JP6409246B2 - Method for producing porous organic-inorganic hybrid particles and emulsifying device - Google Patents

Method for producing porous organic-inorganic hybrid particles and emulsifying device Download PDF

Info

Publication number
JP6409246B2
JP6409246B2 JP2015517135A JP2015517135A JP6409246B2 JP 6409246 B2 JP6409246 B2 JP 6409246B2 JP 2015517135 A JP2015517135 A JP 2015517135A JP 2015517135 A JP2015517135 A JP 2015517135A JP 6409246 B2 JP6409246 B2 JP 6409246B2
Authority
JP
Japan
Prior art keywords
organic
inorganic hybrid
porous
group
hybrid particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015517135A
Other languages
Japanese (ja)
Other versions
JPWO2014185500A1 (en
Inventor
太郎 中川
太郎 中川
英治 島野
英治 島野
晋康 田中
晋康 田中
肇 片山
肇 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Si Tech Co Ltd
Original Assignee
AGC Si Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Si Tech Co Ltd filed Critical AGC Si Tech Co Ltd
Publication of JPWO2014185500A1 publication Critical patent/JPWO2014185500A1/en
Application granted granted Critical
Publication of JP6409246B2 publication Critical patent/JP6409246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4522Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through porous bodies, e.g. flat plates, blocks or cylinders, which obstruct the whole diameter of the tube
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/024Organogel, i.e. a gel containing an organic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/028Xerogel, i.e. an air dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/06Polysiloxanes containing silicon bound to oxygen-containing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Silicon Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、多孔質有機無機ハイブリッド粒子の製造方法及び乳化装置に関する。   The present invention relates to a method for producing porous organic-inorganic hybrid particles and an emulsifying device.

多孔質有機無機ハイブリッド材料は、有機物としての特徴と無機物としての特徴とを併せ持つ材料である。多孔質有機無機ハイブリッド粒子は、液体クロマトグラフィー用充填剤、薄層クロマトグラフィー(TLC)プレート、ゴム、プラスチック等の充填剤、印刷用インキや合成樹脂フィルムのアンチブロッキング剤、化粧品用フィラー、触媒担体等に用いることができる。このような用途では、多孔質有機無機ハイブリッド粒子の粒子径が均一であることが望まれる。   The porous organic-inorganic hybrid material is a material having both characteristics as an organic substance and characteristics as an inorganic substance. Porous organic / inorganic hybrid particles include liquid chromatography fillers, thin layer chromatography (TLC) plates, fillers such as rubber and plastic, anti-blocking agents for printing inks and synthetic resin films, cosmetic fillers, and catalyst carriers. Etc. can be used. For such applications, it is desirable that the porous organic-inorganic hybrid particles have a uniform particle size.

粒子径が均一な多孔質有機無機ハイブリッド粒子としては、ケイ素原子に結合した有機基を有するポリシロキサン粒子等を挙げることができる。   Examples of porous organic-inorganic hybrid particles having a uniform particle diameter include polysiloxane particles having an organic group bonded to a silicon atom.

特許文献1では、シロキサン化合物に酸性液を添加し、ゾル・ゲル法によって反応させることで、−Si−(CH−Si−単位を有するポリシロキサンの球状物を得ている。In Patent Document 1, an acidic liquid is added to a siloxane compound and reacted by a sol-gel method to obtain a polysiloxane sphere having a —Si— (CH 2 ) n —Si— unit.

特許文献2には、膜乳化の一例として、流路中を層流状態で流れる有機液体中に、微小孔を通して無機化合物を含む水性液体を押し出して油中水型(W/O型)エマルションを形成した後、このW/O型エマルション粒の無機化合物を含む水性液体を固形化することで、実質的に均一な粒子径を有する無機質球状体を製造することが提案されている。   In Patent Document 2, as an example of membrane emulsification, a water-in-oil (W / O) emulsion is formed by extruding an aqueous liquid containing an inorganic compound through micropores into an organic liquid flowing in a laminar flow through a flow path. After the formation, it has been proposed to produce an inorganic sphere having a substantially uniform particle size by solidifying an aqueous liquid containing the inorganic compound of the W / O type emulsion particles.

特開平7−333208号公報JP 7-333208 A 特許第4193626号公報Japanese Patent No. 4193626

特許文献1では、前記球状物は、原料溶液を混合した後に攪拌翼によって攪拌して液滴をつくり、この液滴のゾル・ゲル化反応を進行させており、球状物の粒子径を均一に調整することが難しい。   In Patent Document 1, the spherical material is mixed with a raw material solution and then stirred by a stirring blade to form droplets, and the sol-gelation reaction of the droplets proceeds, so that the spherical particles have a uniform particle size. Difficult to adjust.

特許文献2では、エマルションを作製して無機質球状粒子を製造しているが、原料が有機無機ハイブリッド粒子前駆体の場合には、長期にわたって均一なエマルションを作り続けることが無機質球状粒子に比べて難しい。そのため、長期にわたって均一な粒子径の多孔質有機無機ハイブリッド粒子を製造するには、更なる改善が望まれる。   In Patent Document 2, an emulsion is produced to produce inorganic spherical particles. However, when the raw material is an organic-inorganic hybrid particle precursor, it is difficult to continue to make a uniform emulsion over a long period of time compared to inorganic spherical particles. . Therefore, in order to produce porous organic-inorganic hybrid particles having a uniform particle diameter over a long period of time, further improvement is desired.

本発明の一目的は、有機無機ハイブリッド粒子前駆体を含むO/W型エマルションを長期にわたって安定して作製して、粒子径が均一な多孔質有機無機ハイブリッド粒子を長期にわたって安定して製造することである。   One object of the present invention is to stably produce an O / W emulsion containing an organic / inorganic hybrid particle precursor over a long period of time, and stably produce porous organic / inorganic hybrid particles having a uniform particle diameter over a long period of time. It is.

本発明の一側面としては、微小孔部が形成される隔壁で区画された流路を流れる水性液体に、有機無機ハイブリッド粒子前駆体を含む有機液体を、多孔質部材を通過させた後に前記隔壁に形成される微小孔部を通して、エマルションを作製する工程、及び前記有機無機ハイブリッド粒子前駆体を含むエマルション液滴を固形化して多孔質有機無機ハイブリッド粒子を形成する工程を含み、前記隔壁と前記多孔質部材との間隔が1cm以下である、多孔質有機無機ハイブリッド粒子の製造方法である。   As one aspect of the present invention, an organic liquid containing an organic-inorganic hybrid particle precursor is allowed to pass through a porous member into an aqueous liquid flowing through a flow path partitioned by a partition in which micropores are formed. Including the step of producing an emulsion through the micropores formed in the step, and the step of solidifying the emulsion droplets containing the organic-inorganic hybrid particle precursor to form porous organic-inorganic hybrid particles, the partition and the porous This is a method for producing porous organic-inorganic hybrid particles having a distance of 1 cm or less from the porous member.

本発明の他の側面としては、流路を形成する隔壁、前記隔壁に形成される微小孔部、前記微小孔部が形成される隔壁の流路側でない面から1cm以下の位置にある多孔質部材、水性液体を前記流路に供給する水性液体供給装置、及び有機無機ハイブリッド粒子前駆体を含む有機液体を、前記多孔質部材を通過させた後に前記微小孔部を通して前記流路に供給する有機液体供給装置を備える、乳化装置である。   Other aspects of the present invention include a partition wall forming a flow channel, a micropore formed in the partition wall, and a porous member located at a position of 1 cm or less from a surface of the partition wall where the microhole portion is not formed on the flow channel side , An aqueous liquid supply device that supplies an aqueous liquid to the flow path, and an organic liquid that includes the organic-inorganic hybrid particle precursor and that passes through the porous member and then supplies the organic liquid to the flow path through the micropores It is an emulsification apparatus provided with a supply apparatus.

本発明によれば、有機無機ハイブリッド粒子前駆体を含むO/W型エマルションを長期にわたって安定して作製して、粒子径が均一な多孔質有機無機ハイブリッド粒子を長期にわたって安定して製造することができる。   According to the present invention, an O / W emulsion containing an organic / inorganic hybrid particle precursor can be stably produced over a long period of time, and porous organic / inorganic hybrid particles having a uniform particle diameter can be produced over a long period of time. it can.

図1は本発明の一実施形態による乳化装置の一例の概略断面図である。FIG. 1 is a schematic cross-sectional view of an example of an emulsifying device according to an embodiment of the present invention. 図2は本発明の一実施形態による乳化装置のシステムを説明するための図である。FIG. 2 is a diagram for explaining a system of an emulsification apparatus according to an embodiment of the present invention. 図3は例1で得られた球状多孔質粒子のSEM写真である。FIG. 3 is an SEM photograph of the spherical porous particles obtained in Example 1.

以下、本発明に係る実施形態について説明するが、本実施形態における例示が本発明を限定することはない。   Hereinafter, although the embodiment concerning the present invention is described, the illustration in this embodiment does not limit the present invention.

本発明の一実施形態による多孔質有機無機ハイブリッド粒子の製造方法としては、微小孔部が形成される隔壁で区画された流路を流れる水性液体に、有機無機ハイブリッド粒子前駆体を含む有機液体を、多孔質部材を通過させた後に隔壁に形成される微小孔部を通して、エマルションを作製する工程、及び有機無機ハイブリッド粒子前駆体を含むエマルション液滴を固形化して多孔質有機無機ハイブリッド粒子を形成する工程を含み、隔壁と多孔質部材との間隔が1cm以下であることを特徴とする。   As a method for producing porous organic-inorganic hybrid particles according to an embodiment of the present invention, an organic liquid containing an organic-inorganic hybrid particle precursor is added to an aqueous liquid flowing in a flow path partitioned by a partition wall in which micropores are formed. The step of producing an emulsion through the micropores formed in the partition walls after passing through the porous member, and solidifying the emulsion droplets containing the organic-inorganic hybrid particle precursor to form porous organic-inorganic hybrid particles Including a step, wherein the distance between the partition wall and the porous member is 1 cm or less.

このような多孔質有機無機ハイブリッド粒子の製造方法によれば、有機無機ハイブリッド粒子前駆体を含むO/W型エマルションを長期にわたって安定して作製して、粒子径が均一な多孔質有機無機ハイブリッド粒子を長期にわたって安定して製造することができる。   According to such a method for producing porous organic-inorganic hybrid particles, an O / W emulsion containing an organic-inorganic hybrid particle precursor is stably produced over a long period of time, and porous organic-inorganic hybrid particles having a uniform particle diameter Can be manufactured stably over a long period of time.

隔壁で区画された流路を流れる水性液体に、この隔壁に形成される微小孔部を通して、有機無機ハイブリッド粒子前駆体を含む有機液体を押し出すことで、水性液体を連続相とし、有機無機ハイブリッド粒子前駆体を含む有機液体を分散相とし、連続相中に均一な大きさの分散相液滴が分散したO/W型エマルションを作製することができる。   The organic liquid containing the organic-inorganic hybrid particle precursor is extruded into the aqueous liquid flowing through the flow path partitioned by the partition through the micropores formed in the partition, thereby making the aqueous liquid a continuous phase, and the organic-inorganic hybrid particle An organic liquid containing a precursor is used as a dispersed phase, and an O / W type emulsion in which dispersed phase droplets of a uniform size are dispersed in a continuous phase can be produced.

「エマルション作製工程」
本実施形態では、微小孔部が形成される隔壁で区画された流路を流れる水性液体に、有機無機ハイブリッド粒子前駆体を含む有機液体を、多孔質部材を通過させた後に隔壁に形成される微小孔部を通して、エマルションを作製する。
"Emulsion production process"
In the present embodiment, the organic liquid containing the organic-inorganic hybrid particle precursor is passed through the porous member into the aqueous liquid flowing in the flow path partitioned by the partition wall in which the micropores are formed, and then formed in the partition wall. An emulsion is made through the micropores.

分散相が経時的に流れにくくなり長期にわたって均一なエマルションを得ることができない問題に対して、分散相を多孔質部材に通過させた後に隔壁の微小孔部に通すことで、長期にわたり安定して均一な粒径のエマルションを製造することが可能となる。結果として、長期にわたり安定して均一な粒径の多孔質有機無機ハイブリッド粒子を得ることができる。
また、多孔質部材を設けることで、隔壁の微小孔部を通過する分散相が流れにくくなる現象を防止することができ、分散相を安定して供給することができる。
In response to the problem that the dispersed phase is difficult to flow with time and a uniform emulsion cannot be obtained over a long period of time, by passing the dispersed phase through the porous member and then passing through the micropores of the partition wall, it is stable over a long period of time. An emulsion having a uniform particle size can be produced. As a result, porous organic-inorganic hybrid particles having a uniform and uniform particle diameter can be obtained over a long period of time.
Further, by providing the porous member, it is possible to prevent the phenomenon that the dispersed phase passing through the micropores of the partition wall hardly flows, and the dispersed phase can be supplied stably.

多孔質部材は、有機液体の流れ方向に対し、微小孔部が形成された隔壁の上流側に配置することができる。隔壁と多孔質部材との間隔は、1cm以内であり、好ましくは0.5cm以内であり、より好ましくは0.2cm以内である。一層好ましい構成では、この距離は0cmであり、隔壁と多孔質部材とを隣接して配置することができる。これによって、有機無機ハイブリッド粒子前駆体を含む有機液体の特性が、多孔質部材の内部でせん断力などの影響をうけたあとも、隔壁と多孔質部材との間隔が1cm以内であることで、経時的に何らかの変化が生じることを防止し、有機液体が隔壁の微小孔部に流れにくくなる現象を防止あるいは低減することができる。   The porous member can be disposed upstream of the partition wall in which the micropores are formed with respect to the flow direction of the organic liquid. The distance between the partition walls and the porous member is 1 cm or less, preferably 0.5 cm or less, more preferably 0.2 cm or less. In a more preferable configuration, this distance is 0 cm, and the partition wall and the porous member can be disposed adjacent to each other. Thereby, even after the characteristics of the organic liquid containing the organic-inorganic hybrid particle precursor are affected by the shearing force and the like inside the porous member, the distance between the partition wall and the porous member is within 1 cm. It is possible to prevent any change from occurring over time, and to prevent or reduce the phenomenon that the organic liquid does not easily flow into the micropores of the partition wall.

多孔質部材の材質としては、例えば、ガラス等の無機材料、PTFE(ポリテトラフルオロエチレン)、MCE(セルロース混合エステル)等の樹脂材料を用いることができる。   As a material of the porous member, for example, an inorganic material such as glass, or a resin material such as PTFE (polytetrafluoroethylene) or MCE (cellulose mixed ester) can be used.

多孔質部材としては上記材質からなる発泡体、繊維フィルター、メンブレンフィルター等を用いることができる。なかでもガラス繊維フィルターが好ましい。   As the porous member, a foam, a fiber filter, a membrane filter, or the like made of the above materials can be used. Of these, glass fiber filters are preferred.

多孔質部材の目開径としては、通常0.1μm以上とすることができ、好ましくは0.3μm以上である。小さすぎる場合には、供給する分散相中の除去する必要のない異物まで捕捉してしまい分散相の流路抵抗が上昇し安定して製造できなくなることがある。   The open diameter of the porous member can be usually 0.1 μm or more, preferably 0.3 μm or more. If it is too small, foreign matter that does not need to be removed in the dispersed phase to be supplied may be trapped, and the flow path resistance of the dispersed phase may increase, making it impossible to produce stably.

一方、多孔質部材の目開径は、通常10μm以下とすることができ、好ましくは5μm以下であり、より好ましくは3μm以下である。   On the other hand, the open diameter of the porous member can be usually 10 μm or less, preferably 5 μm or less, and more preferably 3 μm or less.

ここで、多孔質部材の目開径は、保留粒子径によって測定することができる。   Here, the opening diameter of the porous member can be measured by the retained particle diameter.

多孔質部材の厚さは、通常30〜1000μmであり、好ましくは50〜500μmである。   The thickness of the porous member is usually 30 to 1000 μm, preferably 50 to 500 μm.

水性液体が流れる流路としては、水性液体の流れ方向に直交する断面形状(以下、流路の断面形状と称することがある。)は特に限定されず、四角形、円形、その他多角形等の形状であってよい。また、流路の断面形状の長手方向としては0.1〜10mmとすることができ、短手方向としては0.01〜10mmとすることができる。また、流路の長さは、水性液体の流れ方向に対して微小孔部が形成される区間であり、1〜300mmとすることができる。   The cross-sectional shape perpendicular to the flow direction of the aqueous liquid (hereinafter sometimes referred to as the cross-sectional shape of the flow channel) is not particularly limited as the flow path for the aqueous liquid, and the shape such as a rectangle, a circle, and other polygons is not limited. It may be. Further, the longitudinal direction of the cross-sectional shape of the flow path can be 0.1 to 10 mm, and the short side direction can be 0.01 to 10 mm. Moreover, the length of the flow path is a section where a micropore is formed in the flow direction of the aqueous liquid, and can be 1 to 300 mm.

有機液体が押し出される微小孔部としては、隔壁に流路あたり1個または複数個で形成することができ、好ましくは1000個以上であり、より好ましくは5000個以上である。   The micropores through which the organic liquid is extruded can be formed in the partition wall by one or more per channel, preferably 1000 or more, more preferably 5000 or more.

微小孔部としては、有機液体の流れ方向に直交する断面形状(以下、微小孔部の断面形状と称することがある。)は特に限定されず、四角形、円形、楕円、三角形、多角形等の形状であってよい。   The cross-sectional shape orthogonal to the flow direction of the organic liquid (hereinafter sometimes referred to as the cross-sectional shape of the micro-hole) is not particularly limited as the micro-hole, and may be a quadrangle, a circle, an ellipse, a triangle, a polygon, or the like. It may be a shape.

微小孔部は、隔壁に対して垂直方向に形成される貫通孔とすることができる。また、隔壁に対して傾斜して形成されてもよく、入口側の孔径を大きくし出口側の孔径を小さくしてもよい。
微小孔部の開口部の直径は、有機液体の流れ方向に対して下流側の開口部、すなわち有機液体の出口側の開口部で、1〜50μmであることが好ましく、より好ましくは1〜10μmである。
The minute hole portion can be a through hole formed in a direction perpendicular to the partition wall. Further, it may be formed to be inclined with respect to the partition wall, and the hole diameter on the inlet side may be increased and the hole diameter on the outlet side may be decreased.
The diameter of the opening of the micropore is preferably 1 to 50 μm, more preferably 1 to 10 μm at the opening on the downstream side with respect to the flow direction of the organic liquid, that is, the opening on the outlet side of the organic liquid. It is.

流路を流れる水性液体の流速は、0.01〜10m/sであることが好ましく、より好ましくは0.4〜5m/sである。   The flow rate of the aqueous liquid flowing through the flow path is preferably 0.01 to 10 m / s, more preferably 0.4 to 5 m / s.

流路中を流れる水性液体のレイノルズ数は5000以下とすることが好ましく、より好ましくは3000以下である。   The Reynolds number of the aqueous liquid flowing in the flow path is preferably 5000 or less, and more preferably 3000 or less.

ここで、流路の断面が円形である場合のレイノルズ数は式(1)で計算され、流路の内径Dは流路の断面における最小径を使用する。ここで、D(流路の内径:m)、u(平均流速:m/s)、ρ(流体密度:kg/m)、μ(流体粘度:Pa・s)である。Here, the Reynolds number when the cross section of the flow path is circular is calculated by Expression (1), and the inner diameter D of the flow path uses the minimum diameter in the cross section of the flow path. Here, D (inner diameter of the channel: m), u (average flow velocity: m / s), ρ (fluid density: kg / m 3 ), μ (fluid viscosity: Pa · s).

レイノルズ数(−)=D・u・ρ/μ ・・・(1)   Reynolds number (−) = D · u · ρ / μ (1)

また、流路の断面が円形でない場合のレイノルズ数は式(2)で計算される。ここで、Deは相当直径(m)=4×流路の断面積(m)/流路断面の流体に接する周長(m)であり、u、ρ、μは式(1)と同様である。Further, the Reynolds number when the cross section of the flow path is not circular is calculated by Expression (2). Here, De is equivalent diameter (m) = 4 × cross-sectional area of the flow path (m 2 ) / peripheral length (m) in contact with the fluid of the cross-section of the flow path, and u, ρ, and μ are the same as in equation (1) It is.

レイノルズ数(−)=De・u・ρ/μ ・・・(2)   Reynolds number (−) = De · u · ρ / μ (2)

微小孔部を流れる有機液体の流速は、微小孔部1孔あたり5m/s以下であることが好ましく、より好ましくは3m/s以下であり、さらに好ましくは0.1m/s以下である。   The flow rate of the organic liquid flowing through the micropores is preferably 5 m / s or less per pore, more preferably 3 m / s or less, and even more preferably 0.1 m / s or less.

乳化工程では、分散相である有機無機ハイブリッド粒子前駆体を含む有機液体を加温して行うことができる。これによって、有機液体の粘度が低下し、微小孔部を通過する圧力を低下させて、有機液体を安定供給することができる。加温の温度としては、25〜80℃とすることができ、好ましくは25〜40℃である。   In the emulsification step, the organic liquid containing the organic-inorganic hybrid particle precursor as a dispersed phase can be heated. As a result, the viscosity of the organic liquid is reduced, and the pressure passing through the micropores can be reduced to stably supply the organic liquid. The heating temperature can be 25 to 80 ° C, and preferably 25 to 40 ° C.

本実施形態では、流路は少なくとも微小孔部が形成される領域の表面が親水性であることが好ましい。
これによって、有機無機ハイブリッド粒子前駆体を含む有機液体が微小孔部を通過する際に、隔壁からの液離れを促進することができ、エマルション液滴径を均一化して、結果として均一な粒子径の多孔質有機無機ハイブリッド粒子を得ることができる。この領域が疎水性であると、有機液体が微小孔部を通過する際に、微小孔部の開口縁から隔壁面に沿って流れて、エマルション液滴径が粗大化することがあり、多孔質有機無機ハイブリッド粒子の粒子径が不均一になることがある。
In this embodiment, it is preferable that at least the surface of the region where the micropores are formed is hydrophilic in the flow path.
As a result, when the organic liquid containing the organic-inorganic hybrid particle precursor passes through the micropores, liquid separation from the partition wall can be promoted, and the emulsion droplet diameter is made uniform, resulting in a uniform particle diameter. The porous organic-inorganic hybrid particles can be obtained. If this region is hydrophobic, when the organic liquid passes through the micropores, it may flow along the partition wall from the opening edge of the micropores, and the emulsion droplet diameter may become coarse. The particle diameter of the organic / inorganic hybrid particles may be non-uniform.

流路の表面は、少なくとも微小孔部が形成される領域で親水性であればよく、流路の表面全体を親水性としてもよく、微小孔部が形成される領域を含む面を親水性としてもよい。例えば、流路の断面形状が四角形であって四面で流路が形成されて、一面に微小孔部が形成される場合は、親水性の部分は、微小孔部が形成される領域のみでもよく、微小孔部が形成される一面全体を親水性としてもよく、四面全部を親水性としてもよい。   The surface of the channel may be hydrophilic at least in the region where the micropores are formed, the entire surface of the channel may be hydrophilic, and the surface including the region where the micropores are formed is hydrophilic. Also good. For example, when the cross-sectional shape of the flow channel is a quadrangle and the flow channel is formed on four sides and a micropore is formed on one surface, the hydrophilic portion may be only the region where the micropore is formed. The entire surface on which the micropores are formed may be hydrophilic, and the entire four surfaces may be hydrophilic.

ここで、流路表面に対し、水性液体の親和性が有機液体の親和性よりも高い場合を親水性とし、有機液体の親和性が水性液体の親和性よりも高い場合を親油性とする。 Here, the case where the affinity of the aqueous liquid is higher than the affinity of the organic liquid with respect to the flow path surface is defined as hydrophilic, and the case where the affinity of the organic liquid is higher than the affinity of the aqueous liquid is defined as lipophilic .

流路表面が親水性である場合、有機液体が微小孔部より流路に押し出されるときに、有機液体の液滴が流路表面から離れて流路中の水性液体に分散されて均一なエマルションを得ることができる。
一方、流路表面が親油性である場合、有機液体が微小孔部より流路に押し出されるときに、有機液体の液滴が流路表面をつたわって流れ、エマルションが不均一化することがある。
When the surface of the flow path is hydrophilic, when the organic liquid is pushed out from the micropores into the flow path, the liquid droplets of the organic liquid are separated from the flow path surface and dispersed in the aqueous liquid in the flow path to form a uniform emulsion Can be obtained.
On the other hand, when the surface of the flow path is oleophilic, when the organic liquid is pushed out from the micropores into the flow path, the droplets of the organic liquid may flow along the flow path surface and the emulsion may become uneven. .

親水性の評価は、流路表面に連続相となる水性液体及び分散相となる連続相をそれぞれ滴下した際に形成される液滴と流路表面との接触角を測定することで行うことができる。
流路表面に対して、水性液体の接触角が、有機液体の接触角よりも小さい場合に、流路表面が親水性であることを確認することができる。
The hydrophilicity can be evaluated by measuring the contact angle between the droplet formed when the aqueous liquid serving as the continuous phase and the continuous phase serving as the dispersed phase are dropped onto the channel surface. it can.
When the contact angle of the aqueous liquid is smaller than the contact angle of the organic liquid with respect to the channel surface, it can be confirmed that the channel surface is hydrophilic.

流路表面を親水化処理する方法としては、例えば、流路表面を、水酸基、カルボキシル基、アミノ基、スルホン基、リン酸基等の親水基を有する誘導体やシランカップリング剤によって処理して親水化する方法がある。   As a method for hydrophilizing the flow path surface, for example, the flow path surface is treated with a derivative having a hydrophilic group such as a hydroxyl group, a carboxyl group, an amino group, a sulfone group, or a phosphate group or a silane coupling agent to make the surface hydrophilic. There is a way to make it.

例えば、流路表面に親水性コート剤を塗工することで、流路表面を親水性とすることができる。この親水性コート剤としては、メタクリル樹脂系コート剤、シリカ系コート剤、チタニア系コート剤等を用いることができる。好ましくはメタクリル樹脂系コート剤を用いることで、容易に無機物表面に適切な膜厚で十分な耐摩擦性、耐薬品性を有する親水化処理を施すことができる。   For example, the surface of the channel can be made hydrophilic by applying a hydrophilic coating agent to the surface of the channel. As the hydrophilic coating agent, a methacrylic resin coating agent, a silica coating agent, a titania coating agent, or the like can be used. Preferably, by using a methacrylic resin-based coating agent, a hydrophilic treatment having sufficient friction resistance and chemical resistance can be easily performed on the inorganic surface with an appropriate film thickness.

メタクリル樹脂系コート剤としては、メタクリル樹脂の主鎖に親水性基が分岐鎖として結合し、無機物表面等と化学結合を形成する官能基が末端に結合したものを用いることができる。親水性基としては、上記した通りである。無機物表面等と化学結合を形成する官能基としては、トリシラノール基、シラノール基、メトキシ基、エトキシ基、アセトキシ基、トリクロロシラン基、ジクロロシラン基、トリクロロシラン基等を挙げることができる。分岐鎖を含めた主鎖の質量平均分子量(Mw)としては、1000〜50000とすることができ、例えば、5000〜30000である。   As the methacrylic resin-based coating agent, a methacrylic resin main chain having a hydrophilic group bonded as a branched chain and a functional group that forms a chemical bond with the inorganic surface or the like bonded to the terminal can be used. The hydrophilic group is as described above. Examples of the functional group that forms a chemical bond with the inorganic surface and the like include a trisilanol group, a silanol group, a methoxy group, an ethoxy group, an acetoxy group, a trichlorosilane group, a dichlorosilane group, and a trichlorosilane group. The mass average molecular weight (Mw) of the main chain including the branched chain can be 1000 to 50000, for example 5000 to 30000.

また、流路表面をアルカリ性溶液あるいは酸性溶液によって処理することで、流路表面を親水性とすることができる。アルカリ性溶液としては、例えば、NaOH、KOH、Ca(OH)等の水溶液を用いることができる。酸性溶液としては、HCl、HSO、HNOがある。これら溶液に流路表面を浸漬して、任意に超音波処理をすることで、流路表面を親水性とすることができる。Further, the surface of the flow path can be made hydrophilic by treating the surface of the flow path with an alkaline solution or an acidic solution. As the alkaline solution, for example, an aqueous solution of NaOH, KOH, Ca (OH) 2 or the like can be used. Acidic solutions include HCl, H 2 SO 4 , and HNO 3 . The channel surface can be rendered hydrophilic by immersing the channel surface in these solutions and optionally performing ultrasonic treatment.

また、流路表面を親水性にする他の例としては、流路を親水性材料によって作製する方法がある。親水性材料としては、ガラス等を用いることができる。   As another example of making the flow channel surface hydrophilic, there is a method in which the flow channel is made of a hydrophilic material. Glass or the like can be used as the hydrophilic material.

「乳化装置」
本実施形態の乳化工程について図1及び図2を参照して説明する。図1は、本実施形態の乳化工程に用いることが可能な乳化装置の一例の概略断面図である。図2は、図1に示す乳化装置を備えるシステムの一例の説明図である。
"Emulsifying device"
The emulsification process of this embodiment is demonstrated with reference to FIG.1 and FIG.2. FIG. 1 is a schematic cross-sectional view of an example of an emulsification apparatus that can be used in the emulsification step of the present embodiment. FIG. 2 is an explanatory diagram of an example of a system including the emulsification apparatus illustrated in FIG.

図1に示す乳化装置10において、1及び5はアクリル樹脂製、2は多孔質部材、3は複数の微小孔部3aが形成されたステンレス鋼板、4は流路4aを形成したステンレス鋼板である。乳化装置10は、アクリル樹脂製1、多孔質部材2、ステンレス鋼板3、ステンレス鋼板4及びアクリル樹脂製5がこの順で積層されて構成される。 Oite emulsification device 10 shown in FIG. 1, 1 and 5 acrylic resin plate, 2 porous member, stainless steel plate in which a plurality of micro-holes 3a are formed is 3, 4 to form a flow path 4a stainless It is a steel plate. The emulsifying device 10 is configured by laminating an acrylic resin plate 1, a porous member 2, a stainless steel plate 3, a stainless steel plate 4, and an acrylic resin plate 5 in this order.

図2に示す乳化システムにおいて、乳化装置10は図1に示す通りであり、20は有機液体(分散相)供給装置を示し、30は水性液体(連続相)供給装置を示し、40はエマルション貯留槽を示す。   In the emulsification system shown in FIG. 2, the emulsification apparatus 10 is as shown in FIG. 1, 20 indicates an organic liquid (dispersed phase) supply apparatus, 30 indicates an aqueous liquid (continuous phase) supply apparatus, and 40 indicates emulsion storage. Shows the tank.

有機液体供給装置20は、有機液体を乳化装置10に供給し、多孔質部材2を通過させた後に微小孔部3aを通して流路4aに供給する装置であり、有機液体貯留槽21、及び有機液体を乳化装置10に供給するための送液装置22を備える。また、有機液体供給装置20は、乳化装置10の多孔質部材2及び隔壁の微小孔部3aを目詰まりさせうる固形物を除去するための精密フィルター23、乳化装置10への有機液体供給圧力を測定する圧力計24を必要に応じて備えることができる。   The organic liquid supply device 20 is a device that supplies an organic liquid to the emulsifying device 10 and passes the porous member 2 and then supplies it to the flow path 4a through the micropores 3a. The organic liquid storage tank 21 and the organic liquid Is supplied to the emulsifying device 10. Further, the organic liquid supply device 20 is configured to adjust the pressure of the organic liquid to the emulsification device 10 and the precision filter 23 for removing the solid matter that can clog the porous member 2 of the emulsification device 10 and the micropores 3a of the partition wall. A pressure gauge 24 to be measured can be provided as necessary.

水性液体供給装置30は、水性液体を乳化装置10に供給し、連続相供給部5aから流路4aに供給する装置であり、水性液体貯留槽31、及び水性液体を乳化装置10に供給するための送液装置32を備える。
有機液体用送液装置22及び水性液体用送液装置32には、例えば、ギヤポンプ、ダイヤフラム型ポンプ、プランジャーポンプ、ローラーポンプ等のポンプや、高圧ガスを用いた圧送方法等を用いることができる。
The aqueous liquid supply device 30 is a device that supplies the aqueous liquid to the emulsifying device 10 and supplies the aqueous liquid to the flow path 4a from the continuous phase supply unit 5a, and supplies the aqueous liquid storage tank 31 and the aqueous liquid to the emulsifying device 10. The liquid feeding device 32 is provided.
For example, a pump such as a gear pump, a diaphragm pump, a plunger pump, or a roller pump, a pressure feeding method using a high-pressure gas, or the like can be used for the organic liquid feeding device 22 and the aqueous liquid feeding device 32. .

図2に示す乳化システムでは、連続相である水性液体が連続相供給部5aから供給され流路4aを流れ、分散相である有機無機ハイブリッド粒子前駆体を含む有機液体が分散相供給部1aから供給され、多孔質部材2を通過した後に、微小孔部3aを介して水性液体に圧入され、流路4aにおいてO/W型エマルションが作製され、エマルション排出部5bから排出される。エマルション排出部5bから排出されるエマルションは、エマルション貯留槽40に貯留される。   In the emulsification system shown in FIG. 2, an aqueous liquid that is a continuous phase is supplied from the continuous phase supply unit 5a and flows through the flow path 4a, and an organic liquid that contains the organic-inorganic hybrid particle precursor that is a dispersed phase is supplied from the dispersed phase supply unit 1a. After being supplied and passed through the porous member 2, it is press-fitted into the aqueous liquid through the micropores 3a, and an O / W emulsion is produced in the flow path 4a and discharged from the emulsion discharge part 5b. The emulsion discharged from the emulsion discharge portion 5b is stored in the emulsion storage tank 40.

精密フィルター23を分散相である有機無機ハイブリッド粒子前駆体を含む有機液体が乳化装置10に供給される前の経路に配置することで、乳化装置10に供給される前に有機液体から固形物を除去して、乳化装置10内での目詰まりを防止することができる。
圧力計24を分散相である有機無機ハイブリッド粒子前駆体を含む有機液体が乳化装置10に供給される前の経路に配置することで、乳化装置10に供給される有機液体の圧力を測定して、供給圧力を適正にすることができる。
By disposing the precision filter 23 in the path before the organic liquid containing the organic-inorganic hybrid particle precursor as a dispersed phase is supplied to the emulsifying device 10, the solid matter is removed from the organic liquid before being supplied to the emulsifying device 10. This can be removed to prevent clogging in the emulsifying device 10.
The pressure of the organic liquid supplied to the emulsifying device 10 is measured by arranging the pressure gauge 24 in a path before the organic liquid containing the organic-inorganic hybrid particle precursor as a dispersed phase is supplied to the emulsifying device 10. The supply pressure can be made appropriate.

ステンレス鋼板3には微小孔部3aをレーザー加工、プレス加工、切削加工等を用いて作製することができる。ステンレス鋼板4には流路4aをエッチング処理、プレス加工、切削加工等を用いて作製することができる。   In the stainless steel plate 3, the minute hole portion 3 a can be manufactured using laser processing, press processing, cutting processing, or the like. In the stainless steel plate 4, the flow path 4 a can be produced by etching, pressing, cutting, or the like.

図1に示す例では、水性液体の流路4aを隔壁で区画して形成し、隔壁の厚さ方向に貫通した微小孔部3aを通して有機液体を圧入する。これにより、有機液体と水性液体とが直交流で混合するため、水性液体の流れによりエマルション液滴が切り離される効果が得られやすくなるため、粒子径の均一な多孔質有機無機ハイブリッド粒子を安定して得ることができる。   In the example shown in FIG. 1, the flow path 4a of the aqueous liquid is formed by partitioning, and the organic liquid is press-fitted through the micropores 3a penetrating in the thickness direction of the partition. As a result, since the organic liquid and the aqueous liquid are mixed in a cross flow, the effect of separating the emulsion droplets by the flow of the aqueous liquid is easily obtained, so that the porous organic-inorganic hybrid particles having a uniform particle diameter can be stabilized. Can be obtained.

ステンレス鋼板4の流路4aは、複数本の流路4aが水性液体の流れ方向に沿って形成されていてもよい。   As for the flow path 4a of the stainless steel plate 4, the multiple flow paths 4a may be formed along the flow direction of the aqueous liquid.

また、微小孔部は1流路あたりに複数設けた方が好ましい。この場合、微小孔部は、有機液体の流路上に、微小孔部の断面形状に外接する円の直径の1/2以上の間隔を設けて複数個設置するのが好ましい。さらに好ましくは微小孔部の断面形状に外接する円の直径以上の間隔を設ける。外接する円の直径の1/2より短い間隔しか設けずに微小孔部を設置すると、エマルションの液滴が合一し、その結果、液滴径が不均一になる可能性があるため好ましくない。ただし、合一しない範囲でなるべく密接して設置したほうが、生産性を向上できるので好ましい。   Moreover, it is preferable to provide a plurality of micropores per flow path. In this case, it is preferable to install a plurality of micropores on the organic liquid flow path at intervals of 1/2 or more of the diameter of a circle circumscribing the cross-sectional shape of the micropores. More preferably, an interval equal to or larger than the diameter of the circumscribed circle is provided in the cross-sectional shape of the microhole. If the micropores are provided with an interval shorter than 1/2 of the diameter of the circumscribed circle, the emulsion droplets may coalesce, and as a result, the droplet diameter may become uneven, which is not preferable. . However, it is preferable to install them as close as possible within a range where they are not united, because productivity can be improved.

本実施形態において、微小孔部が設けられる隔壁の材料としては、有機無機ハイブリッド粒子前駆体を含む有機液体及び水性液体に対する耐性を有するものを使用することが好ましい。金属を主体とするものであると加工性及び強度に優れるため好ましいが、その他、樹脂を主体とするものも好適に用いられる。樹脂としては、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、芳香族ポリエステル及びフッ素樹脂からなる1種以上を用いると加工性、寸法安定性に優れるため好ましい。また、ガラス、金属シリコン、セラミック等の無機材料を用いて隔壁を作製することも可能である。   In the present embodiment, it is preferable to use a material having a resistance to an organic liquid and an organic liquid containing an organic-inorganic hybrid particle precursor as a material for the partition wall provided with the micropores. A metal-based material is preferable because it is excellent in workability and strength, but a resin-based material is also preferably used. As the resin, it is preferable to use one or more kinds of polyphenylene sulfide, polyether ether ketone, polyimide, polyamideimide, aromatic polyester, and fluororesin because of excellent workability and dimensional stability. In addition, the partition wall can be formed using an inorganic material such as glass, metal silicon, or ceramic.

多孔質部材2は、図1に示すように、分散相である有機無機ハイブリッド粒子前駆体を含む有機液体の流れ方向に対しステンレス鋼板3の上流側の面に隣接して配置する。また、多孔質部材2は、ステンレス鋼板3の流路4a側でない面、すなわち有機無機ハイブリッド粒子前駆体を含む有機液体の流れ方向に対してステンレス鋼板3の上流側の面から1cm以内の位置で離して配置してもよい。   As shown in FIG. 1, the porous member 2 is disposed adjacent to the upstream surface of the stainless steel plate 3 with respect to the flow direction of the organic liquid containing the organic-inorganic hybrid particle precursor as a dispersed phase. The porous member 2 is located at a position within 1 cm from the surface of the stainless steel plate 3 that is not on the flow path 4a side, that is, the upstream surface of the stainless steel plate 3 with respect to the flow direction of the organic liquid containing the organic-inorganic hybrid particle precursor. They may be placed apart.

ステンレス鋼板3は、流路4aに対向する面のうち、少なくとも微小孔部3aが形成される領域の表面が親水性であることが好ましく、より好ましくは流路4aに対向する面全面が親水性である。   In the stainless steel plate 3, it is preferable that at least the surface of the region where the micropores 3a are formed is hydrophilic among the surfaces facing the channel 4a, and more preferably, the entire surface facing the channel 4a is hydrophilic. It is.

ステンレス鋼板3及び4の親水化処理としては、上記した方法を用いることができる。
好ましくは、親水性コート剤を塗工する。
As the hydrophilization treatment of the stainless steel plates 3 and 4, the above-described method can be used.
Preferably, a hydrophilic coating agent is applied.

「分散相」
本実施形態では、有機無機ハイブリッド粒子前駆体を含む有機液体を分散相として用いる。
"Dispersed phase"
In the present embodiment, an organic liquid containing an organic / inorganic hybrid particle precursor is used as a dispersed phase.

有機無機ハイブリッド粒子前駆体は、有機成分及び無機成分をともに含み、固形化することで多孔質有機無機ハイブリッド粒子を形成することが可能な材料である。その詳細は後述する。   The organic-inorganic hybrid particle precursor is a material that includes both an organic component and an inorganic component, and can form porous organic-inorganic hybrid particles by solidifying. Details thereof will be described later.

分散相である有機無機ハイブリッド粒子前駆体を含む有機液体全体に対し、有機無機ハイブリッド粒子前駆体は、50〜90質量%で配合することができ、好ましくは70〜85質量%である。   The organic / inorganic hybrid particle precursor can be blended in an amount of 50 to 90% by mass, preferably 70 to 85% by mass, based on the entire organic liquid including the organic / inorganic hybrid particle precursor which is a dispersed phase.

有機無機ハイブリッド粒子前駆体を含む有機液体は、固形化によって沈殿物を形成することができるものであれば、いずれも適用可能である。   Any organic liquid containing an organic-inorganic hybrid particle precursor can be applied as long as it can form a precipitate by solidification.

有機液体としては、特に限定されず、水性液体に溶解性の低いもの、好ましくは不溶性のものを使用することができ、例えば、以下に挙げるもののうち1種または2種以上を組み合わせて使用することができる。   The organic liquid is not particularly limited, and those having low solubility in an aqueous liquid, preferably insoluble, can be used. For example, one or more of the following can be used in combination. Can do.

脂肪族炭化水素類;n−ヘキサン、イソヘキサン、n−ヘプタン、イソヘプタン、n−オクテン、イソオクテン、ノナン、デカン等。
脂環式炭化水素類;シクロペンタン、シクロヘキサン、シクロヘキセン等。
芳香族炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、クメン、メシチレン、テトラリン、スチレン等。
エーテル類;プロピルエーテル、イソプロピルエーテル等。
エステル類;酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−n−アミル、酢酸イソアミル、乳酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸ブチル等。
Aliphatic hydrocarbons; n-hexane, isohexane, n-heptane, isoheptane, n-octene, isooctene, nonane, decane and the like.
Alicyclic hydrocarbons; cyclopentane, cyclohexane, cyclohexene and the like.
Aromatic hydrocarbons: benzene, toluene, xylene, ethylbenzene, propylbenzene, cumene, mesitylene, tetralin, styrene, etc.
Ethers; propyl ether, isopropyl ether, etc.
Esters; ethyl acetate, -n- propyl, isopropyl acetate, -n- butyl acetate isobutyl acetate -n- amyl, isoamyl acetate, butyl lactate, methyl propionate, ethyl propionate, butyl propionate, butyrate Methyl, ethyl butyrate, butyl butyrate and the like.

本実施形態では、エマルションを固形化した後の多孔質有機無機ハイブリッド粒子と有機液体とは通常固液分離される。分離後の多孔質有機無機ハイブリッド粒子に付着又は吸着している有機液体は、濾過操作、洗浄操作、乾燥操作などにより分離することが好ましい。   In this embodiment, the porous organic-inorganic hybrid particles and the organic liquid after solidifying the emulsion are usually subjected to solid-liquid separation. The organic liquid adhering or adsorbing to the porous organic-inorganic hybrid particles after separation is preferably separated by filtration operation, washing operation, drying operation or the like.

「連続相」
連続相である水性液体としては、上記有機液体に対して溶解度が低いものであることが好ましく、より好ましくは不溶性のものであり、例えば水を主成分とする液体である。
"Continuous phase"
The aqueous liquid that is a continuous phase is preferably one having low solubility in the organic liquid, more preferably insoluble, for example, a liquid containing water as a main component.

本実施形態では、O/W型エマルションの形成にあたり、乳化剤として界面活性剤を連続相である水性液体中に添加することが好ましい。界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等を用いることができ、具体例を以下に示す。   In this embodiment, it is preferable to add a surfactant as an emulsifier to an aqueous liquid that is a continuous phase when forming an O / W emulsion. As the surfactant, nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants and the like can be used, and specific examples are shown below.

ノニオン系界面活性剤:
ソルビタン脂肪酸エステル系;ソルビタンモノステアレート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、ソルビタンモノオレエート、ソルビタンジオレエート、ソルビタントリオレエート等。
ポリオキシエチレンソルビタン脂肪酸エステル系;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレト等
ポリオキシエチレン高級アルコールエーテル系;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等。
ポリオキシエチレン脂肪族エステル系;ポリオキシエチレングリコールモノラウレート、ポリオキシエチレングリコールモノステアレート、ポリオキシエチレングリコールモノオレート等。
グリセリン脂肪酸エステル系;ステアリン酸モノグリセライド、オレイン酸モノグリセライド等。
その他;ショ糖脂肪酸エステル系、ポリグリセリン脂肪酸エステル系ポリオキシエチレン硬化ヒマシ油系等。
Nonionic surfactant:
Sorbitan fatty acid ester type; sorbitan monostearate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monooleate, sorbitan dioleate, sorbitan trioleate, etc.
Polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate over preparative like .
Polyoxyethylene higher alcohol ether type; polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether and the like.
Polyoxyethylene fatty ester, polyoxyethylene glycol monolaurate, polyoxyethylene glycol monostearate, polyoxyethylene glycol monooleate over preparative like.
Glycerin fatty acid ester type; stearic acid monoglyceride, oleic acid monoglyceride and the like.
Others: Sucrose fatty acid ester type, polyglycerin fatty acid ester type , polyoxyethylene hydrogenated castor oil type, etc.

アニオン系界面活性剤;高級アルキル硫酸エステル塩、脂肪酸石けん、アルキルエーテル硫酸エステル塩、高級脂肪酸アミドスルホン酸塩、N−アシルサルコシン酸塩、スルホコハク酸塩、リン酸エステル、アルキルベンゼンスルホン酸塩。
N−アシルアミノ酸系のアニオン系界面活性剤;N−ヤシ油脂肪酸アシル−L−グルタミン酸トリエタノールアミン、N−ラウロイル−L−グルタミン酸トリエタノールアミン、N−ヤシ油脂肪酸アシル−L−グルタミン酸ナトリウム、N−ラウロイル−L−グルタミン酸ナトリウム、N−ミリストイル−L−グルタミン酸ナトリウム、N−ステアロイル−L−グルタミン酸ナトリウム、N−ヤシ油脂肪酸・硬化牛脂脂肪酸アシル−L−グルタミン酸ナトリウム、N−ステアロイル−L−グルタミン酸ナトリウム、N−ヤシ油脂肪酸アシル−L−グルタミン酸カリウム、N−ヤシ油脂肪酸アシル−L−グルタミン酸、N−ステアロイル−L−グルタミン酸、N−ラウロイル−L−アスパラギン酸ナトリウム等。
Anionic surfactants: higher alkyl sulfates, fatty acid soaps, alkyl ether sulfates, higher fatty acid amide sulfonates, N-acyl sarcosinates, sulfosuccinates, phosphate esters, alkylbenzene sulfonates.
N-acyl amino acid anionic surfactants; N-coconut oil fatty acid acyl-L-glutamic acid triethanolamine, N-lauroyl-L-glutamic acid triethanolamine, N-coconut oil fatty acid acyl-sodium L-glutamate, N -Lauroyl-L-sodium glutamate, N-myristoyl-sodium L-glutamate, N-stearoyl-sodium L-glutamate, N-coconut oil fatty acid / hardened tallow fatty acid acyl-sodium L-glutamate, N-stearoyl-sodium L-glutamate N-coconut oil fatty acid acyl-L-glutamic acid potassium, N-coconut oil fatty acid acyl-L-glutamic acid, N-stearoyl-L-glutamic acid, N-lauroyl-L-sodium aspartate and the like.

カチオン系界面活性剤:アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩等。   Cationic surfactant: alkyltrimethylammonium salt, dialkyldimethylammonium salt and the like.

両性界面活性剤:イミダゾリン系界面活性剤、ベタイン系界面活性剤等。   Amphoteric surfactants: imidazoline surfactants, betaine surfactants and the like.

上記した界面活性剤は、単独でまたは組み合わせて用いることができる。   The above surfactants can be used alone or in combination.

界面活性剤の使用量は、界面活性剤の種類、界面活性剤の親水性あるいは疎水性の程度を表す指標であるHLB(Hydrophile−lipophile balance)、目的とする多孔質有機無機ハイブリッド粒子の粒子径などの条件により異なるが、上記水性液体中に0.05〜5%、好ましくは1〜3%、より好ましくは1〜2%で含有させるのが好ましい。0.05%未満であると、エマルションが不安定になるおそれがある。また、5%を超えると、製品である多孔質有機無機ハイブリッド粒子に付着する界面活性剤の量が多くなり好ましくない。   The amount of the surfactant used is the HLB (Hydrophile-lipophile balance), which is an index indicating the type of surfactant, the degree of hydrophilicity or hydrophobicity of the surfactant, and the particle size of the target porous organic-inorganic hybrid particles. Depending on the conditions such as, it is preferable to contain 0.05 to 5%, preferably 1 to 3%, more preferably 1 to 2% in the aqueous liquid. If it is less than 0.05%, the emulsion may become unstable. On the other hand, if it exceeds 5%, the amount of the surfactant adhering to the porous organic-inorganic hybrid particles as the product increases, which is not preferable.

有機無機ハイブリッド粒子前駆体を含む有機液体と水性液体との室温(20〜23℃)における体積比は、得られるエマルション中のO/W比として0.01〜1とすることができ、好ましくは0.05〜0.5である。   The volume ratio of the organic liquid containing the organic / inorganic hybrid particle precursor and the aqueous liquid at room temperature (20 to 23 ° C.) can be 0.01 to 1 as the O / W ratio in the obtained emulsion, preferably 0.05 to 0.5.

「固形化工程」
次に、有機無機ハイブリッド粒子前駆体を含むエマルション液滴を固形化して多孔質有機無機ハイブリッド粒子を形成する工程について説明する。
"Solidification process"
Next, the process of solidifying the emulsion droplets containing the organic / inorganic hybrid particle precursor to form porous organic / inorganic hybrid particles will be described.

この固形化工程では、エマルション液滴の1滴から多孔質有機無機ハイブリッド粒子1粒を製造する方法がある。この場合では、球状である有機液体のエマルション液滴は、この球状を保持したまま固形化され、球状の多孔質有機無機ハイブリッド粒子のゲルを得ることができる。   In this solidification step, there is a method of producing one porous organic-inorganic hybrid particle from one drop of emulsion droplets. In this case, the spherical organic liquid emulsion droplets are solidified while retaining the spherical shape, and a gel of spherical porous organic-inorganic hybrid particles can be obtained.

次に、固形化された多孔質有機無機ハイブリッド粒子は、反応系を静置して、多孔質有機無機ハイブリッド粒子を含む有機液体の相と水性液体の相とに2相分離させて、多孔質有機無機ハイブリッド粒子を含む有機液体を分離することができる。回収後、多孔質有機無機ハイブリッド粒子に付着している有機液体や界面活性剤等を除去するために、洗浄することが好ましい。   Next, the solidified porous organic / inorganic hybrid particles are left in a reaction system and separated into two phases of an organic liquid phase containing porous organic / inorganic hybrid particles and an aqueous liquid phase. An organic liquid containing organic-inorganic hybrid particles can be separated. After the collection, washing is preferably performed in order to remove the organic liquid, the surfactant and the like attached to the porous organic-inorganic hybrid particles.

回収後の多孔質有機無機ハイブリッド粒子は、乾燥することが好ましい。乾燥は、60〜120℃で3〜24時間で行うことができる。   The recovered porous organic-inorganic hybrid particles are preferably dried. Drying can be performed at 60 to 120 ° C. for 3 to 24 hours.

「多孔質有機無機ハイブリッド粒子」
上記した方法によって、粒子径が均一な多孔質有機無機ハイブリッド粒子を提供することができる。多孔質有機無機ハイブリッド粒子の形状は、エマルション液滴の形状をそのまま保持することができ、球状、好ましくは真球体とすることができる。
"Porous organic-inorganic hybrid particles"
By the above-described method, porous organic-inorganic hybrid particles having a uniform particle diameter can be provided. The shape of the porous organic-inorganic hybrid particles can maintain the shape of the emulsion droplets as it is, and can be spherical, preferably a true sphere.

多孔質有機無機ハイブリッド粒子において、体積基準の粒子径分布の積算量が大きいほうから10%の粒子径(D10)と90%の粒子径(D90)の比(D10/D90)は、コールターカウンター法において、1.8以下とすることができ、好ましくは1.7以下であり、さらに好ましくは1.6以下である。D10/D90は、1に近いほど粒子径が均一であり好ましい。   In porous organic-inorganic hybrid particles, the ratio (D10 / D90) of 10% particle diameter (D10) to 90% particle diameter (D90) from the larger integrated amount of the volume-based particle diameter distribution is the Coulter counter method. In this case, it can be 1.8 or less, preferably 1.7 or less, and more preferably 1.6 or less. As D10 / D90 is closer to 1, the particle diameter is more uniform and preferable.

多孔質有機無機ハイブリッド粒子の平均粒子径(D50)としては、1μm〜100μmとすることができ、好ましくは5μm〜60μmである。   The average particle diameter (D50) of the porous organic-inorganic hybrid particles can be 1 μm to 100 μm, preferably 5 μm to 60 μm.

ここで、多孔質有機無機ハイブリッド粒子のD50、D10、D90はベックマン・コールター社製「Multisizer III」等を用いて測定することができる。   Here, D50, D10, and D90 of the porous organic-inorganic hybrid particles can be measured using “Multisizer III” manufactured by Beckman Coulter.

「多孔質有機無機ハイブリッド粒子およびその前駆体」
本実施形態によれば、多孔質有機無機ハイブリッド粒子としてケイ素原子に結合した有機基を有するポリシロキサンの多孔質粒子を好ましく製造することができる。ケイ素原子に結合している有機基は、ケイ素原子に結合する末端原子が炭素原子である有機基を意味する。
このケイ素原子に結合した有機基を有するポリシロキサンにおける(有機基が結合していないケイ素原子)/(有機基が結合したケイ素原子)の比は、0.5〜20が好ましく、0.5〜5がより好ましく、1〜4が特に好ましい。
なお、以下、「ケイ素原子に結合した有機基を有するポリシロキサン」を「ポリシロキサン(A)」ともいう。
"Porous organic-inorganic hybrid particles and their precursors"
According to this embodiment, the porous particle | grains of the polysiloxane which has the organic group couple | bonded with the silicon atom as a porous organic-inorganic hybrid particle | grain can be manufactured preferably. The organic group bonded to the silicon atom means an organic group in which the terminal atom bonded to the silicon atom is a carbon atom.
The ratio of (silicon atom with no organic group bonded) / (silicon atom with an organic group bonded) in the polysiloxane having an organic group bonded to a silicon atom is preferably 0.5 to 20, preferably 0.5 to 5 is more preferable, and 1-4 is particularly preferable.
Hereinafter, “polysiloxane having an organic group bonded to a silicon atom” is also referred to as “polysiloxane (A)”.

ポリシロキサン(A)における有機基が結合したケイ素原子としては、Si−RまたはSi−R−Siが好ましい。Rは1価の有機基であり、Rは2価の有機基である。ポリシロキサン(A)におけるケイ素原子は、有機基に結合する結合手を除き、そのほとんどが酸素原子に結合してシロキサン結合(Si−O−Si結合)を形成している。
ポリシロキサン(A)は、SiO4/2単位とケイ素原子に結合した有機基を有するシロキサン単位を有する。ケイ素原子に結合した有機基を有するシロキサン単位としては、RSiO3/2単位、(RSiO2/2単位、R[SiO3/2単位などが挙げられる。なお、R[SiO3/2単位の2つのケイ素原子は、いずれも、有機基が結合したケイ素原子とみなす。
としては、アルキル基、シクロアルキル基、アルケニル基、アリール基、シクロアルキル基またはアリール基を有するアルキル基等が挙げられる。アルキル基は直鎖状であっても分岐状であってもよい。シクロアルキル基としては5または6員環のシクロアルキル基が好ましい。アリール基としてはフェニル基が好ましい。Rとしては、炭素数6以下のアルキル基が好ましく、炭素数4以下のアルキル基がより好ましい。
としては、アルキレン基、シクロアルキレン基、アルケニレン基、アリーレン基、炭素原子間にシクロアルキレン基またはアリーレン基を有するアルキレン基等が挙げられる。アルキレン基は直鎖状であっても分岐状であってもよい。シクロアルキレン基としては5または6員環のシクロアルキレン基が好ましい。アリーレン基としてはフェニレン基が好ましい。Rとしては、炭素数8以下のアルキレン基が好ましく、炭素数1〜4のアルキレン基がより好ましい。
ポリシロキサン(A)において、ケイ素原子に結合した有機基を有するシロキサン単位としては、Rを有する上記シロキサン単位とRを有する上記シロキサン単位の少なくともいずれかを含み、両単位を含んでいてもよい。
特に、SiO4/2単位とR[SiO3/2単位とを有するポリシロキサン(A)はアルカリ耐性が高く、ポリシロキサン(A)として好ましく用いることができる。
As a silicon atom which the organic group in polysiloxane (A) couple | bonded, Si- Ra or Si- Rb -Si is preferable. R a is a monovalent organic group, and R b is a divalent organic group. Most of the silicon atoms in the polysiloxane (A) are bonded to an oxygen atom except for a bond bonded to an organic group to form a siloxane bond (Si—O—Si bond).
The polysiloxane (A) has a SiO 4/2 unit and a siloxane unit having an organic group bonded to a silicon atom. Examples of the siloxane unit having an organic group bonded to a silicon atom include R a SiO 3/2 unit, (R a ) 2 SiO 2/2 unit, and R b [SiO 3/2 ] 2 unit. Note that two silicon atoms of R b [SiO 3/2 ] 2 units are both regarded as silicon atoms to which an organic group is bonded.
Examples of Ra include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a cycloalkyl group, or an alkyl group having an aryl group. The alkyl group may be linear or branched. The cycloalkyl group is preferably a 5- or 6-membered cycloalkyl group. The aryl group is preferably a phenyl group. As R a , an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable.
Examples of R b include an alkylene group, a cycloalkylene group, an alkenylene group, an arylene group, and an alkylene group having a cycloalkylene group or an arylene group between carbon atoms. The alkylene group may be linear or branched. The cycloalkylene group is preferably a 5- or 6-membered cycloalkylene group. As the arylene group, a phenylene group is preferable. R b is preferably an alkylene group having 8 or less carbon atoms, and more preferably an alkylene group having 1 to 4 carbon atoms.
In the polysiloxane (A), the siloxane unit having an organic group bonded to a silicon atom includes at least one of the siloxane unit having R a and the siloxane unit having R b , and may include both units. Good.
In particular, polysiloxane (A) having SiO 4/2 units and R b [SiO 3/2 ] 2 units has high alkali resistance and can be preferably used as polysiloxane (A).

ポリシロキサン(A)は、加水分解性基を有するシラン化合物(以下、加水分解性シランともいう)の加水分解重縮合で得られる。前記SiO4/2単位はケイ素原子に加水分解性基が4個結合したシラン化合物から得られる。同様に、RSiO3/2単位はケイ素原子にR1個と加水分解性基3個が結合したシラン化合物から、(RSiO3/2単位はケイ素原子にR2個と加水分解性基2個が結合したシラン化合物から、R[SiO3/2単位はRに結合した2個のケイ素原子のそれぞれに3個の加水分解性基が結合したシラン化合物から得られる。また、これら加水分解性シランは、あらかじめ部分的に加水分解重縮合させて得た部分縮合物をポリシロキサン(A)の製造原料として使用することができる。この部分縮合物は2種以上の加水分解性シランの混合物から得ることもできる。さらに、加水分解性シランと部分縮合物の混合物や2種以上の部分縮合物の混合物から縮合度を高めた部分縮合物を得ることもできる。
加水分解性基としては、アルコキシ基、アシルオキシ基、塩素原子、アミノ基、イソシアネート基等が挙げられる。加水分解性基としては、アルコキシ基、アシルオキシ基および塩素原子が好ましく、炭素数8以下のアルコキシ基および炭素数8以下のアシルオキシ基がより好ましく、炭素数3以下のアルコキシ基が特に好ましい。
ポリシロキサン(A)粒子を得るための有機無機ハイブリッド粒子前駆体は、上記の加水分解性シランやその部分縮合物からなる。以下、加水分解性基がアルコキシ基であるシラン化合物を例にポリシロキサン(A)粒子を得るための有機無機ハイブリッド粒子およびその前駆体を説明する。なお、ポリシロキサン(A)粒子を得るための有機無機ハイブリッド粒子前駆体を、以下、前駆体(A)ともいう。
The polysiloxane (A) is obtained by hydrolysis polycondensation of a silane compound having a hydrolyzable group (hereinafter also referred to as hydrolyzable silane). The SiO 4/2 unit is obtained from a silane compound in which four hydrolyzable groups are bonded to a silicon atom. Similarly, a R a SiO 3/2 unit is a silane compound in which one R a and three hydrolyzable groups are bonded to a silicon atom, and (R a ) 2 SiO 3/2 units are two R a on a silicon atom. and a silane compound in which two hydrolyzable groups are bonded, R b [SiO 3/2] 2 units each of three silane compounds hydrolyzable group is bonded to two silicon atoms bonded to R b Obtained from. Moreover, these hydrolysable silanes can use the partial condensate obtained by carrying out partial hydrolysis polycondensation beforehand as a manufacturing raw material of polysiloxane (A). This partial condensate can also be obtained from a mixture of two or more hydrolyzable silanes. Furthermore, a partial condensate having an increased degree of condensation can also be obtained from a mixture of hydrolyzable silane and partial condensate or a mixture of two or more partial condensates.
Examples of the hydrolyzable group include an alkoxy group, an acyloxy group, a chlorine atom, an amino group, and an isocyanate group. As the hydrolyzable group, an alkoxy group, an acyloxy group and a chlorine atom are preferable, an alkoxy group having 8 or less carbon atoms and an acyloxy group having 8 or less carbon atoms are more preferable, and an alkoxy group having 3 or less carbon atoms is particularly preferable.
The organic / inorganic hybrid particle precursor for obtaining the polysiloxane (A) particles is composed of the hydrolyzable silane or a partial condensate thereof. Hereinafter, organic-inorganic hybrid particles and precursors thereof for obtaining polysiloxane (A) particles will be described by taking a silane compound whose hydrolyzable group is an alkoxy group as an example. Hereinafter, the organic-inorganic hybrid particle precursor for obtaining the polysiloxane (A) particles is also referred to as a precursor (A).

ポリシロキサン(A)におけるSiO4/2単位は、テトラアルコキシシランやその部分縮合物から形成される。アルコキシ基の炭素数は3以下が好ましい。また、4個のアルコキシ基は同一でなくてもよいが、入手が容易などの理由で4個のアルコキシ基は同一であることが好ましい。
テトラアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン(TEOS)、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン等が挙げられる。
The SiO 4/2 unit in the polysiloxane (A) is formed from tetraalkoxysilane or a partial condensate thereof. The number of carbon atoms of the alkoxy group is preferably 3 or less. The four alkoxy groups may not be the same, but the four alkoxy groups are preferably the same for reasons such as easy availability.
Specific examples of tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane (TEOS), tetra-n-propoxysilane, and tetra-i-propoxysilane.

ポリシロキサン(A)におけるRSiO3/2単位や(RSiO3/2単位等は、R基を有するアルコキシシランやその部分重縮合物から形成される。
基を有するアルコキシシランとしては、例えば、下記式(1)で表される化合物が挙げられる。
(RSi(OR4−n・・・(1)
式(1)において、Rは前記の1価の有機基を表し、Rはアルキル基を表し、nは1〜3の整数を表す。
アルコキシの炭素数、すなわち、Rの炭素数は3以下が好ましい。
nは2または3であることが好ましく、3が特に好ましい。nが3の場合は前記RSiO3/2単位が形成され、nが2の場合は(RSiO3/2単位が形成される。
The R a SiO 3/2 unit, the (R a ) 2 SiO 3/2 unit, etc. in the polysiloxane (A) are formed from an alkoxysilane having a R a group or a partial polycondensate thereof.
Examples of the alkoxysilane having an R a group include compounds represented by the following formula (1).
(R a ) n Si (OR 1 ) 4-n (1)
In Formula (1), R a represents the monovalent organic group, R 1 represents an alkyl group, and n represents an integer of 1 to 3.
The carbon number of alkoxy, that is, the carbon number of R 1 is preferably 3 or less.
n is preferably 2 or 3, and 3 is particularly preferable. When n is 3, the R a SiO 3/2 units are formed, and when n is 2, (R a ) 2 SiO 3/2 units are formed.

nが1のアルコキシシランの具体例としては、以下の化合物が挙げられる。
メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、i−プロピルトリメトキシシラン、i−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ペンチルトリメトキシシラン、n−ペンチルトリエトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、n−ヘプチルトリメトキシシラン、n−ヘプチルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、n−オクタデシルトリメトキシシラン、n−オクタデシルトリエトキシシラン等。
Specific examples of the alkoxysilane in which n is 1 include the following compounds.
Methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, n- Butyltrimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, n-heptyltrimethoxysilane, n-heptyl Triethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane and the like.

nが2のアルコキシシランの具体例としては、以下の化合物が挙げられる。
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジ−i−プロピルジメトキシシラン、ジ−i−プロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ペンチルジメトキシシラン、ジ−n−ペンチルジエトキシシラン、ジ−n−ヘキシルジメトキシシラン、ジ−n−ヘキシルジエトキシシラン、ジ−n−ヘプチルジメトキシシラン、ジ−n−ヘプチルジエトキシシラン、ジ−n−オクチルジメトキシシラン、ジ−n−オクチルジエトキシシラン、ジ−n−オクタデシルジメトキシシラン、ジ−n−オクタデシルジエトキシシラン等。
Specific examples of the alkoxysilane in which n is 2 include the following compounds.
Dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, di-i-propyldimethoxysilane, di-i-propyldiethoxy Silane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyldimethoxysilane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-hexyldi Ethoxysilane, di-n-heptyldimethoxysilane, di-n-heptyldiethoxysilane, di-n-octyldimethoxysilane, di-n-octyldiethoxysilane, di-n-octadecyldimethoxysilane, di-n-octadecyl Diethoxysilane etc.

ポリシロキサン(A)におけるR[SiO3/2単位は、R[SiO3/2単位を形成するアルコキシシランやその部分重縮合物から形成される。
[SiO3/2単位を形成するアルコキシシランとしては、下記式(2)で表される化合物が挙げられる。
(RO)Si−R−Si(OR・・・(2)
式(2)において、Rは前記の2価の有機基を表し、RおよびRは同一または異なるアルキル基を表す。
アルコキシの炭素数、すなわち、RおよびRそれぞれの炭素数は3以下が好ましい。
The R b [SiO 3/2 ] 2 unit in the polysiloxane (A) is formed from an alkoxysilane forming a R b [SiO 3/2 ] 2 unit or a partial polycondensate thereof.
Examples of the alkoxysilane forming the R b [SiO 3/2 ] 2 unit include compounds represented by the following formula (2).
(R 2 O) 3 Si—R b —Si (OR 3 ) 3 (2)
In the formula (2), R b represents the above divalent organic group, and R 2 and R 3 represent the same or different alkyl groups.
The carbon number of alkoxy, that is, the carbon number of each of R 2 and R 3 is preferably 3 or less.

式(2)で表されるアルコキシシランの具体例としては、以下の化合物が挙げられる。
ビス(トリメトキシシリル)ベンゼン、ビス(トリエトキシシリル)ベンゼン、ビス[2−(トリメトキシシリル)エチル]ベンゼン、ビス[2−(トリエトキシシリル)エチル]ベンゼン、1,3−ビス(トリメトキシシリル)プロパン、1,3−ビス(トリエトキシシリル)プロパン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン(BTEE)、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン。
Specific examples of the alkoxysilane represented by the formula (2) include the following compounds.
Bis (trimethoxysilyl) benzene, bis (triethoxysilyl) benzene, bis [2- (trimethoxysilyl) ethyl] benzene, bis [2- (triethoxysilyl) ethyl] benzene, 1,3-bis (trimethoxy Silyl) propane, 1,3-bis (triethoxysilyl) propane, 1,2-bis (trimethoxysilyl) ethane, 1,2-bis (triethoxysilyl) ethane (BTEE), bis (trimethoxysilyl) methane Bis (triethoxysilyl) methane.

ポリシロキサン(A)粒子を得るための前駆体(A)は、前記加水分解性シランやその部分重縮合物からなる。なお、前記R基を有するアルコキシシランとR[SiO3/2単位を形成するアルコキシシランとを、以下、オルガノアルコキシシランと総称する。
前駆体(A)としては、例えば、テトラアルコキシシランとオルガノアルコキシシランとの組合せ、テトラアルコキシシランの部分重縮合物とオルガノアルコキシシランとの組合せ、テトラアルコキシシランとオルガノアルコキシシランの部分重縮合物との組合せ、テトラアルコキシシランの部分重縮合物とオルガノアルコキシシランの部分重縮合物との組合せ、などが挙げられる。また、例えば、テトラアルコキシシランとオルガノアルコキシシランの混合物の部分重縮合物、テトラアルコキシシランの部分重縮合物とオルガノアルコキシシランの混合物の部分重縮合物、なども前駆体(A)として使用できる。
上記テトラアルコキシシランおよびオルガノアルコキシシランは、それぞれ、2種以上の組合せであってもよい。上記各種部分重縮合物もまた、それぞれ、重合度の異なる同種の部分重縮合物の組合せなどの異なる部分重縮合物の組合せであってもよい。
The precursor (A) for obtaining the polysiloxane (A) particles is composed of the hydrolyzable silane or a partial polycondensate thereof. Hereinafter, the alkoxysilane having the R a group and the alkoxysilane forming R b [SiO 3/2 ] 2 units are collectively referred to as organoalkoxysilane.
Examples of the precursor (A) include a combination of tetraalkoxysilane and organoalkoxysilane, a partial polycondensate of tetraalkoxysilane and an organoalkoxysilane, and a partial polycondensate of tetraalkoxysilane and organoalkoxysilane. And a combination of a partial polycondensate of tetraalkoxysilane and a partial polycondensate of organoalkoxysilane. Further, for example, a partial polycondensate of a mixture of tetraalkoxysilane and organoalkoxysilane, a partial polycondensate of a mixture of tetraalkoxysilane and a mixture of organoalkoxysilane, and the like can be used as the precursor (A).
Each of the tetraalkoxysilane and the organoalkoxysilane may be a combination of two or more. The various partial polycondensates may also be combinations of different partial polycondensates such as combinations of the same partial polycondensates having different degrees of polymerization.

前駆体(A)におけるテトラアルコキシシラン(またはその部分重縮合物)とオルガノアルコキシシラン(またはその部分重縮合物)の組合せ等において、その組み合わせ割合は前駆体(A)における(有機基が結合していないケイ素原子)/(有機基が結合したケイ素原子)の比は、前記ポリシロキサンにおける(有機基が結合していないケイ素原子)/(有機基が結合したケイ素原子)の比と等しくなる割合であることが好ましい。   In a combination of a tetraalkoxysilane (or a partial polycondensate thereof) and an organoalkoxysilane (or a partial polycondensate thereof) in the precursor (A), the combination ratio is (the organic group is bonded to the precursor (A)). The ratio of (silicon atom not bonded) / (silicon atom bonded with an organic group) is equal to the ratio of (silicon atom bonded with no organic group) / (silicon atom bonded with an organic group) in the polysiloxane. It is preferable that

多孔質有機無機ハイブリッド粒子の製造方法の一例としては、前駆体(A)を含む有機液体を用いてエマルションを作製し、その後、加水分解・重縮合とともにゲル化して、ポリシロキサン(A)の多孔質粒子を得る方法が挙げられる。   As an example of a method for producing porous organic-inorganic hybrid particles, an emulsion is prepared using an organic liquid containing a precursor (A), and then gelled with hydrolysis and polycondensation to form a porous polysiloxane (A). The method of obtaining a quality particle is mentioned.

また、ポリシロキサン(A)の多孔質粒子の製造方法の別の例としては、テトラアルコキシシランとオルガノアルコキシシランを有機液体中で酸触媒下にて予備重合して部分重縮合物を含む有機液体を作製し、この有機液体を用いてエマルションを作製し、その後、ゲル化して、ポリシロキサン(A)の多孔質粒子を得ることができる。この場合、テトラアルコキシシランとオルガノアルコキシシランの部分重縮合物を別に用意しておいて、この部分重縮合物を有機液体に添加して、部分重縮合物を含む有機液体を作製してもよい。
予備重合において、酸触媒としては塩酸等を用いることができ、重合溶媒としてはエタノール等の有機溶媒を用いることができる。
Another example of the method for producing porous particles of polysiloxane (A) is an organic liquid containing a partial polycondensate by prepolymerizing tetraalkoxysilane and organoalkoxysilane in an organic liquid under an acid catalyst. The organic liquid is used to prepare an emulsion, which is then gelled to obtain polysiloxane (A) porous particles. In this case, a partial polycondensate of tetraalkoxysilane and organoalkoxysilane may be prepared separately, and this partial polycondensate may be added to the organic liquid to produce an organic liquid containing the partial polycondensate. .
In the prepolymerization, hydrochloric acid or the like can be used as the acid catalyst, and an organic solvent such as ethanol can be used as the polymerization solvent.

得られるポリシロキサン(A)は、ポリシロキサン(A)は、4価のSiO4/2単位とケイ素原子に結合した有機基を有するシロキサン単位を有する。ケイ素原子に結合した有機基を有するシロキサン単位は、3価のRSiO3/2単位や6価のR[SiO3/2単位などからなる。これらポリシロキサン(A)は3価以上の単位からなり、場合によりさらに2価の単位を含む。したがって、ポリシロキサン(A)は3次元の網状重合体である。ポリシロキサン(A)中の一部のケイ素原子には加水分解性基の加水分解により生成した水酸基が結合していると考えられるが、加水分解性基が残存していることは少ないと考えられる。The polysiloxane (A) obtained has a siloxane unit having a tetravalent SiO 4/2 unit and an organic group bonded to a silicon atom. The siloxane unit having an organic group bonded to a silicon atom is composed of a trivalent R a SiO 3/2 unit, a hexavalent R b [SiO 3/2 ] 2 unit, or the like. These polysiloxanes (A) are composed of trivalent or higher units, and optionally further include divalent units. Therefore, polysiloxane (A) is a three-dimensional network polymer. Although some of the silicon atoms in the polysiloxane (A) are considered to have a hydroxyl group formed by hydrolysis of the hydrolyzable group, it is considered that there are few remaining hydrolyzable groups. .

好ましい具体例としては、BTEEとテトラエトキシシランとを前駆体(A)として用いることで、加水分解・重縮合によってポリシロキサン(A)からなる多孔質有機無機ハイブリッド粒子を得ることができる。また、BTEEとテトラエトキシシランとを酸触媒下にて予備重合して得られる部分重縮合物を前駆体(A)として用いることができる。この場合、TEOS/BTEEのモル比は1〜10であることが好ましい。   As a preferred specific example, by using BTEE and tetraethoxysilane as the precursor (A), porous organic-inorganic hybrid particles made of polysiloxane (A) can be obtained by hydrolysis and polycondensation. Moreover, the partial polycondensate obtained by prepolymerizing BTEE and tetraethoxysilane under an acid catalyst can be used as a precursor (A). In this case, the molar ratio of TEOS / BTEE is preferably 1-10.

上記した前駆体(A)とともに、その他の前駆体化合物を用いてもよい。その他の前駆体化合物としては、ケイ酸ナトリウム、コロイダルシリカ、金属アルコキシド、分子構造中に有機鎖を有する金属アルコキシド等を挙げることができる。ここで、金属アルコキシドは、上記したアルコキシシラン以外である。   Other precursor compounds may be used together with the precursor (A) described above. Examples of other precursor compounds include sodium silicate, colloidal silica, metal alkoxide, and metal alkoxide having an organic chain in the molecular structure. Here, the metal alkoxide is other than the above-described alkoxysilane.

上記したアルコキシシラン以外の金属アルコキシドとしては、例えば、ナトリウムエトキシド、LiOCH、NaOCH、Cu(OCH、Ca(OCH、Sr(OC、Ba(OC、Zn(OC、B(OCH Ga(OC、Y(OC、Ge(OC、Pb(OC、P(OCH、Sb(OC、VO(OC、Ta(OC、W(OC、La(OC、Nd(OC、Ti(OCH、Ti(OC、Ti(iso−OC、Ti(OC、Zr(OCH、Zr(OC、Zr(OC、Zr(OC、Al(OCH、Al(OC、Al(iso−OC、Al(OC、La[Al(iso−OC、Mg[Al(iso−OC、Mg[Al(sec−OC、Ni[Al(iso−OC、(CO)Zr[Al(OC、Ba[Zr(OC等を用いることができる。 The metal alkoxide other than alkoxysilane mentioned above, for example, sodium ethoxide, LiOCH 3, NaOCH 3, Cu (OCH 3) 2, Ca (OCH 3) 2, Sr (OC 2 H 5) 2, Ba (OC 2 H 5 ) 2 , Zn (OC 2 H 5 ) 2 , B (OCH 3 ) 3 , Ga (OC 2 H 5 ) 3 , Y (OC 4 H 9 ) 3 , Ge (OC 2 H 5 ) 4 , Pb (OC 4 H 9 ) 4 , P (OCH 3 ) 3 , Sb (OC 2 H 5 ) 3 , VO (OC 2 H 5 ) 3 , Ta (OC 3 H 7 ) 5 , W (OC 2 H 5 ) 6 , La (OC 3 H 7 ) 3 , Nd (OC 2 H 5 ) 3 , Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (iso-OC 3 H 7 ) 4 , Ti (OC 4 H 9) 4, Zr (OCH 3) 4 , Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OC 4 H 9 ) 4 , Al (OCH 3 ) 3 , Al (OC 2 H 5 ) 3 , Al (iso-OC 3 H 7 ) 3 , Al (OC 4 H 9 ) 3 , La [Al (iso-OC 3 H 7 ) 4 ] 3 , Mg [Al (iso-OC 3 H 7 ) 4 ] 2 , Mg [Al (sec- OC 4 H 9) 4] 2 , Ni [Al (iso-OC 3 H 7) 4] 2, (C 3 H 7 O) 2 Zr [Al (OC 3 H 7) 4] 2, Ba [Zr 2 ( OC 2 H 5 ) 9 ] 2 or the like can be used.

分散相である前駆体(A)を含む有機液体全体に対し、その他の前駆体化合物は、50質量%以下で配合することができ、好ましくは20質量%以下である。   Other precursor compounds can be blended in an amount of 50% by mass or less, preferably 20% by mass or less, based on the entire organic liquid containing the precursor (A) which is the dispersed phase.

前駆体(A)を含む有機液体を用いてエマルションを作製した後、得られたエマルションに、触媒を添加することで、前駆体(A)を加水分解・重縮合させてポリシロキサン(A)からなる真球状の多孔質粒子を形成することができる。   After producing an emulsion using the organic liquid containing the precursor (A), the precursor (A) is hydrolyzed and polycondensed by adding a catalyst to the obtained emulsion to obtain a polysiloxane (A). True spherical porous particles can be formed.

触媒としては、アンモニア、NaOH、RNH(ここで、2つのRは、それぞれ独立して水素、炭素数1〜3の飽和または不飽和の炭化水素基であり置換基を有していてもよく、2つのRのうち1つは炭化水素基である。)に代表されるアミン類等を挙げることができる。As the catalyst, ammonia, NaOH, R 2 NH (wherein two R's are each independently hydrogen, a saturated or unsaturated hydrocarbon group having 1 to 3 carbon atoms, and having a substituent) Well, one of the two R's is a hydrocarbon group.) And the like.

以下、本発明を実施例により詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

(例1)
(1)分散相及び連続相の調製
TEOS(テトラエトキシシラン)とBTEE(1,2−ビス(トリエトキシシリル)エタン)を4:1のモル比にて混合し、酸触媒下にて予備重合し、前駆体(A)を得た。
酸触媒としては塩酸を用いた。重合溶媒にはエタノールを用いた。
得られた前駆体(A)に分散相全体の濃度が19質量%となるようにトルエンを混合し、分散相とした。
(Example 1)
(1) Preparation of dispersed phase and continuous phase TEOS (tetraethoxysilane) and BTEE (1,2-bis (triethoxysilyl) ethane) are mixed at a molar ratio of 4: 1 and prepolymerized under an acid catalyst. The precursor (A) was obtained.
Hydrochloric acid was used as the acid catalyst. Ethanol was used as a polymerization solvent.
Toluene was mixed with the obtained precursor (A) so that the concentration of the entire dispersed phase was 19% by mass to obtain a dispersed phase.

連続相として、水(HO、密度1000[Kg/m])を使用し、あらかじめ界面活性剤としてポリオキシエチレンノニルフェニルエーテルを水に1.7[%]溶解したものを調整した。Water (H 2 O, density 1000 [Kg / m 3 ]) was used as the continuous phase, and a solution obtained by dissolving polyoxyethylene nonylphenyl ether in water 1.7% in advance as a surfactant was prepared.

(2)乳化装置の作製
分散相と連続相とを乳化するために用いた乳化装置を図1に示す。
(2) Production of Emulsifying Device FIG. 1 shows an emulsifying device used for emulsifying the dispersed phase and the continuous phase.

図1に示す乳化装置では、1は分散相供給部1aを有するアクリル樹脂製板であり、2は多孔質部材であり、3は微小孔部3aが形成されたステンレス鋼板であり、4は流路4aが形成されたステンレス鋼板であり、5は連続相供給部5a及びエマルション排出部5bを有するアクリル樹脂製板である。 In the emulsifying apparatus shown in FIG. 1, 1 is an acrylic resin plate having a dispersed phase supply part 1a, 2 is a porous member, 3 is a stainless steel plate with micropores 3a formed therein, and 4 is a flow plate. A stainless steel plate in which a path 4a is formed, and 5 is an acrylic resin plate having a continuous phase supply unit 5a and an emulsion discharge unit 5b.

アクリル樹脂製板1、多孔質部材2、ステンレス鋼板3、ステンレス鋼板4及びアクリル樹脂製板5をこの順で積層し、クランプにて4辺を均等な力で締め付け固定した。
このとき、ステンレス鋼板3に形成した微小孔部3aの配列の幅方向及び長手方向を、それぞれステンレス鋼板4に形成した流路4aの幅方向及び長さ方向に合わせ、微小孔部3aの配列が流路4aの中心部に位置するように設置した。
また、アクリル樹脂製板5の連続相供給部5a及びエマルション排出部5bがステンレス鋼板4の流路4aに対向して位置するように設置した。
The acrylic resin plate 1, the porous member 2, the stainless steel plate 3, the stainless steel plate 4 and the acrylic resin plate 5 were laminated in this order, and the four sides were clamped and fixed with equal force.
At this time, the width direction and the longitudinal direction of the arrangement of the minute hole portions 3a formed in the stainless steel plate 3 are matched with the width direction and the length direction of the flow path 4a formed in the stainless steel plate 4, respectively, so that the arrangement of the minute hole portions 3a is achieved. It installed so that it might be located in the center part of the flow path 4a.
Moreover, it installed so that the continuous phase supply part 5a and the emulsion discharge | emission part 5b of the acrylic resin board 5 may be located facing the flow path 4a of the stainless steel plate 4. FIG.

多孔質部材2としては、厚さ190μmで目開径0.5μmのガラス繊維ろ紙「GC−50」(アドバンテック東洋株式会社製)を用いた。   As the porous member 2, glass fiber filter paper “GC-50” (manufactured by Advantech Toyo Co., Ltd.) having a thickness of 190 μm and an opening diameter of 0.5 μm was used.

ステンレス鋼板3は、レーザー加工により、排出口側の面から見える孔の直径で8μmの円形状である微小孔部3aを1流路4aあたり、横38個×縦304個=合計11552個で加工した。流路4aは後述の通り24本であるので、微小孔部3aは合計277248個である。
ステンレス鋼板3には、流路4aに対向する表面に、メタクリル系親水性有機コート剤(大阪有機化学工業株式会社製「LAMBIC−107」)の1質量%水溶液を用いて、この水溶液にステンレス鋼板3をディップコートし、その後に100℃及び2時間で乾燥させ、表面の親水化処理を行った。ディップコートをすることで、ステンレス鋼板3の全面に親水性有機コート剤を塗布することができる。
The stainless steel plate 3 is processed by laser processing into 38 micro holes x 304 vertical holes = total 11552 per channel 4a of a circular hole 8a having a diameter of 8 μm that can be seen from the surface on the discharge port side. did. Since there are 24 channels 4a as described later, there are a total of 277248 micropores 3a.
For the stainless steel plate 3, a 1% by mass aqueous solution of a methacrylic hydrophilic organic coating agent (“LAMBIC-107” manufactured by Osaka Organic Chemical Industry Co., Ltd.) is used on the surface facing the flow path 4a. 3 was dip-coated, and then dried at 100 ° C. for 2 hours to hydrophilize the surface. By applying dip coating, a hydrophilic organic coating agent can be applied to the entire surface of the stainless steel plate 3.

ステンレス鋼板4は、エッチングにて流路4aが24本並列で配置されるように加工した。24本の流路4aは、それぞれ1.7mm(幅)×0.05mm(深さ)×22mm(長)である。ここで、流路4aの長さLは、ステンレス鋼板3及び5が対向して深さ0.05mmとなる部分の長さであり、図1においてLで示す。   The stainless steel plate 4 was processed by etching so that 24 channels 4a were arranged in parallel. Each of the 24 flow paths 4a is 1.7 mm (width) × 0.05 mm (depth) × 22 mm (length). Here, the length L of the flow path 4a is the length of the portion where the stainless steel plates 3 and 5 face each other and have a depth of 0.05 mm, and is indicated by L in FIG.

この乳化装置では、連続相が連続相供給部5aから供給されエマルション排出部5bから排出されるように流路4aを流れ、分散相が分散相供給部1aから供給され多孔質部材2を介して微小孔部3aを通過して連続相中に圧入される。   In this emulsification apparatus, the continuous phase flows through the flow path 4a so as to be supplied from the continuous phase supply unit 5a and discharged from the emulsion discharge unit 5b, and the dispersed phase is supplied from the dispersed phase supply unit 1a via the porous member 2. It passes through the micropores 3a and is pressed into the continuous phase.

上記した乳化装置は、図2に示す乳化装置10として、乳化システムに備えて用いた。   The above emulsifying apparatus was used as an emulsifying apparatus 10 shown in FIG.

図2に示す乳化システムでは、分散相である有機液体貯留槽21から有機液体用送液装置であるポンプ22によって乳化装置10に分散相が供給される。また、連続相である水性液体貯留槽31から水性液体用送液装置であるポンプ32によって乳化装置10に連続相が供給される。乳化装置10から排出されるエマルションは、エマルション貯留槽40に貯留される。   In the emulsification system shown in FIG. 2, the disperse phase is supplied to the emulsification device 10 from the organic liquid storage tank 21 that is a disperse phase by a pump 22 that is a liquid feed device for organic liquid. In addition, the continuous phase is supplied from the aqueous liquid storage tank 31 that is a continuous phase to the emulsification apparatus 10 by a pump 32 that is a liquid-feed device for aqueous liquid. The emulsion discharged from the emulsifying device 10 is stored in the emulsion storage tank 40.

分散相の供給経路では、精密フィルター23によって分散相から固形物を除去し、多孔質部材2及びステンレス鋼板3の微小孔部3aの目詰まりを防止した。精密フィルター23には、アドバンテック東洋株式会社製「CCS−020−D1B」(フィルター径0.20μm)を用いた。
また、分散相の供給経路では、圧力計24によって圧力を測定した。
In the supply path of the dispersed phase, the solid matter was removed from the dispersed phase by the precision filter 23 to prevent clogging of the porous member 2 and the micropores 3a of the stainless steel plate 3. As the precision filter 23, “CCS-020-D1B” (filter diameter 0.20 μm) manufactured by Advantech Toyo Co., Ltd. was used.
Further, the pressure was measured by the pressure gauge 24 in the supply path of the dispersed phase.

(3)乳化工程
上記(2)で作製した乳化装置を垂直に置いて使用し、連続相供給部5aより上記(1)で調製した界面活性剤水溶液からなる連続相を供給し、分散相供給部1aより上記(1)で調製した分散相を供給することで、分散相が界面活性剤水溶液中に分散したO/W型エマルションを連続的に作製した。作製されたエマルションはエマルション排出部5aより回収した。
(3) Emulsification step The emulsification device prepared in (2) above is used in a vertical position, and a continuous phase comprising the surfactant aqueous solution prepared in (1) above is supplied from the continuous phase supply unit 5a, and dispersed phase supply is performed. By supplying the dispersed phase prepared in (1) above from part 1a, an O / W emulsion in which the dispersed phase was dispersed in the surfactant aqueous solution was continuously prepared. The produced emulsion was recovered from the emulsion discharge part 5a.

連続相の供給量は1流路4aあたり125[mL/H]であり、流路4aにおける流れ方向の流速(線速)は0.41m/sであった。
分散相の供給量は273[mL/H]であり、微小孔部3aにおける流れ方向の流速(線速)は1孔あたり0.0054m/sであった。実験は室温で行い、分散相のみ40℃に加温して供給した。
The supply amount of the continuous phase was 125 [mL / H] per channel 4a, and the flow velocity (linear velocity) in the flow direction in the channel 4a was 0.41 m / s.
The supply amount of the dispersed phase was 273 [mL / H], and the flow velocity (linear velocity) in the flow direction in the micropores 3a was 0.0054 m / s per hole. The experiment was performed at room temperature, and only the dispersed phase was heated to 40 ° C. and supplied.

流路の相当直径97.1[μm]、連続相の線速0.41m/s、連続相である界面活性剤水溶液の粘度0.00045[Pa・s]から、下記式(2a)によって連続相のレイノルズ数を計算したところ、40であった。   From the equivalent diameter of the channel 97.1 [μm], the linear velocity of the continuous phase 0.41 m / s, and the viscosity of the aqueous surfactant solution as the continuous phase 0.00045 [Pa · s] The Reynolds number of the phase was calculated to be 40.

レイノルズ数(−)=De・u・ρ/μ・・・(2a)
Deは相当直径であり、u(平均流速:m/s)であり、ρ(流体密度:kg/m)であり、μ(流体粘度:Pa・s)である。
Reynolds number (−) = De · u · ρ / μ (2a)
De is an equivalent diameter, u (average flow velocity: m / s), ρ (fluid density: kg / m 3 ), and μ (fluid viscosity: Pa · s).

(4)ゲル化工程
上記乳化工程で得られたエマルションに、28質量%のアンモニア水(NHOH)を加え、23℃で20時間静置することで、エマルション液滴をゲル化させた。得られたスラリーを濾過し、メタノールで洗浄した。次いで、生成物を80℃で一晩乾燥させ、ポリシロキサン(A)からなる球状の多孔質粒子を得た。
The emulsion obtained in (4) gelation step the emulsification step, 28 wt% ammonia water (NH 4 OH) was added, by 20 hours standing at 23 ° C., and the emulsion droplets to gel. The resulting slurry was filtered and washed with methanol. Next, the product was dried at 80 ° C. overnight to obtain spherical porous particles made of polysiloxane (A).

(評価)
上記した例1について、乳化時間に対して、D50、D10/90、分散相供給圧力、及び初期流量に対する分散相流量の比(分散相流量/初期流量)を評価した。評価結果を表1に示す。各評価は、乳化初期(乳化開始から5分以内)、乳化開始から2時間後、乳化開始から4時間後で評価した。
(Evaluation)
For Example 1 described above, D50, D10 / 90, the dispersed phase supply pressure, and the ratio of the dispersed phase flow rate to the initial flow rate (dispersed phase flow rate / initial flow rate) were evaluated with respect to the emulsification time. The evaluation results are shown in Table 1. Each evaluation was evaluated at the initial stage of emulsification (within 5 minutes from the start of emulsification), 2 hours after the start of emulsification, and 4 hours after the start of emulsification.

D10、D90及びD50は、各乳化時間経過後にエマルションをゲル化した後に、ポリシロキサン(A)からなる球状多孔質粒子をベックマン・コールター社製「Multisizer III」にて測定した。測定したD10及びD90からD10/D90を求めた。
分散相供給圧力は、圧力計「GP−M001」(株式会社キーエンス製)により測定した。
D10, D90, and D50 were measured with a “Multisizer III” manufactured by Beckman Coulter, Inc., after the emulsion was gelled after the lapse of each emulsification time. D10 / D90 was determined from the measured D10 and D90.
The dispersed phase supply pressure was measured with a pressure gauge “GP-M001” (manufactured by Keyence Corporation).

例1では、乳化開始から4時間経過しても、乳化初期と同等のD50及びD10/90の無機有機ハイブリッド粒子が得られた。また、乳化開始後4時間経過しても、分散相供給圧力の上昇を防止することができ、分散相流量/初期流量の低下を防止することができた。   In Example 1, even when 4 hours passed from the start of emulsification, D50 and D10 / 90 inorganic-organic hybrid particles equivalent to the initial stage of emulsification were obtained. In addition, even after 4 hours from the start of emulsification, an increase in the dispersed phase supply pressure could be prevented, and a decrease in the dispersed phase flow rate / initial flow rate could be prevented.

図3に、得られた球状多孔質粒子の乳化開始後10時間後の走査型電子顕微鏡(SEM)写真(1000倍)を示す。この写真より、球状多孔質粒子はほぼ真球状であった。   FIG. 3 shows a scanning electron microscope (SEM) photograph (1000 times) after 10 hours from the start of emulsification of the obtained spherical porous particles. From this photograph, the spherical porous particles were almost spherical.

(例2)
多孔質部材2を厚さ260μmで目開径1.2μmのガラス繊維ろ紙「Whatman GF/C」(GEヘルスケア・ジャパン株式会社製)に変えた以外は、上記した例1と同様にして行った。
上記した例1と同様に評価を行い、結果を表1に併せて示す。
(Example 2)
Except that the porous member 2 was changed to a glass fiber filter “Whatman GF / C” (manufactured by GE Healthcare Japan Co., Ltd.) having a thickness of 260 μm and an opening diameter of 1.2 μm, the same procedure as in Example 1 was performed. It was.
Evaluation was performed in the same manner as in Example 1 above, and the results are also shown in Table 1.

例2では、乳化開始から4時間経過しても、乳化初期と同等のD50及びD10/90の無機有機ハイブリッド粒子が得られた。また、乳化開始後4時間経過しても、分散相供給圧力の上昇を防止することができ、分散相流量/初期流量の低下を防止することができた。   In Example 2, even when 4 hours passed from the start of emulsification, inorganic and organic hybrid particles of D50 and D10 / 90 equivalent to the initial stage of emulsification were obtained. In addition, even after 4 hours from the start of emulsification, an increase in the dispersed phase supply pressure could be prevented, and a decrease in the dispersed phase flow rate / initial flow rate could be prevented.

(例3)
多孔質部材2を厚さ150μmの目開径0.8μmのセルロース混合エステル(MCE)タイプメンブレンフィルター「A080A」(アドバンテック東洋株式会社製)に変えた以外は、上記した例1と同様にして行った。
上記した例1と同様に評価を行い、結果を表1に併せて示す。
(Example 3)
Except that the porous member 2 was changed to a cellulose mixed ester (MCE) type membrane filter “A080A” (manufactured by Advantech Toyo Co., Ltd.) having a thickness of 150 μm and an opening diameter of 0.8 μm, the same procedure as in Example 1 was performed. It was.
Evaluation was performed in the same manner as in Example 1 above, and the results are also shown in Table 1.

例3では、乳化開始から4時間経過しても、乳化初期と同等のD50及びD10/90の無機有機ハイブリッド粒子が得られた。また、例1及び例2に比べ、分散相供給圧力が上昇し、分散相流量/初期流量が低下した。これは、例3では多孔質部材2にセルロース混合エステルタイプメンブレンフィルターを用いており、時間経過によって多孔質部材2に分散相が多少目詰まりしたためと考えられる。   In Example 3, inorganic organic hybrid particles having D50 and D10 / 90 equivalent to the initial stage of emulsification were obtained even after 4 hours had elapsed from the start of emulsification. Moreover, compared with Example 1 and Example 2, the disperse phase supply pressure increased and the disperse phase flow rate / initial flow rate decreased. This is presumably because, in Example 3, a cellulose mixed ester type membrane filter was used for the porous member 2, and the disperse phase was somewhat clogged in the porous member 2 over time.

(例4)
多孔質部材2を設けない以外は、上記した例1と同様にして行った。
上記した例1と同様に評価を行い、結果を表1に併せて示す。
(Example 4)
The same operation as in Example 1 was performed except that the porous member 2 was not provided.
Evaluation was performed in the same manner as in Example 1 above, and the results are also shown in Table 1.

例4では、乳化開始から4時間経過後に、D50が25%増加した。また、分散相供給圧力が上昇し、分散相流量/初期流量が低下した。このように、分散相供給圧力が上昇しているにもかかわらず、分散相流量は低下していることから、乳化初期に比べ、時間経過によって分散相が微小孔部3aの微小な孔部を流れにくい状態に変化し、D50が増加したと考えられる。この問題は、例1〜例3のように多孔質部材2を設けることで改善できる。   In Example 4, D50 increased by 25% after 4 hours from the start of emulsification. Further, the dispersed phase supply pressure increased, and the dispersed phase flow rate / initial flow rate decreased. As described above, the flow rate of the dispersed phase is decreased despite the increased supply pressure of the dispersed phase, and therefore, the dispersed phase becomes smaller than the initial stage of emulsification. It is considered that D50 has increased due to a change to a state where it is difficult to flow. This problem can be improved by providing the porous member 2 as in Examples 1 to 3.

(例5)
(1)分散相及び連続相の調製
TEOS(テトラエトキシシラン)とBTEE(1,2−ビス(トリエトキシシリル)エタン)を8:1のモル比にて混合し、酸触媒下にて予備重合し、前駆体(A)を得た。
酸触媒としては塩酸を用いた。重合溶媒にはエタノールを用いた。
得られた前駆体(A)に分散相全体の濃度が19質量%となるようにトルエンを混合し、分散相とした。
(Example 5)
(1) Preparation of dispersed phase and continuous phase TEOS (tetraethoxysilane) and BTEE (1,2-bis (triethoxysilyl) ethane) are mixed at a molar ratio of 8: 1 and prepolymerized under an acid catalyst. The precursor (A) was obtained.
Hydrochloric acid was used as the acid catalyst. Ethanol was used as a polymerization solvent.
Toluene was mixed with the obtained precursor (A) so that the concentration of the entire dispersed phase was 19% by mass to obtain a dispersed phase.

連続相は上記した例1と同様に調整した。   The continuous phase was adjusted as in Example 1 above.

(2)乳化装置の作製
分散相と連続相とを乳化するために用いた乳化装置は、以下の点を除いて、上記した例1と共通し、図1に示す通りである。
(2) Production of Emulsifying Device The emulsifying device used for emulsifying the dispersed phase and the continuous phase is as shown in FIG. 1 in common with Example 1 described above except for the following points.

多孔質部材2に、厚さ75μmで目開径0.5μmのPTFE(ポリテトラフルオロエチレン)タイプメンブレンフィルター「T050A」(アドバンテック東洋株式会社製)を用いた。   A PTFE (polytetrafluoroethylene) type membrane filter “T050A” (manufactured by Advantech Toyo Co., Ltd.) having a thickness of 75 μm and an opening diameter of 0.5 μm was used for the porous member 2.

乳化工程及びゲル化工程は上記した例1と同様にして行った。   The emulsification step and the gelation step were performed in the same manner as in Example 1 described above.

上記した例1と同様に評価を行い、結果を表1に併せて示す。   Evaluation was performed in the same manner as in Example 1 above, and the results are also shown in Table 1.

例5では、乳化開始から4時間経過しても、乳化初期と同等のD50及びD10/90の無機有機ハイブリッド粒子が得られた。   In Example 5, even when 4 hours passed from the start of emulsification, inorganic and organic hybrid particles having D50 and D10 / 90 equivalent to the initial stage of emulsification were obtained.

(例6)
多孔質部材2を設けない以外は、上記した例5と同様にして行った。
上記した例1と同様に評価を行い、結果を表1に併せて示す。
(Example 6)
This was carried out in the same manner as in Example 5 except that the porous member 2 was not provided.
Evaluation was performed in the same manner as in Example 1 above, and the results are also shown in Table 1.

例6では、乳化開始から4時間経過後に、D10/D90が100%増加した。また、分散相供給圧力が上昇し、分散相流量/初期流量が低下した。このように、分散相供給圧力が上昇しているにもかかわらず、分散相流量は低下していることから、乳化初期に比べ、時間経過によって分散相が微小孔部3aの微小な孔部を流れにくい状態に変化し、D10/D90が増加したと考えられる。この問題は、例5のように多孔質部材2を設けることで改善できる。   In Example 6, D10 / D90 increased by 100% after 4 hours from the start of emulsification. Further, the dispersed phase supply pressure increased, and the dispersed phase flow rate / initial flow rate decreased. As described above, the flow rate of the dispersed phase is decreased despite the increased supply pressure of the dispersed phase, and therefore, the dispersed phase becomes smaller than the initial stage of emulsification. It is considered that D10 / D90 has increased due to a change to a state where it is difficult to flow. This problem can be improved by providing the porous member 2 as in Example 5.

Figure 0006409246
Figure 0006409246

本発明により得られる粒子径が均一な多孔質有機無機ハイブリッド粒子は、例えば、液体クロマトグラフィー用充填剤、薄層クロマトグラフィー(TLC)プレート、ゴム、プラスチック等の充填剤、印刷用インキや合成樹脂フィルムのアンチブロッキング剤、化粧品用フィラー、触媒担体等に用いることができる。
なお、2013年05月16日に出願された日本特許出願2013−103785号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The porous organic-inorganic hybrid particles having a uniform particle size obtained by the present invention include, for example, a filler for liquid chromatography, a thin layer chromatography (TLC) plate, a filler such as rubber and plastic, a printing ink and a synthetic resin. It can be used as an anti-blocking agent for films, cosmetic fillers, catalyst carriers and the like.
It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-103785 filed on May 16, 2013 is cited herein as the disclosure of the specification of the present invention. Incorporated.

1 アクリル樹脂製板
1a 分散相供給部
2 多孔質部材
3 ステンレス鋼
3a 微小孔部
4 ステンレス鋼
4a 流路
5 アクリル樹脂製板
5a 連続相供給部
5b エマルション排出部
10 乳化装置
20 有機液体供給装置
21 有機液体貯留槽
22 有機液体送液装置
23 精密フィルター
24 圧力計
30 水性液体供給装置
31 水性液体貯留槽
32 水性液体用送液装置
40 エマルション貯留槽
1 acrylic resin plate 1a dispersed phase supply section 2 porous member 3 stainless steel plate 3a micropores 4 stainless steel plate 4a passage 5 acrylic resin plate 5a continuous phase supplying unit 5b emulsion discharge section 10 emulsifier 20 organic liquid supply Apparatus 21 Organic liquid storage tank 22 Organic liquid delivery apparatus 23 Precision filter 24 Pressure gauge 30 Aqueous liquid supply apparatus 31 Aqueous liquid storage tank 32 Liquid delivery apparatus for aqueous liquid 40 Emulsion storage tank

Claims (9)

微小孔部が形成される隔壁で区画された流路を流れる水性液体に、
有機無機ハイブリッド粒子前駆体を含む有機液体を、多孔質部材を通過させた後に前記隔壁に形成される微小孔部を通して、エマルションを作製する工程、及び
前記有機無機ハイブリッド粒子前駆体を含むエマルション液滴を固形化して多孔質有機無機ハイブリッド粒子を形成する工程を含み、
前記隔壁と前記多孔質部材との間隔が1cm以下であり、
前記微小孔部の開口部の直径が1〜50μmであり、
前記多孔質部材の目開径が0.1〜10μmである
多孔質有機無機ハイブリッド粒子の製造方法。
To the aqueous liquid flowing through the flow path partitioned by the partition wall in which the micropores are formed,
An organic liquid containing an organic / inorganic hybrid particle precursor is passed through a porous member and then an emulsion is formed through micropores formed in the partition wall, and an emulsion droplet containing the organic / inorganic hybrid particle precursor A step of solidifying and forming porous organic-inorganic hybrid particles,
Ri der spacing less than 1cm between the porous member and the partition wall,
The diameter of the opening of the micropore is 1 to 50 μm,
The opening diameter of the porous member is 0.1 to 10 μm ,
A method for producing porous organic-inorganic hybrid particles.
前記多孔質部材が、発泡体、繊維フィルターまたはメンブレンフィルターからなる、請求項に記載の多孔質有機無機ハイブリッド粒子の製造方法。 The method for producing porous organic-inorganic hybrid particles according to claim 1 , wherein the porous member comprises a foam, a fiber filter, or a membrane filter. 前記多孔質部材がガラス繊維フィルターである、請求項1または2に記載の多孔質有機無機ハイブリッド粒子の製造方法。 It said porous member is a glass fiber filter, method for producing a porous organic-inorganic hybrid particle of claim 1 or 2. 前記多孔質有機無機ハイブリッド粒子はD10/D90が1.8以下である、請求項1からのいずれか1項に記載の多孔質有機無機ハイブリッド粒子の製造方法。 The method for producing porous organic-inorganic hybrid particles according to any one of claims 1 to 3 , wherein the porous organic-inorganic hybrid particles have a D10 / D90 of 1.8 or less. 前記多孔質有機無機ハイブリッド粒子は平均粒子径D50が1〜100μmである、請求項1からのいずれか1項に記載の多孔質有機無機ハイブリッド粒子の製造方法。 The porous organic-inorganic hybrid particle production method according to any one of claims 1 to 4 , wherein the porous organic-inorganic hybrid particle has an average particle diameter D50 of 1 to 100 µm. 前記流路の少なくとも前記微小孔部が形成される領域の表面が親水化されている、請求項1からのいずれか1項に記載の多孔質有機無機ハイブリッド粒子の製造方法。 The method for producing porous organic-inorganic hybrid particles according to any one of claims 1 to 5 , wherein a surface of at least the region of the flow path where the micropores are formed is hydrophilized. 前記有機無機ハイブリッド粒子が、ケイ素原子に結合した有機基を有するポリシロキサンからなる粒子である、請求項1からのいずれか1項に記載の多孔質有機無機ハイブリッド粒子の製造方法。 The method for producing porous organic-inorganic hybrid particles according to any one of claims 1 to 6 , wherein the organic-inorganic hybrid particles are particles made of polysiloxane having an organic group bonded to a silicon atom. 前記有機無機ハイブリッド粒子が、SiO4/2単位とR[SiO3/2単位(ただし、Rは2価の炭化水素基)とを有するポリシロキサンからなる粒子である、請求項1からのいずれか1項に記載の多孔質有機無機ハイブリッド粒子の製造方法。 The organic-inorganic hybrid particle is a particle made of polysiloxane having SiO 4/2 units and R b [SiO 3/2 ] 2 units (where R b is a divalent hydrocarbon group). 8. The method for producing porous organic-inorganic hybrid particles according to any one of items 1 to 7 . 前記有機無機ハイブリッド粒子前駆体が、ケイ素原子に結合した加水分解性基を4個有する加水分解性シラン化合物もしくはその部分加水分解縮合物と、ケイ素原子に結合した加水分解性基を3個以上有しかつケイ素原子に結合した有機基を有する加水分解性オルガノシラン化合物もしくはその部分加水分解縮合物との混合物、または、該混合物の部分加水分解縮合物からなる、請求項1からのいずれか1項に記載の多孔質有機無機ハイブリッド粒子の製造方法。 The organic / inorganic hybrid particle precursor has a hydrolyzable silane compound having four hydrolyzable groups bonded to silicon atoms or a partially hydrolyzed condensate thereof, and three or more hydrolyzable groups bonded to silicon atoms. mixture of hydrolyzable organosilane compound or a partial hydrolysis-condensation product thereof having an organic group attached to the life-and-death silicon atom, or consisting of partially hydrolyzed condensate of the mixture, any one of claims 1 to 8 1 The manufacturing method of the porous organic-inorganic hybrid particle | grains as described in a term.
JP2015517135A 2013-05-16 2014-05-15 Method for producing porous organic-inorganic hybrid particles and emulsifying device Active JP6409246B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013103785 2013-05-16
JP2013103785 2013-05-16
PCT/JP2014/062987 WO2014185500A1 (en) 2013-05-16 2014-05-15 Method for producing porous organic/inorganic hybrid particles and emulsification device

Publications (2)

Publication Number Publication Date
JPWO2014185500A1 JPWO2014185500A1 (en) 2017-02-23
JP6409246B2 true JP6409246B2 (en) 2018-10-24

Family

ID=51898475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015517135A Active JP6409246B2 (en) 2013-05-16 2014-05-15 Method for producing porous organic-inorganic hybrid particles and emulsifying device

Country Status (2)

Country Link
JP (1) JP6409246B2 (en)
WO (1) WO2014185500A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201817692D0 (en) * 2018-10-30 2018-12-19 Ge Healthcare Mixing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201691A (en) * 1978-01-16 1980-05-06 Exxon Research & Engineering Co. Liquid membrane generator
JPH04183727A (en) * 1990-11-20 1992-06-30 Tonen Corp Production of fine spherical silicone resin particle
JP3511238B2 (en) * 2000-10-13 2004-03-29 独立行政法人食品総合研究所 Microsphere manufacturing method and manufacturing apparatus
JP4193626B2 (en) * 2002-07-15 2008-12-10 旭硝子株式会社 Method for producing inorganic spherical body
KR100932418B1 (en) * 2003-06-11 2009-12-17 아사히 가라스 가부시키가이샤 Method for producing inorganic spheres and apparatus
JP2005040710A (en) * 2003-07-22 2005-02-17 Asahi Glass Co Ltd Method for manufacturing inorganic spherical body
JP3772182B2 (en) * 2004-10-18 2006-05-10 独立行政法人食品総合研究所 Microsphere manufacturing apparatus and manufacturing method
WO2014104369A1 (en) * 2012-12-28 2014-07-03 旭硝子株式会社 Method for producing spherical particles

Also Published As

Publication number Publication date
JPWO2014185500A1 (en) 2017-02-23
WO2014185500A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
Yi et al. Synthesis of discrete alkyl‐silica hybrid nanowires and their assembly into nanostructured superhydrophobic membranes
EP3134466B1 (en) Fluid control films with hydrophilic surfaces, methods of making same, and processes for cleaning structured surfaces
US9192914B2 (en) Silica spheres and affinity carrier
Amirpoor et al. A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water
JP2010138410A (en) Coating material
JP6210070B2 (en) Method for producing spherical particles
KR20070097086A (en) Reactive silicic acid suspensions
JP2011026196A (en) Method and apparatus for producing inorganic sphere
KR0171204B1 (en) Polymerisation reactor and polymerisation process
JP6409246B2 (en) Method for producing porous organic-inorganic hybrid particles and emulsifying device
JP2015113277A (en) Method for manufacturing spherical silica
Wang et al. Robust and thermally stable butterfly-like Co (OH) 2/hexadecyltrimethoxysilane superhydrophobic mesh filters prepared by electrodeposition for highly efficient oil/water separation
Heale et al. Dual-scale TiO 2 and SiO 2 particles in combination with a fluoroalkylsilane and polydimethylsiloxane superhydrophobic/superoleophilic coating for efficient solvent–water separation
JP2019042707A (en) Oil-water separation filter
Suzuki et al. Preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/poly (tetrafluoroethylene) nanocomposites possessing a superoleophilic/superhydrophobic characteristic: application to the separation of oil and water
JP4193626B2 (en) Method for producing inorganic spherical body
EP0765896B1 (en) Continuous production method of polyorganosiloxane particles
KR100998462B1 (en) Process and apparatus for producing inorganic spheres
WO2017011696A1 (en) Formation apparatus, systems and methods for manufacturing polymer derived ceramic structures
KR102107749B1 (en) Superhydrophobic Membrane using Ceramic Nano Particles with Hydrophobic Modification by growing in Surface and Pore of Membrane and Manufacturing Method Thereof
Ning et al. Preparation of two kinds of membranes with reverse wettability from waste masks for continuous oil/water separation
JP5275329B2 (en) Method for producing inorganic spherical body
JP4767504B2 (en) Manufacturing method and manufacturing apparatus of inorganic spherical body
JP5772480B2 (en) Ink receiving film, laminated substrate using the same, and conductive member
JP5037781B2 (en) Manufacturing method and manufacturing apparatus of inorganic spherical body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180907

R150 Certificate of patent or registration of utility model

Ref document number: 6409246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250