜S149、S165〜S170、61)と、
前記センサの出力値を、前記粒子径推定手段が推定した前記平均粒子径が小さいほど粒子状物質の量がより多いことを示す値となるように補正する補正手段(S9、S49、S70、S91、S150、S171)と、
を備えることを特徴とする。
これによれば、平均粒子径が小さいほど粒子状物質の量がより多いことを示す値となるようにセンサの出力値を補正するので、平均粒子径が小さいときの出力値を、大きいときの出力値に近づけることができる。つまり、粒子径による出力値のばらつきを抑制できる。
エンジンシステムの構成図である。 PMセンサの構造を模式的に示した図である。 センサ素子における一対の対向電極付近の様子を示しており、PMセンサによるPM量の検出原理を説明する図である。 捕集時間に対するPMセンサの出力の変化を示した図である。 PMの平均粒子径とPMセンサの出力との関係の実験結果の図である。 第1実施形態における故障判定処理のフローチャートである。 PMセンサの加熱前後における捕集時間に対するセンサ出力の変化を示した図である。 第1〜第3実施形態における出力変化率と平均粒子径との関係を示した図である。 平均粒子径とセンサ出力の補正係数との関係を示した図である。 第2実施形態における故障判定処理のフローチャートである。 平均粒子径と閾値の補正係数との関係を示した図である。 第3実施形態に係る故障判定処理のフローチャートである。 第4実施形態に係る故障判定処理のフローチャートである。 PMの捕集開始からの経過時間に対する素子温度の変化を上段に示し、センサ出力の変化を下段に示した図であり、第4〜第11実施形態におけるセンサ素子の加熱制御及びこの加熱制御によるセンサ出力の変化を説明する図である。 同等のPM平均粒子径での第1温度に対するPMセンサの出力変化率を示した図である。 SOFは揮発するがSootは燃焼しない第1温度でのセンサ出力値E1と、Sootが燃焼する第2温度でのセンサ出力値E2との間の変化率と、PMの平均粒子径との関係を示した図である。 第5実施形態に係る故障判定処理のフローチャートである。 第6実施形態に係る故障判定処理のフローチャートである。 第7実施形態に係る故障判定処理のフローチャートである。 第8実施形態に係る故障判定処理のフローチャートである。 第9実施形態に係る故障判定処理のフローチャートである。 第10実施形態に係る故障判定処理のフローチャートである。 第11実施形態に係る故障判定処理のフローチャートである。 長手方向に延びた表面に対向電極が形成されたセンサ素子を示した図である。 長手方向の一端側の面に対向電極が形成されたセンサ素子を示した図である。 筒状カバー内に図25のセンサ素子が配置されたPMセンサを示した図である。
(第1実施形態)
以下、本発明の第1実施形態を図面を参照しながら説明する。図1は、本発明が適用された車両のエンジンシステム1の構成図である。エンジンシステム1は、内燃機関としてのディーゼルエンジン2(以下、単にエンジンという)を備えている。そのエンジン2には、燃焼室内に燃料を噴射するインジェクタが設けられている。エンジン2は、そのインジェクタから噴射された燃料が燃焼室で自己着火することで、車両を駆動するための動力を生み出している。
エンジン2の排気通路3には、本発明のフィルタとしてのディーゼルパティキュレートフィルタ(DPF)4が設置されている。DPF4は公知の構造のセラミック製フィルタであり、例えば、コーディエライト等の耐熱性セラミックスをハニカム構造に成形して、ガス流路となる多数のセルを入口側または出口側が互い違いとなるように目封じして構成される。エンジン2から排出された排気ガスは、DPF4の多孔性の隔壁を通過しながら下流へ流れ、その間に排気ガスに含まれるPM(パティキュレートマター、粒子状物質)が捕集されて次第に堆積する。
排気通路3のDPF4よりも下流には、排気ガス中のPM量を検出する本発明のセンサとしての電気抵抗式のPMセンサ5が設けられている。ここで、図2は、PMセンサ5の構造を模式的に示した図である。図2に示すように、PMセンサ5は、内部が中空にされた例えば金属製のカバー51とそのカバー51内に配置されたセンサ素子52とを備えている。カバー51には多数の孔511が形成されており、排気通路3を流れる排気ガスの一部がそれら孔511からカバー51内に侵入できるようになっている。また、カバー51には、カバー51内に侵入した排気ガスを排出するための排出孔512が形成されている。なお、図2では、排出孔512は、カバー51の先端に形成された例を示している。
センサ素子52はセラミックス等の絶縁体基板から構成されている。センサ素子52(絶縁体基板)の一方の面には、互いに離間し、かつ対向した一対の対向電極53が設けられている。なお、図3は、PMセンサ5によるPM量の検出原理を説明する図であり、一対の対向電極53付近におけるPM付着の様子を示している。図3に示すように、センサ素子52には、後述の制御ユニット6の指令に基づき一対の対向電極53間に所定の直流電圧を印加する電圧印加回路55が接続されている。カバー51内に侵入した排気ガス中のPMの一部は自身が持つ粘着性によってセンサ素子52に捕集(付着)される。センサ素子52に捕集されなかったPMが排出孔512から排出される。
また、電圧印加回路55により対向電極53間に電圧が印加されると、各対向電極53はそれぞれ正、負に帯電する。これにより、対向電極53の近傍を通過するPMを帯電させて、センサ素子52への捕集が促進される。以下では、対向電極53間に電圧を印加することによるセンサ素子52へのPM捕集を静電捕集という。
PMセンサ5の出力特性を説明すると、PMセンサ5はセンサ素子52に捕集されたPMによって対向電極53間の抵抗が変化することを利用して、センサ素子52に捕集されたPM量に応じた出力を発生する。つまり、PMセンサ5は、対向電極53間の抵抗値に応じた値をPM量として出力する。詳細には、センサ素子52へのPM捕集量が少ないうちはセンサ出力は発生しない(厳密には、センサ出力が立ち上がったとみなせる閾値出力よりも小さい出力しか発生しない)。PMに含まれるSoot成分はカーボン粒子から構成されており導電性を有するので、PM捕集量が一定以上の量になった時に一対の対向電極53間が導通して、センサ出力が立ち上がる(閾値出力以上の出力が発生する)。
センサ出力の立ち上がり後は、PM捕集量が多くなるほど一対の対向電極53間の抵抗が小さくなるので、対向電極53間に流れる電流、つまりセンサ出力が大きくなっていく。エンジンシステム1には、この対向電極53間に流れる電流を計測する電流計56(図3参照)が備えられ、この電流計56の計測値がPMセンサ5の出力となる。なお、対向電極53間を流れる電流に相関する値として例えば一対の対向電極53間の抵抗値(電圧)を測定して、その抵抗値をPMセンサ5の出力としても良い。なお、電圧印加回路55や電流計56は、例えば後述の制御ユニット6内に設けられている。
また、センサ素子52には、センサ素子52を加熱するヒータ54が設けられている。そのヒータ54は、例えばセンサ素子52に捕集されたPMを燃焼除去してPMセンサ5を再生させるために用いられる。また、本発明では、ヒータ54は、PMセンサ5の再生の他に、PMの平均粒子径を求めるために用いられる(詳細は後述)。ヒータ54は、例えばセンサ素子52(絶縁体基板)の対向電極53が設けられていない方の面又はセンサ素子52の内部に設けられている。ヒータ54は、例えば白金(Pt)等の電熱線から構成されている。PMセンサ5の再生においては、PMを構成する各成分(Soot成分、SOF成分等)の全てを燃焼除去できる温度、具体的には例えば600℃以上の温度(例えば700℃)にセンサ素子52がなるように、ヒータ54は制御される。ヒータ54は後述の制御ユニット6に接続されている。なお、センサ素子52が本発明における被付着部に相当する。また、ヒータ54が本発明における加熱手段に相当する。
図1の説明に戻り、エンジンシステム1には、PMセンサ5の他に、エンジン2の運転に必要な各種センサが設けられている。具体的には、例えばエンジン2の回転数を検出する回転数センサ71、車両の運転者の要求トルクを車両側に知らせるためのアクセルペダルの操作量(踏み込み量)を検出するアクセルペダルセンサ72などが設けられている。
また、エンジンシステム1は、そのエンジンシステム1の全体制御を司る制御ユニット6を備えている。その制御ユニット6は、通常のコンピュータの構造を有するものとし、各種演算を行うCPU(図示外)や各種情報の記憶を行うメモリ61を備えている。制御ユニット6は、例えば上記各種センサからの検出信号に基づきエンジン2の運転状態を検出し、運転状態に応じた最適な燃料噴射量、噴射時期、噴射圧等を算出して、エンジン2への燃料噴射を制御する。
また、制御ユニット6は、エンジン2の制御の他に、PMセンサ5の作動を制御するセンサ制御ユニットとしての機能も有する。詳しくは、制御ユニット6は、PMセンサ5に接続し、電圧印加回路55より静電捕集を実施したり、電流計56により対向電極53間に流れる電流を測定したりする。また、制御ユニット6は、ヒータ54の作動を制御し、ヒータ54の作動時にはヒータ54に流す電流(通電量)や通電時間を調整することでヒータ54の温度(センサ素子52の温度)を制御する。
さらに、制御ユニット6は、PMセンサ5の検出値(対向電極53間の電流値)に基づいて、DPF4の故障の有無を判定する故障判定処理を実行する。以下、この故障判定処理について説明する。先ず、図4を参照して故障判定処理の基本的な考え方を説明する。ここで、図4は、静電捕集を開始してからの時間(捕集時間)に対するPMセンサ5の出力の変化を示した図である。詳しくは、図4の一点鎖線のラインは、DPF4が故障判定の基準となるフィルタ(以下、基準故障フィルタという)である場合におけるPMセンサ5の推定出力値Eeを示しており、実線のライン((1)、(2)、(3)のライン)は、実際のPMセンサ5の出力値を示している。
本実施形態では、DPF4の故障判定をするために、DPF4が基準故障フィルタの場合におけるPMセンサ5の出力値Eeを推定する。その推定出力値Eeを閾値として、この閾値(推定出力値Ee)と、実際のPMセンサ5の出力値との比較に基づき、DPF4の故障の有無を判定する。詳しくは、実際のPMセンサ5の出力値が閾値(推定出力値Ee)よりも大きければ、DPF4は故障している判定し、実際の出力値が閾値よりも小さければ、DPF4は正常であると判定する。より詳しくは、推定出力値Eeが所定値Kに達したタイミング(故障判定タイミング)における推定出力値Ee(つまり、所定値K)を閾値とする。そして、この故障判定タイミングにおける実際のPMセンサ5の出力値が閾値Kよりも大きければ、DPF4は故障していると判定し、実際の出力値が閾値Kよりも小さければ、DPF4は正常であると判定する。図4の例では、実際の出力値が(1)、(2)のラインの場合にはDPF4は故障と判定され、(3)のラインの場合にはDPF4は正常と判定される。
なお、ここで説明した故障判定方法(後述の補正以外の考え方)は特許第5115873号公報に記載の方法と同じである。すなわち、本実施形態の故障判定方法は、DPF4が基準故障フィルタである場合におけるPMセンサ5の出力が立ち上がる時期(基準時期)(図4の故障判定タイミングに相当)を推定する。そして、PMセンサ5の出力が実際に立ち上がる時期(実際時期)が基準時期より先の場合にはDPF4は故障していると判定し、後の場合にはDPF4は正常であると判定することを意味する。
一方、上記「発明が解決しようとする課題」の欄で説明したように、エンジン2から排出されるPM量が同一であってもPMの粒子径によってPMセンサ5の出力値が大きく変化する。具体的には、図4の(1)、(2)、(3)のラインは、PM量は同一であるが、PMの平均粒子径が異なっている場合におけるセンサ出力を示している。このように、PM量が同一であるにもかかわらず、平均粒子径の影響でPMセンサ5の出力値が大きくばらついてしまう。その結果、PM量が同一であるにもかかわらず、(1)、(2)の場合ではDPF故障と判定され、(3)の場合ではDPF正常と判定されてしまう。つまり、PMの平均粒子径の影響で、DPF4の故障判定結果がばらついてしまう。
ここで、図5は、PMの平均粒子径とPMセンサ5の出力との関係の実験結果を示している。図5の各点は、静電捕集を開始してからの時間(捕集時間)が所定時間の場合、つまり、PMセンサ5に捕集されたPM量が各点間で同一の場合におけるPMセンサ5の出力値E1を示している。図5の(1)、(2)、(3)の点は、それぞれ、図4の(1)、(2)、(3)のラインにおける所定の捕集時間における出力値を示している。なお、本実施形態における平均粒子径とは、TSI Inc.社製のEEPS(Engine Exhaust Particle Sizer)Spectorometerで計測したPMの粒子径分布において、個数累積分布での中央値となる粒子径、つまりメジアン径d50をいう。
図5に示すように、PMの平均粒子径が小さいほど、PMセンサ5の出力値が小さくなる。詳しくは、図5では、平均粒子径が小さい領域ほど、平均粒子径の変化に対するセンサ出力の変化が大きくなる、上に凸の曲線状(図5の点線参照)となるように、平均粒子径に対してセンサ出力が変化している。これは、PMは、粒子径が小さいほど結晶性が低いアモルファス状態となっており、アモルファス状態のPM(アモルファスカーボン)は、グラファイト状態のPM(グラファイトカーボン)に比べて導電性が低くなるためと考えられる。
本実施形態では、以上の問題に鑑み、PMの平均粒子径を推定し、推定した平均粒子径に応じてPMセンサ5の出力値を補正したうえで、DPF4の故障判定を行う。以下、制御ユニット6が実行するDPF4の故障判定処理の詳細を説明する。図6は、この故障判定処理のフローチャートを示している。図6の処理は、例えばエンジン2の始動と同時に開始し、以降、エンジン2が停止するまで繰り返し実行される。なお、図6の処理の開始時では、PMセンサ5にはPMがまだ捕集されていないものとする。
図6の処理を開始すると、制御ユニット6は、先ず、電圧印加回路55(図3参照)で対向電極53間に電圧を印加させることで、静電捕集を実施する(S1)。これにより、PMセンサ5へのPM捕集が開始される。
次に、エンジン2の運転状態に基づいて、DPF4が基準故障DPFである場合におけるPMセンサ5の出力Eeを推定する(S2)。つまり、図4の一点鎖線のラインを推定する。ここで、本実施形態における基準故障DPFとは、具体的には、故障によりDPF4の捕集率が著しく低下し、DPF4を通過するPM量が自己故障診断(OBD:On−board−diagnostics)の規制値相当の量であるDPFを言う。OBD規制値は、EURO6等のEM規制値(排ガス規制値)より大きい値に設定される。例えば、特定の走行モードにおいて、EM規制値におけるPM量=4.5mg/kmとしたときに、OBD規制値は例えばその約2.67倍のPM量=12.0mg/kmに設定される。
S2では、具体的には、先ず、エンジン2の運転状態に基づいて、DPF4が基準故障DPFである場合におけるDPF4を通過するPMの各時点(単位時間当たり)の量fを推定し、推定した各時点のPM量fの積算量Bを求める。具体的には、特許第5115873号公報の方法と同様に、エンジン2の回転数やトルク(燃料噴射量)等のエンジン2の運転状態に基づいてエンジン2から排出されるPM量、言い換えると、基準故障DPFに流入するPM量(流入PM量)を推定する。なお、エンジン2の回転数は回転数センサ71から得られる。トルク(燃料噴射量)は、アクセルペダルセンサ72の検出値やエンジン回転数などから得られる。エンジン2の運転状態(回転数、トルク等)に対する流入PM量のマップをメモリ61(図1参照)に予め記憶しておく。そして、そのマップから、今回のエンジン2の運転状態に対応する流入PM量を読み出せばよい。
また、基準故障DPFのPM捕集率を推定する。具体的には例えば、基準故障DPFのPM捕集率として予め定められた値αを用いる。また、DPFのPM捕集率は、DPF内に堆積されているPM量(PM堆積量)や排気流量によっても変わってくるので、それらPM堆積量、排気流量に応じて上記PM捕集率αを補正しても良い。なお、PM堆積量は、例えば、DPF4の前後差圧に基づいて推定すれば良い。また、排気流量は、例えば、エンジン2に吸入する新気量を検出するエアフロメータ(図示外)で検出される新気量に基づいて推定すれば良い。この際、排気温センサ(図示外)で検出される排気温度に応じた排気ガスの膨張分や、圧力センサ(図示外)で検出される圧力に応じた排気ガスの圧縮分を考慮して、排気ガス流量を推定する。
そして、推定した流入PM量と基準故障DPFのPM捕集率とに基づいて、基準故障DPFから流出する単位時間当たりのPM量f(流出PM量)が得られる。その流出PM量fを一つ前の時点(i−1)で推定した積算量B(i−1)に加えることで、今回の時点(i)におけるDPF4下流のPM量の積算量Bが得られる。
次に、得られた積算量BのうちのPMセンサ5に捕集されるPM量を推定する。具体的には、例えばPMセンサ5の外側を流れるPMのうちどの程度のPMが孔511(図2参照)からカバー51内に侵入するか、カバー51内に侵入したPMのうちどの程度のPMがセンサ素子52に付着するか等を考慮して、PMセンサ5へのPM捕集率βを推定する。PM捕集率βは、排気ガス流量、λ(空気過剰率)、排気温度、センサ素子52の温度等の各種状態にかかわらず一定の予め定められた値を用いても良いし、各種状態に応じて補正した値を用いても良い。例えば、排気ガス流量が大きいほどPMはカバー51内に侵入しにくくなり、カバー51に侵入したPMはセンサ素子52に付着しにくくなり、付着したとしてもセンサ素子52から離脱しやすくなる。また、λが小さくなるほど、つまりリッチになってPM濃度が高くなるほど、PMセンサ5に捕集されないPMの割合が高くなる。よって、例えば、排気ガス流量が大きいほど、又はλが小さいほど、小さい値となるようにPM捕集率βを推定する。また、排気温度やセンサ素子52の温度に応じて、センサ素子52に作用する熱永動力が変化するので、PM捕集率βが変わってくる。そして、上記積算量BとPM捕集率βとに基づいて、PMセンサ5に捕集されたPM量が得られる。このPM量が多いほどPMセンサ5の出力が大きくなるので、このPM量とPMセンサ5の出力との関係を予め調べてメモリ61に記憶しておく。そして、この関係と今回得られたPM量とに基づいて、DPF4が基準故障DPFの場合におけるPMセンサ5の出力の推定値が得られる。
なお、DPF4下流のPM量の積算量Bが多いほど、PMセンサ5の出力が大きくなるので、この積算量BとPMセンサ5の出力との関係を予め調べてメモリ61に記憶しておく。そして、この関係と今回得られた積算量Bとに基づいて、PMセンサ5の出力を推定しても良い。
次に、S2で推定したPMセンサ5の出力Eeが所定値K(図4参照)を超えたか否かを判断することで、DPF4の故障判定を行うタイミング(故障判定タイミング)に到達したか否かを判断する(S3)。この所定値Kは、例えばPMセンサ5の出力が立ち上がったとみなせる値に設定される。なお、S3では、DPF4が基準故障DPFの場合におけるPMセンサ5の出力が立ち上がるタイミングが到来したか否かを判定することと同義である。
S3において故障判定タイミングがまだ到達していない場合、つまり出力Eeが所定値K未満の場合には(S3:NO)、S1に戻って、PM捕集の実施及び出力Eeの推定を継続する(S1、S2)。
故障判定タイミングが到達した場合、つまり出力Eeが所定値Kを超えた場合には(S3:YES)、S4に進み、S4〜S8により排気ガス中のPMの平均粒子径d50(メジアン径)を推定する。ここで、図7、図8は、PMの平均粒子径d50の推定方法を説明するための図であり、詳しくは、図7は、センサ素子52の加熱前後における捕集時間に対するセンサ出力の変化を示しており、図8は、センサ素子52の加熱前後のセンサ出力の変化率E2/E1と、平均粒子径d50との関係を示している。なお、図8の縦軸は、平均粒子径d50の逆数を示している。また、図8の各点は上記EEPS Spectorometerに基づく実験結果の点を示している。
図7、図8を参照して、平均粒子径d50の推定方法を説明する。図7に示すように、ヒータ54を作動させてセンサ素子52を加熱すると、センサ素子52の温度が次第に上昇していき、その温度上昇に伴いセンサ出力も次第に上昇する。これは、センサ素子52の加熱によりセンサ素子52に捕集されたPMも加熱されることで、そのPMの結晶構造が変化し、導電率が向上するためである。すなわち、加熱によって、導電性の低いアモルファス状態から、導電性の高いグラファイト状態にPMの構造が変化するためである。このとき、加熱前のセンサ出力(加熱開始時のセンサ出力でもある)をE1(図7参照)、加熱により上昇したセンサ出力のピーク値をE2(図7参照)とすると、これらの出力変化率E2/E1は、平均粒子径d50に相関する(図8参照)。
具体的には、図8に示すように、出力変化率E2/E1は、平均粒子径d50の逆数とほぼ正の相関(比例関係)を有する。つまり、出力変化率E2/E1が大きいほど平均粒子径d50が小さくなる(平均粒子径d50の逆数が大きくなる)。これは、粒子径が小さいPMほどアモルファス状態であり、もともとの導電率が低いため、加熱によってグラファイト化した際の導電率の変化量が大きくなるためである。図7においては、粒子径が小さいほど加熱前の出力E1が小さくなる一方で、加熱後の出力E2は粒子径にかかわらずほぼ同じ値となる。ゆえに、平均粒子径が小さいほど、出力変化率E2/E1が大きくなる。
そこで、図8の関係100を予め調べて本発明の記憶手段としてのメモリ61に記憶しておく。そして、図6のS4〜S8では、この関係100と今回の出力変化率E2/E1とに基づいて平均粒子径d50を推定する。すなわち、先ず、ヒータ54で加熱する前におけるPMセンサ5の出力値E1(加熱前出力値)を検出する(S4)。
次に、ヒータ54によりセンサ素子52を加熱する(S5)。このとき、PMが燃焼する温度(600℃以上)でセンサ素子52を加熱しても良いし、PMが燃焼しない温度(例えば400℃程度)でセンサ素子52を加熱しても良い。図7は、PMが燃焼する温度でセンサ素子52を加熱した例を示している。そのため、図7では、加熱によりセンサ素子52の温度が次第に上昇するに伴い、最初はセンサ出力が上昇し、ある値E2をピークとして以降の時間では、PMが燃焼することでセンサ出力が低下していく。これは、加熱開始からピーク値E2までの間は、センサ素子52の温度はPMが燃焼しない温度となっており、ピーク値E2以降ではPMが燃焼する温度になるためである。
なお、PMが燃焼しない温度でセンサ素子52を加熱した場合には、図7のピーク値E2の以降の時間におけるセンサ出力は低下せずにピーク値E2に維持される。
次に、センサ素子52の加熱により上昇したセンサ出力のピーク値E2(加熱後出力値)を検出する(S6)。具体的には、例えば、加熱開始からのセンサ出力をモニターすることでピーク値E2を検出しても良いし、センサ出力がピークを示す加熱開始からの時間を予め調べておき、その時間におけるセンサ出力値をピーク値として検出しても良い。なお、S6で検出するセンサ出力値E2は、センサ素子52の温度がPMが燃焼しない温度(例えば400℃)である時の出力値でもある。このように、ピーク値E2を検出することで、平均粒子径が小さい時の出力変化率E2/E1と、大きい時の出力変化率E2/E1とで違いを顕著にすることができる。
次に、S4、S6で検出した出力値E1、E2の変化率E2/E1(加熱前出力値E1に対する加熱後出力値E2の変化率)を算出する(S7)。次に、図8の関係100と、S7で算出した出力変化率E2/E1とに基づき、平均利粒子径d50を推定する(S8)。S8の処理により得られる平均粒子径d50は、S1の処理による静電捕集の開始から、S3の処理による故障判定タイミングの到達までの捕集期間にDPF4下流に排出されたPMの平均粒子径を意味する。
次に、S8で推定した平均粒子径d50に基づき、S4で検出したセンサ出力E1(加熱前出力値)を補正する(S9)。具体的には、図9に示すように、平均粒子径d50と、センサ出力の補正係数A1との関係(マップ)をメモリ61に記憶しておく。この図9の関係では、平均粒子径d50が小さいほど補正係数A1が大きくなる。なお、図9では、平均粒子径d50と補正係数A1とを比例関係で示しているが、比例関係になるとは限らず、上に凸の曲線状又は下に凸の曲線状になる場合もあり得る。また、補正係数A1は、平均粒子径d50が所定の基準値d0(例えば60nm)のときを1とし、平均粒子径d50が基準値d0よりも小さい領域では1より大きい値となり、基準値d0より大きい領域では1より小さい値となるように、定められる。言い換えると、補正係数A1は、S9で補正した後のセンサ出力が、平均粒子径d50が基準値d0の場合におけるセンサ出力となるように、定められる。
S9では、図9の関係とS8で推定した平均粒子径d50とに基づいて、今回の補正係数A1を求める。そして、センサ出力E1に補正係数A1を乗算することで、補正後のセンサ出力Erを求める。つまり、Er=A1×E1を計算する。これによって、平均粒子径d50が小さいほど、PM量がより多いことを示す値となるように、つまり大きい値となるようにセンサ出力が補正される。また、補正後のセンサ出力Erを、基準値d0におけるセンサ出力に近づけることができる。
次に、S9で得られた補正後のセンサ出力Erが所定値K(図4参照)より大きいか否かを判断する(S10)。なお、所定値Kは、故障判定タイミングにおける推定出力値Eeでもある。センサ出力Erが所定値Kより大きい場合には(S10:YES)、DPF4は、基準故障DPFよりもDPF捕集能力が低下した故障DPFであると判定する(S11)。これに対し、センサ出力Erが所定値K以下の場合には(S10:NO)、DPF4は、基準故障DPFよりもDPF捕集能力が良好な正常DPFであると判定する(S12)。S11又はS12の後、図6のフローチャートの処理を終了する。
以上説明したように、本実施形態によれば、PMの平均粒子径を推定し、その平均粒子径に基づいてセンサ出力を補正するので、平均粒子径の影響によるセンサ出力のばらつきを抑制できる。そして、ばらつきを抑制したセンサ出力に基づいてDPFの故障判定を行うので、その判定結果のばらつきを抑制できる。つまり、DPFが正常であるにも関わらず故障と判定したり、故障であるにもかかわらず正常と判定したりするのを抑制できる。
また、本発明者らは、加熱によるPMセンサの出力変化率E2/E1とPMの平均粒子径とに相関があることを見出し(図8参照)、その相関に基づいて平均粒子径を推定するので、高精度の平均粒子径を得ることができる。
(第2実施形態)
次に、本発明の第2実施形態を第1実施形態と異なる部分を中心にして説明する。本実施形態では、制御ユニット6が実行する故障判定処理が第1実施形態と異なっており、それ以外は第1実施形態と同じである。以下、本実施形態の故障判定処理を説明する。
図10は本実施形態の故障判定処理のフローチャートを示している。制御ユニット6は、図6の処理に代えて、図10の処理を実行する。図10の処理は、S29、S30の処理が図6のS9、S10の処理と異なっており、それ以外の処理(S21〜S28、S31、S32の処理)は図6のS1〜S8、S11、S12の処理と同じである。
図10の処理では、S28で推定した平均粒子径d50に基づいて、故障判定の閾値K(図4の所定値K(故障判定タイミングにおける推定出力値Eeでもある))を補正する(S29)。具体的には、図11に示すように、平均粒子径d50と、閾値の補正係数A2との関係(マップ)をメモリ61に記憶しておく。この図11の関係では、平均粒子径d50が小さいほど補正係数A2が小さくなる。なお、図11では、平均粒子径d50と補正係数A2とを比例関係で示しているが、比例関係になるとは限らず、上に凸の曲線状又は下に凸の曲線状になる場合もあり得る。また、補正係数A2は、平均粒子径d50が所定の基準値d0(例えば60nm)のときを1とし、平均粒子径d50が基準値d0よりも小さい領域では1より小さい値となり、基準値d0より大きい領域では1より大きい値となるように、定められる。言い換えると、補正係数A2は、S29で補正した後の閾値が、平均粒子径d50が基準値d0の場合における閾値となるように、定められる。
S29では、図11の関係とS28で推定した平均粒子径d50とに基づいて、今回の補正係数A2を求める。そして、閾値Kに補正係数A2を乗算することで、補正後の閾値Krを求める。つまり、Kr=A2×Kを計算する。これによって、平均粒子径d50が小さいほど、PM量がより少ないことを示す値となるように、つまり小さい値となるように閾値が補正される。言い換えると、平均粒子径d50によりセンサ出力がばらつく方向と同じ方向に閾値が補正される。例えば、平均粒子径d50が小さいことによりセンサ出力が小さい場合には、閾値も小さい値に補正される。
次に、S24で検出したセンサ出力E1が補正後の閾値Krより大きいか否かを判断する(S30)。そして、センサ出力E1が閾値Erより大きい場合には(S30:YES)、DPF4は故障と判定し(S31)、閾値Er以下の場合には(S30:NO)、DPF4は正常と判定する(S32)。
以上説明したように、本実施形態では、センサ出力補正の代わりに、閾値補正を行うので、第1実施形態と同様に、平均粒子径によるDPFの故障判定結果のばらつきを抑制できる。
(第3実施形態)
次に、本発明の第3実施形態を上記実施形態と異なる部分を中心にして説明する。本実施形態では、制御ユニット6が実行する故障判定処理が第1実施形態と異なっており、それ以外は第1実施形態と同じである。以下、本実施形態の故障判定処理を説明する。図6の処理では、DPF4が基準故障DPFの場合におけるPMセンサ5の出力値Eeを推定し(S2)、その推定出力値Eeが所定値Kに達したか否かに基づいて、故障判定タイミングが到達したか否かを判定していた(S3)。本実施形態では、図6の処理に代えて、図12の処理を実行する。図12では、S42、S43の処理が図6のS2、S3の処理と異なっており、それ以外の処理(S41、S44〜S52の処理)は図6のS1、S4〜S12の処理と同じである。
図12の処理では、S41で静電捕集を開始した後、エンジン2の運転状態に基づいて、DPF4が基準故障DPFである場合におけるDPF4を通過するPMの各時点(単位時間当たり)の量fを推定し、推定した各時点のPM量fの積算量Bを推定する(S42)。この積算量Bの推定方法は、図6のS2において推定出力値Eeを算出するために求めた積算量Bの推定方法と同じである。このように、S42では、推定出力値Eeを推定するのではなく、推定出力値Eeを得る前段階の、推定出力値Eeに相関する積算量Bを推定する。
次に、S42で推定した積算量Bが所定量を超えたか否かを判断することで、故障判定タイミングに到達したか否かを判断する(S43)。この所定量は、これをPMセンサ5の出力値に換算した場合には図4の所定値K(S50の閾値K)となるように定められた値である。積算量Bが所定量未満の場合には(S43:NO)、故障判定タイミングにまだ到達していないとして、S41に戻る。これに対して、積算量Bが所定量を超えた場合には、故障判定タイミングが到達したとして、S44以降の処理を実行する。
この図12の処理によっても上記実施形態と同様の効果が得られる。また、図10の処理においても、S22、S23の処理に代えて、図12のS42、S43の処理を実行しても良い。さらに、図12のS42、S43に代えて、DPF4が基準故障DPFである場合におけるPMセンサ5に捕集されたPM量を推定し、そのPM量が所定量を超えたか否かに基づいて故障判定タイミングが到達したか否かを判断しても良い。このPM量は、積算量Bに基づいて推定すれば良い。これによっても上記実施形態と同様の効果が得られる。
(第4実施形態)
次に、本発明の第4実施形態を上記実施形態と異なる部分を中心にして説明する。本実施形態では、制御ユニット6が実行する故障判定処理が上記実施形態と異なっており、それ以外は上記実施形態と同じである。
PMは、主に、煤を構成するSootと、SOF(Soluble Organic Fraction、有機溶剤可溶成分)と、サルフェートとから構成されている。SOFは、燃料や潤滑油が未燃のまま単独またはSootに含浸された形で排出されたものである。サルフェートは、燃料中の硫黄分の酸化生成物(硫化物)が排気ガス中の水分に溶けて霧滴化したものである。
PMはエンジンの運転条件によりSOF含有量が変化する。SOFはSootよりも導電率が低いので、SOF含有量によりPMの抵抗は変化してしまい、同一の平均粒子径で同一のPM量がPMセンサに捕集されていたとしても、PMセンサの出力が異なってしまう。そこで、本実施形態では、PM中に含有するSOFの影響を排除した形でPMの平均粒子径を求めている。以下、図13〜図16を参照して、SOFの影響を排除した形でPMの平均粒子径を推定する方法が反映された、DPFの故障判定処理を説明する。
本実施形態では、制御ユニット6は、図6の処理に代えて、図13の処理を実行する。なお、図13の処理の開始時では、PMセンサ5にはPMがまだ捕集されていないものとする。
図13の処理を開始すると、制御ユニット6は、図6のS1〜S3の処理と同様に、静電捕集を実施し(S61)、DPF4が基準故障DPFである場合におけるPMセンサ5の出力Eeを推定し(S62)、その出力Eeが所定値Kを超えたか否かを判断する(S63)。出力Eeが所定値K未満の場合には(S63:NO)、故障判定タイミングが未だ到達していないとして、S61に戻り、静電捕集及び出力Eeの推定を継続する(S61、S62)。
出力Eeが所定値Kを超えた場合には(S63:YES)、故障判定タイミングが到達したとして、S64〜S69の処理により排気ガス中のPMの平均粒子径d50(メジアン径)を推定する。具体的には、先ず、図14の上段(PMセンサ5へのPMの捕集開始からの経過時間に対する素子温度の変化)に示すように、ヒータ54により、センサ素子52を、SOFは揮発するがSootは燃焼しない第1温度に加熱する(S64)。ここで、図15は、第1温度の好適範囲を説明する図であり、詳しくは、同等のPM平均粒子径(55nm前後)での第1温度に対するPMセンサ5の出力変化率(E2/E1)を示した図である。なお、図15の縦軸の出力変化率(E2/E1)は、センサ素子52を第1温度に加熱した時におけるセンサ出力E1を第1出力値、Sootが燃焼する第2温度に加熱した時のセンサ出力E2を第2出力値として、第1出力値E1に対する第2出力値E2の変化率を示している。また、図15の○の点は、エンジン回転数が1654rpm、トルクが24Nm、PM中のSOF割合(重量パーセント濃度)が7.7wt%となる条件での結果を示している。□の点は、エンジン回転数が2117rpm、トルクが83Nm、SOF割合が1.3wt%となる条件での結果を示している。
図15に示すように、第1温度が200℃〜400℃の範囲では、SOF割合が大きい場合の出力変化率(○の結果)と、SOF割合が小さい場合の出力変化率(□の結果)とは同等の値となっている。このことから、第1温度が200℃〜400℃の範囲では、SOFの影響を排除した形で出力変化率を得ることができる。これに対し、第1温度が200℃未満では、SOF割合が大きい場合の出力変化率(○の結果)は、SOF割合が小さい場合の出力変化率(□の結果)よりも大きくなっている。これは、第1温度が200℃未満では、SOFの揮発が不十分であることから、第1温度でのセンサ出力値E1がSOF割合に応じて変化し、具体的には、SOF割合が大きいほどPMの抵抗が増え、結果、センサ出力値E1が小さくなる。一方、第2温度ではSOFは揮発するので、第2温度でのセンサ出力値E2はSOF割合にかかわらず同等の値となる。これにより、第1温度が200℃未満では、SOF割合が大きいほど、出力変化率E2/E1が大きくなると推定される。
このように、第1温度が200℃未満では、出力変化率においてSOFの影響を排除できていない。言い換えると、第1温度が200℃未満では、SOF割合に応じて出力変化率が変化してしまう。一方、図15では示していないが、第1温度が400℃を超えると、第1温度に加熱保持中にセンサ出力が徐々に低下することを本発明者は確認している。これは、第1温度が400℃を超えると、Sootの燃焼が始まっているためと考えられる。以上より、第1温度は、200℃以上、400℃以下の温度とするのが好ましい。
S64の処理で、センサ素子52を第1温度に加熱することで、図14の下段(PMセンサ5へのPMの捕集開始からの経過時間に対するセンサ出力の変化)に示すように、センサ出力は上昇する。これは、センサ素子52の加熱によりセンサ素子52に捕集されたPMも加熱されることで、そのPMの結晶構造が変化し、導電率が向上、言い換えると抵抗率が低下するためである。なお、図14では、第1温度を350℃とした場合を例示している。
なお、S64において、第1温度に加熱保持する時間は例えば30秒以上とするのが好ましい。30秒未満では、加熱温度が安定せず、SOFの揮発が不十分となるおそれがある。ただし、SOFを十分に揮発できるのであれば、30秒未満の加熱時間であっても良い。また、加熱保持の時間は長くても良いが、計測に時間がかかってしまうので、3分以下が好ましい。なお、図14では、加熱保持の時間を60秒とした例を示している。
このように、センサ素子52を第1温度に加熱することで、センサ出力においてSOFの影響を排除できる。また、エンジン運転条件により排気温度が異なるとPMの温度が異なるため、PMの抵抗の温度特性によりセンサ出力が変化してしまう。しかし、S64の加熱処理により、排気温度にかかわらず、センサ素子52に捕集されたPMの温度を一定にできるため、センサ出力において排気温度の影響も排除できる。
S64の処理の後、第1温度に加熱した時におけるPMセンサ5の第1出力値E1を検出する(S65)。このとき、第1温度への加熱保持の期間におけるセンサ出力のピーク値を第1出力値E1として検出する。
次に、図14の上段に示すように、第1温度の加熱に連続して、センサ素子52をSootが燃焼する第2温度に加熱する(S66)。この第2温度は、600℃以上、1000℃以下が好ましい。600℃未満ではSootの燃焼が不十分となるおそれがある。また、1000℃を超えると、センサ素子52や対向電極53が熱に耐えられないおそれがある。なお、図14では、第2温度を800℃とした例を示している。
第2温度に加熱保持する時間は、例えば30秒以上とするのが好ましい。30秒未満では、加熱温度が安定せず、Sootの燃焼が不十分となり、後述のS67で、センサ出力の正確なピーク値E2を検出できないおそれがある。ただし、正確なピーク値E2を検出できるのであれば、30秒未満の加熱時間であっても良い。また、第2温度への加熱保持の時間は長くても良いが、計測に時間がかかってしまうので、3分以下が好ましい。
図14の下段に示すように、第2温度への加熱により、センサ出力は、第1出力値E1からさらに上昇する。具体的には、第2温度への加熱開始からの時間経過に伴い最初はセンサ出力が上昇し、ある値E2をピークとして以降の時間では、Sootが燃焼することでセンサ出力が低下していく。これは、第2温度への加熱開始からピーク値E2までの間は、センサ素子52の温度はSootが燃焼しない温度となっており、ピーク値E2以降ではSootが燃焼する温度になるためである。また、第2温度への加熱開始からピーク値E2までの期間において、センサ出力が第1出力値E1からさらに上昇するのは、第1温度よりも高温の第2温度にセンサ素子52を加熱することで、センサ素子52に捕集されたPMの結晶構造の、導電性を向上させるグラファイト状態への変化がさらに促進されるためである。
次に、センサ素子52の第2温度への加熱により上昇したセンサ出力のピーク値E2を第2出力値として検出する(S67)。具体的には、例えば、加熱開始からのセンサ出力をモニターすることでピーク値E2を検出しても良いし、センサ出力がピークを示す加熱開始からの時間を予め調べておき、その時間におけるセンサ出力値をピーク値として検出しても良い。
次に、S65、S67で検出した出力値E1、E2の変化率E2/E1(第1出力値E1に対する第2出力値E2の変化率)を算出する(S68)。次に、S68で算出した出力変化率E2/E1に基づいて、排気ガス中のPMの平均粒子径d50を推定する(S69)。ここで、図16は、第1温度加熱時のセンサ出力E1に対する第2温度加熱時のセンサ出力E2の変化率E2/E1と、平均粒子径d50との関係を示している。なお、図16の縦軸は、平均粒子径d50の逆数を示している。また、図16の各点はEEPS(Engine Exhaust Particle Sizer) Spectorometerに基づく実験結果の点を示している。
図16に示すように、第1温度でのセンサ出力E1と第2温度でのセンサ出力値E2との変化率E2/E1は平均粒子径d50に相関する。具体的には、出力変化率E2/E1は、平均粒子径d50の逆数とほぼ正の相関(比例関係)を有する。そこで、図16の関係101を予め調べてメモリ61に記憶しておく。なお、図15に示すように、同じ平均粒子径であっても、第1温度が変わると出力変化率が変わってくるので、図16の関係101を求める際の第1温度と、S64の処理における第1温度とを同じ値にする必要がある。
そして、S69では、図16の関係101と、S68で算出した今回の出力変化率E2/E1とに基づいて平均粒子径d50を推定する。S69の処理により得られる平均粒子径d50は、S61の処理による静電捕集の開始から、S63の処理による故障判定タイミングの到達までの捕集期間にDPF4下流に排出されたPMの平均粒子径を意味する。
次に、図6のS9の処理と同様に、S69で推定した平均粒子径d50に基づき、S65で検出した第1出力値E1を補正する(S70)。具体的には、図9のマップから、今回の平均粒子径d50に対応する補正係数A1を求める。そして、第1出力値E1に補正係数A1を乗算することで、補正後のセンサ出力Erを求める。つまり、Er=A1×E1を計算する。
次に、図6のS10〜S12の処理と同様に、補正後のセンサ出力Erが所定値Kより大きいか否かを判断し(S71)、所定値Kより大きい場合には(S71:YES)、DPF4の故障と判定し(S72)、所定値K以下の場合には(S71:NO)、DPF4は正常であると判定する(S73)。S72又はS73の後、図13のフローチャートの処理を終了する。
なお、第1〜第3実施形態は、図14において第1温度への加熱開始時におけるセンサ出力E0と、第2温度への加熱時におけるセンサ出力E2との間の変化率E2/E0に基づいて、PMの平均粒子径を推定する実施形態に相当する。これに対して、本実施形態では、SOFは揮発するがSootは燃焼しない第1温度にセンサ素子52を加熱した時のセンサ出力E1を基準とした出力変化率E2/E1に基づいて平均粒子径を推定している。これにより、SOFの影響及び排気温度の影響の両方を排除した高精度の平均粒子径を得ることができる。よって、平均粒子径によるセンサ出力のばらつきを抑制できるとともに、PM中のSOF含有量やエンジン運転条件(排気温度)によるセンサ出力のばらつきも抑制できる。その結果、DPFが正常であるにも関わらず故障と判定したり、故障であるにもかかわらず正常と判定したりするのを抑制できる。
また、本実施形態では、SOF及び排気温度の影響を排除した第1温度でのセンサ出力E1を補正し、その補正後のセンサ出力Erに基づいてDPFの故障判定を行うので、その故障判定においてSOF及び排気温度の影響をより一層排除できる。
(第5実施形態)
次に、本発明の第5実施形態を上記実施形態と異なる部分を中心にして説明する。本実施形態では、制御ユニット6が実行する故障判定処理が上記実施形態と異なっており、それ以外は上記実施形態と同じである。以下、本実施形態の故障判定処理を説明する。
制御ユニット6は、故障判定処理として図17の処理を実行する。図17の処理は、S84、S91の処理が図13の処理と異なっており、それ以外の処理(S81〜S83、S85〜S90、S92〜S94の処理)は図13のS61〜S69、S71〜S73の処理と同じである。
図17の処理を開始すると、図13のS61〜S63の処理と同様に、静電捕集を実施し(S81)、DPF4が基準故障DPFである場合におけるPMセンサ5の出力Eeを推定し(S82)、その出力Eeが所定値Kを超えたか否かを判断する(S83)。出力Eeが所定値K未満の場合には(S83:NO)、故障判定タイミングが未だ到達していないとして、S81に戻り、静電捕集及び出力Eeの推定を継続する(S81、S82)。
出力Eeが所定値Kを超えた場合には(S83:YES)、次のS85で第1温度にセンサ素子52を加熱する前におけるセンサ出力E0を検出する(S84)。このセンサ出力E0は、図14の下段に示すように、第1温度への加熱開始時におけるセンサ出力でもある。
次に、図13のS64〜S69の処理と同様に、SOFは揮発するがSootは燃焼しない第1温度でのセンサ出力値E1と、Sootが燃焼する第2温度でのセンサ出力値E2との変化率E2/E1に基づいてPMの平均粒子径d50を推定する(S85〜S90)。
次に、PMの平均粒子径d50に基づいて、S84で検出したセンサ出力値E0を補正する(S90)。具体的には、図6のS9の処理と同様に、図9のマップから、今回の平均粒子径d50に対応する補正係数A1を求める。そして、センサ出力値E0に補正係数A1を乗算することで、補正後のセンサ出力Erを求める。つまり、Er=A1×E0を計算する。
次に、図13のS71〜S73の処理と同様に、補正後のセンサ出力Erが所定値Kより大きいか否かを判断し(S92)、所定値Kより大きい場合には(S92:YES)、DPF4の故障と判定し(S93)、所定値K以下の場合には(S92:NO)、DPF4は正常であると判定する(S94)。S93又はS94の後、図17のフローチャートの処理を終了する。
このように、第4実施形態では第1温度でのセンサ出力値E1を補正しているのに対し、本実施形態では、第1温度に加熱する前(第1温度への加熱開始時)におけるセンサ出力値E0を補正している。これによっても、SOFの影響を排除した形でDPFの故障判定を行うことができる。
(第6実施形態)
次に、本発明の第6実施形態を上記実施形態と異なる部分を中心にして説明する。本実施形態では、制御ユニット6が実行する故障判定処理が上記実施形態と異なっており、それ以外は上記実施形態と同じである。以下、本実施形態の故障判定処理を説明する。
制御ユニット6は、故障判定処理として図18の処理を実行する。図18の処理は、S110、S111の処理が図13のS70、S71の処理と異なっており、それ以外の処理(S101〜S109、S112、S113の処理)は図13のS61〜S69、S72、S73の処理と同じである。
図17の処理を開始すると、図13のS61〜S69の処理と同様に、故障判定タイミングが到来した場合に、第1温度でのセンサ出力値E1と、第2温度でのセンサ出力値E2との変化率E2/E1に基づいてPMの平均粒子径d50を推定する(S101〜S109)。
次に、図10のS29の処理と同様に、PMの平均粒子径d50に基づいて、故障判定の閾値Kを補正する(S110)。具体的には、図11のマップから、今回の平均粒子径d50に対応する補正係数A2を求める。そして、閾値Kに補正係数A2を乗算することで、補正後の閾値Krを求める。つまり、Kr=A2×Kを計算する。
次に、S105で検出した第1温度でのセンサ出力値E1が、補正後の閾値Krより大きいか否かを判断する(S111)。センサ出力値E1が閾値Krより大きい場合には(S111:YES)、DPF4の故障と判定し(S112)、閾値Kr以下の場合には(S111:NO)、DPF4は正常と判定する(S113)。その後、図18の処理を終了する。
このように、本実施形態では、第2実施形態と同様に、センサ出力補正に代えて閾値補正を行う。また、第4、第5実施形態と同様に、SOFは揮発するがSootは燃焼しない第1温度でのセンサ出力値E1を基準とした出力変化率E2/E1に基づいてPMの平均粒子径を推定するので、SOF及び排気温度の影響を排除した形で平均粒子径を得ることができる。その平均粒子径に基づいて閾値を補正し、補正後の閾値とセンサ出力との比較に基づいてDPFの故障判定を行うので、その故障判定において平均粒子径による判定結果のばらつきを抑制できるとともに、SOFの影響やエンジン運転条件(排気温度)の影響を排除できる。
また、SOF及び排気温度の影響を排除した第1温度でのセンサ出力値E1に基づいてDPFの故障判定を行うので、故障判定においてSOF及び排気温度の影響をより一層排除できる。
(第7実施形態)
次に、本発明の第7実施形態を上記実施形態と異なる部分を中心にして説明する。本実施形態では、制御ユニット6が実行する故障判定処理が上記実施形態と異なっており、それ以外は上記実施形態と同じである。以下、本実施形態の故障判定処理を説明する。
制御ユニット6は、故障判定処理として図19の処理を実行する。図19の処理は、図18の処理に対してS124の処理が追加されており、S132の処理が図18のS111の処理と異なっており、それ以外の処理(S121〜S123、S125〜S131、S133、S134の処理)は図18のS101〜110、S112、S113の処理と同じである。
図19の処理を開始すると、図18のS101〜S102の処理と同様に、静電捕集を実施し(S121)、DPF4が基準故障DPFである場合におけるPMセンサ5の出力Eeを推定し(S122)、その出力Eeが所定値Kを超えたか否かを判断する(S123)。出力Eeが所定値K未満の場合には(S123:NO)、故障判定タイミングが未だ到達していないとして、S121に戻り、静電捕集及び出力Eeの推定を継続する(S121、S122)。
出力Eeが所定値Kを超えた場合には(S123:YES)、次のS125で第1温度にセンサ素子52を加熱する前におけるセンサ出力E0を検出する(S124)。このセンサ出力E0は、図14の下段に示すように、第1温度への加熱開始時におけるセンサ出力でもある。
次に、図18のS104〜S110の処理と同様に、SOFは揮発するがSootは燃焼しない第1温度でのセンサ出力値E1と、Sootが燃焼する第2温度でのセンサ出力値E2との変化率E2/E1に基づいてPMの平均粒子径d50を推定し、その平均粒子径d50に基づいて故障判定の閾値Kを補正する(S125〜S131)。
次に、S124で検出したセンサ出力値E0が、補正後の閾値Krより大きいか否かを判断する(S132)。センサ出力値E0が閾値Krより大きい場合には(S132:YES)、DPF4の故障と判定し(S133)、閾値Kr以下の場合には(S132:NO)、DPF4は正常と判定する(S134)。その後、図19の処理を終了する。
このように、本実施形態では、第6実施形態と同様に閾値補正を行うが、補正後の閾値と比較するセンサ出力値が、第6実施形態では第1温度でのセンサ出力値E1であるのに対し、本実施形態では加熱前のセンサ出力値E0である。これによっても、SOFの影響を排除した形でDPFの故障判定を行うことができる。
(第8実施形態)
次に、本発明の第8実施形態を上記実施形態と異なる部分を中心にして説明する。本実施形態では、制御ユニット6が実行する故障判定処理が上記実施形態と異なっており、それ以外は上記実施形態と同じである。以下、本実施形態の故障判定処理を説明する。
制御ユニット6は、故障判定処理として図20の処理を実行する。図20の処理は、S142、S143の処理が図13のS62、S63の処理と異なっており、それ以外の処理(S141、S144〜S153の処理)は図13のS61、S64〜S73の処理と同じである。また、S142、S143の処理は、図12のS42、S43の処理と同じである。つまり、本実施形態では、第3実施形態と同様に、DPF4が基準故障DPFである場合におけるDPF4を通過するPMの積算量Bを推定し、その積算量Bに基づいて故障判定タイミングの到達を判定している。故障判定タイミングに到達した以降の処理は図13の処理と同じである。これによっても、上記実施形態と同様の効果を得ることができる。
(第9実施形態)
次に、本発明の第9実施形態を上記実施形態と異なる部分を中心にして説明する。本実施形態では、制御ユニット6が実行する故障判定処理が上記実施形態と異なっており、それ以外は上記実施形態と同じである。以下、本実施形態の故障判定処理を説明する。
制御ユニット6は、故障判定処理として図21の処理を実行する。図21の処理は、S162、S163の処理が図17のS82、S83の処理と異なっており、それ以外の処理(S161、S164〜S174の処理)は図17のS81、S84〜S94の処理と同じである。また、S162、S163の処理は、図12のS42、S43の処理と同じである。つまり、本実施形態では、第3実施形態と同様に、DPF4が基準故障DPFである場合におけるDPF4を通過するPMの積算量Bを推定し、その積算量Bに基づいて故障判定タイミングの到達を判定している。故障判定タイミングに到達した以降の処理は図17の処理と同じである。これによっても、上記実施形態と同様の効果を得ることができる。
(第10実施形態)
次に、本発明の第10実施形態を上記実施形態と異なる部分を中心にして説明する。上記実施形態では、センサ出力やDPF故障判定の閾値を補正するためにPMの平均粒子径を求めていたが、本実施形態は、求めた平均粒子径に基づいて排気ガス中のPM粒子数を算出する実施形態である。
本実施形態の構成は上記実施形態と同じであるが、制御ユニット6が実行する処理が上記実施形態と異なっている。具体的には、制御ユニット6は、図22の処理を実行する。図22の処理は、図6、図10、図12、図13、図17〜図21で示されるDPFの故障判定処理に加えて、又はその故障判定処理に代えて、実行される処理である。なお、図22の処理の開始時では、PMセンサ5にはPMがまだ捕集されていないものとする。
図22の処理を開始すると、制御ユニット6は、先ず、PMセンサ5へのPMの静電捕集を実施する(S181)。次に、PMセンサ5の出力が所定の出力E値0に到達したか否かを判断する(S182)。未だ到達していない場合には(S182:NO)、S181に戻り、静電捕集及びセンサ出力のモニタリングを継続する。
センサ出力が所定の出力値E0に到達した場合には(S182:YES)、図13のS64〜S69の処理と同様にしてPMの平均粒子径を推定する(S183〜S188)。つまり、SOFは揮発するがSootは燃焼しない第1温度でのセンサ出力値E1と、Sootが燃焼する第2温度でのセンサ出力値E2との変化率E2/E1に基づいてPMの平均粒子径を推定する。
次に、S184で検出した第1出力値E1に基づいて、S181の静電捕集の開始から、センサ出力が所定の出力値E0に到達するまで(言い換えると第1温度への加熱開始まで)の捕集期間における、DPF4下流に排出されたPMの質量を推定する(S184)。この質量は全てのPM粒子の質量の総和である。PMセンサ5は、センサ素子52に捕集されたPMの質量に相関する値を出力する。センサ素子52に捕集されたPMの質量は、DPF4下流に排出されたPMの質量に相関する。つまり、センサ出力は、PMセンサ5への捕集開始から、今回のセンサ出力値を出力するまでの期間における、DPF4下流に排出されたPM質量の積算値に相関する。
よって、センサ出力とPMの質量との関係を予め調べておけば、センサ出力に基づいてDPF4下流に排出されたPMの質量を推定できる。このとき、センサ出力として、SOF及び排気温度の影響を排除した第1出力値E1を用いることで、SOF及び排気温度の影響を排除した形でPM質量を得ることができる。
PM質量を推定するため、センサ出力と、排気ガス中のPM質量との関係を予め調べて、メモリ61に記憶しておく。この関係は、センサ出力が大きいほどPM質量が大きくなる関係である。そして、S189では、第1出力値E1に対応するPM質量を、メモリ61に記憶された関係に基づいて推定する。
なお、図22では、PMの平均粒子径を推定した後に、S189でPM質量を推定しているが、このS189の処理は、第1出力値E1の検出後であればどのタイミングで実行されたとしても良い。
次に、S188で推定した平均粒子径と、S189で推定したPM質量と、予め定められたPMの比重とに基づいて、捕集期間におけるDPF4下流に排出されたPMの粒子数を算出する(S190)。具体的には、平均粒子径に基づいて、捕集期間にDPF4下流に排出された、PM1個当たりの平均体積を算出する。より具体的には、PM粒子の形状は球形状であると仮定して、球の体積の公式である以下の式1に、平均粒子径Dを代入することで、PM1個当たりの平均体積を求める。
平均体積=4/3×π×(D/2) ・・・(式1)
そして、PMの平均体積と質量と比重とに基づいて、以下の式2により、PMの粒子数を算出する。式2におけるPM比重は予め定められた値とし、具体的には例えば1g/cmとする。PM比重はメモリ61に記憶しておけば良い。なお、式2の分母におけるPM平均体積×PM比重は、捕集期間におけるDPF4下流に排出されたPM1個当たりの平均質量を意味する。
PM粒子数=PM質量/(PM平均体積×PM比重) ・・・(式2)
このように、本実施形態によれば、特定の期間(捕集期間)にDPF4下流に排出されたPMの粒子数を得ることができるので、この粒子数に基づいて、例えばDPF4の故障判定を行うことができる。また、SOF及び排気温度の影響が排除された平均粒子径に基づいてPM粒子数を推定するので、SOF及び排気温度の影響が排除された高精度なPM粒子数を得ることができる。
(第11実施形態)
次に、本発明の第11実施形態を上記実施形態と異なる部分を中心にして説明する。本実施形態は、第10実施形態と同様に、平均粒子径に基づいて排気ガス中のPM粒子数を算出する実施形態である。
制御ユニット6は、図22の処理に代えて、図23の処理を実行する。図23の処理は、S209の処理が図22のS189の処理と異なっており、それ以外の処理(S201〜S208、S210の処理)は、図22のS181〜S188、S190の処理と同じである。
図22のS189では、第1出力値E1に基づいてPM質量を推定したが、S209では、第1温度に加熱する前(言い換えると第1温度への加熱開始時)における所定のセンサ出力値E0に基づいてPM質量を推定する。具体的には、所定のセンサ出力値E0に対応するPM質量を予め調べて、メモリ61に記憶しておく。そして、S209では、メモリ61に記憶されたPM質量を読み出せば良い。なお、S209の処理は、センサ出力が所定の出力値E0に到達した後であればどのタイミングで実行されたとしても良い。
このように、本実施形態では、加熱前のセンサ出力値E0に基づいてPM質量を推定し、そのPM質量に基づいてPMの粒子数を算出する。これによっても、第10実施形態と同様の効果を得ることができる。
(他の実施形態)
なお、本発明は上記実施形態に限定されるものではなく、特許請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば上記第1〜第9実施形態では、センサ出力補正と閾値補正のいずれか一方を行っていたが、両方を行っても良い。この場合、例えば図6のS9の後又は前に図10のS29の処理を実行する。このとき、S9によるセンサ出力補正と、S29による閾値補正との間で重み付けを設定し、この重み付けの分だけ、センサ出力や閾値を補正する。例えば、センサ出力補正の重み付けが7割(0.7)、閾値補正の重み付けが3割(0.3)とした場合には、S9では、センサ出力補正のみを実行する場合の7割だけセンサ出力を補正し、S29では閾値補正のみを実行する場合の3割だけ閾値を補正する。そして、図6のS10に代えて、補正後のセンサ出力Erが補正後の閾値Krより大きいか否かを判断する。これによっても、上記実施形態と同様の効果が得られる。
また、上記第1〜第3実施形態では、出力変化率E2/E1に基づいて平均粒子径を推定していたが、PMの粒子径はエンジン2の運転状態(エンジン回転数、燃料噴射量等)に応じて変化するので、その運転状態に基づいてPMの平均粒子径を推定しても良い。この場合、エンジン2の運転状態と平均粒子径との関係(マップ)を予め調べてメモリ61に記憶しておく。そして、この関係とエンジン2の運転状態とに基づいて、平均粒子径を推定する。
また、第1〜第3実施形態では加熱後出力値E2に対する加熱前出力値E1の変化率E1/E2に基づいて平均粒子径を推定しても良い。この場合、変化率E1/E2が小さいほど平均粒子径は小さくなる。同様に、第4〜第11実施形態では、第2温度でのセンサ出力値E2に対する第1温度でのセンサ出力値E1の変化率E1/E2に基づいて平均粒子径を推定しても良い。この場合、変化率E1/E2が小さいほど平均粒子径は小さくなる。
また、上記実施形態では、DPFの故障検出の用途でPMセンサを用いていたが、故障検出以外の用途でPMセンサを用いても良い。例えば、DPFの上流にPMセンサを配置して、このPMセンサを、エンジンから排出されるPM量(DPFに流入するPM量)を検出する用途で用いても良い。このとき、本発明によりセンサ出力を補正することで、平均粒子径の影響を抑制した高精度のPM量を得ることができる。
また、上記実施形態では、ある捕集時間におけるPMセンサの推定出力値と実際の出力値との比較に基づいてDPFの故障判定をしていたが、センサ出力の傾きに基づいて故障判定をしても良い。具体的には、DPFが基準故障DPFの場合におけるPMセンサの出力変化(傾き)を推定し、推定した出力変化(傾き)を故障判定の閾値として設定する。その閾値と実際の出力変化(傾き)とを比較して、実際の出力変化のほうが閾値より大きければDPF故障と判定し、小さければDPF正常と判定する。このとき、上記実施形態と同様に、PMの平均粒子径に基づいて、実際の出力変化や閾値を補正する。これによっても、上記実施形態と同様の効果を得ることができる。
また、上記実施形態では、図24に示すようにセンサ素子52の表面のうち、センサ素子52の長手方向に延びた表面に対向電極53が形成されて、図2に示すように、対向電極53が筒状カバー51の側面に向くように構成されたPMセンサの例を示したが、PMセンサは図25、図26のように構成されたとしても良い。すなわち、センサ素子52の長手方向の一端側の面に対向電極53が形成され、図26に示すように、筒状カバー51内において対向電極53が筒状カバー51の先端側に向くように構成されたPMセンサを採用しても良い。
なお、上記実施形態において、図6、図10、図12、図13、図17〜図23のS4〜S8、S24〜S28、S44〜S48、S64〜S69、S85〜S90、S104〜S109、S125〜S130、S144〜S149、S165〜S170、S183〜S188、S203〜S208の処理を実行する制御ユニット6及び図8、図16の関係100、101を記憶するメモリ61が本発明における粒子径推定手段に相当する。図6、図10、図12、図13、図17〜図21のS2、S3、S10〜S12、S22、S23、S30〜S32、S42、S43、S50〜S52、S62、S63、S71〜S73、S82、S83、S92〜S94、S102、S103、S111〜S113、S122、S123、S132〜S134、S142、S143、S151〜S153、S162、S163、S172〜S174の処理を実行する制御ユニット6が本発明における故障判定手段に相当する。図6、図10、図12、図13、図17〜図21のS9、S29、S49、S70、S91、S110、S131、S150、S171の処理を実行する制御ユニット6が本発明における補正手段に相当する。図6、図10、図13、図17〜図19のS2、S3、S22、S23、S62、S63、S82、S83、S102、S103、S122、S123の処理を実行する制御ユニット6が本発明における出力推定手段に相当する。図12、図20、図21のS42、S43、S142、S143、S162、S163の処理を実行する制御ユニット6が本発明における積算量推定手段に相当する。図6、図10、図12、図13、図17〜図23のS5、S25、S45、S64、S66、S85、S87、S104、S106、S125、S127、S144、S146、S165、S167、S183、S185、S203、S205の処理を実行する制御ユニット6が本発明における加熱制御手段に相当する。図6、図10、図12、図13、図17〜図23のS4、S6、S7、S24、S26、S27、S44、S46、S47、S65、S67、S68、S86、S88、S89、S105、S107、S108、S126、S128、S129、S145、S147、S148、S166、S168、S169、S184、S186、S187、S204、S206、S207の処理を実行する制御ユニット6が本発明における取得手段に相当する。図6、図10、図12、図13、図17〜図23のS8、S28、S48、S69、S90、S109、S130、S149、S170、S188、S208の処理を実行する制御ユニット6が本発明における推定手段に相当する。図22、図23のS189、S209の処理を実行する制御ユニット6が本発明における質量推定手段に相当する。図22、図23のS190、S210の処理を実行する制御ユニット6が本発明における粒子数算出手段に相当する。
1 エンジンシステム
2 ディーゼルエンジン(内燃機関)
3 排気通路
4 DPF(フィルタ)
5 PMセンサ(センサ)
6 制御ユニット
61 メモリ

Claims (34)

  1. 内燃機関(2)の排気通路(3)に設けられ、排気ガス中の粒子状物質を捕集するフィルタ(4)と、
    前記排気通路の前記フィルタより下流に設けられ、排気ガス中の粒子状物質の量に応じた値を出力するセンサ(5)と、
    排気ガス中の粒子状物質の平均粒子径を推定する粒子径推定手段(S4〜S8、S24〜S28、S44〜S48、S64〜S69、S85〜S90、S104〜S109、S125〜S130、S144〜S149、S165〜S170、61)と、
    前記センサの出力値と閾値との比較に基づき前記フィルタの故障の有無を判定する故障判定手段(S2、S3、S10〜S12、S22、S23、S30〜S32、S42、S43、S50〜S52、S62、S63、S71〜S73、S82、S83、S92〜S94、S102、S103、S111〜S113、S122、S123、S132〜S134、S142、S143、S151〜S153、S162、S163、S172〜S174)と、
    前記粒子径推定手段が推定した前記平均粒子径が小さいほど粒子状物質の量がより多いことを示す値となるように前記センサの出力値を補正するセンサ出力補正と、前記平均粒子径が小さいほど粒子状物質の量がより少ないことを示す値となるように前記閾値を補正する閾値補正の少なくとも一方を行う補正手段(S9、S29、S49、S70、S91、S110、S131、S150、S171)と、
    を備えることを特徴とするフィルタの故障検出装置。
  2. 前記故障判定手段は、前記フィルタが故障判定の基準となるフィルタである場合における前記センサの出力値を推定する出力推定手段(S2、S3、S22、S23、S62、S63、S82、S83、S102、S103、S122、S123)を備え、前記出力推定手段が推定した値である推定値を前記閾値として、前記閾値と前記センサの実際の出力値との比較に基づき前記フィルタの故障の有無を判定することを特徴とする請求項1に記載のフィルタの故障検出装置。
  3. 前記故障判定手段は、前記フィルタが故障判定の基準となるフィルタである場合における前記フィルタを通過する粒子状物質の積算量又は前記センサに捕集されたPMの積算量を推定する積算量推定手段(S42、S43、S142、S143、S162、S163)を備え、前記積算量推定手段が推定した前記積算量が所定量の場合における前記センサの出力値として予め定められた値を前記閾値として、前記積算量が前記所定量に達した時における前記センサの実際の出力値と前記閾値との比較に基づき前記フィルタの故障の有無を判定することを特徴とする請求項1に記載のフィルタの故障検出装置。
  4. 前記センサは、排気ガス中の粒子状物質を付着させる被付着部(52)と、前記被付着部に互いに離間して設けられる一対の対向電極(53)とを備えて、前記一対の対向電極間の抵抗値に応じた値を出力することを特徴とする請求項1〜3のいずれか1項に記載のフィルタの故障検出装置。
  5. 前記センサは、前記被付着部を加熱する加熱手段(54)を備え、
    前記粒子径推定手段は、
    前記加熱手段に前記被付着部を加熱させる加熱制御手段(S5、S25、S45、S64、S66、S85、S87、S104、S106、S125、S127、S144、S146、S165、S167)と、
    前記加熱制御手段が前記加熱手段に前記被付着部を加熱させたことにより上昇した前記センサの出力値のその上昇の度合いを示した値である上昇値を取得する取得手段(S4、S6、S7、S24、S26、S27、S44、S46、S47、S65、S67、S68、S86、S88、S89、S105、S107、S108、S126、S128、S129、S145、S147、S148、S166、S168、S169)と、
    前記上昇値と前記平均粒子径の関係(100、101)を記憶する記憶手段(61)と、
    前記取得手段が取得した前記上昇値と、前記記憶手段に記憶された前記関係とに基づいて前記平均粒子径を推定する推定手段(S8、S28、S48、S69、S90、S109、S130、S149、S170)とを備えることを特徴とする請求項4に記載のフィルタの故障検出装置。
  6. 前記取得手段(S4、S6、S7、S24、S26、S27、S44、S46、S47)は、前記加熱手段に前記被付着部を加熱させる前における前記センサの出力値である加熱前出力値と、前記加熱手段に前記被付着部を加熱させたことにより上昇した前記センサの出力値である加熱後出力値との間の変化率を前記上昇値として取得することを特徴とする請求項5に記載のフィルタの故障検出装置。
  7. 前記関係(100)は、前記加熱前出力値に対する前記加熱後出力値の変化率が大きいほど前記平均粒子径が小さくなるように定められたことを特徴とする請求項6に記載のフィルタの故障検出装置。
  8. 前記取得手段(S6、S26、S46)は、前記加熱後出力値として、前記被付着部の加熱により上昇した前記センサの出力値のピーク値を取得することを特徴とする請求項6又は7に記載のフィルタの故障検出装置。
  9. 前記補正手段(S9、S49)は、前記加熱前出力値を補正し、
    前記故障判定手段(S10、S11、S12、S50、S51、S52)は、前記補正手段による補正後の前記加熱前出力値と前記閾値との比較に基づき前記フィルタの故障の有無を判定することを特徴とする請求項6〜8のいずれか1項に記載のフィルタの故障検出装置。
  10. 前記加熱制御手段(S64、S66、S85、S87、S104、S106、S125、S127、S144、S146、S165、S167)は、前記加熱手段に前記被付着部を、SOFは揮発するがSootは燃焼しない第1温度に加熱させ、その後、Sootが燃焼する第2温度に加熱させ、
    前記取得手段(S65、S67、S68、S86、S88、S89、S105、S107、S108、S126、S128、S129、S145、S147、S148、S166、S168、S169)は、前記加熱手段に前記被付着部を前記第1温度に加熱させた時の前記センサの出力値である第1出力値と、前記第2温度に加熱させた時の前記センサの出力値である第2出力値との間の変化率を前記上昇値として取得することを特徴とする請求項5に記載のフィルタの故障検出装置。
  11. 前記第1温度は200℃以上、400℃以下の温度であることを特徴とする請求項10に記載のフィルタの故障検出装置。
  12. 前記第2温度は600℃以上、1000℃以下の温度であることを特徴とする請求項10又は11に記載のフィルタの故障検出装置。
  13. 前記関係(101)は、前記第1出力値に対する前記第2出力値の変化率が大きいほど前記平均粒子径が小さくなるように定められたことを特徴とする請求項10〜12のいずれか1項に記載のフィルタの故障検出装置。
  14. 前記取得手段(S67、S88、S107、S128、S147、S168)は、前記第2出力値として、前記被付着部の前記第2温度への加熱により上昇した前記センサの出力値のピーク値を取得することを特徴とする請求項10〜13のいずれか1項に記載のフィルタの故障検出装置。
  15. 前記補正手段(S70、S150)は、前記第1出力値を補正し、
    前記故障判定手段(S71〜S73、S151〜S153)は、前記補正手段による補正後の前記第1出力値と前記閾値との比較に基づき前記フィルタの故障の有無を判定することを特徴とする請求項10〜14のいずれか1項に記載のフィルタの故障検出装置。
  16. 前記補正手段(S91、S171)は、前記加熱手段に前記被付着部を前記第1温度に加熱させる前における前記センサの出力値である加熱前出力値を補正し、
    前記故障判定手段(S92〜S94、S172〜S174)は、前記補正手段による補正後の前記加熱前出力値と前記閾値との比較に基づき前記フィルタの故障の有無を判定することを特徴とする請求項10〜14のいずれか1項に記載のフィルタの故障検出装置。
  17. 前記補正手段(S110)は、前記閾値を補正し、
    前記故障判定手段(S111〜S113)は、前記第1出力値と、前記補正手段による補正後の前記閾値との比較に基づき前記フィルタの故障の有無を判定することを特徴とする請求項10〜14のいずれか1項に記載のフィルタの故障検出装置。
  18. 前記補正手段(S131)は、前記閾値を補正し、
    前記故障判定手段(S132〜S134)は、前記加熱手段に前記被付着部を前記第1温度に加熱させる前における前記センサの出力値である加熱前出力値と、前記補正手段による補正後の前記閾値との比較に基づき前記フィルタの故障の有無を判定することを特徴とする請求項10〜14のいずれか1項に記載のフィルタの故障検出装置。
  19. 内燃機関(2)の排気通路(3)に設けられ、排気ガス中の粒子状物質の量に応じた値を出力するセンサ(5)と、
    排気ガス中の粒子状物質の平均粒子径を推定する粒子径推定手段(S4〜S8、S44〜S48、S64〜S69、S85〜S90、S144〜S149、S165〜S170、61)と、
    前記センサの出力値を、前記粒子径推定手段が推定した前記平均粒子径が小さいほど粒子状物質の量がより多いことを示す値となるように補正する補正手段(S9、S49、S70、S91、S150、S171)と、
    を備えることを特徴とする粒子状物質検出装置。
  20. 前記センサは、排気ガス中の粒子状物質を付着させる被付着部(52)と、前記被付着部に互いに離間して設けられる一対の対向電極(53)とを備えて、前記一対の対向電極間の抵抗値に応じた値を出力することを特徴とする請求項19に記載の粒子状物質検出装置。
  21. 前記センサは、前記被付着部を加熱する加熱手段(54)を備え、
    前記粒子径推定手段は、
    前記加熱手段に前記被付着部を加熱させる加熱制御手段(S5、S45、S64、S66、S85、S87、S144、S146、S165、S167)と、
    前記加熱制御手段が前記加熱手段に前記被付着部を加熱させたことにより上昇した前記センサの出力値のその上昇の度合いを示した値である上昇値を取得する取得手段(S4、S6、S7、S44、S46、S47、S65、S67、S68、S86、S88、S89、S145、S147、S148、S166、S168、S169)と、
    前記上昇値と前記平均粒子径の関係(100、101)を記憶する記憶手段(61)と、
    前記取得手段が取得した前記上昇値と、前記記憶手段に記憶された前記関係とに基づいて前記平均粒子径を推定する推定手段(S8、S48、S69、S90、S149、S170)とを備えることを特徴とする請求項20に記載の粒子状物質検出装置。
  22. 前記取得手段(S4、S6、S7、S44、S46、S47)は、前記加熱手段に前記被付着部を加熱させる前における前記センサの出力値である加熱前出力値と、前記加熱手段に前記被付着部を加熱させたことにより上昇した前記センサの出力値である加熱後出力値との間の変化率を前記上昇値として取得することを特徴とする請求項21に記載の粒子状物質検出装置。
  23. 前記関係(100)は、前記加熱前出力値に対する前記加熱後出力値の変化率が大きいほど前記平均粒子径が小さくなるように定められたことを特徴とする請求項22に記載の粒子状物質検出装置。
  24. 前記取得手段(S6、S46)は、前記加熱後出力値として、前記被付着部の加熱により上昇した前記センサの出力値のピーク値を取得することを特徴とする請求項22又は23に記載の粒子状物質検出装置。
  25. 前記加熱制御手段(S64、S66、S85、S87、S144、S146、S165、S167)は、前記加熱手段に前記被付着部を、SOFは揮発するがSootは燃焼しない第1温度に加熱させ、その後、Sootが燃焼する第2温度に加熱させ、
    前記取得手段(S65、S67、S68、S86、S88、S89、S145、S147、S148、S166、S168、S169)は、前記加熱手段に前記被付着部を前記第1温度に加熱させた時の前記センサの出力値である第1出力値と、前記第2温度に加熱させた時の前記センサの出力値である第2出力値との間の変化率を前記上昇値として取得することを特徴とする請求項21に記載の粒子状物質検出装置。
  26. 前記第1温度は200℃以上、400℃以下の温度であることを特徴とする請求項25に記載の粒子状物質検出装置。
  27. 前記第2温度は600℃以上、1000℃以下の温度であることを特徴とする請求項25又は26に記載の粒子状物質検出装置。
  28. 前記関係(101)は、前記第1出力値に対する前記第2出力値の変化率が大きいほど前記平均粒子径が小さくなるように定められたことを特徴とする請求項25〜27のいずれか1項に記載の粒子状物質検出装置。
  29. 前記取得手段(S67、S88、S147、S168)は、前記第2出力値として、前記被付着部の前記第2温度への加熱により上昇した前記センサの出力値のピーク値を取得することを特徴とする請求項25〜28のいずれか1項に記載の粒子状物質検出装置。
  30. 前記センサへの粒子状物質の捕集開始から、前記第1温度への加熱開始までの捕集期間における排気ガス中の粒子状物質の質量を推定する質量推定手段(S189、S209)と、
    前記平均粒子径と、前記質量と、予め定められた粒子状物質の比重とに基づいて、前記捕集期間における排気ガス中の粒子状物質の粒子数を算出する粒子数算出手段(S190、S210)とをさらに備えることを特徴とする請求項25〜29のいずれか1項に記載の粒子状物質検出装置。
  31. 前記質量推定手段(S189)は、前記第1出力値に基づいて前記質量を推定することを特徴とする請求項30に記載の粒子状物質検出装置。
  32. 前記質量推定手段(S209)は、前記第1温度への加熱開始時における前記センサの出力値に基づいて前記質量を推定することを特徴とする請求項30に記載の粒子状物質検出装置。
  33. 前記比重は1g/cmであることを特徴とする請求項31又は32に記載の粒子状物質検出装置。
  34. 前記粒子数算出手段は、前記平均粒子径に基づいて粒子状物質の粒子1個当たりの平均体積を算出し、その平均体積と前記比重と前記質量とに基づいて前記粒子数を算出することを特徴とする請求項30〜33のいずれか1項に記載の粒子状物質検出装置。
JP2015184870A 2014-10-02 2015-09-18 フィルタの故障検出装置、粒子状物質検出装置 Expired - Fee Related JP6426072B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580053457.1A CN107076690B (zh) 2014-10-02 2015-10-02 过滤器的故障检测装置、颗粒状物质检测装置
PCT/JP2015/078060 WO2016052734A1 (ja) 2014-10-02 2015-10-02 フィルタの故障検出装置、粒子状物質検出装置
EP15845761.4A EP3203220B1 (en) 2014-10-02 2015-10-02 Particulate matter detection device
US15/516,163 US10578518B2 (en) 2014-10-02 2015-10-02 Filter failure detection device and particulate matter detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014203771 2014-10-02
JP2014203771 2014-10-02

Publications (2)

Publication Number Publication Date
JP2016075668A JP2016075668A (ja) 2016-05-12
JP6426072B2 true JP6426072B2 (ja) 2018-11-21

Family

ID=55951089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015184870A Expired - Fee Related JP6426072B2 (ja) 2014-10-02 2015-09-18 フィルタの故障検出装置、粒子状物質検出装置

Country Status (4)

Country Link
US (1) US10578518B2 (ja)
EP (1) EP3203220B1 (ja)
JP (1) JP6426072B2 (ja)
CN (1) CN107076690B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094756B2 (en) * 2014-10-07 2018-10-09 Ngk Spark Plug Co., Ltd. Particulate measurement system
GB2547578C (en) * 2014-11-04 2020-07-22 Cummins Emission Solutions Inc System and method of sensor reconditioning in an exhaust aftertreatment system
JP6358226B2 (ja) * 2015-10-21 2018-07-18 株式会社デンソー 粒子状物質検出装置
JP6492035B2 (ja) * 2016-03-22 2019-03-27 株式会社Soken 粒子状物質検出装置
WO2018110660A1 (ja) * 2016-12-15 2018-06-21 株式会社Soken 粒子状物質検出装置
JP6596482B2 (ja) * 2016-12-15 2019-10-23 株式会社Soken 粒子状物質検出装置
CN108279192A (zh) * 2018-01-29 2018-07-13 北京市劳动保护科学研究所 一种可吸入颗粒物粒径分级装置
DE102018216084A1 (de) * 2018-09-20 2020-03-26 Robert Bosch Gmbh Verfahren zur Partikelgrößen-selektiven Erfassung von Partikelzahlen im Abgas einer Verbrennungsvorrichtung
DE102020215291A1 (de) * 2020-12-03 2022-06-09 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Recheneinheit zum Betreiben einer Brennkraftmaschine mit einem Partikelfilter
CN115236135B (zh) * 2021-04-23 2023-08-22 中国石油化工股份有限公司 用于气体传感器的基线校准方法、控制装置和气体传感器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066900B (zh) * 2008-07-16 2013-03-13 株式会社堀场制作所 颗粒状物质测量装置
JP5141777B2 (ja) * 2010-01-08 2013-02-13 トヨタ自動車株式会社 微粒子検知装置
JP2012012960A (ja) * 2010-06-29 2012-01-19 Nippon Soken Inc 粒子状物質検出センサ
JP5531849B2 (ja) 2010-08-06 2014-06-25 株式会社デンソー センサ制御装置
JP5333383B2 (ja) 2010-08-31 2013-11-06 株式会社デンソー センサ制御装置
JP2012092700A (ja) * 2010-10-26 2012-05-17 Toyota Motor Corp フィルタ故障検出装置及び方法
JP5115873B2 (ja) 2010-12-08 2013-01-09 株式会社デンソー パティキュレートフィルタの故障検出装置
JP5240679B2 (ja) 2011-01-20 2013-07-17 株式会社デンソー 検出装置
WO2012114518A1 (ja) 2011-02-25 2012-08-30 トヨタ自動車株式会社 粒子状物質検出センサの異常判定装置
JP5582459B2 (ja) * 2011-03-14 2014-09-03 株式会社デンソー 粒子状物質検出装置及びパティキュレートフィルタの故障検出装置
US20130030678A1 (en) * 2011-07-25 2013-01-31 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
WO2013030930A1 (ja) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 微粒子センサ及び微粒子センサの製造方法
JP5737228B2 (ja) * 2012-06-05 2015-06-17 株式会社デンソー 粒子状物質検出システム
JP2013253544A (ja) * 2012-06-06 2013-12-19 Toyota Motor Corp フィルタの故障検出装置

Also Published As

Publication number Publication date
CN107076690A (zh) 2017-08-18
JP2016075668A (ja) 2016-05-12
US20170307501A1 (en) 2017-10-26
EP3203220B1 (en) 2021-06-30
EP3203220A1 (en) 2017-08-09
EP3203220A4 (en) 2017-10-18
CN107076690B (zh) 2019-10-01
US10578518B2 (en) 2020-03-03

Similar Documents

Publication Publication Date Title
JP6426072B2 (ja) フィルタの故障検出装置、粒子状物質検出装置
US8845798B2 (en) Particulate matter detecting apparatus for internal combustion engine
JP5115873B2 (ja) パティキュレートフィルタの故障検出装置
JP5107973B2 (ja) 排気浄化フィルタの故障検知装置
JP6202049B2 (ja) 内燃機関のフィルタ故障診断装置
JP5278615B2 (ja) 内燃機関の粒子状物質検出装置
JP6172466B2 (ja) フィルタの故障検出装置及び粒子状物質検出装置
JP6361918B2 (ja) フィルタの故障検出装置
JP2012150028A (ja) 検出装置
JP6372789B2 (ja) フィルタの故障診断装置
JP2012189049A (ja) 粒子状物質検出装置及びパティキュレートフィルタの故障検出装置
JP6481966B2 (ja) 制御装置
JP5924546B2 (ja) フィルタの故障検出装置
US20180306087A1 (en) Particulate matter detection apparatus
WO2016052734A1 (ja) フィルタの故障検出装置、粒子状物質検出装置
JP6444063B2 (ja) 粒子状物質検出装置及び粒子状物質検出方法
JP6481967B2 (ja) 制御装置
US10890517B2 (en) Particulate matter detection device
JP6358851B2 (ja) 粒子状物質検出装置及び粒子状物質検出方法
CN108138620A (zh) 颗粒状物质检测装置
JP2016109512A (ja) センサ及び内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181024

R150 Certificate of patent or registration of utility model

Ref document number: 6426072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees