JP6393348B2 - Replacing oil on the surface of carbon fiber - Google Patents

Replacing oil on the surface of carbon fiber Download PDF

Info

Publication number
JP6393348B2
JP6393348B2 JP2017004804A JP2017004804A JP6393348B2 JP 6393348 B2 JP6393348 B2 JP 6393348B2 JP 2017004804 A JP2017004804 A JP 2017004804A JP 2017004804 A JP2017004804 A JP 2017004804A JP 6393348 B2 JP6393348 B2 JP 6393348B2
Authority
JP
Japan
Prior art keywords
carbon fiber
oil agent
replacing
oil
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017004804A
Other languages
Japanese (ja)
Other versions
JP2018115396A (en
Inventor
王智永
Original Assignee
永虹先進材料股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永虹先進材料股▲ふん▼有限公司 filed Critical 永虹先進材料股▲ふん▼有限公司
Priority to JP2017004804A priority Critical patent/JP6393348B2/en
Publication of JP2018115396A publication Critical patent/JP2018115396A/en
Application granted granted Critical
Publication of JP6393348B2 publication Critical patent/JP6393348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭素繊維の表面処理技術に係り、炭素繊維の表面の油剤を効果的に交換できる、炭素繊維の表面の油剤の交換方法を提供することを旨とする。   The present invention relates to a carbon fiber surface treatment technique, and an object thereof is to provide a method for replacing an oil agent on the surface of a carbon fiber, which can effectively replace the oil agent on the surface of the carbon fiber.

炭素繊維は、炭化繊維とも称し、それは優れた力学特性及び電気特性を有するため、各種の用途に広汎に応用することができる。現在、坊間によく見られる炭素繊維の多くはポリアクリロニトリル系繊維などの炭素繊維の前駆体繊維(precursor fiber)を束にしてなる炭素繊維前駆体繊維束にか焼を行って得られたものである。   Carbon fiber is also referred to as carbonized fiber, which has excellent mechanical and electrical properties and can be widely applied to various applications. At present, most of the carbon fibers that are often found in Bobo are obtained by calcining carbon fiber precursor fiber bundles made of bundles of carbon fiber precursor fibers such as polyacrylonitrile fibers. is there.

処理を経ていない炭素繊維の表面は、粘着性が不足し、しかもそれは不良な横方向性質を有し、例えば、分離強度及び剪断強度などを有するため、直接に利用するものは比較的に少ないことが分かり、通常、用途に従って基質樹脂と組み合わせる炭素繊維複合材料を成形する一方、炭素繊維及び石墨繊維が特別に硬くて脆いので、接着可能性、曲げ力や耐摩耗性を欠き、それが工場から出庫する前に大抵表面に1層の油剤(糊付け剤)を塗布しておくことで、繊維が摩擦による断裂してしまうことがないように保護できるようになっている。   The surface of the carbon fiber that has not been treated is not sticky enough, and it has poor lateral properties, such as separation strength and shear strength, so that there are relatively few to use directly. While usually forming carbon fiber composites to be combined with substrate resin according to the application, carbon fiber and graphite fiber are specially hard and brittle, so they lack adhesion, bending force and wear resistance from the factory By applying a single layer of oil (glue agent) to the surface before leaving, it is possible to protect the fibers from tearing due to friction.

従来、炭素繊維複合材料では、炭素繊維の優れた機械特性を完全に利用して、その基質樹脂として熱硬化型樹脂材料を採用することが多く、いわゆる熱硬化型炭素繊維複合材料になり、熱可塑型炭素繊維複合材料との最大の差異性は、伝統的な熱硬化型炭素繊維複合材料の成形時間が長いので、金型の使用率が比較的に低くなり、生産能力も相対的に比較的に低くなることである。   Conventionally, in carbon fiber composite materials, the excellent mechanical properties of carbon fibers are fully utilized, and thermosetting resin materials are often used as the substrate resin, resulting in so-called thermosetting carbon fiber composite materials. The biggest difference from plastic type carbon fiber composite material is that the molding time of traditional thermosetting carbon fiber composite material is long, so the usage rate of mold is relatively low, and the production capacity is also comparatively compared Is to lower.

しかしながら、現在、市販の炭素繊維原料の表面の油剤は、依然として大多数が熱硬化型樹脂の湿潤性に基づいて設計した熱硬化型樹脂油剤であり、もしさらにこの類の炭素繊維原料を熱可塑型炭素繊維複合材料になるように作製するには、その炭素繊維原料と樹脂との間では界面が不整合になるため、健全な接合界面を形成できないことが、射出成形を主要な加工手段とする各種の電気、電子部品、機械部品や自動車部品などの製品に応用することができない主因となっていた。   However, at present, the majority of commercially available carbon fiber raw materials are still thermosetting resin oils designed on the basis of the wettability of thermosetting resins. In order to produce a carbon fiber composite material, the interface between the carbon fiber raw material and the resin becomes inconsistent, so that a sound joint interface cannot be formed. It was the main reason why it could not be applied to products such as various electrical, electronic parts, mechanical parts and automobile parts.

これに鑑みて、本発明は、つまり炭素繊維の表面の油剤を効果的に交換できる、炭素繊維の表面の油剤の交換方法を提供することを主要な目的とするものである。   In view of this, the main object of the present invention is to provide a method for replacing the oil agent on the surface of the carbon fiber, which can effectively replace the oil agent on the surface of the carbon fiber.

上記の目的を達成するために、本発明の炭素繊維の表面の油剤の交換方法は、基本的に順次に少なくとも下記の工程を含み、すなわち第1種の油剤が被覆される炭素繊維を提供する原料供給工程と、前記第1種の油剤を除去する糊抜き工程と、プラズマガス流を提供して前記炭素繊維に作用させるプラズマ表面処理工程と、第2種の油剤を前記炭素繊維に被覆する糊付け工程とを含む。   In order to achieve the above object, the method of replacing the oil agent on the surface of the carbon fiber of the present invention basically includes at least the following steps in sequence, that is, a carbon fiber coated with the first oil agent is provided: A raw material supply step, a desizing step for removing the first type of oil agent, a plasma surface treatment step for providing a plasma gas flow to act on the carbon fiber, and a second type of oil agent are coated on the carbon fiber. A gluing step.

上記の技術的特徴を利用して、本発明の炭素繊維の表面の油剤の交換方法は、相対的により積極的で信頼性のある手段で、炭素繊維の表面の油剤を所期の油剤に置き換えることができる。特に、プラズマ表面処理を介して炭素繊維の表面を粗面化すると同時に、炭素繊維の表面の官能基を増加させることにより、炭素繊維の後続の糊付け過程において、炭素繊維と所期の油剤との良好な界面接合を図ることに寄与することから、後続の工芸で形成した炭素繊維複合材料の特性表現を向上させることができる。   Utilizing the above technical features, the carbon fiber surface oil agent replacement method of the present invention replaces the carbon fiber surface oil agent with the intended oil agent in a relatively more aggressive and reliable manner. be able to. In particular, by roughening the surface of the carbon fiber through plasma surface treatment and at the same time increasing the functional groups on the surface of the carbon fiber, the carbon fiber and the desired oil agent are used in the subsequent gluing process of the carbon fiber. Since it contributes to achieving good interface bonding, it is possible to improve the characteristic expression of the carbon fiber composite material formed by the subsequent craft.

上記の技術的特徴によれば、かかる前記炭素繊維の表面の油剤の交換方法は、前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)であるプラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させる。   According to the above technical feature, in the method for exchanging an oil agent on the surface of the carbon fiber, in the plasma surface treatment step, a plasma gas flow having a power of 100 to 10,000 watts (W) is applied to the carbon fiber. Acts for 1000 milliseconds (msec).

上記の技術的特徴によれば、かかる前記炭素繊維の表面の油剤の交換方法は、前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)である大気プラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させる。   According to the above technical feature, in the method for replacing the oil agent on the surface of the carbon fiber, in the plasma surface treatment step, an atmospheric plasma gas flow having a power of 100 to 10000 watts (W) is applied to the carbon fiber. Apply ~ 1000 milliseconds (msec).

上記の技術的特徴によれば、かかる前記炭素繊維の表面の油剤の交換方法は、前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)である低圧プラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させる。   According to the above technical feature, in the method for replacing the oil agent on the surface of the carbon fiber, in the plasma surface treatment step, a low pressure plasma gas flow having a power of 100 to 10,000 watts (W) is applied to the carbon fiber. Apply ~ 1000 milliseconds (msec).

上記の技術的特徴によれば、かかる前記炭素繊維の表面の油剤の交換方法は、前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)であるマイクロ波プラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させる。   According to the above technical feature, in the method for exchanging the oil on the surface of the carbon fiber, in the plasma surface treatment step, a microwave plasma gas flow having a power of 100 to 10,000 watts (W) is applied to the carbon fiber. 10 to 1000 milliseconds (msec) is applied.

上記の技術的特徴によれば、かかる前記炭素繊維の表面の油剤の交換方法は、前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)であるグロ−プラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させる。   According to the above technical feature, in the method for replacing the oil agent on the surface of the carbon fiber, in the plasma surface treatment step, a glow plasma gas flow having a power of 100 to 10,000 watts (W) is applied to the carbon fiber. 10 to 1000 milliseconds (msec) is applied.

かかる前記炭素繊維の表面の油剤の交換方法は、前記糊抜き工程において、250〜650℃の高温及び時間1〜60秒(sec)の条件下で糊抜きを行う。   In such a method of replacing the oil agent on the surface of the carbon fiber, the desizing is performed under the conditions of a high temperature of 250 to 650 ° C. and a time of 1 to 60 seconds (sec) in the desizing process.

かかる前記炭素繊維の表面の油剤の交換方法は、前記糊抜き工程において、有機溶剤で前記第1種の油剤を除去する。   In this method of replacing the oil agent on the surface of the carbon fiber, the first type oil agent is removed with an organic solvent in the desizing process.

上記の前記有機溶剤が、アセトン又はクロロホルムである。   Said organic solvent is acetone or chloroform.

かかる前記炭素繊維の表面の油剤の交換方法は、前記糊付け工程において、浸漬方式を用いて前記第2種の油剤を前記炭素繊維に被覆させる。   In this method of replacing the oil agent on the surface of the carbon fiber, in the gluing step, the carbon fiber is coated with the second type oil agent using an immersion method.

かかる前記炭素繊維の表面の油剤の交換方法は、前記糊付け工程において、パディング方式を用いて前記第2種の油剤を前記炭素繊維に被覆させる。   In the method of replacing the oil agent on the surface of the carbon fiber, the carbon fiber is coated with the second type oil agent by using a padding method in the gluing step.

かかる前記第1種の油剤が、熱硬化型樹脂油剤である。   The first type of oil is a thermosetting resin oil.

かかる前記第2種の油剤が、熱硬化型樹脂油剤である。   Such a second type of oil is a thermosetting resin oil.

かかる前記第2種の油剤が、熱可塑型樹脂油剤である。   Such a second type of oil is a thermoplastic resin oil.

かかる前記第2種の油剤が、ポリウレタン(Polyurethane,PU)、ポリエチレン(Polyethylene,PE)、ポリプロピレン(Polypropylene,PP)又はアクリル(Acrylic)系のいずれか1つであってもよい。   The second type of oil may be any one of polyurethane (Polyethylene, PU), polyethylene (Polyethylene, PE), polypropylene (Polypropylene, PP), or acrylic.

かかる前記炭素繊維の表面の油剤の交換方法は、前記糊付け工程の後、前記第2種の油剤を有する炭素繊維原料に対して少なくとも1つの乾燥工程を施すことで、前記第2種の油剤を前記炭素繊維に固着させる。   Such a method of replacing the oil agent on the surface of the carbon fiber is such that after the gluing step, the carbon fiber raw material having the second type oil agent is subjected to at least one drying step, whereby the second type oil agent is obtained. The carbon fiber is fixed.

本発明で開示した炭素繊維の表面の油剤の交換方法は、とりわけ市販の炭素繊維原料の表面に既に有する熱硬化型樹脂油剤から熱可塑型樹脂油剤への置き換えに適していることにより、射出成形を主要な加工手段とする各種の電気、電子部品、機械部品や自動車部品などの製品に応用することができる。特に、プラズマ表面処理を介して炭素繊維の表面を粗面化すると同時に、炭素繊維の表面の官能基を増加させることができ、炭素繊維の後続の糊付け過程において、炭素繊維と熱可塑型樹脂油剤との良好な界面接合を図ることに寄与することから、後続の工芸で形成した炭素繊維複合材料の特性表現を向上させることができる。   The method for replacing the oil agent on the surface of the carbon fiber disclosed in the present invention is particularly suitable for replacement of the thermosetting resin oil agent already possessed on the surface of the commercially available carbon fiber raw material with the thermoplastic resin oil agent. Can be applied to products such as various electrical and electronic parts, machine parts and automobile parts. In particular, it is possible to roughen the surface of the carbon fiber through plasma surface treatment and at the same time increase the functional group on the surface of the carbon fiber, and in the subsequent gluing process of the carbon fiber, the carbon fiber and the thermoplastic resin oil agent Therefore, it is possible to improve the characteristic expression of the carbon fiber composite material formed by the subsequent craft.

本発明の第1実施例の炭素繊維の表面の油剤の交換方法の基本的流れ図である。It is a basic flowchart of the replacement | exchange method of the oil agent of the surface of the carbon fiber of 1st Example of this invention. 本発明の炭素繊維の表面の油剤の交換方法を利用して原料供給工程における炭素繊維原料を示す断面構造図である。It is sectional structure drawing which shows the carbon fiber raw material in a raw material supply process using the exchange method of the oil agent on the surface of the carbon fiber of this invention. 本発明の炭素繊維の表面の油剤の交換方法を利用して糊抜き工程を完了した後の炭素繊維を示す断面構造図である。It is sectional structure drawing which shows the carbon fiber after completing the desizing process using the replacement | exchange method of the oil agent on the surface of the carbon fiber of this invention. 本発明の炭素繊維の表面の油剤の交換方法を利用してプラズマ表面処理工程を完了した後の炭素繊維を示す断面構造図である。It is sectional structure drawing which shows carbon fiber after completing a plasma surface treatment process using the exchange method of the oil agent on the surface of the carbon fiber of this invention. 本発明の炭素繊維の表面の油剤の交換方法を利用して糊付け工程を完了した後の炭素繊維原料を示す断面構造図である。It is sectional structure drawing which shows the carbon fiber raw material after completing the gluing process using the replacement | exchange method of the oil agent on the surface of the carbon fiber of this invention. 本発明の第2実施例の炭素繊維の表面の油剤の交換方法の基本的流れ図である。It is a basic flowchart of the replacement | exchange method of the oil agent of the surface of the carbon fiber of 2nd Example of this invention.

以下、添付図面を参照して本考案の実施の形態を詳細に説明する。 Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明は、主に炭素繊維の表面の油剤を効果的に交換できる、炭素繊維の表面の油剤の交換方法を提供し、図1に示すように、本発明の炭素繊維の表面の油剤の交換方法は、基本的に順次に下記の工程を含み、すなわち原料供給工程、糊抜き工程、プラズマ表面処理工程及び糊付け工程などの工程を含む。なお、図2〜図5を参照しながら、さらに各工程の実施可能な形態について以下のように説明する。   The present invention provides a method for exchanging an oil agent on the surface of carbon fiber, which can effectively exchange the oil agent on the surface of the carbon fiber, and as shown in FIG. The method basically includes the following steps in sequence: a raw material supply step, a desizing step, a plasma surface treatment step, and a gluing step. In addition, referring to FIG. 2 to FIG. 5, embodiments in which each process can be performed will be described as follows.

前記原料供給工程において、主に炭素繊維11の表面に第1種の油剤12が被覆される炭素繊維原料10を提供する。かかる前記炭素繊維11は、レーヨン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリアクリロニトリル(polyacrylonitrile,PAN)、ピッチ(pitch)などの前駆体繊維を束にしてなる炭素繊維前駆体繊維束にか焼を行って得られたものである。実施時、かかる前記第1種の油剤12が、熱硬化型樹脂油剤であってもよい。   In the raw material supplying step, a carbon fiber raw material 10 is provided in which the surface of the carbon fiber 11 is mainly coated with the first type oil agent 12. The carbon fiber 11 is calcined into a carbon fiber precursor fiber bundle in which precursor fibers such as rayon, polyvinyl alcohol, polyvinylidene chloride, polyacrylonitrile (PAN), and pitch are bundled. It is obtained. At the time of implementation, the first-type oil agent 12 may be a thermosetting resin oil agent.

前記糊抜き工程において、前記炭素繊維原料10の表面の前記第1種の油剤12を除去する(図3参照)。実施時、250〜650℃の高温、時間1〜60秒(sec)の条件下で糊抜きを行うことができ、あるいは有機溶剤で前記炭素繊維原料10の表面を洗浄する方式を用いて糊抜きを行うことができる。前記有機溶剤で炭素繊維原料10の表面を洗浄する方式を用いて糊抜きを行う実施形態において、かかる前記有機溶剤が、アセトン又はクロロホルムであってもよい。   In the desizing process, the first-type oil agent 12 on the surface of the carbon fiber raw material 10 is removed (see FIG. 3). At the time of implementation, desizing can be performed under conditions of high temperature of 250 to 650 ° C. and time of 1 to 60 seconds (sec), or desizing using a method of cleaning the surface of the carbon fiber raw material 10 with an organic solvent. It can be performed. In an embodiment in which desizing is performed using a method of cleaning the surface of the carbon fiber raw material 10 with the organic solvent, the organic solvent may be acetone or chloroform.

前記プラズマ表面処理工程において、予め設定されたパワーのプラズマガス流を前記第1種の油剤12を除去した炭素繊維11に予め設定された時間作用させることにより、前記炭素繊維11の表面に相対的に粗面化したプラズマ改質構造111を形成する(図4参照)。   In the plasma surface treatment step, a plasma gas flow having a preset power is allowed to act on the carbon fiber 11 from which the first type of oil agent 12 has been removed for a preset time, thereby making the plasma gas flow relatively to the surface of the carbon fiber 11. A plasma-modified structure 111 having a rough surface is formed (see FIG. 4).

前記糊付け工程において、前記表面に形成された前記プラズマ改質構造111の炭素繊維11の表面に第2種の油剤13を被覆することによって、表面に前記第2種の油剤13を有する炭素繊維原料10が得られる(図5参照)。実施時、浸漬やパディングなどの方式を採用して前記第2種の油剤13を前記炭素繊維11の表面に被覆することができる。かかる前記第2種の油剤13に至っては熱硬化型樹脂油剤、又は熱可塑型樹脂油剤であってもよい。かかる前記第2種の油剤13が熱可塑型樹脂油剤である実施形態において、かかる前記第2種の油剤13が、ポリウレタン(PU)、ポリエチレン(PE)、ポリプロピレン(PP)又はアクリル(Acrylic)系のいずれか1つであってもよい。   In the gluing step, the carbon fiber raw material having the second type oil agent 13 on the surface by coating the surface of the carbon fiber 11 of the plasma modified structure 111 formed on the surface with the second type oil agent 13. 10 is obtained (see FIG. 5). At the time of implementation, the surface of the carbon fiber 11 can be coated with the second type oil agent 13 by employing a method such as dipping or padding. The second type of oil 13 may be a thermosetting resin oil or a thermoplastic resin oil. In the embodiment in which the second type of oil 13 is a thermoplastic resin oil, the second type of oil 13 is polyurethane (PU), polyethylene (PE), polypropylene (PP), or acrylic. Any one of these may be sufficient.

これによれば、本発明の炭素繊維の表面の油剤の交換方法は、相対的により積極的で信頼性のある手段で、炭素繊維の表面の油剤を所期の油剤に置き換えることができる。とりわけ、市販の炭素繊維原料10の表面に既に有する熱硬化型樹脂油剤から熱可塑型樹脂油剤への置き換えに適していることにより、射出成形を主要な加工手段とする各種の電気、電子部品、機械部品や自動車部品などの製品に応用することができる。   According to this, the method for replacing the oil agent on the surface of the carbon fiber of the present invention can replace the oil agent on the surface of the carbon fiber with the intended oil agent by a relatively more aggressive and reliable means. In particular, various electrical and electronic components that use injection molding as the main processing means by being suitable for replacement of thermosetting resin oils already on the surface of commercially available carbon fiber raw material 10 with thermoplastic resin oils, It can be applied to products such as machine parts and automobile parts.

プラズマ表面処理過程において、パワーが100〜10000ワット(W)である大気プラズマガス流、低圧プラズマガス流、マイクロ波プラズマガス流やグロ−プラズマガス流などを使用して、前記炭素繊維に10〜1000ミリ秒(msec)作用させることができる。プラズマガス流にエネルギーを有する粒子を含むので、プラズマガス流の物理反応(衝撃)及び化学反応作用を介して本来炭素繊維11の表面に付着した不純物が分子化され、ひいては吹き飛ばされることにより、炭素繊維11の表面を粗面化すると同時に、炭素繊維11の表面の官能基を増加させ、炭素繊維11の後続の糊付け過程において、炭素繊維11と熱可塑型樹脂油剤との良好な界面接合を図ることに寄与することから、後続の工芸で形成した炭素繊維複合材料の特性表現を向上させることができる。   In the plasma surface treatment process, an atmospheric plasma gas flow, a low-pressure plasma gas flow, a microwave plasma gas flow, a glow plasma gas flow, or the like having a power of 100 to 10000 watts (W) is used for the carbon fiber. It can be applied for 1000 milliseconds (msec). Since the plasma gas flow contains energetic particles, the impurities originally attached to the surface of the carbon fiber 11 through the physical reaction (impact) and chemical reaction of the plasma gas flow are molecularized and then blown away, thereby At the same time that the surface of the fiber 11 is roughened, the functional groups on the surface of the carbon fiber 11 are increased, and in the subsequent gluing process of the carbon fiber 11, good interfacial bonding between the carbon fiber 11 and the thermoplastic resin oil is achieved. Therefore, it is possible to improve the characteristic expression of the carbon fiber composite material formed by the subsequent craft.

さらに、本発明におけるプラズマ表面処理は、乾式に属する表面処理技術であるため、炭素繊維11に付加的な不純物や沈澱物を生成するのを回避できるのみならず、相対的に炭化繊維11のプラズマ表面処理工程を完了した後の乾燥工数、作業手順を低減することもできる。勿論、本発明の炭素繊維の表面の油剤の交換方法も、図6に示すように、前記糊付け工程の後、前記第2種の油剤13を有する炭素繊維原料10に対して少なくとも1つの乾燥工程を施し、例えば、焼成や風乾などの方式を介して前記第2種の油剤13を前記炭素繊維11の表面に強固に付着させることができる。   Furthermore, since the plasma surface treatment in the present invention is a dry surface treatment technique, it is possible not only to avoid the generation of additional impurities and precipitates on the carbon fiber 11 but also to relatively plasma the carbonized fiber 11. It is also possible to reduce the number of drying steps and work procedures after completing the surface treatment process. Of course, in the method of replacing the oil agent on the surface of the carbon fiber of the present invention, as shown in FIG. 6, after the gluing step, at least one drying step is performed on the carbon fiber raw material 10 having the second type oil agent 13. For example, the second type oil agent 13 can be firmly attached to the surface of the carbon fiber 11 through a method such as firing or air drying.

具体的に言えば、本発明で開示した炭素繊維の表面の油剤の交換方法は、とりわけ市販の炭素繊維原料の表面に既に有する熱硬化型樹脂油剤から熱可塑型樹脂油剤への置き換えに適していることにより、射出成形を主要な加工手段とする各種の電気、電子部品、機械部品や自動車部品などの製品に応用することができる。特に、プラズマ表面処理を介して炭素繊維の表面を粗面化すると同時に、炭素繊維の表面の官能基を増加させることができ、炭素繊維の後続の糊付け過程において、炭素繊維と熱可塑型樹脂油剤との良好な界面接合を図ることに寄与することから、後続の工芸で形成した炭素繊維複合材料の特性表現を向上させることができる。   Specifically, the method for exchanging the oil on the surface of the carbon fiber disclosed in the present invention is particularly suitable for replacing the thermosetting resin oil already on the surface of the commercially available carbon fiber raw material with the thermoplastic resin oil. Therefore, it can be applied to various electric, electronic parts, mechanical parts, automobile parts and other products having injection molding as a main processing means. In particular, it is possible to roughen the surface of the carbon fiber through plasma surface treatment and at the same time increase the functional group on the surface of the carbon fiber, and in the subsequent gluing process of the carbon fiber, the carbon fiber and the thermoplastic resin oil agent Therefore, it is possible to improve the characteristic expression of the carbon fiber composite material formed by the subsequent craft.

上記の実施例は、本発明の技術思想及び特長を説明するためのものにすぎず、当該技術分野を熟知する者に本発明の内容を理解させると共にこれをもって実施させることを目的とし、本発明の特許範囲を限定するものではない。従って、本発明で開示した精神を逸脱せずに完成した同等の変更や修正は、いずれも本発明の特許請求の範囲に含まれるものとする。   The above-described embodiments are merely for explaining the technical idea and features of the present invention, and are intended to allow those skilled in the art to understand the contents of the present invention and to carry out the same with the present invention. The patent scope is not limited. Accordingly, any equivalent changes or modifications completed without departing from the spirit disclosed in the present invention shall be included in the claims of the present invention.

10:炭素繊維原料
11:炭素繊維
111:プラズマ改質構造
12:第1種の油剤
13:第2種の油剤
10: Carbon fiber raw material 11: Carbon fiber 111: Plasma modified structure 12: First type oil agent 13: Second type oil agent

Claims (15)

炭素繊維の表面の油剤の交換方法であって、順次に少なくとも下記の工程を含み、すなわち
第1種の油剤が被覆される炭素繊維を提供する原料供給工程と、
前記第1種の油剤を除去する糊抜き工程と、
プラズマガス流を提供して前記炭素繊維に作用させるプラズマ表面処理工程と、
前記第2種の油剤を前記炭素繊維に被覆する糊付け工程とを含み、
前記第2種の油剤が、ポリウレタン(PU)、ポリエチレン(PE)、ポリプロピレン(PP)又はアクリル(Acrylic)系のいずれか1つである、
ことを特徴とする、炭素繊維の表面の油剤の交換方法。
A method of replacing an oil agent on the surface of a carbon fiber, which sequentially includes at least the following steps, that is, a raw material supply step for providing a carbon fiber coated with a first type of oil agent;
A desizing process for removing the first type of oil;
A plasma surface treatment step for providing a plasma gas flow to act on the carbon fiber;
A step of gluing the carbon fiber with the second type oil agent,
The second type of oil agent is any one of polyurethane (PU), polyethylene (PE), polypropylene (PP), or acrylic.
A method for replacing an oil agent on the surface of a carbon fiber,
前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)であるプラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   2. The carbon fiber according to claim 1, wherein in the plasma surface treatment step, a plasma gas flow having a power of 100 to 10000 watts (W) is applied to the carbon fiber for 10 to 1000 milliseconds (msec). To replace the surface oil. 前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)である大気プラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   2. The carbon according to claim 1, wherein in the plasma surface treatment step, an atmospheric plasma gas flow having a power of 100 to 10000 watts (W) is applied to the carbon fiber for 10 to 1000 milliseconds (msec). How to change the oil on the fiber surface. 前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)である低圧プラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   2. The carbon according to claim 1, wherein in the plasma surface treatment step, a low-pressure plasma gas flow having a power of 100 to 10000 watts (W) is applied to the carbon fiber for 10 to 1000 milliseconds (msec). How to change the oil on the fiber surface. 前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)であるマイクロ波プラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   2. The plasma surface treatment process according to claim 1, wherein a microwave plasma gas flow having a power of 100 to 10000 watts (W) is applied to the carbon fiber for 10 to 1000 milliseconds (msec). Replacing oil on the surface of carbon fiber. 前記プラズマ表面処理工程において、パワーが100〜10000ワット(W)であるグロ−プラズマガス流を前記炭素繊維に10〜1000ミリ秒(msec)作用させることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   2. The plasma surface treatment process according to claim 1, wherein a glow plasma gas flow having a power of 100 to 10000 watts (W) is allowed to act on the carbon fiber for 10 to 1000 milliseconds (msec). Replacing oil on the surface of carbon fiber. 前記糊抜き工程において、温度250〜650℃及び時間1〜60秒の条件下で糊抜きを行うことを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   2. The method of replacing an oil agent on the surface of carbon fiber according to claim 1, wherein in the desizing step, desizing is performed under conditions of a temperature of 250 to 650 ° C. and a time of 1 to 60 seconds. 前記糊抜き工程において、有機溶剤で前記第1種の油剤を除去することを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   2. The method of replacing an oil agent on the surface of a carbon fiber according to claim 1, wherein in the desizing step, the first type oil agent is removed with an organic solvent. 前記有機溶剤が、アセトン又はクロロホルムであることを特徴とする、請求項8に記載の炭素繊維の表面の油剤の交換方法。   The method for replacing an oil agent on the surface of carbon fiber according to claim 8, wherein the organic solvent is acetone or chloroform. 前記糊付け工程において、浸漬方式を用いて前記第2種の油剤を前記炭素繊維に被覆させることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   2. The method of replacing an oil agent on the surface of carbon fiber according to claim 1, wherein, in the gluing step, the carbon fiber is coated with the second type oil agent using an immersion method. 前記糊付け工程において、パディング方式を用いて前記第2種の油剤を前記炭素繊維に被覆させることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   2. The method of replacing an oil agent on the surface of carbon fiber according to claim 1, wherein in the gluing step, the carbon fiber is coated with the second type oil agent using a padding method. 3. 前記第1種の油剤が、熱硬化型樹脂油剤であることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   The method for replacing an oil agent on the surface of a carbon fiber according to claim 1, wherein the first type oil agent is a thermosetting resin oil agent. 前記第2種の油剤が、熱硬化型樹脂油剤であることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   The method for replacing an oil agent on the surface of a carbon fiber according to claim 1, wherein the second type oil agent is a thermosetting resin oil agent. 前記第2種の油剤が、熱可塑型樹脂油剤であることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   The method for replacing an oil agent on the surface of a carbon fiber according to claim 1, wherein the second type oil agent is a thermoplastic resin oil agent. 前記糊付け工程の後、少なくとも1つの乾燥工程を施すことで、前記第2種の油剤を前記炭素繊維に固着させることを特徴とする、請求項1に記載の炭素繊維の表面の油剤の交換方法。   The method for replacing an oil agent on the surface of a carbon fiber according to claim 1, wherein the second type oil agent is fixed to the carbon fiber by performing at least one drying step after the gluing step. .
JP2017004804A 2017-01-16 2017-01-16 Replacing oil on the surface of carbon fiber Active JP6393348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017004804A JP6393348B2 (en) 2017-01-16 2017-01-16 Replacing oil on the surface of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004804A JP6393348B2 (en) 2017-01-16 2017-01-16 Replacing oil on the surface of carbon fiber

Publications (2)

Publication Number Publication Date
JP2018115396A JP2018115396A (en) 2018-07-26
JP6393348B2 true JP6393348B2 (en) 2018-09-19

Family

ID=62983963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004804A Active JP6393348B2 (en) 2017-01-16 2017-01-16 Replacing oil on the surface of carbon fiber

Country Status (1)

Country Link
JP (1) JP6393348B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766501B2 (en) * 2000-12-15 2011-09-07 三菱レイヨン株式会社 Carbon fiber processing method
JP2005097388A (en) * 2003-09-24 2005-04-14 Toyobo Co Ltd Composite material
US8951632B2 (en) * 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
JP2013007136A (en) * 2011-06-24 2013-01-10 Teijin Ltd Method for treating carbon fiber and method for producing carbon fiber
KR102461416B1 (en) * 2014-12-09 2022-11-01 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
JP2016169469A (en) * 2016-05-25 2016-09-23 倉敷紡績株式会社 Method for producing fiber for fiber-reinforced resin

Also Published As

Publication number Publication date
JP2018115396A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US11180891B2 (en) Natural fiber reinforced composite panel and method
Hu et al. A two-step combination strategy for significantly enhancing the interfacial adhesion of CF/PPS composites: The liquid-phase oxidation followed by grafting of silane coupling agent
JP2013533813A5 (en)
JP2014529691A5 (en)
EP2581201B1 (en) A method of providing through-thickness reinforcement of a laminated material
JP6393348B2 (en) Replacing oil on the surface of carbon fiber
US20200027626A1 (en) Electric conductor
TWI642709B (en) Carbon fiber surface oil replacement method
JP3209601U (en) Oil agent replacement equipment on the surface of carbon fiber
EP3348685A1 (en) Carbon fiber surface oiling agent changing method and carbon fiber surface oiling agent changing apparatus
US20180179464A1 (en) Carbon fiber surface oiling agent changing metod
TWI602794B (en) Ceramic composite materials production methods
US20180179698A1 (en) Carbon fiber surface oiling agent changing apparatus
CN107627624B (en) Method for treating composite piston pin and surface treated composite piston pin
JP6370825B2 (en) Fiber tow molding impregnation apparatus and manufacturing method thereof
JP6717456B2 (en) Method and apparatus for manufacturing carbon fiber sheet molding compound
US20170274561A1 (en) Device and method for manufacturing impregnated fiber bundle
CN108149488A (en) Carbon fiber surface finish replacing options
CN206368222U (en) Carbon fibre manufacturing equipment
JP6882402B2 (en) How to make a composite material
EP3603924B1 (en) Method for producing composite material structure
JP7154281B2 (en) insulated nanofiber yarn
CN206374065U (en) Carbon fiber surface finish more exchange device
JP6875195B2 (en) Ceramic composite manufacturing method and combination
TWM538512U (en) Carbon-fiber surface oiling agent replacing equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180824

R150 Certificate of patent or registration of utility model

Ref document number: 6393348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250