JP6387627B2 - Method for producing tungsten carbide based cemented carbide tool with excellent heat crack resistance - Google Patents

Method for producing tungsten carbide based cemented carbide tool with excellent heat crack resistance Download PDF

Info

Publication number
JP6387627B2
JP6387627B2 JP2014041410A JP2014041410A JP6387627B2 JP 6387627 B2 JP6387627 B2 JP 6387627B2 JP 2014041410 A JP2014041410 A JP 2014041410A JP 2014041410 A JP2014041410 A JP 2014041410A JP 6387627 B2 JP6387627 B2 JP 6387627B2
Authority
JP
Japan
Prior art keywords
powder
cemented carbide
based cemented
average particle
attritor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014041410A
Other languages
Japanese (ja)
Other versions
JP2015166123A (en
Inventor
白瀬 文一
文一 白瀬
河田与志則
岡田一樹
谷内俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014041410A priority Critical patent/JP6387627B2/en
Publication of JP2015166123A publication Critical patent/JP2015166123A/en
Application granted granted Critical
Publication of JP6387627B2 publication Critical patent/JP6387627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、湿式フライス切削加工等において、すぐれた耐熱亀裂性を発揮する炭化タングステン(以下、「WC」で示す。)基超硬合金製工具の製造方法に関するものである。   The present invention relates to a method of manufacturing a tungsten carbide (hereinafter referred to as “WC”) based cemented carbide tool that exhibits excellent heat cracking resistance in wet milling and the like.

従来、WC基超硬合金は硬さが高く、すぐれた耐摩耗性を発揮することから、各種切削工具、治工具、機械部品などに広く用いられている。しかし、近年、WC基超硬合金製切削工具に求められる性能としては、耐摩耗性ばかりでなく、耐熱亀裂性もますます要求されるようになってきている。
WC基超硬合金製切削工具の耐熱亀裂性を改善するには、超硬合金の物性としての強度を向上させることが必要であり、それを達成する製法として、各種の提案がなされている。
Conventionally, WC-based cemented carbide has a high hardness and exhibits excellent wear resistance, so it has been widely used in various cutting tools, jigs, machine parts, and the like. However, in recent years, not only wear resistance but also thermal crack resistance has been increasingly required as performance required for WC-based cemented carbide cutting tools.
In order to improve the heat cracking resistance of a WC-based cemented carbide cutting tool, it is necessary to improve the strength as a physical property of the cemented carbide, and various proposals have been made as production methods for achieving it.

例えば、特許文献1には、WC基超硬合金の強度は、粗大WC、粗大遷移金属炭化物、粗大結合金属相プール及び巣の存在が影響を与えるとの知見の下、WC基超硬合金において、30μm以上の寸法の粗大WC、粗大遷移金属炭化物、粗大結合金属相プール及び巣からなる欠陥をなくし、さらに、30μm未満の欠陥を0.1mm以上の間隔で分散させた組織を形成することによって高強度が得られることが記載されており、そのための具体的な手段としては、WC基超硬合金の製造に際し、原料の粉砕及び混合、並びに篩分けによって欠陥の上限寸法および分散間隔を制御することが提案されている。   For example, in Patent Document 1, the strength of a WC-based cemented carbide is based on the knowledge that the presence of coarse WC, coarse transition metal carbide, coarse bonded metal phase pool, and nest affects WC-based cemented carbide. By eliminating the defects consisting of coarse WC, coarse transition metal carbide, coarse bonded metal phase pool and nest having dimensions of 30 μm or more, and forming a structure in which defects of less than 30 μm are dispersed at intervals of 0.1 mm or more It is described that high strength can be obtained, and as a specific means for that purpose, the upper limit dimension of the defects and the dispersion interval are controlled by crushing and mixing the raw materials and sieving in the production of the WC-based cemented carbide. It has been proposed.

また、例えば、特許文献2には、WCの平均粒径が1.2μm以下(最大粒径5μm以下)であり、5〜15重量%のコバルトを含有するWC基超硬合金において、コバルトの分布状態に着目し、EPMA装置を用いた線分析により求めたコバルト最小濃度分散値が0.22以上の場合には、コバルトがWC粒子間の細部にまで均一に分散することにより強度が向上することが記載されており、このようなWC基超硬合金を得るための手段として、図1に示すように、原料粉末を所定組成に配合し、アトライターにて湿式混合するに先立って、具体的方法および状態は明記されていないものの湿式予備混合処理を行い、原料粉末と分散剤を含んだ溶媒との分散状態を改善しておくことが提案されている。   Further, for example, in Patent Document 2, in a WC-based cemented carbide having an average particle diameter of WC of 1.2 μm or less (maximum particle diameter of 5 μm or less) and containing 5 to 15% by weight of cobalt, cobalt distribution Focusing on the state, when the cobalt minimum concentration dispersion value obtained by line analysis using an EPMA apparatus is 0.22 or more, the strength is improved by uniformly dispersing cobalt to the details between the WC particles. As a means for obtaining such a WC-based cemented carbide, as shown in FIG. 1, the raw material powder is blended into a predetermined composition, and prior to wet mixing with an attritor, Although the method and state are not specified, it has been proposed to perform a wet premixing treatment to improve the dispersion state of the raw material powder and the solvent containing the dispersant.

また、例えば、特許文献3には、平均粒径0.1〜0.7μmのWC粉末を含み、平均粒径0.2〜0.6μmのコバルト粉末を5〜12質量%含む原料粉末を、図2に示すように、アトライターと分散装置との間で循環させて合計5〜10時間混合し、得られた混合粉末を成形・焼結することにより、WC基超硬合金中の結合相の平均厚みを0.14μm以下とし、かつ結合相全体に対して、0.5μm以上の厚みの結合相の割合を0.15%以下とすることにより、WC基合金の強度、耐偏摩耗性を高めることが提案されている。   In addition, for example, Patent Document 3 includes a WC powder having an average particle diameter of 0.1 to 0.7 μm, and a raw material powder including 5 to 12 mass% of cobalt powder having an average particle diameter of 0.2 to 0.6 μm. As shown in FIG. 2, it is circulated between an attritor and a dispersing device and mixed for a total of 5 to 10 hours, and the resulting mixed powder is molded and sintered to form a binder phase in the WC-based cemented carbide. When the average thickness of the WC-based alloy is 0.14 μm or less and the ratio of the binder phase having a thickness of 0.5 μm or more to the total binder phase is 0.15% or less, the strength and uneven wear resistance of the WC-based alloy are reduced. It has been proposed to increase.

特開昭50−159804号公報JP 50-159804 A 特開2009−120903号公報JP 2009-120903 A 特開2013−60666号公報JP2013-60666A

上記特許文献1〜3に示される従来技術のWC基超硬合金においては、これを、例えば、ミニチュアドリルとして用い、乾式の穴あけ加工に供した場合には、すぐれた耐折損性、耐摩耗性を発揮するが、工具に対する熱的条件がより厳しい切削条件、例えば、湿式高速フライス切削加工に使用した場合には、急熱急冷による熱サイクルに曝されるとともに、高負荷が作用するために、熱亀裂が発生し易く、比較的短時間で寿命に至るという問題点があった。   In the WC-based cemented carbide of the prior art shown in Patent Documents 1 to 3, when this is used as, for example, a miniature drill and subjected to dry drilling, excellent breakage resistance and wear resistance However, when used for cutting conditions where the thermal conditions for the tool are more severe, for example, wet high-speed milling, it is exposed to a thermal cycle due to rapid heating and quenching, and a high load acts. There was a problem that thermal cracks were likely to occur and the life was reached in a relatively short time.

そこで、本発明者は、湿式高速フライス切削等の厳しい切削条件下で使用した場合にも、すぐれた耐熱亀裂性を備えるとともにすぐれた耐摩耗性を発揮するWC基超硬合金製切削工具を開発すべく、鋭意研究を行った結果、次のような知見を得た。   Accordingly, the present inventor has developed a WC-based cemented carbide cutting tool that has excellent thermal crack resistance and excellent wear resistance even when used under severe cutting conditions such as wet high-speed milling. As a result of earnest research, the following findings were obtained.

従来、WC基超硬合金製切削工具の製造に際しては、例えば、図1の従来法1(特許文献2)として示すように、所定の配合組成の所定粒径の原料粉末をアトライターで湿式混合する前段階において、分散剤を含んだ溶媒と原料粉末の分散状態が改善されるまで湿式の予備混合処理を行い、その後、アトライターにて12時間湿式混合し、得られた粉末を成形して、更に得られた成形体を真空焼結後、熱間静水圧プレス処理を加えることで所定の形状のWC基超硬合金製切削工具を得ていた。
また、従来の他の製造法としては、例えば、図2の従来法(特許文献3)に示すように、原料粉末をアトライターと分散装置との間で循環させて合計5〜10時間混合し、得られた混合粉末を成形し、更に得られた成形体を1320〜1380℃で焼結した後、熱間静水圧プレスを施して、所定の形状のWC基超硬合金製切削工具を得ていた。
しかし、上記従来法1、2で製造したWC基超硬合金製切削工具は、耐摩耗性および耐欠損性にはすぐれるものの、急熱急冷の熱サイクルを伴う高負荷条件下の切削加工においては、耐熱亀裂性が十分でないため、工具寿命が短いものであった。
Conventionally, when manufacturing a WC-based cemented carbide cutting tool, for example, as shown in FIG. 1 as conventional method 1 (Patent Document 2), raw powder having a predetermined composition and a predetermined particle size is wet-mixed with an attritor In the previous step, wet premixing treatment is performed until the dispersion state of the solvent containing the dispersant and the raw material powder is improved, and then wet mixing is performed for 12 hours in an attritor, and the obtained powder is molded. Further, after the obtained molded body was vacuum sintered, a hot isostatic pressing process was applied to obtain a WC-based cemented carbide cutting tool having a predetermined shape.
As another conventional manufacturing method, for example, as shown in the conventional method (Patent Document 3) in FIG. 2, the raw material powder is circulated between an attritor and a dispersing device and mixed for a total of 5 to 10 hours. Then, after molding the obtained mixed powder and further sintering the obtained molded body at 1320 to 1380 ° C., hot isostatic pressing is performed to obtain a WC-based cemented carbide cutting tool having a predetermined shape. It was.
However, although the WC-based cemented carbide cutting tools manufactured by the above conventional methods 1 and 2 have excellent wear resistance and fracture resistance, they can be used for cutting under high load conditions involving rapid and rapid thermal cycles. Has a short tool life due to insufficient heat cracking resistance.

本発明者は、耐熱亀裂性に優れたWC基超硬合金製切削工具を得るため、WC基超硬合金の組織と耐熱亀裂性との関連について検討を進めたところ、WC基超硬合金におけるコバルトの分散状態が耐熱亀裂性に大きな影響を及ぼすことを確認した。   In order to obtain a cutting tool made of a WC-based cemented carbide having excellent heat cracking resistance, the present inventor has investigated the relationship between the structure of the WC-based cemented carbide and the thermal cracking resistance. It was confirmed that the dispersed state of cobalt has a great influence on the thermal crack resistance.

そして、本発明者は、WC基超硬合金に最も適切なコバルト分散状態を形成するための製造工程についてさらに検討を進めたところ、WC基超硬合金の原料粉末の粉砕・混合に際し、まず、アトライターでWCの製造工程(炭化工程)で生じる二次粒子を解砕する、および/またはWC粒子周囲にCoを機械的に付着させるために所定時間、原料粉末を解砕・混合処理し、次いで、アトライターとビーズミルを使用して、粉砕と混合を、所定時間、順次繰り返し行った後、圧粉成形体を形成し、これを焼結して得たWC基超硬合金焼結体は、良好なコバルト分散状態を有すること、その結果、このWC基超硬合金焼結体からなるWC基超硬合金製切削工具は、急熱急冷による熱サイクルに曝されるとともに、高負荷が作用する湿式高速フライス切削等の厳しい切削条件に供された場合でも、すぐれた耐熱亀裂性を示すとともに、すぐれた耐摩耗性を発揮することを見出したのである。   And when this inventor advanced further examination about the manufacturing process for forming the most suitable cobalt dispersion state in a WC base cemented carbide, in the case of pulverization and mixing of the raw material powder of a WC base cemented carbide, In order to pulverize the secondary particles generated in the WC manufacturing process (carbonization process) with an attritor and / or to mechanically adhere Co around the WC particles, the raw material powder is crushed and mixed for a predetermined time, Next, using an attritor and a bead mill, pulverization and mixing were sequentially repeated for a predetermined time, and then a green compact was formed, and this was sintered to obtain a WC-based cemented carbide sintered body. As a result, the WC-based cemented carbide cutting tool made of this WC-based cemented carbide sintered body is exposed to a thermal cycle by rapid heating and quenching, and a high load acts. Wet high speed fly Even when subjected to severe cutting conditions such as cutting, with exhibit excellent thermal crack resistance, it was found that exhibit excellent abrasion resistance.

本発明は、上記知見に基づいてなされたものであって、
「(1)耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法であって、平均粒径1.5μm以下のコバルト粉末を10〜12質量%と、コバルトに対するクロムの質量比が4〜6.5質量%である平均粒径4.0μm以下のクロム含有粉末と、残部が、平均粒径0.5〜2.0μmの炭化タングステン粉末とからなる原料粉末を、アトライターで20〜40分解砕・混合処理しスラリー化した後、次いで、ビーズミルによるスラリーの混合処理とアトライターによるスラリーの粉砕処理を循環させて時間順次繰り返し行った後、圧粉成形体とし、この圧粉成形体を焼結することを特徴とする耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法。
(2)耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法であって、平均粒径1.5μm以下のコバルト粉末を10〜12質量%と、コバルトに対するクロムの質量比が4〜6.5質量%である平均粒径4.0μm以下のクロム含有粉末と、コバルトに対するバナジウムの質量比が2〜3質量%である平均粒径2.0μm以下のバナジウム含有粉末と、残部が、平均粒径0.5〜2.0μmの炭化タングステン粉末とからなる原料粉末を、アトライターで20〜40分解砕・混合処理しスラリー化した後、次いで、ビーズミルによるスラリーの混合処理とアトライターによるスラリーの粉砕処理を循環させて時間順次繰り返し行った後、圧粉成形体とし、この圧粉成形体を焼結することを特徴とする耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法。
(3)前記(1)または(2)に記載の製造方法において、圧粉成形体を焼結した後、サイズ・形状を整え、その表面に、物理蒸着法により硬質被覆層を被覆形成することを特徴とする耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) A method for producing a cutting tool made of a WC-based cemented carbide having excellent heat cracking resistance, wherein the cobalt powder having an average particle size of 1.5 μm or less is 10 to 12% by mass, and the mass ratio of chromium to cobalt is A raw material powder composed of a chromium-containing powder having an average particle size of 4.0 μm or less, which is 4 to 6.5 % by mass, and a tungsten carbide powder having a balance of 0.5 to 2.0 μm in average particle size, is 20 by an attritor. after ~ 40 exploded grinding and mixing treatment is slurried, then after performed sequentially repeated for 2-3 hours by circulating grinding treatment of the slurry by mixing processing and attritor slurry by a bead mill, a powder compact, this A method for producing a cutting tool made of a WC-based cemented carbide having excellent heat cracking characteristics, which comprises sintering a green compact.
(2) A method for manufacturing a cutting tool made of a WC-based cemented carbide having excellent heat cracking resistance, wherein the cobalt powder having an average particle size of 1.5 μm or less is 10 to 12% by mass, and the mass ratio of chromium to cobalt is 4 A chromium-containing powder having an average particle size of 4.0 μm or less, which is 6.5 % by mass, a vanadium-containing powder having an average particle size of 2.0 μm or less, in which the mass ratio of vanadium to cobalt is 2 to 3% by mass, and the balance The raw material powder composed of tungsten carbide powder having an average particle diameter of 0.5 to 2.0 μm is slurried by 20 to 40 cracking and mixing with an attritor, and then the slurry is mixed with an attritor using a bead mill. WC having excellent heat cracking characteristics, characterized by circulating the slurry pulverization process by the above and repeating it sequentially for 2 to 3 hours, and then forming a green compact and sintering the green compact A manufacturing method of a cutting tool made of a base cemented carbide.
(3) In the manufacturing method according to (1) or (2), after sintering the green compact, the size and shape are adjusted, and a hard coating layer is formed on the surface by physical vapor deposition. A method for manufacturing a WC-based cemented carbide cutting tool having excellent heat cracking characteristics. "
It is characterized by.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

まず、原料粉末の配合組成、平均粒径を定めた理由は、以下のとおりである。
コバルト粉末:
コバルト粉末は、WC基超硬合金における結合相形成成分として含有させるが、コバルト含有量が6質量%未満では所望の強度を得ることができず、一方、コバルト含有量が12質量%を超えると急激に軟化し、WC基超硬合金製切削工具として必要とされる所望の硬さが得られなくなることから、原料粉末中のコバルト粉末の含有割合を後記実施例(表1参照)に基づき10〜12質量%と定めた。
また、コバルト粉末は、平均粒径が1.5μmを超えると混合中に凝着を起こし、混合不良を起こすため、その平均粒径は1.5μm以下と定めた。
First, the reason why the composition of the raw material powder and the average particle diameter are determined is as follows.
Cobalt powder:
Cobalt powder is contained as a binder phase forming component in the WC-based cemented carbide, but if the cobalt content is less than 6% by mass, a desired strength cannot be obtained, while if the cobalt content exceeds 12% by mass. Since the desired hardness required as a WC-based cemented carbide cutting tool cannot be obtained because it softens rapidly, the content ratio of cobalt powder in the raw material powder is 10 based on the examples described later (see Table 1). It was defined as ˜12% by mass.
Further, since the cobalt powder causes adhesion during mixing when the average particle size exceeds 1.5 μm and causes poor mixing, the average particle size is determined to be 1.5 μm or less.

クロム含有粉末:
クロム含有粉末は、クロム粉末、炭化クロム粉末の一種または二種からなり、WC基超硬合金中の結合相形成成分として含有させるが、結合相を形成するコバルト中に固溶した状態で、WC相の成長を著しく抑制して、WC相の粒径を微細化させ、WC基超硬合金を微粒組織とし、強度を高める。しかし、この作用は、コバルトに対するクロムの質量比が4質量%未満では不充分であり、一方、コバルトに対するクロムの質量比が9質量%を超えると、クロムとタングステンの複合炭化物を析出し、強度が低下するようになる。
したがって、原料粉末中のクロム含有粉末におけるコバルトに対するクロムの質量比は後記実施例(表1参照)に基づき4〜6.5質量%と定めた。
なお、コバルトに対するクロムの質量比とは、クロム含有量×100/(コバルト含有量+クロム含有量)をいう。
また、クロム含有粉末の平均粒径が4.0μmを超えると、混合粉全域に均一分散されず、その結果、焼結後のWC粒子径の不均一化を招くため、クロム含有粉末の平均粒径は4.0μm以下と定めた。
Chromium-containing powder:
The chromium-containing powder is composed of one or two kinds of chromium powder and chromium carbide powder, and is contained as a binder phase forming component in the WC-based cemented carbide. The growth of the phase is remarkably suppressed, the grain size of the WC phase is refined, the WC-based cemented carbide is made into a fine grain structure, and the strength is increased. However, this effect is insufficient when the mass ratio of chromium to cobalt is less than 4% by mass. On the other hand, when the mass ratio of chromium to cobalt exceeds 9% by mass, a composite carbide of chromium and tungsten is precipitated, and the strength is increased. Will fall.
Therefore, the mass ratio of chromium to cobalt in the chromium-containing powder in the raw material powder was determined to be 4 to 6.5 % by mass based on the examples described later (see Table 1) .
In addition, the mass ratio of chromium with respect to cobalt means chromium content × 100 / (cobalt content + chromium content).
Further, if the average particle size of the chromium-containing powder exceeds 4.0 μm, it is not uniformly dispersed throughout the mixed powder, and as a result, non-uniformity of the WC particle size after sintering is caused. The diameter was determined to be 4.0 μm or less.

バナジウム含有粉末:
バナジウム含有粉末は、バナジウム粉末、炭化バナジウム粉末の一種または二種からなり、クロムの場合と同様、バナジウムを含有させることによってWC基超硬合金を微粒組織とすることで強度を高めるが、コバルトに対するバナジウムの質量比が2質量%未満ではその効果が少なく、一方、コバルトに対するバナジウムの質量比が3質量%を超えると、WCと結合相の密着力を弱める効果が強くなり、強度を低下させるようになる。
したがって、原料粉末中のバナジウム含有粉末におけるコバルトに対するバナジウムの質量比は2〜3質量%と定めた。
なお、コバルトに対するバナジウムの質量比とは、バナジウム含有量×100/(コバルト含有量+バナジウム含有量)をいう。
また、原料粉末中に、クロム含有粉末とバナジウム含有粉末の両者を含有共存させる場合には、クロム含有粉末におけるコバルトに対するクロムの質量比とバナジウム含有粉末におけるコバルトに対するバナジウムの質量比の合計量は、自ずと、6〜12質量%となる。
また、バナジウム含有粉末の平均粒径が2.0μmを超えると混合粉全域に均一分散されず、その結果、焼結後のWC粒子径の不均一化を招くため、バナジウム含有粉末の平均粒径は2.0μm以下と定めた。
Vanadium-containing powder:
The vanadium-containing powder is composed of one or two kinds of vanadium powder and vanadium carbide powder. Like vanadium, the vanadium-containing powder increases the strength by making the WC-based cemented carbide into a fine grain structure by containing vanadium. If the mass ratio of vanadium is less than 2% by mass, the effect is small. On the other hand, if the mass ratio of vanadium to cobalt exceeds 3% by mass, the effect of weakening the adhesion between the WC and the binder phase becomes strong and the strength is lowered. become.
Therefore, the mass ratio of vanadium to cobalt in the vanadium-containing powder in the raw material powder was determined to be 2 to 3 mass%.
The mass ratio of vanadium to cobalt means vanadium content × 100 / (cobalt content + vanadium content).
In addition, when both the chromium-containing powder and the vanadium-containing powder are contained in the raw material powder, the total amount of the mass ratio of chromium to cobalt in the chromium-containing powder and the mass ratio of vanadium to cobalt in the vanadium-containing powder is: Naturally, it becomes 6-12 mass%.
Also, if the average particle size of the vanadium-containing powder exceeds 2.0 μm, it is not uniformly dispersed throughout the mixed powder, and as a result, the WC particle size after sintering becomes non-uniform, so the average particle size of the vanadium-containing powder Was set to 2.0 μm or less.

WC粉末:
原料粉末中のWC粉末の平均粒径が小さいほど、WC基超硬合金製切削工具におけるWC粒子径も小さくなり、強度や耐摩耗性は向上するが、平均粒径が小さすぎると、焼結時の溶解再析出現象が活発化し、粒成長して粗大粒子となり易く、また、WC基超硬合金製切削工具の耐熱亀裂性が低下するので、この発明では、WC粉末の平均粒径の下限値を0.5μmとした。
一方、原料粉末中のWC粉末の平均粒径が2.0μmを超えると、粉砕処理・混合処理を行っても、WC基超硬合金中に粗大なWC粒子が残存する不均一組織となるため、強度が低下し、耐偏摩耗性も低下することから、この発明では、WC粉末の平均粒径の上限値を2.0μmとした。
この発明において定めたコバルト粉末、クロム含有粉末、バナジウム含有粉末およびWC粉末の平均粒径とは、いずれもフィッシャー法(FSSS)により求めた粒径の平均値をいう。
WC powder:
The smaller the average particle size of the WC powder in the raw material powder, the smaller the WC particle size in the WC-base cemented carbide cutting tool, and the strength and wear resistance are improved. In this invention, the lower limit of the average particle diameter of the WC powder is reduced because the dissolution and reprecipitation phenomenon at the time is activated, the grains grow and become coarse particles, and the heat cracking resistance of the WC-based cemented carbide cutting tool is reduced. The value was 0.5 μm.
On the other hand, if the average particle diameter of the WC powder in the raw material powder exceeds 2.0 μm, a coarse structure of WC particles will remain in the WC-based cemented carbide even after grinding and mixing. In this invention, the upper limit value of the average particle size of the WC powder is set to 2.0 μm because the strength decreases and the uneven wear resistance also decreases.
The average particle diameters of the cobalt powder, chromium-containing powder, vanadium-containing powder, and WC powder defined in this invention all mean the average value of the particle diameters determined by the Fisher method (FSSS).

次に、本発明の処理工程について、図3を参照しつつ説明する。
図3は、本発明の製造方法における粉砕・混合工程の概略フローを示す。
本工程はアトライターとビーズミルが配管によって連結されており、アトライターとビーズミル間に設けられているバルブを開閉することによって、混合スラリーの循環をON/OFFすることができる。
工程の流れを説明すると、図3に示すように、
(a)原料粉末として、所定の平均粒径のWC粉末、Co粉末、Cr粉末、VC粉末を所定割合に配合する。
(b)この原料粉末を、まず、アトライターで20〜40分解砕・混合処理を施す。
(c)次いで、アトライターとビーズミル間のバルブを開けることで、工程(b)で得られたスラリーがビーズミルに導入され、混合処理が施され、その流れでアトライターに戻る。
(d)次いで、アトライターにて、粉砕処理が施され、その流れでビーズミルに戻る。
(e)このような、工程(c)と工程(d)の循環を、時間続けることで粉砕・混合処理を施す。
(f)次いで、得られたスラリーを乾燥後、所定形状の圧粉体にプレス成形する。
(g)次いで、所定の雰囲気中、1370〜1450℃の範囲内の所定の温度に保持してWC基超硬合金焼結体を得る。
(h)上記WC基超硬合金焼結体を所望形状・サイズに加工し、物理蒸着法により硬質被覆層を被覆形成することにより、WC基超硬合金製切削工具を製造する。
Next, the processing steps of the present invention will be described with reference to FIG.
FIG. 3 shows a schematic flow of the pulverization / mixing step in the production method of the present invention.
In this step, the attritor and the bead mill are connected by piping, and the circulation of the mixed slurry can be turned on and off by opening and closing a valve provided between the attritor and the bead mill.
The flow of the process will be explained as shown in FIG.
(A) As raw material powder, WC powder, Co powder, Cr 3 C 2 powder, and VC powder having a predetermined average particle diameter are blended in a predetermined ratio.
(B) This raw material powder is first subjected to 20-40 cracking and mixing treatment with an attritor.
(C) Next, by opening a valve between the attritor and the bead mill, the slurry obtained in the step (b) is introduced into the bead mill, mixed, and returned to the attritor in the flow.
(D) Next, a grinding process is performed by an attritor, and the flow returns to the bead mill.
(E) The pulverization / mixing treatment is performed by continuing the circulation of the step (c) and the step (d) for 2 to 3 hours.
(F) Next, after drying the obtained slurry, it is press-molded into a green compact having a predetermined shape.
(G) Next, in a predetermined atmosphere, a WC-based cemented carbide sintered body is obtained by maintaining a predetermined temperature within a range of 1370 to 1450 ° C.
(H) The above WC-based cemented carbide sintered body is processed into a desired shape and size, and a hard coating layer is formed by physical vapor deposition to produce a WC-based cemented carbide cutting tool.

ここで、アトライターについて、簡単に説明する。
アトライターは、既によく知られているように、直径3〜15mm程度の粒状の分散粉砕媒体(メディア)を円筒容器に充填して、アームを具える撹拌軸をこの容器内で高速回転し、高速回転場でメディア同士を衝突、接触(擦過)させることで、液体に混ぜてスラリー状にした分散粉砕対象を分散、粉砕する装置である。
なお、直径3〜5mm程度の超硬合金製ボールをメディアとするアトライターにより、原料粉末を粉砕し、均粒化を促進することも行われているが、通常、10時間以上を要し、このような長時間アトライターを用いた粉砕を行った場合には、粉砕した原料粉末の再凝集、過粉砕が発生し易い。
Here, the attritor will be briefly described.
As already known, the attritor is filled with a granular dispersion and grinding medium (media) having a diameter of about 3 to 15 mm in a cylindrical container, and a stirring shaft provided with an arm is rotated at a high speed in the container. This is a device that disperses and pulverizes the object to be dispersed and pulverized, which is mixed with a liquid and made into a slurry, by causing the media to collide and contact (scratch) in a high-speed rotating field.
In addition, by an attritor using a cemented carbide ball having a diameter of about 3 to 5 mm as a medium, the raw material powder is pulverized to promote uniforming, but usually requires 10 hours or more, When such pulverization using an attritor is performed for a long time, re-aggregation and over-pulverization of the pulverized raw material powder are likely to occur.

前記本発明の製造方法における工程(b)において、アトライター単独で十分な混合をして、Coの分散性を良くしようとすると、長時間の処理が必要となり、その結果、WCが過粉砕され、焼結後、著しく粒成長したWC、所謂、α2など組織異常を起こして強度低下を招き、また合金として硬くなりすぎて耐欠損性が低下する。
したがって、本発明では、組織異常の発生を防止し、かつ、WC基超硬合金としての硬さと靭性のバランスを図るという観点から、後記実施例に基づきアトライターによる解砕・混合処理時間の上限を40分とした。
一方、アトライターによる解砕・混合処理の時間が20分未満であると、WCの製造工程(炭化工程)で生じる二次粒子を解砕すること、および/またはWC粒子周囲にCoを機械的に付着させることが不十分であって、組織不良や組成ズレを起こすことから、アトライターによる解砕・混合処理は少なくとも20分以上行うことが必要である。
つまり、前記工程(b)における技術的な意義は、WC周囲にCoを塗りつけることが主目的であり、そしてこれによって、混合粉段階で強固にCoが高分散状態になり(分離しにくい)、焼結工程におけるCoの均一化を助けるという働きがあります。
よって、本発明の製造方法の工程(b)における、アトライターによる解砕・混合処理時間は20〜40分と定めた。
In the step (b) of the production method of the present invention, if sufficient mixing is performed with an attritor alone to improve the dispersibility of Co, a long time treatment is required, and as a result, WC is excessively ground. After sintering, WC with remarkable grain growth, so-called α2, causes a structural abnormality such as strength reduction, and becomes too hard as an alloy, resulting in reduced fracture resistance.
Therefore, in the present invention, from the viewpoint of preventing the occurrence of structural abnormality and balancing the hardness and toughness of the WC-based cemented carbide, the upper limit of the pulverization / mixing processing time by the attritor based on the examples described later. Was 40 minutes.
On the other hand, if the time of pulverization / mixing treatment by an attritor is less than 20 minutes, secondary particles generated in the WC manufacturing process (carbonization process) are crushed and / or Co is mechanically around the WC particles. Insufficient adhesion to the surface causes structural defects and compositional deviations. Therefore, it is necessary to perform at least 20 minutes of pulverization / mixing with an attritor.
In other words, the technical significance in the step (b) is mainly to coat Co around the WC, and thereby, the Co is strongly dispersed in the mixed powder stage (difficult to separate), It helps to make Co uniform in the sintering process.
Therefore, in the step (b) of the production method of the present invention, the pulverization / mixing treatment time by the attritor was set to 20 to 40 minutes.

次に、ビーズミルについて、簡単に説明する。
ビーズミルは、粉末の分散に用いられる分散装置として知られている。ビーズミルは、前記アトライターと概ね同様の構成であるが、メディアの大きさがアトライターで用いられるものよりも小さく(直径0.03〜2mm程度)、また、撹拌軸としてはピンを具える撹拌軸が利用されるものもある。
ビーズミルのみにより、WC基超硬合金の原料粉末を分散処理した場合、分散性はよいもののWC粉末の粉砕が十分でないため、合金としての硬さが不足し耐摩耗性が低下することから、WC基超硬合金の原料粉末の混合にはあまり用いられていない。ただ、長時間をかければ、ある程度の硬さは得られるようになるものの、この場合、延性に富むCo粉末が粉砕力の弱いメディアによって押し固められて片状態となり、結果として、Coの分散性が悪くなり、得られたWC基超硬合金の耐熱亀裂性が低下する。
本発明では、ビーズミルにより主としてWC基超硬合金の原料粉末の分散・混合を行うが、後記するように、アトライターによる粉砕処理とビーズミルによる混合処理を繰り返し行うことによって、Coの過度の片状化を発生することなく、WC粉末の微細化と、Coの均一分散を達成することができる。
Next, the bead mill will be briefly described.
A bead mill is known as a dispersing device used for dispersing powder. The bead mill has substantially the same configuration as the attritor, but the size of the media is smaller than that used in the attritor (0.03 to 2 mm in diameter), and the agitation shaft is provided with a pin. Some use axes.
When the raw material powder of the WC-based cemented carbide is dispersed only by the bead mill, the dispersibility is good but the WC powder is not sufficiently pulverized, so the hardness as the alloy is insufficient and the wear resistance is lowered. It is not often used for mixing raw powders of base cemented carbide. However, although a certain degree of hardness can be obtained over a long period of time, in this case, the Co powder rich in ductility is pressed into a single state by a medium having a weak crushing force, and as a result, the dispersibility of Co The heat resistance cracking property of the obtained WC-based cemented carbide decreases.
In the present invention, the raw material powder of the WC-based cemented carbide is mainly dispersed and mixed by a bead mill. As will be described later, by repeating the grinding process by an attritor and the mixing process by the bead mill, excessive flakes of Co are obtained. The WC powder can be refined and the Co can be uniformly dispersed without causing crystallization.

本発明の製造方法においては、工程(d)における粉砕処理と、工程(c)の混合処理の循環繰り返しからなる工程(e)を、時間にわたり行う。
工程(e)における処理、即ち、工程(d)の粉砕処理と工程(c)の混合処理を循環させて順次繰り返す処理、により、原料粉末の微細化とともに、Coの均一分散化が図られる。
前記(e)の工程における処理時間が時間未満であると、Coの分散状態が十分でなく、耐熱亀裂性の向上が見られず、一方、前記(e)工程の処理時間が時間を超えると、WC粒子の微細化が進み過ぎ、合金としての硬さと靭性のバランスが取れなくなってしまうことから、本発明では、工程(e)における処理時間を後記実施例に基づき時間と定めた。
In the manufacturing method of this invention, the process (e) which consists of the cyclic | annular repetition of the grinding | pulverization process in a process (d) and the mixing process of a process (c) is performed over 2 to 3 hours.
By the process in the step (e), that is, the process of repeating the pulverization process of the process (d) and the mixing process of the process (c) sequentially and repeatedly, the raw material powder is refined and Co is uniformly dispersed.
When the treatment time in the step (e) is less than 2 hours, the dispersion state of Co is not sufficient, and the improvement of the thermal cracking resistance is not observed, while the treatment time in the step (e) is 3 hours. If it exceeds the limit, the WC particles are excessively refined and the balance between hardness and toughness as an alloy cannot be achieved. Therefore, in the present invention, the processing time in the step (e) is 2 to 3 hours based on the examples described later. Determined.

なお、本発明では、工程(b)により、アトライターで20分〜1時間、原料粉末の解砕・混合処理を行った後、粉砕処理(工程(d))と混合処理(工程(c))を、さらに、1〜6時間にわたり、順次繰り返し行っているが、予め、工程(b)による解砕・混合処理を行うことなく、直ちに、粉砕処理(工程(d))と混合処理(工程(c))とを循環させて繰り返し行った場合には、解砕・混合処理で得られる混合粉段階でのWC周囲へのCoの強固な付着が得られないため、焼結体における十分なCo分散状態が得られないだけでなく、循環流量が局所的に低下する領域にWC粉末の偏析が生じ、α2などの組織不良や組成ズレ発生の原因となる。また、これを防止するために、循環速度を速くし、循環流量を増加させると、ビーズミル内のメディアの偏りが生じ、ビーズミルの混合力を低下させ、結果として、Coの分散性が低下する。
したがって、本発明の製造方法のように、粉砕処理(工程(d))と混合処理(工程(c))を、時間にわたり、順次繰り返し行うに先立って、予め、アトライターで20〜40分、原料粉末の解砕・混合処理を行うことが必要である。
In the present invention, the raw powder is pulverized and mixed by an attritor for 20 minutes to 1 hour in step (b), and then pulverized (step (d)) and mixed (step (c)). ) Is further repeated sequentially for 1 to 6 hours, but immediately without pulverization / mixing process in step (b), the pulverization process (process (d)) and the mixing process (process) are performed in advance. When (c)) is repeatedly circulated, it is not possible to obtain strong adhesion of Co around the WC in the mixed powder stage obtained by the crushing and mixing process. Not only is the Co dispersed state not obtained, but segregation of the WC powder occurs in a region where the circulating flow rate is locally reduced, which causes a structural defect such as α2 and a composition shift. Further, in order to prevent this, when the circulation speed is increased and the circulation flow rate is increased, the media in the bead mill is biased, the mixing force of the bead mill is lowered, and as a result, the dispersibility of Co is lowered.
Therefore, as in the production method of the present invention, the pulverization treatment (step (d)) and the mixing treatment (step (c)) are repeated in advance for 2 to 3 hours in advance by using an attritor in advance. It is necessary to crush and mix the raw material powder for 40 minutes.

前記(b)、(c)、(d)、(e)の工程で作製した混合原料粉末を、前記(f)の工程において約100MPaの圧力でプレス成形し、所定形状の圧粉体を作製し、次いで、前記(g)の工程において、所定の雰囲気中、1370〜1450℃の範囲内の所定の温度に保持して焼結し、WC基超硬合金焼結体を作製し、次いで、(h)の工程において、所定サイズ・形状に加工し、物理蒸着法により硬質被覆層を被覆形成することにより、WC基超硬合金製切削工具を製造する。   The mixed raw material powder produced in the steps (b), (c), (d) and (e) is press-molded at a pressure of about 100 MPa in the step (f) to produce a green compact having a predetermined shape. Then, in the step (g), in a predetermined atmosphere, sintering is performed while maintaining a predetermined temperature within a range of 1370 to 1450 ° C. to produce a WC-based cemented carbide sintered body, In the step (h), a WC-based cemented carbide cutting tool is manufactured by processing into a predetermined size and shape, and forming a hard coating layer by physical vapor deposition.

本発明の製造方法によれば、アトライターで20〜40分、原料粉末の解砕・混合処理を行った後、アトライターを用いた粉砕処理とビーズミルを用いた混合処理を、時間にわたり順次繰り返し行うことにより、均一な微細WC粒子を含有し、Co分散状態が良好なWC基超硬合金製切削工具を製造することができる。
そして、本発明の製造方法で製造したWC基超硬合金製切削工具は、急熱急冷の熱サイクルに曝されるとともに、高負荷が作用する湿式高速フライス切削等の厳しい切削条件に供した場合でも、すぐれた耐折損性、耐摩耗性とともにすぐれた耐熱亀裂性を発揮するのである。
According to the production method of the present invention, after pulverizing and mixing the raw material powder with an attritor for 20 to 40 minutes, the pulverization with the attritor and the mixing with the bead mill are performed for 2 to 3 hours. WC-based cemented carbide cutting tool containing uniform fine WC particles and having a good Co dispersion state can be produced.
When the WC-based cemented carbide cutting tool manufactured by the manufacturing method of the present invention is exposed to a rapid and rapid thermal cycle and subjected to severe cutting conditions such as wet high-speed milling in which a high load acts. However, it exhibits excellent thermal crack resistance as well as excellent breakage resistance and wear resistance.

従来法1(特許文献2)のWC基超硬合金製切削工具の製造方法における原料粉末の混合工程の概略フローを示す。The general flow of the mixing process of the raw material powder in the manufacturing method of the cutting tool made from WC base cemented carbide of the conventional method 1 (patent document 2) is shown. 従来法2(特許文献3)のWC基超硬合金製切削工具の製造方法における原料粉末の粉砕・混合工程の概略フローを示す。The general | schematic flow of the grinding | pulverization / mixing process of the raw material powder in the manufacturing method of the cutting tool made from WC base cemented carbide of the conventional method 2 (patent document 3) is shown. 本発明のWC基超硬合金製切削工具の製造方法における原料粉末の粉砕・混合工程の概略フローを示す。The general | schematic flow of the grinding | pulverization / mixing process of the raw material powder in the manufacturing method of the cutting tool made from a WC base cemented carbide of this invention is shown. 刃先の状態の良否を判断するための基準刃先状況を示す。The reference | standard blade edge | tip condition for judging the quality of a blade edge | tip state is shown.

本発明のWC基超硬合金製切削工具の製造方法について、実施例を用いて、以下に具体的に説明する。   The method for producing the WC-based cemented carbide cutting tool of the present invention will be specifically described below with reference to examples.

まず、原料粉末として、表1に示すそれぞれの平均粒径を有するWC粉末、Co粉末、Cr粉末及びVC粉末を、同じく表1に示される割合に配合し、原料粉末A〜Dを作製した。 First, as a raw material powder, WC powder, Co powder, Cr 3 C 2 powder and VC powder having respective average particle diameters shown in Table 1 are blended in the proportions shown in Table 1, and raw material powders A to D are mixed. Produced.

次いで、上記原料粉末A〜Dをアトライターに装入し、表2に示す時間、解砕・混合処理を行い、次いで、表2に示す時間、アトライターによる粉砕処理とビーズミルによる混合処理をスラリーを循環させて施し乾燥させた後、100MPaの圧力でプレス成形して、ISO・SEEN1203AFEN1で規定する形状の圧粉体を作製した。   Next, the raw material powders A to D are charged into an attritor and subjected to pulverization / mixing treatment for the time shown in Table 2. Next, the grinding treatment with the attritor and the mixing treatment with the bead mill are performed for the time shown in Table 2. Was circulated and dried, followed by press molding at a pressure of 100 MPa to produce a green compact having a shape specified by ISO · SEEN1203AFEN1.

次いで、上記圧粉体を3Pa以下の真空雰囲気中で表1に示す温度に保持して焼結し、WC基超硬合金焼結体を作製し、次いで、切刃部にR0.08mmの丸ホーニング加工し、さらに、物理蒸着法で、層厚2μmの(Ti,Al)Nからなる硬質被覆層を被覆形成することにより、表2に示す本発明のWC基超硬合金製切削工具(以下、「本発明工具」という)1〜を製造した。 Next, the green compact was sintered in a vacuum atmosphere of 3 Pa or less at the temperature shown in Table 1 to produce a WC-based cemented carbide sintered body, and then a round edge of R 0.08 mm was formed on the cutting edge. The WC-based cemented carbide cutting tool of the present invention shown in Table 2 (hereinafter referred to as “the hard cutting layer”) is formed by performing honing and further coating a hard coating layer made of (Ti, Al) N with a layer thickness of 2 μm by physical vapor deposition. 1 to 4 ) (referred to as “the present invention tool”).


比較のために、表1に示す配合組成・平均粒径の原料粉末A〜Fをアトライターに装入し、表3に示す時間、解砕・混合処理を行い、次いで、表3に示す時間、アトライターによる粉砕処理とビーズミルによる混合処理を、スラリーを循環させて施して乾燥させた後、100MPaの圧力でプレス成形して、ISO・SEEN1203AFEN1で規定する形状の圧粉体を作製した。
次いで、上記圧粉体を、実施例と同一条件で焼結、丸ホーニング加工して硬質被覆層を蒸着形成することにより、表3に示す比較例のWC基超硬合金製切削工具(以下、「比較例工具」という)1〜10を製造した。
For comparison, the raw material powders A to F having the composition and average particle diameter shown in Table 1 were charged into an attritor, and the time shown in Table 3 was crushed and mixed, followed by the time shown in Table 3. Then, a grinding process using an attritor and a mixing process using a bead mill were performed by circulating a slurry and dried, followed by press molding at a pressure of 100 MPa to produce a green compact having a shape specified by ISO · SEEN1203AFEN1.
Next, the green compact was sintered under the same conditions as in the examples, rounded honing, and a hard coating layer was formed by vapor deposition to form a WC-based cemented carbide cutting tool (hereinafter, referred to as Table 3). 1 to 10) (referred to as “comparative example tools”).

さらに、参考のため、表1に示す配合組成・平均粒径の原料粉末A〜Fを、表4に示す時間、アトライターによる粉砕処理のみを行って、これを、100MPaの圧力でプレス成形し、ISO・SEEN1203AFEN1で規定する形状の圧粉体を作製した。
そして、実施例と同一条件で焼結、丸ホーニング加工して硬質被覆層を被覆形成することにより、表4に示す参考例のWC基超硬合金製切削工具(以下、「参考例工具」という)1〜4,9を製造した。
また、表1に示す配合組成・平均粒径の原料粉末A〜Dを、表4に示す時間、アトライターによる粉砕とビーズミルによる混合を循環させて繰り返し行い、これを、100MPaの圧力でプレス成形して、ISO・SEEN1203AFEN1で規定する形状の圧粉体を作製し、さらに、これを、実施例と同一条件で焼結、丸ホーニング加工して硬質被覆層を被覆形成することにより、表4に示す参考例工具5〜8,10を製造した。
Further, for reference, the raw material powders A to F having the composition and average particle diameter shown in Table 1 were subjected only to pulverization with an attritor for the time shown in Table 4, and this was press-molded at a pressure of 100 MPa. , ISO / SEEN1203AFEN1 shaped green compact was prepared.
Then, by sintering and round honing under the same conditions as in the examples to form a hard coating layer, a WC-based cemented carbide cutting tool of a reference example shown in Table 4 (hereinafter referred to as “reference example tool”). ) 1-4, 9 were produced.
Further, the raw material powders A to D having the composition and average particle diameter shown in Table 1 are repeatedly performed by circulating the grinding by the attritor and the mixing by the bead mill for the time shown in Table 4, and this is press-molded at a pressure of 100 MPa. Then, a green compact having a shape specified by ISO · SEEN1203AFEN1 was prepared, and further, this was sintered and round honed under the same conditions as in the examples to form a hard coating layer. Reference example tools 5-8, 10 shown were produced.



つぎに、上記本発明工具1〜、比較例工具1〜10及び参考例工具1〜10について、以下に示す条件で、湿式高速フライス切削加工試験を実施し、切刃の逃げ面摩耗幅を測定するとともに、熱亀裂発生の有無等の刃先状況を観察した。 Next, a wet high-speed milling cutting test is performed on the above-mentioned inventive tools 1 to 4 , comparative tools 1 to 10 and reference tools 1 to 10 under the conditions shown below, and the flank wear width of the cutting edge is determined. While measuring, the state of the blade edge, such as the presence or absence of thermal cracks, was observed.

被削材: SCM440
切削速度: 250m/min
切り込み: 2.0mm
一刃送り量:0.2mm/tooth
切削油剤: 水溶性
切削時間: 23min
Work Material: SCM440
Cutting speed: 250 m / min
Cutting depth: 2.0mm
Single blade feed rate: 0.2 mm / tooth
Cutting fluid: Water-soluble Cutting time: 23 min

上記切削試験後の刃先の状態について、図4に示す基準刃先状況に基づいて評価を行った。
図4には、ランク付けの基準となる試験後の各種刃先状況を示す。
ランク「A」は、熱亀裂本数が少なく、もっとも好ましい刃先状態を示す。
ランク「B」は、熱亀裂本数は多いが損傷が少ないため、ほぼ健全な刃先状態といえる。
ランク「C」は、熱亀裂本数が多く、損傷も大であるため、ほぼ寿命と判断される状態である。
ランク「D」は、欠損が発生したため、刃先としては使用不可の状態と言える。
以上の観点から、刃先の状態を評価し、評価結果を表5に示した。
また、同じく表5に、切刃の逃げ面摩耗幅の測定結果を示す。
The state of the cutting edge after the cutting test was evaluated based on the reference cutting edge situation shown in FIG.
FIG. 4 shows various cutting edge conditions after the test, which are the criteria for ranking.
Rank “A” indicates the most preferable cutting edge state with a small number of thermal cracks.
Rank “B” can be said to be an almost sound cutting edge state because there are many thermal cracks but little damage.
The rank “C” is a state in which the number of thermal cracks is large and damage is large, so that it is determined that the lifetime is almost the same.
The rank “D” can be said to be in an unusable state as a cutting edge because a defect has occurred.
From the above viewpoint, the state of the cutting edge was evaluated, and the evaluation results are shown in Table 5.
Similarly, Table 5 shows the measurement results of the flank wear width of the cutting edge.

表2〜5によれば、本発明の製造方法により製造した本発明工具1〜は、湿式高速フライス切削加工試験において、すぐれた耐摩耗性を発揮するとともに、欠損、熱亀裂の発生は極めて少なかった。
これに対して、比較例工具1〜10は、耐摩耗性が劣り、かつ切れ刃の損傷状態が大きくなっていた。
また、参考例工具1〜10は、比較例よりもさらに激しく損傷しており、中には切れ刃が欠損しているものもあった。
According to Tables 2 to 5, the present invention tools 1 to 4 produced by the production method of the present invention exhibit excellent wear resistance in the wet high-speed milling test, and the occurrence of defects and thermal cracks is extremely high. There were few.
On the other hand, the comparative tools 1 to 10 were inferior in wear resistance, and the damaged state of the cutting edge was large.
Further, the reference example tools 1 to 10 were more severely damaged than the comparative examples, and some of them had missing cutting edges.

以上のとおり、本発明のWC基超硬合金製切削工具の製造方法によれば、耐熱亀裂性、耐欠損性及び耐摩耗性に優れたWC基超硬合金製製切削工具を得ることができるので、工具の長寿命化を図ることができる。




As described above, according to the method for producing a cutting tool made of a WC-based cemented carbide according to the present invention, a cutting tool made of a WC-based cemented carbide excellent in heat crack resistance, fracture resistance, and wear resistance can be obtained. Therefore, the tool life can be extended.




Claims (3)

耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法であって、平均粒径1.5μm以下のコバルト粉末を10〜12質量%と、コバルトに対するクロムの質量比が4〜6.5質量%である平均粒径4.0μm以下のクロム含有粉末と、残部が、平均粒径0.5〜2.0μmの炭化タングステン粉末とからなる原料粉末を、アトライターで20〜40分解砕・混合処理しスラリー化した後、次いで、ビーズミルによるスラリーの混合処理とアトライターによるスラリーの粉砕処理を循環させて時間順次繰り返し行った後、圧粉成形体とし、この圧粉成形体を焼結することを特徴とする耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法。 5. A method for producing a cutting tool made of a WC-based cemented carbide having excellent heat cracking resistance, comprising 10 to 12% by mass of cobalt powder having an average particle size of 1.5 μm or less, and a mass ratio of chromium to cobalt of 4 to 6. A raw material powder consisting of 5 % by mass chromium-containing powder having an average particle size of 4.0 μm or less and the balance of tungsten carbide powder having an average particle size of 0.5 to 2.0 μm is decomposed by 20 to 40 with an attritor. -After mixing and slurrying, the slurry mixing process using a bead mill and the slurry pulverizing process using an attritor were circulated and repeated sequentially for 2 to 3 hours to obtain a green compact, and this green compact A method for producing a cutting tool made of a WC-based cemented carbide excellent in heat cracking characteristics, characterized in that the sinter is sintered. 耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法であって、平均粒径1.5μm以下のコバルト粉末を10〜12質量%と、コバルトに対するクロムの質量比が4〜6.5質量%である平均粒径4.0μm以下のクロム含有粉末と、コバルトに対するバナジウムの質量比が2〜3質量%である平均粒径2.0μm以下のバナジウム含有粉末と、残部が、平均粒径0.5〜2.0μmの炭化タングステン粉末とからなる原料粉末を、アトライターで20〜40分解砕・混合処理しスラリー化した後、次いで、ビーズミルによるスラリーの混合処理とアトライターによるスラリーの粉砕処理を循環させて時間順次繰り返し行った後、圧粉成形体とし、この圧粉成形体を焼結することを特徴とする耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法。 5. A method for producing a cutting tool made of a WC-based cemented carbide having excellent heat cracking resistance, comprising 10 to 12% by mass of cobalt powder having an average particle size of 1.5 μm or less, and a mass ratio of chromium to cobalt of 4 to 6. 5 % by mass of chromium-containing powder having an average particle size of 4.0 μm or less, vanadium-containing powder having an average particle size of 2.0 μm or less whose mass ratio of vanadium to cobalt is 2 to 3% by mass, and the balance is an average particle After the raw material powder composed of tungsten carbide powder having a diameter of 0.5 to 2.0 μm is cracked and mixed with an attritor for 20 to 40 , the slurry is mixed, and then the slurry is mixed with a bead mill and the slurry with an attritor is mixed. WC-based cemented carbide with excellent thermal cracking characteristics, characterized by circulating the pulverization treatment and repeating it for 2 to 3 hours in sequence and then forming a green compact and sintering the green compact Manufacturing method of alloy cutting tool. 請求項1または2に記載の製造方法において、圧粉成形体を焼結した後、サイズ・形状を整え、その表面に、物理蒸着法により硬質被覆層を被覆形成することを特徴とする耐熱亀裂性にすぐれたWC基超硬合金製切削工具の製造方法。   3. The heat-resistant crack according to claim 1, wherein after compacting the green compact, the size and shape are adjusted, and a hard coating layer is formed on the surface by physical vapor deposition. A method for producing a cutting tool made of a WC-based cemented carbide having excellent properties.
JP2014041410A 2014-03-04 2014-03-04 Method for producing tungsten carbide based cemented carbide tool with excellent heat crack resistance Active JP6387627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041410A JP6387627B2 (en) 2014-03-04 2014-03-04 Method for producing tungsten carbide based cemented carbide tool with excellent heat crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041410A JP6387627B2 (en) 2014-03-04 2014-03-04 Method for producing tungsten carbide based cemented carbide tool with excellent heat crack resistance

Publications (2)

Publication Number Publication Date
JP2015166123A JP2015166123A (en) 2015-09-24
JP6387627B2 true JP6387627B2 (en) 2018-09-12

Family

ID=54257278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041410A Active JP6387627B2 (en) 2014-03-04 2014-03-04 Method for producing tungsten carbide based cemented carbide tool with excellent heat crack resistance

Country Status (1)

Country Link
JP (1) JP6387627B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358433B2 (en) * 2014-09-03 2018-07-18 三菱マテリアル株式会社 Titanium carbonitride-based cermet powder, titanium carbonitride-based cermet sintered body, and manufacturing method of titanium carbonitride-based cermet cutting tool
CN108747248A (en) * 2018-06-19 2018-11-06 安徽日升机械制造有限公司 A kind of manufacturing method of the wear-resisting sewing machine cutting edge of high-precision

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69231381T2 (en) * 1991-04-10 2000-12-28 Sandvik Ab METHOD FOR PRODUCING CEMENTED CARBIDE ITEMS
JP4647244B2 (en) * 2004-05-26 2011-03-09 株式会社アライドマテリアル Tungsten carbide powder and method for producing the same
JP2006328452A (en) * 2005-05-24 2006-12-07 Hitachi Tool Engineering Ltd Production method of powder mixture for production of particulate sintered hard alloy andparticulate sintered hard alloy obtained by the productin method
JP2009035810A (en) * 2007-07-11 2009-02-19 Sumitomo Electric Hardmetal Corp Cemented carbide
JP2009120903A (en) * 2007-11-14 2009-06-04 Hitachi Tool Engineering Ltd Wc base cemented carbide
JP5462549B2 (en) * 2009-08-20 2014-04-02 住友電気工業株式会社 Cemented carbide
RU2694401C2 (en) * 2013-05-31 2019-07-12 Сандвик Интеллекчуал Проперти Аб New method of producing cemented carbide and product obtained thereof
JP6123138B2 (en) * 2013-10-24 2017-05-10 住友電工ハードメタル株式会社 Cemented carbide, microdrill, and method of manufacturing cemented carbide

Also Published As

Publication number Publication date
JP2015166123A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP6139538B2 (en) Method for making cemented carbide or cermet body
CN100569978C (en) Nano WC-Co composite powder modified Ti (CN) based ceramic metal and preparation method thereof
CN104480337B (en) A kind of preparation method of hard alloy cutting tool material
CN104439233B (en) A kind of material of hard alloy cutting tool
JP2009035810A (en) Cemented carbide
CN103911536B (en) Containing Cr high-steel level oil gas thread sintered carbide tool material for processing
JP6068830B2 (en) Cemented carbide and coated cemented carbide
CN111187960A (en) Double-crystal hard alloy and preparation method thereof
US20190119167A1 (en) Sintered Polycrystalline Cubic Boron Nitride Material
JP2021110010A (en) Ultrafine particle cemented carbide, and tool for cutting or cutting grinding or tool for wear resistance using the same
JP2009242181A (en) Tungsten carbide powder and method for producing the same
CN110735075A (en) Preparation method of WC-based hard alloys with high wear resistance
JP6123138B2 (en) Cemented carbide, microdrill, and method of manufacturing cemented carbide
US20130323107A1 (en) Sintered superhard compact for cutting tool applications and method of its production
JP6358433B2 (en) Titanium carbonitride-based cermet powder, titanium carbonitride-based cermet sintered body, and manufacturing method of titanium carbonitride-based cermet cutting tool
CN114080285A (en) Gradient cemented carbide body and method for manufacturing same
JP6387627B2 (en) Method for producing tungsten carbide based cemented carbide tool with excellent heat crack resistance
JP5078061B2 (en) Cubic boron nitride sintered body
JP6439833B2 (en) Cemented carbide manufacturing method
JP2012117101A (en) Method for manufacturing cemented carbide
JP2012117100A (en) Cemented carbide
JP2009052071A (en) Superhard material and tool
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
KR102547452B1 (en) Method of preparing a multimodal cubic boron nitride powder
JP2016041853A (en) Cemented carbide, micro-drill and method for producing cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6387627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150