JPH04183727A - Production of fine spherical silicone resin particle - Google Patents

Production of fine spherical silicone resin particle

Info

Publication number
JPH04183727A
JPH04183727A JP2312854A JP31285490A JPH04183727A JP H04183727 A JPH04183727 A JP H04183727A JP 2312854 A JP2312854 A JP 2312854A JP 31285490 A JP31285490 A JP 31285490A JP H04183727 A JPH04183727 A JP H04183727A
Authority
JP
Japan
Prior art keywords
silicone resin
silicone composition
surfactant
fine particles
curable silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2312854A
Other languages
Japanese (ja)
Inventor
Shintaro Kikuchi
慎太郎 菊地
Tokuzo Ikeda
池田 得三
Ryuji Sato
隆二 佐藤
Yoshiharu Okumura
奥村 義治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP2312854A priority Critical patent/JPH04183727A/en
Publication of JPH04183727A publication Critical patent/JPH04183727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain the subject ultra-fine perticles useful as fillers, etc., for various electronic materials, etc., by emulsifying a curable silicone composition in the presence of a specific surfactant in a dispersion medium and then curing the resultant emulsion at a specified temperature. CONSTITUTION:A curable silicone composition is emulsified in the presence of an anionic surfactant such as a dialkyl sulfosuccinate [used in an amount of preferably 0.1-20 pts.wt. based on 100 pts.wt. above-mentioned silicone composition] in a dispersion medium such as water and then cured at 10-35 deg.C (preferably 20-30 deg.C) to afford the objective fine particles having <=0.2mum average particle diameter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、球状シリコーン樹脂微粒子の製造方法に関し
、さらに詳しくは、各種電子材料の充填物として有用な
、極微細な球状シリコーン樹脂微粒子の製造方法に関す
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing fine spherical silicone resin particles, and more specifically, to a method for producing ultrafine spherical silicone resin particles useful as fillers for various electronic materials. Regarding the method.

(従来の技術および発明が解決しようとする課題)シリ
コーン樹脂微粒子は、弾性、滑り性、耐熱性、椀水性、
耐薬品性、電気特性および球状単分散による粉体特性等
の性質に優れているため、各種合成樹脂フィルムおよび
成形品、インキ、トナー、機能性塗料、化粧品、半導体
封止剤等の充填物に利用される。
(Prior art and problems to be solved by the invention) Silicone resin fine particles have elasticity, slipperiness, heat resistance, water resistance,
Due to its excellent properties such as chemical resistance, electrical properties, and powder properties due to monodispersion of spherical particles, it can be used as fillers for various synthetic resin films and molded products, inks, toners, functional paints, cosmetics, semiconductor encapsulants, etc. used.

シリコーン樹脂微粒子は一般的に、原料となる硬化性シ
リコーン組成物を分散媒中でエマルション化して製造さ
れる。その際、界面活性剤を使用することが知られてい
る。また一般にノニオン系界面活性剤が好ましいとされ
ている。例えば特開昭62−243621号公報には、
液状シリコーンゴム組成物を、トリメチルノナールのエ
チレンオキシド付加物のようなノニオン系界面活性剤を
用いて水性エマルション化し、この水性エマルションを
加温水中に分散させて硬化する方法が開示されている。
Silicone resin fine particles are generally produced by emulsifying a curable silicone composition as a raw material in a dispersion medium. In this case, it is known to use a surfactant. Additionally, nonionic surfactants are generally preferred. For example, in Japanese Patent Application Laid-Open No. 62-243621,
A method is disclosed in which a liquid silicone rubber composition is made into an aqueous emulsion using a nonionic surfactant such as an ethylene oxide adduct of trimethylnonal, and the aqueous emulsion is dispersed in heated water and cured.

また、特開昭63−202658号公報には、液状シリ
コーンゴム組成物を、トリメチルノナールのエチレンオ
キシド付加物等の界面活性剤の共存下で、市販のホモミ
キサー、ホモジナイザー、コロイドミル等の乳化機を通
過させてエマルション化し、加温水中に投入するか、熱
気流中に噴霧させて硬化させる方法が開示されている。
Furthermore, JP-A No. 63-202658 discloses that a liquid silicone rubber composition is mixed in a commercially available emulsifier such as a homomixer, homogenizer, or colloid mill in the presence of a surfactant such as an ethylene oxide adduct of trimethylnonal. A method is disclosed in which the emulsion is made into an emulsion by passing through the emulsion, and the emulsion is poured into heated water or sprayed into a hot air stream to harden the emulsion.

ところがこれらの方法でシリコーン樹脂微粒子を製造し
ようとすると、通常は、シリコーン樹脂微粒子の平均粒
径は1μm以下にならない。
However, when silicone resin fine particles are produced by these methods, the average particle size of the silicone resin fine particles is usually not less than 1 μm.

そこで、特開平1−306471号公報のように、マイ
クロフルイダイゼーションのような特殊な方法でエマル
ション化を行った場合には、ノニオン系界面活性剤との
組合せで、かなり(平均粒径約0.8μm)の微粒化が
可能である。しかしながら、その程度の粒径を得るため
には、多量のノニオン系界面活性剤を添加する必要があ
り、コスト高となって、工業的な製造方法には適しない
Therefore, when emulsification is carried out using a special method such as microfluidization, as in JP-A-1-306471, in combination with a nonionic surfactant, it is possible to significantly increase the .8 μm) is possible. However, in order to obtain such a particle size, it is necessary to add a large amount of nonionic surfactant, which results in high cost and is not suitable for industrial production methods.

また、界面活性剤としてアニオン系界面活性剤を使用し
て上記したような硬化性シリコーン組成物のエマルショ
化を実際に行った例は見当たらない。しかも、時開@6
3−309565号公報には、アニオン系界面活性剤を
使用してエマルション化を行うと、縮合反応型のシリコ
ーン樹脂微粒子を製造する際にはオルガノハイドロジエ
ンポリシロキサンの安定性を損なうので好ましくない旨
の記載もある。
Further, there has been no example of actually emulsifying the above-mentioned curable silicone composition using an anionic surfactant as a surfactant. Moreover, time opening @6
Publication No. 3-309565 states that emulsification using an anionic surfactant is not preferable when producing condensation reaction type silicone resin particles because it impairs the stability of organohydrodiene polysiloxane. There is also a description of

そこで本発明は、アニオン系界面活性剤を使用して、平
均粒径が0.2μm以下の極微細な球状シリコーン樹脂
微粒子を効率的に製造方法を提供することを目的とする
Therefore, an object of the present invention is to provide a method for efficiently producing ultrafine spherical silicone resin particles having an average particle size of 0.2 μm or less using an anionic surfactant.

(課題を解決するための手段) 本発明は、硬化性シリコーン組成物を、分散媒中で界面
活性剤の存在下にエマルション化し、次いで硬化させて
シリコーン樹脂微粒子を製造する方法において、 (a)界面活性剤がジアルキルスルホコハク酸塩であり
、かつ (b)硬化を10〜35℃で行う ことを特徴とする。ここで上記の(a)および(b)の
2つを満たすことが必要であり、これによって本発明で
は、上記した特開昭63−309585号公報における
、アニオン系界面活性剤を使用した場合の不都合を解消
した。すなわち、アニオン系界面活性剤であるジアルキ
ルスルホコハク酸塩を使用しても、後の硬化を室温(1
0〜35℃)で行うことにより、効率よ<0.2μm以
下の極微粒子を製造することに成功した。
(Means for Solving the Problems) The present invention provides a method for producing silicone resin fine particles by emulsifying a curable silicone composition in a dispersion medium in the presence of a surfactant and then curing the composition, comprising: (a) It is characterized in that the surfactant is a dialkyl sulfosuccinate, and (b) curing is carried out at 10 to 35°C. Here, it is necessary to satisfy the above two conditions (a) and (b), and thereby, in the present invention, in the case of using an anionic surfactant in the above-mentioned Japanese Patent Application Laid-Open No. 63-309585, Solved the inconvenience. That is, even if dialkyl sulfosuccinates, which are anionic surfactants, are used, the subsequent curing is delayed to room temperature (1
By carrying out the process at a temperature of 0 to 35°C, we succeeded in efficiently producing ultrafine particles of <0.2 μm or less.

本発明で使用する硬化性シリコーン組成物とは、目的と
するシリコーン樹脂の微粒子を製造するための原料とな
るポリシロキサン類の混合物をいい、任意的にポリシロ
キサン類を溶解する有機溶媒を含むことも可能である。
The curable silicone composition used in the present invention refers to a mixture of polysiloxanes that is a raw material for producing the target silicone resin fine particles, and may optionally contain an organic solvent that dissolves the polysiloxanes. is also possible.

付加反応硬化型、縮合反応硬化型等によって、使用する
ポリシロキサン類を適宜選択する。例えば付加反応硬化
型のシリコーン樹脂の微粒子を製造する場合には、1分
子中に少なくとも2個のアルケニル基を有するオルガノ
ポリシロキサン(例えば分子鎖両末端がトリメチルシロ
キシ基で封鎖されたポリビニルシロキサン)、および1
分子中に少なくとも2個のケイ素原子結合水素原子を有
するオルガノハイドロジエンポリシロキサンを含む。こ
のとき付加反応触媒として白金系硬化触媒をさらに含む
ことができる。使用する白金系触媒としては、例えば塩
化白金酸もしくはこれをアルコール、ケトンなどの溶媒
に溶解させた塩化白金酸溶液またはこの溶液を熟成させ
たもの、または塩化白金酸とアルデヒド、オレフィン、
アルケニルシロキサン、ジケトンなどとの錯体、白金黒
、白金を担体に担持させたものなどが挙げられる。これ
らの付加反応触媒は、硬化性シリコーン組成物100万
重量部に対して白金系金属として0.1〜1000重量
部使用され、好ましくは10〜200重量部が使用され
る。
The polysiloxane to be used is appropriately selected depending on whether it is an addition reaction curing type, a condensation reaction curing type, or the like. For example, when manufacturing fine particles of addition reaction-curable silicone resin, organopolysiloxane having at least two alkenyl groups in one molecule (for example, polyvinylsiloxane in which both ends of the molecular chain are capped with trimethylsiloxy groups), and 1
Contains organohydrodiene polysiloxanes having at least two silicon-bonded hydrogen atoms in the molecule. At this time, a platinum-based curing catalyst may be further included as an addition reaction catalyst. Examples of the platinum-based catalyst used include chloroplatinic acid, a chloroplatinic acid solution prepared by dissolving this in a solvent such as an alcohol or a ketone, or an aged solution of chloroplatinic acid, or chloroplatinic acid and an aldehyde, an olefin,
Examples include complexes with alkenylsiloxanes and diketones, platinum black, and platinum supported on carriers. These addition reaction catalysts are used in an amount of 0.1 to 1000 parts by weight, preferably 10 to 200 parts by weight, as platinum metal based on 1 million parts by weight of the curable silicone composition.

また、縮合反応型のシリコーン樹脂の微粒子を製造する
場合には、1分子中に少なくとも2個の水酸基を有する
ジオルガノポリシロキサン、および1分子中に少なくと
も2個のケイ素原子結合水素原子を有するオルガノハイ
ドロジエンポリシロキサンを含む。このとき、さらに縮
合反応触媒を含むことができる。そのような縮合反応触
媒としては、有機酸金属塩、例えばジブチル チン ジ
オクテート、ラウリン酸鉛、チタン酸エステル等が挙げ
られる。これらの縮合反応触媒は、硬化性シリコーン組
成物100重量部に対して、有機酸金属塩として0.0
1〜20重量部、好ましくは0.1〜10重量部が使用
される。
In addition, when producing fine particles of condensation reaction type silicone resin, diorganopolysiloxane having at least two hydroxyl groups in one molecule and organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule are used. Contains hydrogen polysiloxane. At this time, a condensation reaction catalyst may be further included. Examples of such condensation reaction catalysts include organic acid metal salts, such as dibutyl tin dioctate, lead laurate, and titanate esters. These condensation reaction catalysts are used in an amount of 0.0 as an organic acid metal salt per 100 parts by weight of the curable silicone composition.
1 to 20 parts by weight are used, preferably 0.1 to 10 parts by weight.

本発明においては、上記した硬化性シリコーン組成物を
、分散媒中で特定のアニオン系界面活性剤の存在下にエ
マルション化する。使用する分散媒としては、水が主と
して使用されるが、水とアルコールなどの有機溶媒(た
だし、シリコーンを溶解しない)との混合物またはこの
ような有機溶媒を用いることもできる。分散媒は、硬化
性シリコーン組成物1重量部に対して10〜1重量部の
量で使用するのが好ましい。
In the present invention, the above-described curable silicone composition is emulsified in a dispersion medium in the presence of a specific anionic surfactant. Water is mainly used as the dispersion medium, but a mixture of water and an organic solvent such as alcohol (which does not dissolve silicone) or such an organic solvent can also be used. The dispersion medium is preferably used in an amount of 10 to 1 part by weight per 1 part by weight of the curable silicone composition.

本発明で使用する界面活性剤は、ジアルキルスルホコハ
ク酸塩であり、ナトリウム塩、カリウム塩、アンモニウ
ム塩等が使用できる。ジアルキルエステル部分は、同じ
でも異なっていても良く、2−エチルヘキシル、オクチ
ル、ヘプチル、ヘキシル、イソブチル、ブチル、プロピ
ル、エチル等であることができる。このような界面活性
剤は、上記の硬化性シリコーン組成物100重量部に対
して0.01〜30重量部、好ましくは0.1〜20重
量部使用する。
The surfactant used in the present invention is a dialkyl sulfosuccinate, and sodium salt, potassium salt, ammonium salt, etc. can be used. The dialkyl ester moieties may be the same or different and can be 2-ethylhexyl, octyl, heptyl, hexyl, isobutyl, butyl, propyl, ethyl, and the like. Such a surfactant is used in an amount of 0.01 to 30 parts by weight, preferably 0.1 to 20 parts by weight, per 100 parts by weight of the above-mentioned curable silicone composition.

さらに、上記の硬化性シリコーン組成物、分散媒および
界面活性剤からなる混合物に、必要に応じて、エマルシ
ョンの硬化を抑制するため、硬化抑制剤として、アセチ
レン系化合物、ヒドラジン類、トリアゾール類、ホスフ
ィン類、メルカプタン等を加えても良い。また耐熱剤、
難燃剤、可塑剤等を添加することもできる。
Furthermore, in order to suppress the hardening of the emulsion, an acetylene compound, hydrazine, triazole, or phosphine may be added to the mixture consisting of the above-mentioned curable silicone composition, dispersion medium, and surfactant as a hardening inhibitor, if necessary. mercaptan, etc. may be added. Also heat resistant agent,
Flame retardants, plasticizers, etc. can also be added.

エマルション化は、慣用の乳化機、例えばホモミキサー
、ホモジナイザー、コロイドミル等、また、超音波装置
、マイクロフルイダイゼーション等の公知の方法が使用
できる。好ましいエマルジョン化の方法は、超音波処理
工程およびマイクロフルイダイゼーション工程を組合せ
た方法である。この方法を用いると、狭い粒径分布を有
する微粒子が得られる。また、この超音波処理工程およ
びマイクロフルイダイゼーション工程を行う前に、任意
的に、ホモミキサー等の公知の乳化機を使用してプレエ
マルション化すると、より微細な粒子が得られるので特
に好ましい。
For emulsification, a conventional emulsifying machine such as a homomixer, a homogenizer, a colloid mill, etc., or a known method such as an ultrasonic device, microfluidization, etc. can be used. A preferred emulsification method is a method that combines an ultrasonication step and a microfluidization step. Using this method, fine particles with a narrow particle size distribution are obtained. Furthermore, before performing the ultrasonication step and the microfluidization step, it is particularly preferable to optionally perform pre-emulsion using a known emulsifier such as a homomixer, since finer particles can be obtained.

超音波処理には、好ましくは出力50〜1200W、発
振周波数28〜15KHzおよび発振振幅10〜80μ
m、さらに好ましくは出力300〜1200W、発振周
波数20〜15K Hz 、発振振幅20〜50μmの
高出力超音波発振性能を有する装置を使用する。超音波
処理方法は特に限定されないが、円柱形発振チップの先
端から超音波が発生するものを使用するのが好ましい。
For ultrasonic treatment, preferably a power of 50 to 1200 W, an oscillation frequency of 28 to 15 KHz, and an oscillation amplitude of 10 to 80 μ
m, more preferably an apparatus having high-output ultrasonic oscillation performance with an output of 300 to 1200 W, an oscillation frequency of 20 to 15 KHz, and an oscillation amplitude of 20 to 50 μm. Although the ultrasonic treatment method is not particularly limited, it is preferable to use a method in which ultrasonic waves are generated from the tip of a cylindrical oscillation tip.

例えば、超音波を効果的に照射するために、音響的に鋼
壁体になるように肉厚の構造で、発振チップを包囲する
照射壁を有するホルダーを使用して、シリコーン組成物
を供給する方法が好ましく挙げられる。その際、供給平
均速度は20〜1000 ml 7分であり、好ましく
は40〜8oo ml/分である。1000 ml 7
分を超えるとエマルション化が効率よく進まず、20 
ml 7分より低いと発熱が激しくなるので、微粒化の
前に硬化してしまう。簡易的には、慣用のビーカーに界
面活性剤を含む分散媒を入れ、そこに上記した円柱形発
振チップを入れて、超音波を照射しながら硬化性シリコ
ーン組成物を投入する方法も使用できる。
For example, for effective ultrasonic irradiation, a silicone composition is supplied using a holder with an irradiation wall that surrounds the oscillation chip, with a thick-walled structure that is acoustically steel-walled. Methods are preferred. In this case, the average feed rate is 20-1000 ml 7 minutes, preferably 40-8oo ml/min. 1000ml 7
If the time exceeds 20 minutes, emulsion will not proceed efficiently.
If the time is lower than 7 minutes, heat generation will become intense and the mixture will harden before being atomized. A simple method can also be used in which a dispersion medium containing a surfactant is placed in a conventional beaker, the above-described cylindrical oscillation chip is placed therein, and the curable silicone composition is added while irradiating with ultrasonic waves.

超音波処理工程は、単独の装置での処理でも良く、また
2つ以上の装置を組合せた多連式の処理でもよい。多連
式にすることにより、処理量を増大させることができる
The ultrasonic treatment step may be performed using a single device, or may be a multi-stage process using a combination of two or more devices. By using a multiple system, the throughput can be increased.

次にマイクロフルイダイゼーション工程について説明す
る。マイクロフルイダイゼーションとは、複数の高圧流
体を衝突区域で衝突させて液/′液分散する方法を意味
する。そのような方法を実施するには、例えば高圧ホモ
ジナイザーといわれる公知の装置が使用でき、具体的に
は、マイクロフルイデイクスコーポレーション社製のマ
イクロフルイダイザー(商標)が挙げられる。供給速度
は、20〜1000 ml 7分であり、好ましくは4
0〜800m1/分である。マイクロフルイダイゼーシ
ョン工程もまた、2回以上組合せることが可能である。
Next, the microfluidization process will be explained. Microfluidization refers to a method of liquid/liquid dispersion by colliding multiple high-pressure fluids in a collision zone. To carry out such a method, a known device called a high-pressure homogenizer can be used, and a specific example is Microfluidizer (trademark) manufactured by Microfluidics Corporation. The feed rate is 20-1000 ml 7 minutes, preferably 4
0 to 800 m1/min. Microfluidization steps can also be combined two or more times.

上記した超音波処理工程およびマイクロフルイダイゼー
ション工程は、その順序を逆にすることも可能である。
The order of the above-described ultrasonication step and microfluidization step can also be reversed.

上記のエマルション化の際の液温は通常−10°C〜9
0℃、好ましくは0〜40℃である。−10℃未満では
、混合物の粘度が高くなり過ぎる傾向があり、一方、9
0℃より高いとエマルション化の際に硬化反応が進行し
て、微小なシリコーン樹脂を得ることが困難となる傾向
がある。
The liquid temperature during the above emulsion is usually -10°C to 9°C.
0°C, preferably 0 to 40°C. Below -10°C, the viscosity of the mixture tends to become too high;
If the temperature is higher than 0°C, the curing reaction tends to proceed during emulsification, making it difficult to obtain fine silicone resin.

先に述べた硬化性シリコーン組成物に反応触媒を含まな
かった場合には、ここで得られたエマルションに触媒を
添加した後、次の硬化の工程を行う。
If the curable silicone composition described above does not contain a reaction catalyst, the catalyst is added to the emulsion obtained here, and then the next curing step is carried out.

本発明においては、得られた微粒子を加熱せずに、室温
、すなわち10〜35℃、好ましくは20〜30℃で硬
化することが必要である。硬化時間は5〜48時間、好
ましくは10〜30時間である。
In the present invention, it is necessary to cure the obtained fine particles at room temperature, that is, 10 to 35°C, preferably 20 to 30°C, without heating. Curing time is 5 to 48 hours, preferably 10 to 30 hours.

また回収は、懸濁液をスプレードライヤーを用いて水分
蒸発させる、懸濁液を濾過する等の公知の手段を使用で
きる。
For recovery, known means such as evaporating water from the suspension using a spray dryer or filtering the suspension can be used.

本発明の方法では、アニオン系界面活性剤であるジアル
キルスルホコハク酸塩を用いてエマルション化を行なっ
ているので、超微粒子(0,1μm以下)に近い極微細
な微粒子が得られ、また、その後の硬化を室温で行うこ
とにより、得られた極微粒子を安定に回収できる。した
がって、特に微細であることが要求される各種電子材料
用の充填物のような用途に特に適している。
In the method of the present invention, emulsification is carried out using dialkyl sulfosuccinate, which is an anionic surfactant, so ultrafine particles close to ultrafine particles (0.1 μm or less) are obtained, and By performing curing at room temperature, the obtained ultrafine particles can be stably recovered. Therefore, it is particularly suitable for applications such as fillers for various electronic materials that are required to be particularly fine.

(実施例) 以下、実施例により、本発明をさらに詳しく説明する。(Example) EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施ヨ 平均組成が、次式: (m + n = 36、ビニル基含有量7.2重量%
)で表されるポリビニルシロキサン100 gに、白金
−ビニルシロキサン錯体のベンゼン溶液2・2g(白金
含有量4.3 xlO−5モル/g)を添加し、混合し
たくこれを混合物Aとする)。
The average composition in practice was as follows: (m + n = 36, vinyl group content 7.2% by weight
2.2 g of a benzene solution of platinum-vinylsiloxane complex (platinum content: 4.3 x lO-5 mol/g) is added to 100 g of polyvinylsiloxane represented by ), and the mixture is referred to as mixture A). .

次に、上記と同じポリビニルシロキサン50gおよび、
平均組成が次式; %式% (ケイ素原子結合水素原子含有量1.5重量%)で表さ
れるポリハイドロジエンシロキサン50gを混合したく
これを混合物Bとする)。
Next, 50 g of the same polyvinylsiloxane as above and
50 g of polyhydrodiene siloxane having an average composition expressed by the following formula: % (Silicon-bonded hydrogen atom content: 1.5% by weight) was mixed and this was designated as mixture B).

この混合物AおよびBを、水冷下に均一に混合した。次
いでこの混合物200 gを、アニオン系界面活性剤ネ
オコール側(商標、第−工業製薬味製、ジアルキルスル
ホコハク酸ナトリウム)2gとイオン交換水2000g
との混合物に添加し、ホモジナイザーで1分間混合した
These mixtures A and B were uniformly mixed under water cooling. Next, 200 g of this mixture was mixed with 2 g of anionic surfactant Neocol (trademark, Dai-Kogyo Yakuhin Aji Co., Ltd., sodium dialkyl sulfosuccinate) and 2000 g of ion-exchanged water.
and mixed with a homogenizer for 1 minute.

次にこれを、循環式超音波ホモジナイザー(日本精機製
作所■製、RUS−600THV型、出力600W、発
振周波数20K Hz 、発振振幅40μm)を用いて
、室温にて供給速度100 m17分で超音波照射をし
、続いてマイクロフルイダイザー(商標、マイクロフル
イデイクスコーポレーション製、M−1108型)を用
いて、100 m17分の供給速度で室温にて撹拌する
ことにより、エマルション化を行った。次いでこのエマ
ルションを、25°Cで24時間静置することにより硬
化させた。
Next, this was subjected to ultrasonic irradiation at room temperature using a circulating ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, model RUS-600THV, output 600 W, oscillation frequency 20 KHz, oscillation amplitude 40 μm) at a supply rate of 100 m for 17 minutes. The mixture was then emulsified by stirring at room temperature using a microfluidizer (trademark, manufactured by Microfluidics Corporation, model M-1108) at a feed rate of 100 ml/17 min. This emulsion was then allowed to stand at 25°C for 24 hours to harden.

得られた微粒子の懸濁液をスプレードライヤー(ヤマト
科学■製、ミニスプレィ GA−31型)を用いて、液
送大速度20g/′分、熱風流量0.5 m3/分(入
口温度150℃、出口温度80°C)で水分を蒸発除去
した。
The resulting suspension of fine particles was dried using a spray dryer (Mini Spray GA-31, manufactured by Yamato Kagaku ■) at a high liquid feeding speed of 20 g/min and a hot air flow rate of 0.5 m3/min (inlet temperature 150°C, Water was removed by evaporation at an outlet temperature of 80°C.

得られた微粒子は顆粒状であったが、小さな剪断力を加
えることにより容易に分散することができた。この微粒
子を走査型電子顕微鏡(SEM)で観察したところ、は
とんどの粒子は球状であり、平均粒径は0.19μmで
あった。
Although the obtained fine particles were granular, they could be easily dispersed by applying a small shearing force. When the fine particles were observed using a scanning electron microscope (SEM), most of the particles were spherical, and the average particle size was 0.19 μm.

ル較孤ユ 界面活性剤を、アニオン系界面活性剤ネオコールS−の
代わりに、ノニオン系界面活性剤レオドールTW−11
20(商標、花王■製、ポリオキシエチレンソルビタン
ラウリン酸エステル、HLB = 16.9>を用いた
以外は実施例と同様にして微粒子を製造した。得られた
微粒子をSEMで観察したところ、平均粒径は0.5μ
mであった。
The nonionic surfactant Rheodol TW-11 was used instead of the anionic surfactant Neocol S-.
Fine particles were produced in the same manner as in the example except that 20 (trademark, manufactured by Kao ■, polyoxyethylene sorbitan laurate, HLB = 16.9) was used. When the obtained fine particles were observed with SEM, it was found that the average Particle size is 0.5μ
It was m.

L較信ユ 硬化を25℃で24時間静置する代わりに、エマルショ
ン化直後に90℃で2時間加熱硬化を行った以外は実施
例と同様にして微粒子を製造した。得られた微粒子をS
EMで観察しなところ、平均粒径は約0.2μmであっ
たが、一部に粒子同志が融着した部分が認められた。
Fine particles were produced in the same manner as in the example except that instead of leaving the L-containing resin to cure at 25° C. for 24 hours, heat curing was performed at 90° C. for 2 hours immediately after emulsion formation. The obtained fine particles were
When observed by EM, the average particle size was approximately 0.2 μm, but some portions were observed where the particles were fused together.

(発明の効果) 本発明により、平均粒径0,2μm以下の極微細な粒子
を得ることができる。
(Effects of the Invention) According to the present invention, extremely fine particles having an average particle diameter of 0.2 μm or less can be obtained.

し−一一一一shi-1111

Claims (1)

【特許請求の範囲】 硬化性シリコーン組成物を、分散媒中で界面活性剤の存
在下にエマルション化し、次いで硬化させて球状シリコ
ーン樹脂微粒子を製造する方法において、 (a)界面活性剤がジアルキルスルホコハク酸塩であり
、かつ (b)硬化を10〜35℃で行う ことを特徴とする方法。
[Scope of Claims] A method for producing spherical silicone resin particles by emulsifying a curable silicone composition in a dispersion medium in the presence of a surfactant and then curing the composition, comprising: (a) the surfactant is a dialkyl sulfosuccinate; A method characterized in that it is an acid salt, and (b) curing is carried out at 10 to 35°C.
JP2312854A 1990-11-20 1990-11-20 Production of fine spherical silicone resin particle Pending JPH04183727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312854A JPH04183727A (en) 1990-11-20 1990-11-20 Production of fine spherical silicone resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312854A JPH04183727A (en) 1990-11-20 1990-11-20 Production of fine spherical silicone resin particle

Publications (1)

Publication Number Publication Date
JPH04183727A true JPH04183727A (en) 1992-06-30

Family

ID=18034235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312854A Pending JPH04183727A (en) 1990-11-20 1990-11-20 Production of fine spherical silicone resin particle

Country Status (1)

Country Link
JP (1) JPH04183727A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017174A (en) * 1998-03-03 2000-01-18 General Electric Co <Ge> Emulsion of silicone and non-aqueous hydroxyl solvent
JP2001040214A (en) * 1999-08-03 2001-02-13 Dow Corning Toray Silicone Co Ltd Organic cross-linked particle, its suspension and their production
JP2001139819A (en) * 1999-11-16 2001-05-22 Dow Corning Toray Silicone Co Ltd Emulsion, its production method, and method of producing oil composition
JP2009062553A (en) * 1998-06-10 2009-03-26 Dow Corning Toray Co Ltd Emulsion and process for its production
JP2013522028A (en) * 2010-03-22 2013-06-13 エムジェイアール ファームジェット ゲーエムベーハー Method and apparatus for generating microparticles or nanoparticles
WO2014185500A1 (en) * 2013-05-16 2014-11-20 旭硝子株式会社 Method for producing porous organic/inorganic hybrid particles and emulsification device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017174A (en) * 1998-03-03 2000-01-18 General Electric Co <Ge> Emulsion of silicone and non-aqueous hydroxyl solvent
JP2010235954A (en) * 1998-03-03 2010-10-21 Momentive Performance Materials Inc Emulsion of silicone with non-aqueous hydroxylic solvent
JP2012031433A (en) * 1998-03-03 2012-02-16 Momentive Performance Materials Inc Emulsion of silicone with non-aqueous hydroxylic solvent
JP2012229441A (en) * 1998-03-03 2012-11-22 Momentive Performance Materials Inc Emulsion of silicone with non-aqueous hydroxylic solvent
JP2009062553A (en) * 1998-06-10 2009-03-26 Dow Corning Toray Co Ltd Emulsion and process for its production
JP2001040214A (en) * 1999-08-03 2001-02-13 Dow Corning Toray Silicone Co Ltd Organic cross-linked particle, its suspension and their production
JP2001139819A (en) * 1999-11-16 2001-05-22 Dow Corning Toray Silicone Co Ltd Emulsion, its production method, and method of producing oil composition
JP2013522028A (en) * 2010-03-22 2013-06-13 エムジェイアール ファームジェット ゲーエムベーハー Method and apparatus for generating microparticles or nanoparticles
WO2014185500A1 (en) * 2013-05-16 2014-11-20 旭硝子株式会社 Method for producing porous organic/inorganic hybrid particles and emulsification device
JPWO2014185500A1 (en) * 2013-05-16 2017-02-23 旭硝子株式会社 Method for producing porous organic-inorganic hybrid particles and emulsifying device

Similar Documents

Publication Publication Date Title
JPH0114250B2 (en)
JPH0569580B2 (en)
JP3105912B2 (en) High-strength silicone rubber granules and method for producing the same
JP3763484B2 (en) Fine particle catalyst for hydrosilylation reaction and heat curable silicone composition containing the same
EP0304959A2 (en) Finely divided silicone rubber additive material and method for producing same
EP0458336B1 (en) Method for preparing microparticles of a thermoplastic resin containing an encapsulated hydrosilylation reaction catalyst
CN113056512A (en) Cellulose-based thermally expandable microspheres
JPH01306471A (en) Production of silicone resin fine granule
JP2016216348A (en) Silica particle material and method for producing the same
JPH04183727A (en) Production of fine spherical silicone resin particle
JPH0393834A (en) Production of fine powder of silicone elastomer
JPWO2004055099A1 (en) Composite cured silicone powder, method for producing the same, and aqueous composition
JPH02240142A (en) Manufacture of non-tacky particle based on organopolysiloxane composition crosslinked by polycondensation reaction
AU609962B2 (en) Method for microencapsulating a compound of a platinum group metal
JP2787707B2 (en) Method for producing conductive silicone rubber granules
JPH04180935A (en) Preparation of fine spherical silicone resin particle
JP3679175B2 (en) Method for classifying silicone fine particles
JPH04202226A (en) Recovery of microspherical silicone resin particle
JPH04202227A (en) Recovery of microspherical silicone resin particle
JPH04183726A (en) Production of fine spherical silicone resin particle
JPH04198324A (en) Production of fine powder of silicone elastomer
JP2004231760A (en) Biodegradable resin powder and its production method
JPH04202225A (en) Recovery of microspherical silicone resin particle
JPH04193305A (en) Treatment of water suspension of silicone resin fine particles
JPH05194740A (en) Production of silicone rubber latex