JP6403516B2 - High-strength plate steel, manufacturing method thereof and discharge valve parts - Google Patents

High-strength plate steel, manufacturing method thereof and discharge valve parts Download PDF

Info

Publication number
JP6403516B2
JP6403516B2 JP2014195248A JP2014195248A JP6403516B2 JP 6403516 B2 JP6403516 B2 JP 6403516B2 JP 2014195248 A JP2014195248 A JP 2014195248A JP 2014195248 A JP2014195248 A JP 2014195248A JP 6403516 B2 JP6403516 B2 JP 6403516B2
Authority
JP
Japan
Prior art keywords
plate
equivalent
value
hardness
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014195248A
Other languages
Japanese (ja)
Other versions
JP2016065289A (en
Inventor
直樹 平川
直樹 平川
祐太 吉村
祐太 吉村
弘泰 松林
弘泰 松林
広田 龍二
龍二 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2014195248A priority Critical patent/JP6403516B2/en
Publication of JP2016065289A publication Critical patent/JP2016065289A/en
Application granted granted Critical
Publication of JP6403516B2 publication Critical patent/JP6403516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐衝撃疲労特性に優れた高強度板状鋼材およびその製造方法に関する。また、その板状鋼材を用いた吐出弁部品に関する。   The present invention relates to a high-strength plate steel material excellent in impact fatigue resistance and a method for producing the same. Moreover, it is related with the discharge valve components using the plate-shaped steel material.

空調機、冷蔵庫などの熱交換機器には、冷媒を圧縮するために、吐出弁機構を有する圧縮機が搭載されることが多い。圧縮機の吐出弁において流路の開閉動作を担う金属部品(以下「吐出弁部品」という)は、開閉動作に伴って曲げ疲労負荷を受けるとともに、他の金属部材(弁押さえ)に繰返し打ち付けられることにより衝撃疲労負荷を受ける。   A heat exchange device such as an air conditioner or a refrigerator is often equipped with a compressor having a discharge valve mechanism in order to compress the refrigerant. A metal part responsible for opening / closing operation of the flow path in the discharge valve of the compressor (hereinafter referred to as “discharge valve part”) is subjected to bending fatigue load along with the opening / closing operation and is repeatedly struck against other metal members (valve retainers). Is subject to impact fatigue load.

吐出弁部品には耐疲労特性の良好な高強度鋼材が適用される。具体的には炭素鋼や13Cr系ステンレス鋼などの板状鋼材を所定形状に打抜いた後、バレル研磨やショットピーニングなどの表面硬化処理を施すことによって耐衝撃疲労特性を付与するのが一般的である。   High-strength steel with good fatigue resistance is applied to the discharge valve parts. Specifically, it is common to give impact fatigue resistance properties by punching plate steel such as carbon steel or 13Cr stainless steel into a predetermined shape and then subjecting it to surface hardening treatment such as barrel polishing or shot peening. It is.

一方、ステンレス鋼板の金属組織をオーステナイト相とマルテンサイト相の複相組織とすることにより、強度と延性を高いレベル両立させる技術が知られている(特許文献1)。ただし、この種のステンレス鋼材は、比較的軟質なオーステナイト相を残留させることでマルテンサイト系ステンレス鋼よりも優れた強度−延性バランスを狙ったものである。このような複相組織鋼種を表面硬化処理が必要な耐衝撃疲労用途に適用した例は報告されていない。   On the other hand, a technique is known in which a high-strength strength and ductility are achieved at a high level by making the metal structure of a stainless steel plate a multiphase structure of an austenite phase and a martensite phase (Patent Document 1). However, this type of stainless steel material aims at a better strength-ductility balance than martensitic stainless steel by leaving a relatively soft austenite phase. There has been no report on an example in which such a multiphase steel grade is applied to impact fatigue applications that require surface hardening treatment.

特開2011−184780号公報JP 2011-184780 A

昨今、圧縮機の性能向上に伴い吐出弁部品に加わる応力は増大する傾向にある。本発明は、このようなニーズに応えるべく、従来材の13Cr系ステンレス鋼よりも耐衝撃疲労特性の高い板状鋼材を、一般的なオーステナイト系ステンレス鋼(SUS304)よりも低廉な元素配合において実現しようというものである。   In recent years, the stress applied to the discharge valve parts tends to increase as the performance of the compressor improves. In order to meet these needs, the present invention realizes a plate steel material having higher impact fatigue resistance than the conventional 13Cr stainless steel with a cheaper elemental composition than general austenitic stainless steel (SUS304). It is to try.

発明者らの研究によれば、上記目的はマルテンサイト変態後にオーステナイト相が残留する組成に調整されたステンレス鋼を用いた板状鋼材によって達成できることがわかった。特に、耐衝撃疲労特性を顕著に改善するためには、物理的な外力を付与する表面硬化処理により表層部と内部の硬度差を大きくすることが極めて効果的であることが確認された。この表層部と内部の硬度差を大きくするためには、表面硬化処理前に残留オーステナイト相が存在している組織状態となっていることが極めて有効である。その残留オーステナイト量は少量(例えば0.5体積%以上好ましくは0.8体積%以上)でも構わない。残留オーステナイト相が少しでも存在している状態で表面硬化処理を施すと、表層部の残留オーステナイト相が加工誘起マルテンサイト変態を起こして体積膨張を伴いながら硬化するので、100%マルテンサイト組織の状態で表面硬化処理を施す場合に比べ、表層部の硬化の度合いが顕著となる。さらに、鋼材自体の強度および疲労限界応力を高めるためには表面硬化処理の前に適正条件での時効処理を施しておくことが有効である。本発明はこのような知見に基づいて完成したものである。   According to the studies by the inventors, it has been found that the above object can be achieved by a plate steel material using stainless steel adjusted to a composition in which an austenite phase remains after martensitic transformation. In particular, in order to significantly improve the impact fatigue resistance, it has been confirmed that it is extremely effective to increase the hardness difference between the surface layer portion and the inside by a surface hardening treatment that imparts a physical external force. In order to increase the difference in hardness between the surface layer portion and the inside, it is extremely effective to have a structure state in which a retained austenite phase exists before the surface hardening treatment. The amount of retained austenite may be small (for example, 0.5 volume% or more, preferably 0.8 volume% or more). When surface hardening treatment is performed in the state in which any residual austenite phase is present, the residual austenite phase in the surface layer undergoes processing-induced martensite transformation and hardens with volume expansion, so that the state of 100% martensite structure Compared with the case where the surface hardening treatment is performed, the degree of hardening of the surface layer portion becomes remarkable. Furthermore, in order to increase the strength and fatigue limit stress of the steel material itself, it is effective to perform an aging treatment under appropriate conditions before the surface hardening treatment. The present invention has been completed based on such findings.

すなわち本発明では、質量%で、C:0.010〜0.200%、Si:0.05〜1.00%、Mn:0.05〜5.00%、Ni:1.00〜6.00%、Cr:10.0〜18.0%、N:0.010〜0.200%、Mo:0〜2.00%、Cu:0〜4.00%、B:0〜0.05%、残部Feおよび不可避的不純物からなり、下記(1)式で定まるCr当量が13.0〜17.0、下記(2)式で定まるNi当量が7.0〜13.0、下記(3)式で定まるMs値が20.0〜130.0である化学組成を有し、
JIS Z2244:2009に従うビッカース硬さにおいて、板厚中心部の断面硬さH0(HV30)が350HV以上であり、表面硬さH1(HV0.01)と前記H0の差が70HV以上である表面硬化層を有する板状鋼材が提供される。その表面硬化層は、表面に加工歪を付与する表面硬化処理により形成されたものであることが好ましい。
Cr当量=Cr+Mo+1.5Si …(1)
Ni当量=Ni+30(C+N)+0.5Mn+0.3Cu …(2)
Ms値={3000[0.068−(C+N)]+50[0.47−Si]+60[1.33−Mn]+110[8.9−(Ni+Cu)]+75[14.6−Cr]−32}×5/9 …(3)
ここで、(1)〜(3)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入され、含有しない元素については0(ゼロ)が代入される。Mo、Cu、Bは任意含有元素である。
That is, in the present invention, by mass%, C: 0.000 to 0.200%, Si: 0.05 to 1.00%, Mn: 0.05 to 5.00%, Ni: 1.00 to 6. 00%, Cr: 10.0 to 18.0%, N: 0.010 to 0.200%, Mo: 0 to 2.00%, Cu: 0 to 4.00%, B: 0 to 0.05 %, The balance Fe and inevitable impurities, the Cr equivalent defined by the following formula (1) is 13.0 to 17.0, the Ni equivalent defined by the following formula (2) is 7.0 to 13.0, and the following (3 ) Having a chemical composition having an Ms value determined by the formula of 20.0 to 130.0,
In the Vickers hardness according to JIS Z2244: 2009, the cross-sectional hardness H 0 (HV30) at the center of the plate thickness is 350 HV or more, and the difference between the surface hardness H 1 (HV0.01) and the H 0 is 70 HV or more. A sheet steel having a hardened surface layer is provided. The surface hardened layer is preferably formed by a surface hardening treatment that imparts processing strain to the surface.
Cr equivalent = Cr + Mo + 1.5Si (1)
Ni equivalent = Ni + 30 (C + N) + 0.5Mn + 0.3Cu (2)
Ms value = {3000 [0.068- (C + N)] + 50 [0.47-Si] +60 [1.33-Mn] +110 [8.9- (Ni + Cu)] + 75 [14.6-Cr] -32 } × 5/9 (3)
Here, the content value of the element represented by mass% is assigned to the location of the element symbol in the formulas (1) to (3), and 0 (zero) is assigned to the element not contained. Mo, Cu, and B are optional elements.

板厚中心部の断面硬さH0(HV30)は、JIS Z2244:2009に規定されるようにビッカース硬さ試験において試験力294.2Nで測定した値を意味する。また、表面硬さH1(HV0.01)は、同様にマイクロビッカース硬さ試験において試験力0.09807Nで測定した値を意味する。 The cross-sectional hardness H 0 (HV30) at the center of the plate thickness means a value measured at a test force of 294.2 N in a Vickers hardness test as defined in JIS Z2244: 2009. Similarly, the surface hardness H 1 (HV0.01) means a value measured with a test force of 0.09807 N in the micro Vickers hardness test.

上記板状鋼材の板厚は、例えば0.1〜4.0mmとすることができる。0.5mm以上、あるいは1.0mm以上といった板厚範囲に管理してもよい。前記表面硬化層は、例えば、オーステナイト相が0.5〜60.0体積%、残部がマルテンサイト変態を経た磁性相で構成される金属組織を有する鋼材の表面に加工歪を付与する表面硬化処理により形成されたものである。表面硬化層は鋼材の表層部のみに形成されているため、表面硬化処理の前後において、板状鋼材全体におけるオーステナイト相と磁性相の比率はほとんど変わらないと見てよい。   The plate | board thickness of the said plate-shaped steel materials can be 0.1-4.0 mm, for example. The thickness may be controlled within a range of 0.5 mm or more, or 1.0 mm or more. The surface hardened layer is, for example, a surface hardening treatment that imparts processing strain to the surface of a steel material having a metal structure composed of a magnetic phase in which the austenite phase is composed of a magnetic phase that has undergone martensitic transformation in an amount of 0.5 to 60.0 vol% Is formed. Since the surface hardened layer is formed only on the surface layer portion of the steel material, it can be seen that the ratio of the austenite phase to the magnetic phase in the entire plate steel material is almost unchanged before and after the surface hardening treatment.

本明細書でいう「マルテンサイト変態を経た磁性相」は、(a)複相化処理の冷却過程で生成した「冷却マルテンサイト相」に由来する磁性相、(b)冷間圧延で生じた「加工誘起マルテンサイト相」に由来する磁性相、および(c)表面硬化処理によって生成した「加工誘起マルテンサイト相」、を意味する。複相化処理後に冷間圧延を行わない場合は(b)の磁性相は存在しない。上記(a)、(b)の磁性相は時効処理によっていわゆる焼戻しマルテンサイト相あるいはそれに近い構造の相になっていると考えられる。時効処理によってマルテンサイト相中から析出した炭化物相(セメンタイト)も「マルテンサイト変態を経た磁性相」の構成要素となる。この磁性相の量(体積%)は後述の磁気測定によって求めることができる。オーステナイト相は非磁性相であるから、オーステナイト相の量(体積%)は、100体積%から磁性相の量を差し引いた値として定まる。   The “magnetic phase that has undergone the martensitic transformation” as used herein is (a) a magnetic phase derived from the “cooled martensite phase” generated in the cooling process of the biphasic treatment, and (b) produced by cold rolling. It means the magnetic phase derived from the “work-induced martensite phase” and (c) the “work-induced martensite phase” generated by the surface hardening treatment. When cold rolling is not performed after the duplexing treatment, the magnetic phase (b) does not exist. The magnetic phases (a) and (b) are considered to be a so-called tempered martensite phase or a phase having a structure close thereto by aging treatment. The carbide phase (cementite) precipitated from the martensite phase by the aging treatment is also a constituent element of the “magnetic phase that has undergone the martensite transformation”. The amount (volume%) of this magnetic phase can be determined by magnetic measurement described later. Since the austenite phase is a nonmagnetic phase, the amount (volume%) of the austenite phase is determined as a value obtained by subtracting the amount of the magnetic phase from 100 volume%.

鋳造時に少量のδフェライト相が生成することがある。δフェライト相は最終製品の金属組織中にもわずかに残留する場合があると考えられるが、その量は多くても2.0体積%である。δフェライト相は、マルテンサイト相や炭化物相(セメンタイト)と同様に磁性相であるから、δフェライト相が存在する場合は、後述の磁気測定により定まる磁性相の量には、2.0体積%以下のδフェライト相の量が含まれることになる。しかし、そのような少量のδフェライト相の存在は本発明の効果を阻害しないので、無視することができる。そこで、本明細書では便宜上、0〜2.0体積%のδフェライト相を含めた磁性相を「マルテンサイト変態を経た磁性相」として扱う。   A small amount of δ ferrite phase may be formed during casting. It is considered that the δ ferrite phase may remain slightly in the metal structure of the final product, but the amount is at most 2.0% by volume. Since the δ ferrite phase is a magnetic phase like the martensite phase and the carbide phase (cementite), when the δ ferrite phase is present, the amount of the magnetic phase determined by the magnetic measurement described later is 2.0% by volume. The following δ ferrite phase amounts will be included. However, the presence of such a small amount of δ ferrite phase does not inhibit the effect of the present invention and can be ignored. Therefore, in the present specification, for convenience, a magnetic phase including 0 to 2.0% by volume of a δ ferrite phase is treated as a “magnetic phase that has undergone martensitic transformation”.

また、本発明では上記板状鋼材を用いた、圧縮機の吐出弁部品が提供される。   Moreover, in this invention, the discharge valve component of a compressor using the said plate-shaped steel material is provided.

上記板状鋼材の製造方法として、上記化学組成を有する鋼板を、オーステナイト安定温度域で溶体化処理したのち前記Ms値で表される温度(℃)より低温に冷却して、オーステナイト相が0.5〜60.0体積%残留するようにマルテンサイト相を生成させる工程(複相化処理工程)、
350〜550℃に加熱して下記(4)式を満たす条件で時効処理を行い、JIS Z2244:2009に従うビッカース硬さにおいて板厚中心部の断面硬さH0(HV30)を350HV以上とする工程(時効処理工程)、
表面に加工歪を付与する表面硬化処理を施すことにより、JIS Z2244:2009に従うビッカース硬さにおいて表面硬さH1(HV0.01)と前記H0の差が70HV以上である表面硬化層を形成する工程(表面硬化処理工程)、
を上記の順に有する板状鋼材の製造方法が提供される。
13000<T(logt+20)<16000 …(4)
ここで、(4)式において、Tは時効処理温度(K)、tは時効処理均熱時間(h)である。
As a method for producing the plate steel, the steel plate having the above chemical composition is solution-treated in the austenite stable temperature range, and then cooled to a temperature lower than the temperature (° C.) represented by the Ms value, so that the austenite phase is 0.00. A step of generating a martensite phase so as to remain at 5 to 60.0% by volume (a multiphase treatment step),
A process of heating to 350 to 550 ° C. and performing an aging treatment under the conditions satisfying the following formula (4) to set the cross-sectional hardness H 0 (HV30) at the center of the thickness in the Vickers hardness according to JIS Z2244: 2009 to 350 HV or more. (Aging treatment process),
By performing a surface hardening treatment that imparts processing strain to the surface, a surface hardened layer is formed in which the difference between the surface hardness H 1 (HV0.01) and the H 0 is 70 HV or more in the Vickers hardness according to JIS Z2244: 2009 Process (surface hardening treatment process),
Are provided in the above order.
13000 <T (logt + 20) <16000 (4)
Here, in the equation (4), T is an aging treatment temperature (K), and t is an aging treatment soaking time (h).

必要に応じて、上記複相化処理工程と時効処理工程の間に、以下の冷間圧延工程を挿入することができる。
圧延率40%以下の冷間圧延を施して、オーステナイト相が0.5〜60.0体積%残留するように加工誘起マルテンサイト相を生成させる工程(冷間圧延工程)。
この場合、冷間圧延にて加工誘起マルテンサイト変態が生じることを考慮して、複相化処理工程ではオーステナイト相が10.0〜70.0体積%残留するようにマルテンサイト相を生成させることが好ましい。
If necessary, the following cold rolling step can be inserted between the above-mentioned multiphase treatment step and the aging treatment step.
A step of performing cold rolling at a rolling rate of 40% or less to generate a work-induced martensite phase so that the austenite phase remains in an amount of 0.5 to 60.0% by volume (cold rolling step).
In this case, considering that the work-induced martensitic transformation occurs in the cold rolling, the martensite phase is generated so that 10.0 to 70.0% by volume of the austenite phase remains in the multiphase treatment process. Is preferred.

オーステナイト相の量(体積%)は磁気測定によって定めることができる。具体的には以下の手法に従う。
〔オーステナイト相の量の測定〕
振動試料型磁力計(VSM)に被測定材料から採取した試験片をセットし、磁気モーメントM(A・m2)を求める。この実測Mの値と、試料の質量W(kg)から下記(5)式により試料の飽和磁化I(A・m2/kg)を求める。
I=M/W …(5)
一方、上記組成範囲のステンレス鋼における磁性相の理論的な飽和磁化の値として、成分組成の回帰式である下記(6)式により定まるIS(A・m2/kg)を採用する。
S=214.5−3.12(Cr+Mo+0.5Ni)−12C−1.9Mn−6N−3P−7S−2.6Si−2.3Cu …(6)
ここで、(6)式の元素記号の箇所には質量%で表される当該元素の含有量の値が代入される。
上記飽和磁化IおよびISを下記(7)式に代入することにより、磁性相の量VM(体積)を定める。
磁性相の量VM(体積%)=(I/IS)×100 …(7)
オーステナイト相の量VA(体積%)は下記(8)式により定まる。
オーステナイト相の量VA(体積%)=100−VM …(8)
The amount (volume%) of the austenite phase can be determined by magnetic measurement. Specifically, the following method is followed.
[Measurement of amount of austenite phase]
A specimen taken from the material to be measured is set on a vibrating sample magnetometer (VSM), and the magnetic moment M (A · m 2 ) is obtained. The saturation magnetization I (A · m 2 / kg) of the sample is obtained from the value of the actual measurement M and the mass W (kg) of the sample by the following equation (5).
I = M / W (5)
On the other hand, I S (A · m 2 / kg) determined by the following equation (6) which is a regression equation of the component composition is adopted as the theoretical saturation magnetization value of the magnetic phase in the stainless steel having the above composition range.
I S = 214.5-3.12 (Cr + Mo + 0.5Ni) -12C-1.9Mn-6N-3P-7S-2.6Si-2.3Cu (6)
Here, the value of the content of the element expressed in mass% is substituted for the element symbol in the formula (6).
By substituting the saturation magnetizations I and I S into the following equation (7), the amount V M (volume) of the magnetic phase is determined.
Amount of magnetic phase V M (% by volume) = (I / I S ) × 100 (7)
The amount V A (volume%) of the austenite phase is determined by the following equation (8).
Austenite phase amount V A (volume%) = 100−V M (8)

本発明によれば、強度レベルが高く、曲げ疲労特性にも優れる高強度ステンレス鋼において、耐衝撃疲労特性を顕著に改善した板状鋼材が提供可能となった。この鋼材は強度レベルが高く、曲げ疲労特性にも優れるので、耐久性レベルの要求が高くなりつつある圧縮機の吐出弁部品として好適である。   ADVANTAGE OF THE INVENTION According to this invention, it became possible to provide the plate-shaped steel material which improved the impact fatigue characteristic notably in the high strength stainless steel with a high strength level and excellent bending fatigue characteristics. Since this steel material has a high strength level and excellent bending fatigue characteristics, it is suitable as a discharge valve part for a compressor whose demand for durability level is increasing.

衝撃疲労試験機に試験片をセットした状態を模式的に示す断面図。Sectional drawing which shows typically the state which set the test piece to the impact fatigue testing machine.

〔化学組成〕
本発明では、高温のオーステナイト安定温度域からの冷却でオーステナイト相の一部がマルテンサイトに変態し、残留オーステナイト相が存在するように組成調整された鋼種を適用する。以下、化学組成に関する「%」は特に断らない限り「質量%」を意味する。
[Chemical composition]
In the present invention, a steel type whose composition is adjusted so that a part of the austenite phase is transformed into martensite by cooling from a high temperature austenite stable temperature region and a residual austenite phase exists is applied. Hereinafter, “%” relating to chemical composition means “% by mass” unless otherwise specified.

Cは、鋼の強度を確保する上で重要な元素である。また、Ms点に対して影響力の大きい元素である。C含有量は、特に低C化していない一般的なステンレス鋼種と同等以上とすればよい。具体的には0.010%以上のC含有量を確保することが望ましく、0.030%以上とすることがより好ましい。一方、C含有量が多くなりすぎるとマルテンサイト相が硬質化し靭性を損なう要因となる。また、耐食性が低下して問題となる場合がある。C含有量は0.200%以下とする。   C is an important element in securing the strength of steel. Further, it is an element having a large influence on the Ms point. The C content may be equal to or greater than that of a general stainless steel type that is not particularly low C. Specifically, it is desirable to ensure a C content of 0.010% or more, and more preferably 0.030% or more. On the other hand, if the C content is too large, the martensite phase becomes hard and becomes a factor that impairs toughness. Moreover, corrosion resistance may fall and it may become a problem. The C content is 0.200% or less.

Siは、脱酸作用や、炭化物形成の抑制作用を有する。Si含有量は0.05%以上とすることが望ましい。ただし、過剰のSiはSi酸化物を主体とする硬質な介在物の生成を促し、強度、疲労特性の低下要因となる。種々検討の結果、Si含有量は1.00%以下とする。   Si has a deoxidizing action and a carbide forming suppressing action. The Si content is desirably 0.05% or more. However, excessive Si promotes the formation of hard inclusions mainly composed of Si oxides, and causes a decrease in strength and fatigue characteristics. As a result of various studies, the Si content is 1.00% or less.

Mnは、Ms点の制御や、適正溶体化温度の範囲拡大に有効な元素である。ただし、過剰のMn含有はMn系介在物による加工割れを招く要因となる。Mn含有量は0.05〜5.00%の範囲で調整することが望ましく、0.10〜3.50%の範囲に管理してもよい。   Mn is an element effective for controlling the Ms point and expanding the range of the appropriate solution temperature. However, excessive Mn content becomes a factor that causes work cracking due to Mn inclusions. The Mn content is desirably adjusted in the range of 0.05 to 5.00%, and may be controlled in the range of 0.10 to 3.50%.

Niは、靭性向上に有効である。また、Ms点の制御にも有効である。ただし、Niは高価な元素であるため、添加効果と経済性を考慮してNi含有量は1.00〜6.00%の範囲で調整することが望ましく、2.00〜5.00%の範囲に管理してもよい。   Ni is effective for improving toughness. It is also effective for controlling the Ms point. However, since Ni is an expensive element, it is desirable to adjust the Ni content in the range of 1.00 to 6.00% in consideration of the effect of addition and economy, and 2.00 to 5.00%. You may manage to the range.

Crは、耐食性の観点から10.0%以上の含有量を確保する必要がある。ただし、Cr含有量が増大すると鋳造時にδフェライトが生成しやすくなり、過剰のδフェライトの存在は強度低下を招く要因となる。発明者らの検討によれば、Cr含有量を18.0%以下に管理することにより、最終的な鋼板中のδフェライトの存在量が2.0体積%以下に抑えられ、δフェライト生成による悪影響を回避することができる。したがって、ここではCr含有量を18.0%以下に規定する。   It is necessary to secure a content of 10.0% or more from the viewpoint of corrosion resistance. However, if the Cr content increases, δ ferrite is likely to be generated during casting, and the presence of excess δ ferrite becomes a factor that causes a decrease in strength. According to the study by the inventors, by controlling the Cr content to 18.0% or less, the amount of δ ferrite in the final steel sheet can be suppressed to 2.0% by volume or less, and δ ferrite is generated. Adverse effects can be avoided. Therefore, here, the Cr content is specified to be 18.0% or less.

Nは、鋼の強度を高め、かつMs点に対しCと同等の影響力を有する。N含有量は0.010%以上とすることが望ましく、0.050%以上とすることがより好ましい。だだし、過剰のN含有は、熱間圧延時に表面欠陥の増大を招く場合があるので、N含有量は0.200%以下とすることが好ましく、0.150%以下とすることがより好ましい。   N increases the strength of the steel and has the same influence as C on the Ms point. The N content is preferably 0.010% or more, and more preferably 0.050% or more. However, since excessive N content may cause an increase in surface defects during hot rolling, the N content is preferably 0.200% or less, more preferably 0.150% or less. .

Moは、耐食性向上に有効な元素であり、必要に応じて添加することができる。Moを添加する場合、0.01%以上の含有量を確保することがより効果的である。だだし、Moは高価な元素であるため、2.00%以下の含有量とすることが望ましい。通常、Mo含有量は1.00%以下の範囲とすればよい。   Mo is an element effective for improving the corrosion resistance, and can be added as necessary. When adding Mo, it is more effective to secure a content of 0.01% or more. However, since Mo is an expensive element, the content is preferably 2.00% or less. Usually, the Mo content may be in the range of 1.00% or less.

Cuは、Ms点の制御や、適正溶体化温度の範囲拡大に有効な元素であり、必要に応じて添加することができる。Cuを添加する場合、0.01%以上の含有量を確保することがより効果的である。だだし、過剰のCu含有は耐食性低下や熱間加工性低下の要因となる。Cu含有量は4.00%まで許容されるが、通常、3.50%以下の範囲とすればよい。   Cu is an element effective for controlling the Ms point and expanding the range of the appropriate solution temperature, and can be added as necessary. When adding Cu, it is more effective to secure a content of 0.01% or more. However, excessive Cu content causes a decrease in corrosion resistance and a decrease in hot workability. The Cu content is allowed up to 4.00%, but usually it may be 3.50% or less.

Bは、オーステナイト結晶粒の成長抑制や熱間加工性の改善に有効な元素であり、必要に応じて添加することができる。Bを添加する場合、0.005%以上の含有量を確保することがより効果的である。だだし、多量のB添加は延性に悪影響を及ぼすことがあるため、B含有量は0.05%以下の範囲とすることが望ましい。   B is an element effective for suppressing the growth of austenite crystal grains and improving hot workability, and can be added as necessary. When adding B, it is more effective to secure a content of 0.005% or more. However, since a large amount of B may adversely affect the ductility, the B content is preferably in the range of 0.05% or less.

下記(1)式のCr当量および(2)式のNi当量は、オーステナイト安定度に関する指標である。
Cr当量=Cr+Mo+1.5Si …(1)
Ni当量=Ni+30(C+N)+0.5Mn+0.3Cu …(2)
(1)式、(2)式の元素記号の箇所には質量%で表される当該元素の含有量の値が代入される。無添加の元素についてはゼロが代入される。
本発明ではCr当量が13.0〜17.0、かつNi当量が7.0〜13.0に調整された鋼を採用する。この組成調整により、オーステナイト安定温度域からMs点未満の所定温度に冷却したときに残留オーステナイト相の量が0.5〜70.0体積%であるオーステナイト+マルテンサイト複相組織を得ることができる。
The Cr equivalent of the following formula (1) and the Ni equivalent of the formula (2) are indicators concerning austenite stability.
Cr equivalent = Cr + Mo + 1.5Si (1)
Ni equivalent = Ni + 30 (C + N) + 0.5Mn + 0.3Cu (2)
The value of the content of the element represented by mass% is substituted for the element symbol in the expressions (1) and (2). Zero is assigned to an additive-free element.
In the present invention, steel having a Cr equivalent adjusted to 13.0 to 17.0 and a Ni equivalent adjusted to 7.0 to 13.0 is employed. By this composition adjustment, an austenite + martensite multiphase structure in which the amount of retained austenite phase is 0.5 to 70.0% by volume when cooled to a predetermined temperature below the Ms point from the austenite stable temperature range can be obtained. .

下記(3)式のMs値は、鋼のMs点(℃)を推定する指標である。
Ms値={3000[0.068−(C+N)]+50[0.47−Si]+60[1.33−Mn]+110[8.9−(Ni+Cu)]+75[14.6−Cr]−32}×5/9 …(3)
(3)式の元素記号の箇所には質量%で表される当該元素の含有量の値が代入される。無添加の元素についてはゼロが代入される。
本発明では、(3)式のMs値が20.0〜130.0となる組成の鋼を適用する。50.0〜130.0であることがより好適である。このMs値はMs点(℃)に相当する値である。例えばMs値が80.0であれば、その鋼のMs点を80℃と見積もることができる。Ms値が高すぎると、オーステナイト安定温度域からMs点未満の温度まで冷却したときの冷却マルテンサイト相の生成量が多くなり、所定量の残留オーステナイト相を安定して存在させる制御が難しくなる。一方、Ms値が低すぎると、冷却マルテンサイト相を生成させるための冷却終了温度を常温より低温に設定しなければならない場合があり、生産性を損なう。
The Ms value in the following equation (3) is an index for estimating the Ms point (° C.) of steel.
Ms value = {3000 [0.068- (C + N)] + 50 [0.47-Si] +60 [1.33-Mn] +110 [8.9- (Ni + Cu)] + 75 [14.6-Cr] -32 } × 5/9 (3)
The value of the content of the element represented by mass% is substituted for the element symbol in the formula (3). Zero is assigned to an additive-free element.
In the present invention, steel having a composition in which the Ms value in the formula (3) is 20.0 to 130.0 is applied. More preferably, it is 50.0 to 130.0. This Ms value is a value corresponding to the Ms point (° C.). For example, if the Ms value is 80.0, the Ms point of the steel can be estimated as 80 ° C. When the Ms value is too high, the amount of the cooled martensite phase generated when cooling from the austenite stable temperature range to a temperature below the Ms point increases, and it becomes difficult to control the presence of a predetermined amount of retained austenite phase stably. On the other hand, if the Ms value is too low, the cooling end temperature for generating the cooled martensite phase may have to be set lower than room temperature, which impairs productivity.

〔硬さ〕
本発明に従う板状鋼材は表面硬化層を有している。この表面硬化層は表面に加工歪を付与する表面硬化処理を施すことによって形成することができる。表面硬化処理により表層部のみを顕著に硬化させ、表層部と内部との硬度差を非常に大きくする。表面硬化層を除く内部の断面硬さはどの部分で測定しても概ね均等であるが、ここでは板厚中心部の断面硬さによって内部の硬さを評価する。断面硬さはJIS Z2244:2009に従うビッカース硬さ試験において、試験力294.2N(HV30)にて求めることができる。一方、表面硬化層の硬さは、板状鋼材の表層部に形成されている表面硬化層の表面から板厚方向にコーンを押し込む方法で測定する。表面硬化層は薄いため、JIS Z2244:2009に従うマイクロビッカース硬さ試験により、試験力0.09807N(HV0.01)にて求めることができる。本明細書では、前記板厚中心部の硬さを「断面硬さH0」、前記表面硬化層の硬さを「表面硬さH1」と呼んでいる。
〔Hardness〕
The plate steel according to the present invention has a hardened surface layer. This surface hardened layer can be formed by subjecting the surface to a surface hardening treatment that imparts processing strain. Only the surface layer portion is markedly cured by the surface hardening treatment, and the difference in hardness between the surface layer portion and the inside is greatly increased. Although the internal cross-sectional hardness excluding the surface hardened layer is almost uniform regardless of the portion, the internal hardness is evaluated by the cross-sectional hardness at the center of the plate thickness. The cross-sectional hardness can be obtained with a test force of 294.2 N (HV30) in a Vickers hardness test according to JIS Z2244: 2009. On the other hand, the hardness of the surface hardened layer is measured by a method of pushing a cone in the plate thickness direction from the surface of the surface hardened layer formed on the surface layer portion of the plate-shaped steel material. Since the hardened surface layer is thin, it can be obtained by a micro Vickers hardness test according to JIS Z2244: 2009 with a test force of 0.09807N (HV 0.01). In the present specification, the hardness of the central portion of the plate thickness is referred to as “cross-sectional hardness H 0 ”, and the hardness of the surface hardened layer is referred to as “surface hardness H 1 ”.

断面硬さH0は冷間圧延や時効処理によって調整することができる。ここではH0(HV30)が350HV以上である板状鋼材を対象とする。それより軟質であると圧縮機の吐出弁部品等の用途において強度不足となる場合がある。複相化処理後に時効処理を施すことによりH0が350HVの高強度が得られる。特に、複相化処理後に冷間圧延および時効処理を施すことにより500HV以上の高強度を容易に得ることができる。H0は350〜580HVで調整されていることが好ましい。
従来一般的な加工硬化型オーステナイト系ステンレス鋼の場合、SUS304では500HV以上の高強度を得ることは困難であり、SUS301でも60%以上の高い圧延率で冷間圧延しなければ500HV以上を安定して得ることは難しい。また、SUS420J2に代表される焼入れ強化型ステンレス鋼では炭素含有量の調整により高強度化は可能であるが、靱性を確保するため必須である焼戻し処理によってCr炭化物が多量に析出し、耐食性の低下を招く。本発明に従う鋼種では例えば圧延率10〜40%程度の冷間圧延と時効処理によって容易に500HV以上の強度レベルが得られ、時効処理でのCr炭化物の多量析出も回避されるので高耐食性が維持される。
The cross-sectional hardness H 0 can be adjusted by cold rolling or aging treatment. Here, a plate-shaped steel material having H 0 (HV30) of 350 HV or more is targeted. If it is softer than that, the strength may be insufficient in applications such as compressor discharge valve parts. By applying an aging treatment after the biphasic treatment, a high strength of H 0 of 350 HV can be obtained. In particular, high strength of 500 HV or more can be easily obtained by performing cold rolling and aging treatment after the multiphase treatment. H 0 is preferably adjusted to 350 to 580 HV.
In the case of conventional work-hardening type austenitic stainless steel, it is difficult to obtain high strength of 500 HV or higher with SUS304, and even with SUS301, if it is not cold-rolled at a high rolling rate of 60% or higher, 500 HV or higher is stabilized. It is difficult to get. In addition, quenching strengthened stainless steel represented by SUS420J2 can be increased in strength by adjusting the carbon content, but a large amount of Cr carbide precipitates due to tempering, which is essential to ensure toughness, resulting in a decrease in corrosion resistance. Invite. In the steel type according to the present invention, for example, a strength level of 500 HV or more can be easily obtained by cold rolling and aging treatment with a rolling rate of about 10 to 40%, and a large amount of Cr carbide in the aging treatment is avoided, so that high corrosion resistance is maintained. Is done.

表面硬さH1は物理的な外力を付与する表面硬化処理によって増大させることができる。発明者らの詳細な検討の結果、表面硬さH1(HV0.01)と前記H0の差が非常に大きいとき、耐衝撃疲労特性は顕著に改善される。圧縮機の吐出弁部品に好適な耐衝撃疲労特性を付与するためには、表面硬さH1(HV0.01)と前記H0の差H1−H0を70HV以上とすることが好ましく、150HV以上とすることがより好ましい。残留オーステナイト相が存在する状態で表面硬化処理を施すことによって、表面硬さH1を大幅に増大させることができる。 The surface hardness H 1 can be increased by a surface hardening treatment that applies a physical external force. As a result of detailed studies by the inventors, when the difference between the surface hardness H 1 (HV0.01) and the H 0 is very large, the impact fatigue resistance is remarkably improved. To impart suitable impact fatigue the discharge valve parts of the compressor, the surface hardness H 1 and (HV0.01) difference H 1 -H 0 of the H 0 is preferably set to at least 70HV, More preferably, it is 150HV or more. The surface hardness H 1 can be greatly increased by performing the surface hardening treatment in the state where the residual austenite phase exists.

〔金属組織〕
本発明に従う板状鋼材は、表面硬化層が形成されている表層部を除き、オーステナイト相が0.50〜60.0体積%、残部がマルテンサイト変態を経た磁性相である金属組織を有する。上記の相比は磁気測定により磁性相の量を測定することで求めることができる(前述)。表面硬化処理によって形成される表面硬化層は薄いので、表面硬化処理後の板状鋼材について磁気測定により測定した相比は、表面硬化層を除く内部の組織状態を反映していると見てよい。残留オーステナイト相が存在しないか、あるいはその量が少なすぎると、表面硬化処理による表面硬さH1の増大効果が低減して耐衝撃疲労特性の改善が不十分となる。オーステナイト相の量は0.50体積%以上であることを要し、0.80体積%以上であることがより好ましい。特にH1とH0の差H1−H0を150HV以上とするためにはオーステナイト相の量が10.0体積%以上であることが望ましい。ただし、オーステナイト相があまり多くなると強度不足を招きやすい。種々検討の結果、オーステナイト量は60.0体積%以下であることが望ましく、45.0体積%以下であることがより好ましい。
上記のオーステナイト相は、いわゆる「残留オーステナイト相」である。オーステナイト相以外の残部組織は前述の「マルテンサイト変態を経た磁性相」である。
[Metal structure]
The plate-like steel material according to the present invention has a metal structure in which the austenite phase is 0.50 to 60.0% by volume and the balance is a magnetic phase that has undergone martensitic transformation, except for the surface layer portion where the hardened surface layer is formed. The above phase ratio can be obtained by measuring the amount of the magnetic phase by magnetic measurement (described above). Since the surface hardened layer formed by the surface hardening treatment is thin, the phase ratio measured by magnetic measurement for the plate steel after the surface hardening treatment may be regarded as reflecting the internal structure state excluding the surface hardened layer. . If there is no residual austenite phase or its amount is too small, the effect of increasing the surface hardness H 1 by the surface hardening treatment is reduced and the impact fatigue resistance is not improved sufficiently. The amount of the austenite phase needs to be 0.50% by volume or more, and more preferably 0.80% by volume or more. In particular it is desirable difference H 1 -H 0 of an H 1 and H 0 to the least 150HV is the amount of austenite phase 10.0% by volume or more. However, when the austenite phase is too much, the strength is likely to be insufficient. As a result of various studies, the amount of austenite is preferably 60.0% by volume or less, and more preferably 45.0% by volume or less.
The austenite phase is a so-called “residual austenite phase”. The remaining structure other than the austenite phase is the aforementioned “magnetic phase that has undergone martensitic transformation”.

本発明に従う板状鋼材は、以下の各工程を経ることによって製造することができる。   The plate-like steel material according to the present invention can be manufactured through the following steps.

〔複相化処理工程〕
上述の化学組成を有する素材鋼板(熱延鋼板、冷延鋼板など)を、オーステナイト安定温度域に加熱して溶体化処理する。溶体化処理条件は例えば950〜1100℃、均熱0.3〜3minの範囲で設定すればよい。その後、Ms点より低温まで冷却する。溶体化処理後の冷却開始温度からMs点より低温の冷却終了温度までの平均冷却速度は2℃/sec以上とすることが好ましい。Ms点(℃)は上述(3)式で定義されるMs値を採用することができる。本発明に従う化学組成の鋼は、オーステナイト安定温度域からMs点未満の温度へ冷却することによりオーステナイト母相の一部がマルテンサイトに変態し、残留オーステナイト相+冷却マルテンサイト相の複相組織が得られる。従ってこの熱処理を複相化処理と呼んでいる。
[Multiphase treatment process]
A raw steel plate (hot-rolled steel plate, cold-rolled steel plate, etc.) having the above-described chemical composition is heated to an austenite stable temperature range and subjected to a solution treatment. What is necessary is just to set the solution treatment conditions, for example in the range of 950-1100 degreeC and soaking | uniform-heating 0.3-3min. Then, it cools to low temperature from Ms point. The average cooling rate from the cooling start temperature after the solution treatment to the cooling end temperature lower than the Ms point is preferably 2 ° C./sec or more. As the Ms point (° C.), the Ms value defined by the above equation (3) can be adopted. In the steel having the chemical composition according to the present invention, a part of the austenite matrix phase is transformed into martensite by cooling from the austenite stable temperature range to a temperature lower than the Ms point, and the double-phase structure of residual austenite phase + cooled martensite phase is obtained. can get. Therefore, this heat treatment is called double phase treatment.

複相化処理後に冷間圧延を省略して直接時効処理を施す場合には、この複相化処理によってオーステナイト相が0.5〜60.0体積%、より好ましくは0.8〜60.0体積%の範囲で残留するように冷却マルテンサイト相を生成させておくことが好ましい。後工程の時効処理でも、時効処理温度が比較的高い場合や時効処理時間が比較的長い場合には残留オーステナイト相の量が若干減少することがある。そのため、必要に応じて、この時効処理後の段階で残留オーステナイト相の量が例えば5.0体積%以上、あるいは10.0体積%以上確保されるように冷却マルテンサイト相の生成量を管理してもよい。   In the case where the cold aging is omitted and the direct aging treatment is performed after the duplexing treatment, the austenite phase is 0.5 to 60.0% by volume by this duplexing treatment, more preferably 0.8 to 60.0. It is preferable to generate a cooled martensite phase so that it remains in a volume% range. Even in the aging treatment in the subsequent process, the amount of retained austenite phase may be slightly reduced when the aging treatment temperature is relatively high or the aging treatment time is relatively long. Therefore, if necessary, the production amount of the cooled martensite phase is controlled so that the amount of retained austenite phase is, for example, 5.0% by volume or 10.0% by volume or more at the stage after the aging treatment. May be.

一方、次工程で冷間圧延を行う場合には、冷間圧延での加工誘起マルテンサイト変態によって残留オーステナイト相が減少することを考慮して、複相化処理後によってオーステナイト相が10.0〜70.0体積%残留するようにマルテンサイト相を生成させておくことが好ましい。   On the other hand, when cold rolling is performed in the next step, the austenite phase is reduced to 10.0 to 0 after the multiphase treatment in consideration of the decrease in the retained austenite phase due to the work-induced martensitic transformation in the cold rolling. It is preferable to generate the martensite phase so that 70.0% by volume remains.

複相化処理後の残留オーステナイト相の量は、前記(3)式のMs値の調整および冷却終了温度によってコントロールすることができる。   The amount of the retained austenite phase after the multi-phase treatment can be controlled by adjusting the Ms value and the cooling end temperature in the equation (3).

〔冷間圧延工程〕
複相化処理後の鋼板に対して、必要に応じて冷間圧延を施す。冷間圧延を行う場合は、冷間圧延後にオーステナイト相が0.5〜60.0体積%残留するように加工誘起マルテンサイト相を生成させる。冷間圧延率は40%以下の範囲で調整すればよい。35%以下の範囲に管理してもよい。この冷間圧延によって加工誘起マルテンサイト相が生成するとともに、加工硬化が加わって強度が増大する。例えば、時効処理後の硬さH0を500HV以上に調整する場合には冷間圧延率を10%以上とすることが効果的であり、15%以上とすることが一層効果的である。
[Cold rolling process]
Cold rolling is performed on the steel sheet after the multiphase treatment as necessary. When performing cold rolling, a work induction martensite phase is generated so that austenite phase may remain 0.5 to 60.0 volume% after cold rolling. The cold rolling rate may be adjusted within a range of 40% or less. You may manage in the range of 35% or less. This cold rolling generates a work-induced martensite phase and increases work hardening by adding work hardening. For example, when the hardness H 0 after the aging treatment is adjusted to 500 HV or more, it is effective to set the cold rolling rate to 10% or more, and it is more effective to set it to 15% or more.

〔時効処理工程〕
次いで、Ac1点未満の温度域に加熱することにより時効処理を施す。吐出弁部品の用途では時効処理に供する段階で板厚が例えば0.1〜4.0mmに調整されていることが好ましい。0.5〜4.0mmあるいは1.0〜4.0mmといった板厚範囲に管理してもよい。この時効処理ではマルテンサイト相中に過飽和に存在する炭素原子の一部をオーステナイト相中へと拡散させるとともに、いわゆる焼戻しと同様の構造変化を与えて靱性向上効果を得る。さらに、固溶炭素による「ひずみ時効」によって主としてマルテンサイト変態を経た磁性相のマトリックスを強化し、高強度化を図る。時効処理の温度範囲は350〜550℃とすることが望ましく、400〜500℃とすることがより好ましい。時効処理温度が低過ぎると上記の靱性向上効果やひずみ時効の効果が十分に得られない。時効処理温度が高すぎると炭化物の過度な析出などにより強度や耐食性の劣化を引き起こす。また、Ac1点を超えた場合には逆変態オーステナイト相が生成して強度が著しく低下する。上記の靱性向上効果とひずみ時効の効果は、時効処理温度とともに、時効処理時間の影響を大きく受ける。種々検討の結果、下記(4)式を満たす時効処理条件範囲において、板厚中心部の断面硬さH0(HV30)を350HV以上に調整することが好ましい。
13000<T(logt+20)<16000 …(4)
ここで、Tは絶対温度で表される時効処理温度(K)、tは時効処理均熱時間(h)である。
[Aging process]
Next, an aging treatment is performed by heating to a temperature range below Ac 1 point. In the use of the discharge valve part, it is preferable that the plate thickness is adjusted to, for example, 0.1 to 4.0 mm at the stage of aging treatment. You may manage to plate | board thickness range, such as 0.5-4.0 mm or 1.0-4.0 mm. In this aging treatment, a part of carbon atoms present in supersaturation in the martensite phase is diffused into the austenite phase, and a structural change similar to so-called tempering is given to obtain a toughness improving effect. Furthermore, by strengthening the matrix of the magnetic phase that has undergone the martensitic transformation by “strain aging” by solute carbon, the strength is increased. The temperature range of the aging treatment is preferably 350 to 550 ° C, more preferably 400 to 500 ° C. When the aging treatment temperature is too low, the above-described toughness improving effect and strain aging effect cannot be sufficiently obtained. If the aging temperature is too high, strength and corrosion resistance are deteriorated due to excessive precipitation of carbides. On the other hand, when the Ac 1 point is exceeded, a reverse-transformed austenite phase is generated and the strength is significantly reduced. The above-mentioned toughness improving effect and strain aging effect are greatly affected by the aging treatment time as well as the aging treatment temperature. As a result of various studies, it is preferable to adjust the cross-sectional hardness H 0 (HV30) of the center portion of the plate thickness to 350 HV or more in the aging treatment condition range that satisfies the following expression (4).
13000 <T (logt + 20) <16000 (4)
Here, T is an aging treatment temperature (K) expressed in absolute temperature, and t is an aging treatment soaking time (h).

〔表面硬化処理工程〕
時効処理後の鋼板に対して、必要に応じてプレス打抜きなどの手段を用いて所定の部品形状に加工したのち、表面硬化処理を施す。この表面硬化処理は、板状鋼材の表面に加工歪を付与する手法で行う。例えば、乾式または湿式研磨、ショットピーニングなどが挙げられる。通常、このような物理的に外力を付与する手法で表面硬化処理を施すと、表層部が加工硬化するとともに、表層部のみが塑性変形することにより表面に圧縮残留応力が付与される。このような表面硬化層は疲労特性の向上に有効である。しかし、耐衝撃疲労特性という、繰り返しの表面打撃に耐え得る疲労特性に関しては、単に表面硬化層を形成するだけでは十分に満足できる改善効果は得られない。
[Surface curing treatment process]
The steel sheet after the aging treatment is processed into a predetermined part shape using means such as press punching, if necessary, and then subjected to surface hardening treatment. This surface hardening treatment is performed by a method of imparting processing strain to the surface of the plate-shaped steel material. For example, dry or wet polishing, shot peening and the like can be mentioned. Usually, when surface hardening treatment is performed by such a method of physically applying an external force, the surface layer portion is work hardened, and only the surface layer portion is plastically deformed, so that compressive residual stress is applied to the surface. Such a hardened surface layer is effective in improving fatigue characteristics. However, with respect to the fatigue property that can withstand repeated surface impacts, such as impact fatigue resistance, a satisfactory improvement effect cannot be obtained simply by forming a hardened surface layer.

発明者らは、表面硬化層自体の硬さと鋼材内部(すなわち表面硬化層の下地)の硬さの差が大きい場合に、耐衝撃疲労特性が顕著に向上することを見出した。上述のように、JIS Z2244:2009に従うビッカース硬さにおいて表面硬さH1(HV0.01)と前記H0の差H1−H0が70HV以上である表面硬化層を形成することが、耐衝撃疲労特性の改善に有効であり、H1−H0が150HV以上であることが更に効果的である。詳細な検討の結果、上述の工程に従って時効処理を終えた複相組織鋼材に対して加工歪を付与する表面効果処理を施したとき、表面と内部の硬さの差H1−H0を顕著に増大させることが可能となる。そのメカニズムについては十分に解明されていないが、マルテンサイト変態を経た磁性相とともにマトリックスを構成する「残留オーステナイト相」の存在が有効に機能しているものと考えられる。すなわち、表層部の残留オーステナイト相は研磨等の物理的な外力によって一部が加工誘起マルテンサイト相に変態し、その変態に伴う体積膨張とマルテンサイト相の加工硬化が表層部の顕著な硬度上昇に寄与しているのではないかと推察される。この表層部の硬度上昇をもたらす歪場は、表面残留圧縮応力の増大にも有効となる。表面硬化処理に供する前に必要となる残留オーステナイト相の量は前述のように少量でもよく、例えば0.5体積%でも有効である。0.8体積%以上であることがより効果的である。 The inventors have found that the impact fatigue resistance is remarkably improved when the difference between the hardness of the surface hardened layer itself and the hardness inside the steel material (that is, the base of the surface hardened layer) is large. As described above, JIS Z2244: surface hardness in Vickers hardness according to 2009 H 1 (HV0.01) the difference H 1 -H 0 of the H 0 is to form a surface hardened layer is at least 70HV, resistance It is effective for improving impact fatigue characteristics, and it is more effective that H 1 -H 0 is 150 HV or more. As a result of detailed examination, when surface effect treatment that imparts processing strain is performed on the multiphase steel material that has been subjected to aging treatment according to the above-described steps, the difference in hardness between the surface and the interior, H 1 -H 0, is remarkable. Can be increased. Although the mechanism has not been fully elucidated, the existence of “residual austenite phase” constituting the matrix together with the magnetic phase that has undergone martensitic transformation is considered to function effectively. That is, the retained austenite phase in the surface layer part is transformed into a work-induced martensite phase by physical external forces such as polishing, and the volume expansion and work hardening of the martensite phase associated with the transformation significantly increase the hardness of the surface layer part. It is assumed that it contributes to The strain field that brings about an increase in the hardness of the surface layer portion is also effective in increasing the surface residual compressive stress. The amount of the retained austenite phase required before being subjected to the surface hardening treatment may be small as described above, for example, 0.5 volume% is effective. It is more effective to be 0.8% by volume or more.

研磨、ショットピーニングなどによる表面への加工歪の付与量が増大するほど、表面硬さH1も上昇する。従って、表面と内部の硬度差H1−H0が上記所定の値以上となるように表面硬化処理での加工歪付与量を調整する。
このようにして、吐出弁部品等の用途において極めて有用な高強度板状鋼材を得ることができる。
As the amount of processing strain applied to the surface by polishing, shot peening or the like increases, the surface hardness H 1 also increases. Therefore, the amount of processing strain applied in the surface hardening process is adjusted so that the difference in hardness H 1 -H 0 between the surface and the interior is equal to or greater than the predetermined value.
In this way, it is possible to obtain a high-strength plate steel material that is extremely useful in applications such as discharge valve parts.

表1に示す鋼を溶製し、熱間圧延、焼鈍、酸洗、冷間圧延の工程により板厚1.5mmの冷延鋼板を得た。この冷延鋼板に対し、オーステナイト安定温度域にある1000℃で均熱1minの溶体化処理を施した後、常温まで冷却した。溶体化処理温度から常温までの平均冷却速度は2℃/sec以上である。この複相化処理後に、一部の鋼板については冷間圧延を施した。その後、時効処理を施した。表2中に冷間圧延率および時効処理条件を示してある。冷間圧延率が0%のものは複相化処理後の組織状態のまま時効処理に供したことを意味する。   The steel shown in Table 1 was melted, and a cold-rolled steel sheet having a thickness of 1.5 mm was obtained by the steps of hot rolling, annealing, pickling, and cold rolling. The cold-rolled steel sheet was subjected to a solution treatment at 1000 ° C. in the austenite stable temperature range for 1 minute soaking, and then cooled to room temperature. The average cooling rate from the solution treatment temperature to room temperature is 2 ° C./sec or more. After this double phase treatment, some steel plates were cold rolled. Thereafter, an aging treatment was performed. Table 2 shows the cold rolling rate and aging treatment conditions. When the cold rolling rate is 0%, it means that it was subjected to aging treatment with the structure after the double phase treatment.

時効処理後の鋼板の板厚方向両側の表面について、湿式研磨する方法にて表面硬化処理を施した。湿式研磨は、使用する研磨紙の粒度をJIS R6010に従う粒度においてP120、P240、P400、P600の順で細かくしていく方法で行った。各鋼板とも同じ条件で表面硬化処理を施した。一部の比較例では表面硬化処理を省略した。このようにして得られた板状鋼材から採取した試験片を用いて、オーステナイト量、板厚中心部の断面硬さH0(HV30)、表面硬さH1(HV0.01)、残留応力、疲労限界応力、耐衝撃疲労特性を以下の方法で調べた。 About the surface of the plate | board thickness direction both sides of the steel plate after an aging treatment, the surface hardening process was performed by the method of wet-polishing. Wet polishing was performed by a method in which the grain size of the abrasive paper used was made finer in the order of P120, P240, P400, and P600 in the grain size according to JIS R6010. Each steel plate was surface hardened under the same conditions. In some comparative examples, the surface hardening treatment was omitted. Using test pieces collected from the plate steel thus obtained, the amount of austenite, the section hardness H 0 (HV30) at the center of the sheet thickness, the surface hardness H 1 (HV0.01), the residual stress, The fatigue limit stress and impact fatigue resistance were investigated by the following methods.

〔オーステナイト量〕
VSMを用いて上述の手法により磁気測定を行い、前記(8)式によりオーステナイト相の量(体積%)を定めた。
[Austenite amount]
Magnetic measurement was performed by the above-described method using VSM, and the amount (volume%) of the austenite phase was determined by the above equation (8).

〔硬さ〕
断面硬さH0(HV30)および表面硬さH1(HV0.01)は上述の方法にてJIS Z2244:2009に従うビッカース硬さ測定にて求めた。その際、断面硬さH0は、圧延方向と板厚方向に平行な断面(L断面)について、板厚中心部から無作為に選んだ10点の測定点における測定値の平均値を採用した。表面硬さH1は、後述の衝撃疲労試験において治具1に打ち付けられる側の表面について、無作為に選んだ10点の測定点における測定値の平均値を採用した。
〔Hardness〕
The cross-sectional hardness H 0 (HV30) and the surface hardness H 1 (HV0.01) were determined by Vickers hardness measurement according to JIS Z2244: 2009 by the method described above. At that time, as the cross-sectional hardness H 0 , the average value of the measured values at 10 measurement points randomly selected from the center of the plate thickness was adopted for the cross-section (L cross-section) parallel to the rolling direction and the plate thickness direction. . As the surface hardness H 1 , an average value of measured values at 10 measurement points randomly selected for the surface on the side to be struck against the jig 1 in the impact fatigue test described later was adopted.

〔残留応力〕
残留応力は、X線を用いて以下の方法で求めた。Ψ角毎の回折角を縦軸2θ、横軸sin2Ψのグラフにプロットし、各点の座標から最小二乗法により直線を定め、その直線の勾配Mを算出する。表層部の残留応力σ(N/mm2)は下記(9)式により表される。残留応力値において、負の値は圧縮応力、正の値は引張応力を意味する。
残留応力σ=応力定数×M …(9)
詳細な測定条件は以下の通りである。解析方法:並傾法、コリメータサイズ:4mmφ、係数時間:200sec、ステップ:0.03°、測定角度:147.59〜167.78°、2θ:158°、振動幅:2°、Ψ角度:0〜45°(5°ピッチ)、管球:Cr、特性X線:Kα、管球電圧:30kV、管球電流:10mA、応力定数:−219MPa、ピークサーチ法:半価幅中点法。
[Residual stress]
Residual stress was determined by the following method using X-rays. The diffraction angle for each Ψ angle is plotted on a graph with the vertical axis 2θ and the horizontal axis sin 2 Ψ, a straight line is determined from the coordinates of each point by the least square method, and the gradient M of the straight line is calculated. The residual stress σ (N / mm 2 ) of the surface layer portion is expressed by the following equation (9). In the residual stress value, a negative value means a compressive stress, and a positive value means a tensile stress.
Residual stress σ = stress constant × M (9)
Detailed measurement conditions are as follows. Analysis method: parallel tilt method, collimator size: 4 mmφ, coefficient time: 200 sec, step: 0.03 °, measurement angle: 147.59 to 167.78 °, 2θ: 158 °, vibration width: 2 °, Ψ angle: 0 to 45 ° (5 ° pitch), tube: Cr, characteristic X-ray: Kα, tube voltage: 30 kV, tube current: 10 mA, stress constant: −219 MPa, peak search method: half-value width midpoint method.

〔疲労限界応力〕
平面曲げ疲労試験機を用いてJIS Z2275に従い疲労限界応力を測定した。試験片は長手方向を圧延平行方向とし、幅30mm、長さ90mm、幅方向両端にR=42.5mmのR部を有し、R部の最小板幅20mmのものを使用した。
[Fatigue limit stress]
The fatigue limit stress was measured according to JIS Z2275 using a plane bending fatigue tester. The test piece had a longitudinal direction parallel to the rolling direction, a width of 30 mm, a length of 90 mm, R portions with R = 42.5 mm at both ends of the width direction, and a minimum plate width of R portion of 20 mm.

〔耐衝撃疲労特性〕
直径10mmの円板状試験片を衝撃疲労試験に供した。図1に衝撃疲労試験機に試験片をセットした状態を模式的に示す。中央に内径4.0mmの貫通孔10を有する鋼製治具1と、中央にシリンダ状空洞20、その内部にばね21を有する鋼製治具2を用意し、図のように円板状試験片3をセットする。ばね21のばね定数は1.896である。矢印の方向に空気圧を付与して試験片3を押し上げたのち、空気圧を解除してばね21の復元力により試験片3を元の位置に押し戻すという動作を繰り返す。試験片3が元の位置に戻る際に、その表面が治具1の表面に打ち付けられる。この押し上げ−押し戻しの動作を107回繰り返したのち、試験片3を治具から取り出してマイクロスコープで表面観察を行った。表面に割れや欠けなどの表面損傷が観測されたものを×評価(耐衝撃疲労特性;不良)、観測されなかったものを○評価(耐衝撃疲労特性;良好)とし、○評価を合格と判定した。これらの結果を表2に示す。
(Shock fatigue resistance)
A disk-shaped test piece having a diameter of 10 mm was subjected to an impact fatigue test. FIG. 1 schematically shows a state in which a test piece is set in an impact fatigue testing machine. A steel jig 1 having a through-hole 10 having an inner diameter of 4.0 mm in the center, a steel jig 2 having a cylindrical cavity 20 in the center and a spring 21 in the center, and a disk-shaped test as shown in the figure. Set piece 3. The spring constant of the spring 21 is 1.896. After the test piece 3 is pushed up by applying air pressure in the direction of the arrow, the operation of releasing the air pressure and pushing the test piece 3 back to the original position by the restoring force of the spring 21 is repeated. When the test piece 3 returns to its original position, its surface is struck against the surface of the jig 1. After this push-up-push-back operation was repeated 10 7 times, the test piece 3 was taken out of the jig and the surface was observed with a microscope. Those with surface damage such as cracks or chips on the surface were evaluated as x evaluation (impact fatigue resistance; poor), and those that were not observed were evaluated as ○ evaluation (impact fatigue resistance; good). did. These results are shown in Table 2.

Figure 0006403516
Figure 0006403516

Figure 0006403516
Figure 0006403516

本発明例の板状鋼材はいずれも板厚中心部の断面硬さH0が高く、高強度である。疲労限界応力も高い。また、硬度差H1−H0が大きく、高い表面残留応力を有し、耐衝撃疲労特性に優れる。 All of the plate-like steel materials of the present invention have a high cross-sectional hardness H 0 at the center portion of the plate thickness and high strength. The fatigue limit stress is also high. In addition, the hardness difference H 1 -H 0 is large, it has a high surface residual stress, and is excellent in impact fatigue resistance.

比較例bは表面硬化処理を省略したものであり、耐衝撃疲労特性が改善されていない。比較例cは時効処理条件が(4)式を外れて過剰であったものであり、高強度化が不十分となり、疲労限界応力も低い。比較例m、n、oは本発明の規定を外れる鋼種を適用したものであり、残留オーステナイト相が存在しない。これらは硬度差H1−H0が小さく、耐衝撃疲労特性に劣る。 In Comparative Example b, the surface hardening treatment is omitted, and the impact fatigue resistance is not improved. In Comparative Example c, the aging treatment conditions were excessive beyond the formula (4), the increase in strength was insufficient, and the fatigue limit stress was low. Comparative examples m, n, and o are those in which steel types that do not fall within the scope of the present invention are applied, and there is no residual austenite phase. These have a small hardness difference H 1 −H 0 and are inferior in impact fatigue resistance.

1 鋼製治具
2 鋼製治具
3 円板状試験片
10 貫通孔
20 シリンダ状空洞
21 ばね
DESCRIPTION OF SYMBOLS 1 Steel jig 2 Steel jig 3 Disk-shaped test piece 10 Through-hole 20 Cylinder-shaped cavity 21 Spring

Claims (7)

質量%で、C:0.010〜0.200%、Si:0.05〜1.00%、Mn:0.05〜5.00%、Ni:1.00〜6.00%、Cr:10.0〜18.0%、N:0.010〜0.200%、残部Feおよび不可避的不純物からなり、下記(1)式で定まるCr当量が13.0〜17.0、下記(2)式で定まるNi当量が7.0〜13.0、下記(3)式で定まるMs値が20.0〜130.0である化学組成を有し、
JIS Z2244:2009に従うビッカース硬さにおいて、板厚中心部の断面硬さH0(HV30)が350HV以上であり、表面硬さH1(HV0.01)と前記H0の差が70HV以上である表面硬化層を有する板状鋼材。
Cr当量=Cr+Mo+1.5Si …(1)
Ni当量=Ni+30(C+N)+0.5Mn+0.3Cu …(2)
Ms値={3000[0.068−(C+N)]+50[0.47−Si]+60[1.33−Mn]+110[8.9−(Ni+Cu)]+75[14.6−Cr]−32}×5/9 …(3)
ここで、(1)〜(3)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入され、含有しない元素については0(ゼロ)が代入される。
In mass%, C: 0.010 to 0.200%, Si: 0.05 to 1.00%, Mn: 0.05 to 5.00%, Ni: 1.00 to 6.00%, Cr: It consists of 10.0 to 18.0%, N: 0.010 to 0.200%, the balance Fe and inevitable impurities. The Cr equivalent determined by the following formula (1) is 13.0 to 17.0, and the following (2 ) Having a chemical composition in which the Ni equivalent determined by the formula is 7.0 to 13.0, the Ms value determined by the following formula (3) is 20.0 to 130.0,
In the Vickers hardness according to JIS Z2244: 2009, the cross-sectional hardness H 0 (HV30) at the center of the plate thickness is 350 HV or more, and the difference between the surface hardness H 1 (HV0.01) and the H 0 is 70 HV or more. A plate-shaped steel material having a hardened surface layer.
Cr equivalent = Cr + Mo + 1.5Si (1)
Ni equivalent = Ni + 30 (C + N) + 0.5Mn + 0.3Cu (2)
Ms value = {3000 [0.068- (C + N)] + 50 [0.47-Si] +60 [1.33-Mn] +110 [8.9- (Ni + Cu)] + 75 [14.6-Cr] -32 } × 5/9 (3)
Here, the content value of the element represented by mass% is assigned to the location of the element symbol in the formulas (1) to (3), and 0 (zero) is assigned to the element not contained.
更に、Mo:2.00%以下、Cu:4.00%以下、B:0.05%以下の1種以上を含有する化学組成を有する請求項1に記載の板状鋼材。   Furthermore, the plate-shaped steel materials of Claim 1 which have a chemical composition containing 1 or more types of Mo: 2.00% or less, Cu: 4.00% or less, and B: 0.05% or less. 板厚が0.1〜4.0mmである請求項1または2に記載の板状鋼材。 The plate steel according to claim 1 or 2 , wherein the plate thickness is 0.1 to 4.0 mm. 請求項1〜のいずれか1項に記載の板状鋼材を用いた、圧縮機の吐出弁部品。 A discharge valve part for a compressor using the plate-like steel material according to any one of claims 1 to 3 . 質量%で、C:0.010〜0.200%、Si:0.05〜1.00%、Mn:0.05〜5.00%、Ni:1.00〜6.00%、Cr:10.0〜18.0%、N:0.010〜0.200%、残部Feおよび不可避的不純物からなり、下記(1)式で定まるCr当量が13.0〜17.0、下記(2)式で定まるNi当量が7.0〜13.0、下記(3)式で定まるMs値が20.0〜130.0である化学組成を有する鋼板を、オーステナイト安定温度域で溶体化処理したのち前記Ms値で表される温度(℃)より低温に冷却して、オーステナイト相が0.5〜60.0体積%残留するようにマルテンサイト相を生成させる工程(複相化処理工程)、
350〜550℃に加熱して下記(4)式を満たす条件で時効処理を行い、JIS Z2244:2009に従うビッカース硬さにおいて板厚中心部の断面硬さH0(HV30)を350HV以上とする工程(時効処理工程)、
表面に加工歪を付与する表面硬化処理を施すことにより、JIS Z2244:2009に従うビッカース硬さにおいて表面硬さH1(HV0.01)と前記H0の差が70HV以上である表面硬化層を形成する工程(表面硬化処理工程)、
を上記の順に有する板状鋼材の製造方法。
Cr当量=Cr+Mo+1.5Si …(1)
Ni当量=Ni+30(C+N)+0.5Mn+0.3Cu …(2)
Ms値={3000[0.068−(C+N)]+50[0.47−Si]+60[1.33−Mn]+110[8.9−(Ni+Cu)]+75[14.6−Cr]−32}×5/9 …(3)
13000<T(logt+20)<16000 …(4)
ここで、(1)〜(3)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入され、含有しない元素については0(ゼロ)が代入される。(4)式において、Tは時効処理温度(K)、tは時効処理均熱時間(h)である。
In mass%, C: 0.010 to 0.200%, Si: 0.05 to 1.00%, Mn: 0.05 to 5.00%, Ni: 1.00 to 6.00%, Cr: It consists of 10.0 to 18.0%, N: 0.010 to 0.200%, the balance Fe and inevitable impurities. The Cr equivalent determined by the following formula (1) is 13.0 to 17.0, and the following (2 ) A steel plate having a chemical composition with a Ni equivalent defined by the formula of 7.0 to 13.0 and an Ms value determined by the following formula (3) of 20.0 to 130.0 was solution-treated in the austenite stable temperature range. A step of cooling to a temperature lower than the temperature represented by the Ms value (° C.) and generating a martensite phase so that the austenite phase remains in an amount of 0.5 to 60.0% by volume (a multiphase treatment step);
A process of heating to 350 to 550 ° C. and performing an aging treatment under the conditions satisfying the following formula (4) to set the cross-sectional hardness H 0 (HV30) at the center of the thickness in the Vickers hardness according to JIS Z2244: 2009 to 350 HV or more. (Aging treatment process),
By performing a surface hardening treatment that imparts processing strain to the surface, a surface hardened layer is formed in which the difference between the surface hardness H 1 (HV0.01) and the H 0 is 70 HV or more in the Vickers hardness according to JIS Z2244: 2009 Process (surface hardening treatment process),
The manufacturing method of the plate-shaped steel materials which have these in said order.
Cr equivalent = Cr + Mo + 1.5Si (1)
Ni equivalent = Ni + 30 (C + N) + 0.5Mn + 0.3Cu (2)
Ms value = {3000 [0.068- (C + N)] + 50 [0.47-Si] +60 [1.33-Mn] +110 [8.9- (Ni + Cu)] + 75 [14.6-Cr] -32 } × 5/9 (3)
13000 <T (logt + 20) <16000 (4)
Here, the content value of the element represented by mass% is assigned to the location of the element symbol in the formulas (1) to (3), and 0 (zero) is assigned to the element not contained. In the formula (4), T is an aging treatment temperature (K), and t is an aging treatment soaking time (h).
質量%で、C:0.010〜0.200%、Si:0.05〜1.00%、Mn:0.05〜5.00%、Ni:1.00〜6.00%、Cr:10.0〜18.0%、N:0.010〜0.200%、残部Feおよび不可避的不純物からなり、下記(1)式で定まるCr当量が13.0〜17.0、下記(2)式で定まるNi当量が7.0〜13.0、下記(3)式で定まるMs値が20.0〜130.0である化学組成を有する鋼板を、オーステナイト安定温度域で溶体化処理したのち前記Ms値で表される温度(℃)より低温に冷却して、オーステナイト相が10.0〜70.0体積%残留するようにマルテンサイト相を生成させる工程(複相化処理工程)、
圧延率40%以下の冷間圧延を施して、オーステナイト相が0.5〜60.0体積%残留するように加工誘起マルテンサイト相を生成させる工程(冷間圧延工程)、
350〜550℃に加熱して下記(4)式を満たす条件で時効処理を行い、JIS Z2244:2009に従うビッカース硬さにおいて板厚中心部の断面硬さH0(HV30)を350HV以上とする工程(時効処理工程)、
表面に加工歪を付与する表面硬化処理を施すことにより、JIS Z2244:2009に従うビッカース硬さにおいて表面硬さH1(HV0.01)と前記H0の差が70HV以上である表面硬化層を形成する工程(表面硬化処理工程)、
を上記の順に有する板状鋼材の製造方法。
Cr当量=Cr+Mo+1.5Si …(1)
Ni当量=Ni+30(C+N)+0.5Mn+0.3Cu …(2)
Ms値={3000[0.068−(C+N)]+50[0.47−Si]+60[1.33−Mn]+110[8.9−(Ni+Cu)]+75[14.6−Cr]−32}×5/9 …(3)
13000<T(logt+20)<16000 …(4)
ここで、(1)〜(3)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入され、含有しない元素については0(ゼロ)が代入される。(4)式において、Tは時効処理温度(K)、tは時効処理均熱時間(h)である。
In mass%, C: 0.010 to 0.200%, Si: 0.05 to 1.00%, Mn: 0.05 to 5.00%, Ni: 1.00 to 6.00%, Cr: It consists of 10.0 to 18.0%, N: 0.010 to 0.200%, the balance Fe and inevitable impurities. The Cr equivalent determined by the following formula (1) is 13.0 to 17.0, and the following (2 ) A steel plate having a chemical composition with a Ni equivalent defined by the formula of 7.0 to 13.0 and an Ms value determined by the following formula (3) of 20.0 to 130.0 was solution-treated in the austenite stable temperature range. A step of cooling to a temperature lower than the temperature represented by the Ms value (° C.) and generating a martensite phase so that the austenite phase remains 10.0 to 70.0% by volume (a multiphase treatment step);
A step of performing cold rolling at a rolling rate of 40% or less to generate a work-induced martensite phase so that the austenite phase remains in an amount of 0.5 to 60.0% by volume (cold rolling step);
A process of heating to 350 to 550 ° C. and performing an aging treatment under the conditions satisfying the following formula (4) to set the cross-sectional hardness H 0 (HV30) at the center of the thickness in the Vickers hardness according to JIS Z2244: 2009 to 350 HV or more. (Aging treatment process),
By performing a surface hardening treatment that imparts processing strain to the surface, a surface hardened layer is formed in which the difference between the surface hardness H 1 (HV0.01) and the H 0 is 70 HV or more in the Vickers hardness according to JIS Z2244: 2009 Process (surface hardening treatment process),
The manufacturing method of the plate-shaped steel materials which have these in said order.
Cr equivalent = Cr + Mo + 1.5Si (1)
Ni equivalent = Ni + 30 (C + N) + 0.5Mn + 0.3Cu (2)
Ms value = {3000 [0.068- (C + N)] + 50 [0.47-Si] +60 [1.33-Mn] +110 [8.9- (Ni + Cu)] + 75 [14.6-Cr] -32 } × 5/9 (3)
13000 <T (logt + 20) <16000 (4)
Here, the content value of the element represented by mass% is assigned to the location of the element symbol in the formulas (1) to (3), and 0 (zero) is assigned to the element not contained. In the formula (4), T is an aging treatment temperature (K), and t is an aging treatment soaking time (h).
前記複相化処理に供する鋼板が、更に、Mo:2.00%以下、Cu:4.00%以下、B:0.05%以下の1種以上を含有する化学組成を有するものである請求項またはに記載の板状鋼材の製造方法。 The steel sheet to be subjected to the multiphase treatment further has a chemical composition containing one or more of Mo: 2.00% or less, Cu: 4.00% or less, and B: 0.05% or less. Item 7. The method for producing a plate-like steel material according to Item 5 or 6 .
JP2014195248A 2014-09-25 2014-09-25 High-strength plate steel, manufacturing method thereof and discharge valve parts Active JP6403516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014195248A JP6403516B2 (en) 2014-09-25 2014-09-25 High-strength plate steel, manufacturing method thereof and discharge valve parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195248A JP6403516B2 (en) 2014-09-25 2014-09-25 High-strength plate steel, manufacturing method thereof and discharge valve parts

Publications (2)

Publication Number Publication Date
JP2016065289A JP2016065289A (en) 2016-04-28
JP6403516B2 true JP6403516B2 (en) 2018-10-10

Family

ID=55805173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195248A Active JP6403516B2 (en) 2014-09-25 2014-09-25 High-strength plate steel, manufacturing method thereof and discharge valve parts

Country Status (1)

Country Link
JP (1) JP6403516B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022119253A (en) * 2021-02-04 2022-08-17 Dowaエレクトロニクス株式会社 Abrasive for shot-blasting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140598A (en) * 1997-11-06 1999-05-25 Nisshin Steel Co Ltd High strength stainless steel strip with high spring limit value, and its production
JP4209513B2 (en) * 1998-10-21 2009-01-14 日新製鋼株式会社 Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JP4524894B2 (en) * 2000-09-20 2010-08-18 住友金属工業株式会社 Multi-layer structure Cr-based stainless steel and method for producing the same
JP5484135B2 (en) * 2010-03-10 2014-05-07 日新製鋼株式会社 Austenite + martensite duplex stainless steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2016065289A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
RU2479662C2 (en) Super bainitic steel, and its manufacturing method
JP6005218B2 (en) Austenitic stainless steel sheet and method for producing highly elastic non-magnetic steel material using the same
RU2588755C2 (en) Steel strip with low ratio of yield strength to ultimate strength and high impact strength and method for production thereof
EP1956100A1 (en) Steel for warm working, method of warm working of the steel, and steel material and steel part obtained by the same
JP5042914B2 (en) High strength steel and manufacturing method thereof
RU2691436C1 (en) Molded light-weight steel with improved mechanical properties and method of producing semi-products from said steel
JP2017043835A (en) Steel for machine structural use for cold-working, and production method therefor
JP5234876B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet
JP2009079280A (en) Quenched and tempered steel pipe with high fatigue life, and its manufacturing method
JP6223124B2 (en) High-strength duplex stainless steel sheet and its manufacturing method
WO2020039696A1 (en) High strength steel sheet and production method therefor
JP6237920B2 (en) Welded steel pipe, thick steel plate and method for producing them
WO2012093506A1 (en) Spring having excellent corrosion fatigue strength
WO2015102050A1 (en) Steel material and process for producing same
JP2018141183A (en) Stainless steel sheet for processing highly repulsive golf club face and method for manufacturing the same
WO2015146173A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP2011074431A (en) Spring steel and spring having superior corrosion fatigue strength
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
US9109274B2 (en) High-tension steel plate excellent in base metal toughness and HAZ toughness
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
JP6193842B2 (en) Steel wire rod for bearing
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
JP6403516B2 (en) High-strength plate steel, manufacturing method thereof and discharge valve parts
JP6454635B2 (en) High-strength bolts with excellent delayed fracture resistance and fatigue characteristics, and manufacturing method thereof
JP6455128B2 (en) Perlite rail and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6403516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350