JP6384668B2 - Structure, light extraction film, electronic device, and method of forming structure - Google Patents

Structure, light extraction film, electronic device, and method of forming structure Download PDF

Info

Publication number
JP6384668B2
JP6384668B2 JP2014539793A JP2014539793A JP6384668B2 JP 6384668 B2 JP6384668 B2 JP 6384668B2 JP 2014539793 A JP2014539793 A JP 2014539793A JP 2014539793 A JP2014539793 A JP 2014539793A JP 6384668 B2 JP6384668 B2 JP 6384668B2
Authority
JP
Japan
Prior art keywords
polymer
mass
polyimide
film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014539793A
Other languages
Japanese (ja)
Other versions
JPWO2014054703A1 (en
Inventor
加藤 拓
拓 加藤
夏樹 佐藤
夏樹 佐藤
洋介 飯沼
洋介 飯沼
徳俊 三木
徳俊 三木
宏之 桜井
宏之 桜井
幸広 見山
幸広 見山
正睦 鈴木
正睦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2014054703A1 publication Critical patent/JPWO2014054703A1/en
Application granted granted Critical
Publication of JP6384668B2 publication Critical patent/JP6384668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリイミドやポリイミド前駆体の自己組織化により形成された凹凸を表面に有する構造体、光取出し膜、電子デバイス及び構造体の形成方法に関する。   The present invention relates to a structure having irregularities formed on the surface by self-organization of polyimide or a polyimide precursor, a light extraction film, an electronic device, and a method for forming the structure.

近年、オプトデバイス(光学素子)の光取出し効率を向上させる検討が活発である。オプトデバイスとして、例えば、透明基板、透明電極、発光層及び電極がこの順に積層され、透明基板側から光が取り出される発光ダイオード(LED、Light Emmiting Diode)素子が挙げられるが、透明基板、透明電極及び発光層の各界面で光が反射等することにより光取出し効率が低くなってしまうため、光取出し効率の向上が求められている。光取出し効率を向上させる技術として、有機発光ダイオード(OLED)素子では、光を取り出す面(光取出し面)の最前面にレンズを設ける方法(特許文献1参照)、光取出し面の最前面にゾルゲル法により多孔質の光散乱体を設ける方法(特許文献2参照)、プラズモンを生じる金属微粒子が分散された光散乱層を設ける方法(特許文献3参照)が知られている。   In recent years, studies for improving the light extraction efficiency of optical devices (optical elements) have been actively conducted. As an opto device, for example, a transparent substrate, a transparent electrode, a light emitting layer, and an electrode are stacked in this order, and a light emitting diode (LED, Light Emitting Diode) element from which light is extracted from the transparent substrate side can be cited. In addition, since light extraction efficiency is lowered due to reflection of light at each interface of the light emitting layer, improvement in light extraction efficiency is required. As a technique for improving the light extraction efficiency, in an organic light emitting diode (OLED) element, a method of providing a lens on the front surface of a light extraction surface (light extraction surface) (see Patent Document 1), a sol-gel on the front surface of the light extraction surface There are known a method of providing a porous light scatterer by a method (see Patent Document 2) and a method of providing a light scattering layer in which metal fine particles generating plasmons are dispersed (see Patent Document 3).

また、透明基板と透明電極との間や、透明電極と発光層との間に、光取出し効率を向上する光取出し膜を設けた技術として、例えば、インプリント法によって形成された凹凸部を有する低屈折率層(光取出し膜)を設けた技術(特許文献4参照)が報告されている。そして最近では、アルミニウムを用いてPDMS(ポリジメチルシロキサン)表面に作成した凹凸をナノインプリント法によって転写した凹凸を有する構造体(光取出し膜)を透明基板と透明電極との間に設けたOLED素子の光取出し効率が約100%向上することが報告されている(非特許文献1参照)。   In addition, as a technique for providing a light extraction film that improves light extraction efficiency between the transparent substrate and the transparent electrode or between the transparent electrode and the light emitting layer, for example, an uneven portion formed by an imprint method is provided. A technique (see Patent Document 4) provided with a low refractive index layer (light extraction film) has been reported. And recently, an OLED element in which a structure (light extraction film) having unevenness obtained by transferring the unevenness created on the surface of PDMS (polydimethylsiloxane) using aluminum by a nanoimprint method is provided between a transparent substrate and a transparent electrode. It has been reported that the light extraction efficiency is improved by about 100% (see Non-Patent Document 1).

このように、凹凸を表面に有する光取出し膜を設けることにより、光取出し効率が向上するが、上記インプリント法で凹凸を形成すると、製造工程が長く、容易に形成できないという問題がある。   Thus, by providing the light extraction film having irregularities on the surface, the light extraction efficiency is improved. However, if irregularities are formed by the imprint method, there is a problem that the manufacturing process is long and cannot be easily formed.

ここで、ポリスチレンとポリメタクリル酸メチルとのブロックコポリマーを熱アニールすることにより自己組織化を行い、その後ドライエッチングすることにより微細な凹凸を作製する技術が報告されている(非特許文献2参照)。この自己組織化は、従来から半導体デバイス製造で用いられているフォトリソグラフィ法等に比べて、簡便・安価にナノスケールの加工が可能であるという利点を有する。   Here, a technique has been reported in which self-organization is performed by thermally annealing a block copolymer of polystyrene and polymethyl methacrylate, followed by dry etching to produce fine irregularities (see Non-Patent Document 2). . This self-organization has an advantage that nano-scale processing can be performed easily and inexpensively as compared with a photolithography method or the like conventionally used in semiconductor device manufacturing.

しかしながら、アクリル系のブロックコポリマーであるポリスチレンとポリメタクリル酸メチルとのブロックコポリマーは製造が非常に難しいためか、ポリスチレンとポリメタクリル酸メチルとのブロックコポリマーの自己組織化を用いて形成される凹凸の再現性が悪いという問題がある。   However, the block copolymer of polystyrene and polymethyl methacrylate, which is an acrylic block copolymer, is very difficult to manufacture, or the unevenness formed by the self-assembly of the block copolymer of polystyrene and polymethyl methacrylate. There is a problem of poor reproducibility.

また、このブロックコポリマーの自己組織化を行うことにより凹凸を形成する方法は、表面に凹凸を発現させるためのドライエッチング、300℃の高温で焼成、アニールや、窒素雰囲気下の操作が必要で、製造工程が長く且つ煩雑で高価な設備投資が必要であった。   In addition, the method of forming irregularities by self-organizing this block copolymer requires dry etching for expressing irregularities on the surface, baking at a high temperature of 300 ° C., annealing, and operation in a nitrogen atmosphere. The manufacturing process is long, complicated and expensive.

なお、このように容易に且つ再現性良く製造できる凹凸を表面に有する構造体は、凹凸を表面に有する光取出し膜を具備するLEDに限らず、種々のオプトデバイスや、さらには、半導体デバイス、太陽電池、ディスプレイ、記憶媒体、バイオチップ等の電子デバイスにおいても、同様に望まれている。   In addition, the structure having unevenness on the surface that can be easily and reproducibly manufactured as described above is not limited to the LED including the light extraction film having the unevenness on the surface, but various optical devices, and further, semiconductor devices, The same applies to electronic devices such as solar cells, displays, storage media, and biochips.

特開2011−29172号公報JP 2011-29172 A 特開2009−238507号公報JP 2009-238507 A 特開2007−165284号公報JP 2007-165284 A 特開2011−44296号公報JP 2011-44296 A

Nature Photonics、米国、2010年、4巻、p.222−226Nature Photonics, USA, 2010, vol. 4, p. 222-226 Japanese Journal of Applied Physics、日本、2002年、41巻、p.6112−6118Japan Journal of Applied Physics, Japan, 2002, 41, p. 6112-6118

本発明は、上記の事情に基づいてなされたものであり、その解決しようとする課題は、凹凸を表面に有する構造体であって、容易に且つ再現性良く製造できる構造体、光取出し膜、電子デバイス及び構造体の形成方法を提供することを目的とする。   The present invention has been made based on the above circumstances, and the problem to be solved is a structure having irregularities on its surface, a structure that can be easily and reproducibly manufactured, a light extraction film, An object is to provide an electronic device and a method for forming a structure.

本発明者らは、上記の課題を解決するべく鋭意検討を行った結果、ポリイミド前駆体又はポリイミドを、該ポリイミド前駆体又はポリイミドとは異なる重合体や、プロピレングリコールモノメチルエーテルと共に含有する組成物を、基材に塗布し、放置及び焼成するだけで自己組織化し、表面に凹凸を有する構造体を再現性良く得られるという知見を得て、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a polyimide precursor or polyimide is contained together with a polymer different from the polyimide precursor or polyimide, or a composition containing propylene glycol monomethyl ether. The present invention has been completed by obtaining the knowledge that a structure having irregularities on its surface can be obtained with good reproducibility by simply applying it to a substrate, leaving it to stand and firing it.

すなわち、本発明は、以下を要旨とする。
1. ポリイミドからなる第1の重合体と、前記第1の重合体とは異なりかつ前記第1の重合体と分離しないポリイミドからなる第2の重合体、及びプロピレングリコールモノメチルエーテルと、を含み、前記第1の重合体及び第2の重合体の自己組織化によって形成された凹凸を表面に有し、前記表面に形成された凸部の平均高さが0.5nm〜500nmであることを特徴とする構造体。
That is, the gist of the present invention is as follows.
1. Comprising a first polymer made of polyimide, a second polymer consisting of different and does not separate from the first polymer polyimide and said first polymer, and propylene glycol monomethyl ether, and the It has unevenness formed on the surface by self-organization of the first polymer and the second polymer, and the average height of the protrusions formed on the surface is 0.5 nm to 500 nm, Structure.

. 前記第1の重合体及び第2の重合体の少なくとも一方は、分子内又は分子間で水素結合を形成しうる結合、及び、分子内又は分子間で水素結合を形成しうる置換基から選択される少なくとも一種を有することを特徴とする1.に記載する構造体。 2 . At least one of the first polymer and the second polymer is selected from a bond capable of forming a hydrogen bond within a molecule or between molecules and a substituent capable of forming a hydrogen bond within a molecule or between molecules. 1, characterized in that it comprises at least one that. The structure described in 1.

. 前記分子内又は分子間で水素結合を形成しうる結合が下記式(1)で表され、前記分子内又は分子間で水素結合を形成しうる置換基がヒドロキシル基、チオール基、アミノ基及びカルボキシル基から選択される基であることを特徴とする.に記載する構造体。 3 . A bond capable of forming a hydrogen bond within the molecule or between the molecules is represented by the following formula (1), and a substituent capable of forming a hydrogen bond within the molecule or between the molecules includes a hydroxyl group, a thiol group, an amino group, and a carboxyl. 1. a group selected from the group 2 The structure described in 1.

Figure 0006384668
Figure 0006384668

. 1.〜.のいずれかに記載する構造体からなることを特徴とする光取出し膜。 4 . 1. ~ 3 . A light extraction film comprising the structure described in any of the above.

.に記載する光取出し膜を有することを特徴とする電子デバイス。 5 . 4 . An electronic device comprising the light extraction film described in 1.

. 発光ダイオードであることを特徴とする.に記載する電子デバイス。 6 . 5 which is a light emitting diode. Electronic devices described in 1.

7. 自己組織化によって形成される凹凸を表面に有する構造体の形成方法であって、
下記(A)成分及び下記(B)成分を含有する構造体形成用組成物を基材上に塗布する塗布工程と、塗布工程の後に引き置く引き置き工程と、引き置き工程の後に40℃〜250℃で焼成する焼成工程とを有することを特徴とする構造体の形成方法。
(A)成分:ポリイミドからなる第1の重合体又はポリイミド前駆体からなる第1の重合体前駆体。
(B)成分:(A)成分とは異なり(A)成分と分離しないポリイミドからなる第2の重合体又はポリイミド前駆体からなる第2の重合体前駆体、及び、プロピレングリコールモノメチルエーテル。
7). A method of forming a structure having irregularities formed on a surface by self-assembly,
A coating process for applying a composition for forming a structure containing the following (A) component and the following (B) component on a substrate, a leaving process for drawing after the coating process, and 40 ° C. after the holding process And a baking process for baking at 250 ° C.
Component (A): a first polymer made of polyimide or a first polymer precursor made of polyimide precursor.
Component (B): (A) differs from component (A) a second polymer precursor comprising a second polymer or a polyimide precursor comprising a polyimide which does not separate the components, and propylene glycol monomethyl ether.

本発明の凹凸を表面に有する構造体は、ポリイミド前駆体又はポリイミドをその他の重合体やプロピレングリコールモノメチルエーテルと共に含有する組成物を、基材に塗布し放置及び焼成することにより自己組織化させるという容易な方法で製造できる。例えば、ドライエッチング工程、高温焼成工程、高湿環境下での操作等、複雑な操作も不要であり、工程数も少ない。また、再現性が良いため、構造体の安定製造が可能である。そして、本発明の凹凸を有する構造体は、例えばOLEDの光取出し膜等、種々の電子デバイスに適用することができる。   The structure having irregularities on the surface of the present invention is self-organized by applying a polyimide precursor or a composition containing polyimide together with another polymer or propylene glycol monomethyl ether to a substrate, leaving and baking the composition. It can be manufactured by an easy method. For example, complicated operations such as a dry etching process, a high-temperature baking process, and an operation in a high-humidity environment are unnecessary, and the number of processes is small. In addition, since the reproducibility is good, the structure can be manufactured stably. And the structure which has the unevenness | corrugation of this invention is applicable to various electronic devices, such as the light extraction film | membrane of OLED, for example.

OLEDを模式的に示す概略断面図Schematic sectional view schematically showing OLED 実施例1の構造体表面のAFM像AFM image of the structure surface of Example 1 実施例14の構造体表面のAFM像AFM image of structure surface of Example 14 比較例2の構造体表面のAFM像AFM image of structure surface of Comparative Example 2

以下、本発明についてさらに詳しく説明する。
本発明に係る構造体は、ポリイミドからなる第1の重合体を含み、この第1の重合体の自己組織化によって形成された凹凸を表面に有するものである。
Hereinafter, the present invention will be described in more detail.
The structure according to the present invention includes a first polymer made of polyimide, and has irregularities formed on the surface by self-organization of the first polymer.

本明細書において、自己組織化とは、基材上に塗布したポリイミドやポリイミド前駆体等の重合体分子が自発的に集合等することにより凹凸となってパターンのある構造を作り出すことを意味する。自己組織化では、決められた特定のパターンを形成するのではなく、フラクタルなパターンが形成される。なお、決められた特定のパターンとは、フォトリソグラフィやインプリントなどの人為的なパターン形成方法によって得られる人為的に定められたパターンを指し、同じパターンを連続して得ようとする技術に基づいている。一方、自己組織化で得られるフラクタルなパターンとは、マンデルブロ集合に代表される幾何学の一部であり、数学的に厳密な定義が困難であるが、人間が直感的に理解できるパターンを指す。自己組織化では、フラクタルなパターン(すなわち、自己相似構造をもつ集合からなるパターン)を連続で得て、得られた自己組織化膜の物性値を規格内に収めようとする技術に基づいている。   In this specification, the self-organization means that a polymer structure such as polyimide or polyimide precursor applied on a base material is spontaneously assembled to create a structure with irregularities and a pattern. . In self-organization, a fractal pattern is formed instead of forming a specific pattern. The determined specific pattern refers to an artificially determined pattern obtained by an artificial pattern forming method such as photolithography or imprint, and is based on a technique for continuously obtaining the same pattern. ing. On the other hand, the fractal pattern obtained by self-organization is a part of the geometry represented by the Mandelbrot set, which is difficult to define mathematically but is intuitively understood by humans. . Self-organization is based on a technique that continuously obtains fractal patterns (that is, patterns composed of sets having a self-similar structure) and attempts to keep the physical property values of the obtained self-assembled film within the standard. .

自己組織化により形成されるフラクタルなパターンの基本単位図形は、例えば、点(ドット)形状、ミミズ(ワーム)形状、穴(Via)形状等である。基本単位図形とその基本単位図形の相似構造とで、フラクタルなパターンとなる。なお、AFM(原子間力顕微鏡、atomic force microscope)、SEM(走査電子顕微鏡、scanning electron microscope)若しくはTEM(透過電子顕微鏡 transmission electron microscope)で測定した際に、基本単位図形が50μm四方の中で確認できない場合は、フラクタルなパターンの定義から除外される。点形状は、平面視の形状が楕円や円である半球状などが挙げられる。ミミズ形状は、点形状と点形状とが連結して繋がった形状などが挙げられる。穴形状は、構造体の最表面に穴が開いている形状などが挙げられる。これら形状の種類は、本発明の構造体の適用箇所によって選択されれば良い。また、基本単位図形の種類は1つ以上であれば良く、複数の種類の組み合わせであっても良い。   The basic unit graphic of the fractal pattern formed by self-organization is, for example, a dot (dot) shape, a worm (worm) shape, a hole (Via) shape, or the like. A basic unit graphic and a similar structure of the basic unit graphic form a fractal pattern. In addition, when measured with AFM (atomic force microscope), SEM (scanning electron microscope) or TEM (transmission electron microscope), the basic unit figure is confirmed within 50 μm square. If this is not possible, it is excluded from the definition of a fractal pattern. Examples of the point shape include a hemisphere whose shape in plan view is an ellipse or a circle. The earthworm shape includes a shape in which a point shape and a point shape are connected and connected. Examples of the hole shape include a shape in which a hole is opened on the outermost surface of the structure. These types of shapes may be selected depending on the application location of the structure of the present invention. Further, the number of basic unit graphics may be one or more, and a combination of a plurality of types may be used.

本発明において自己組織化を引き起こす要因は、(i)重合体の極性項、分散項又は表面エネルギーの差、(ii)重合体の溶媒への溶解度の差、又は、(iii)重合体の吸湿性の差等を利用するものであり、フラクタルなパターンが得られれば特に限定されない。   Factors that cause self-assembly in the present invention are (i) a difference in the polar term, dispersion term or surface energy of the polymer, (ii) a difference in solubility of the polymer in the solvent, or (iii) moisture absorption of the polymer. A difference in property is utilized, and there is no particular limitation as long as a fractal pattern is obtained.

本発明の構造体が表面に有する自己組織化により形成された凹凸は、例えば凸部の平均高さが0.5nm〜500nmである。ここで、凸部の平均高さとは、AFMで測定したときの平均表面粗さ(R)で表される。The unevenness formed by self-organization on the surface of the structure of the present invention has, for example, an average height of the protrusions of 0.5 nm to 500 nm. Here, the average height of the convex portion is represented by an average surface roughness (R a ) when measured by AFM.

好ましい凸部の平均高さは、適用箇所によって選択されれば良い。例えば、OLEDにおいてガラス等の透明基板とITO(Indium Tin Oxide)等の透明電極との間に設ける光取出し膜として本発明の構造体を適用する場合、短絡特性を考慮して、凸部の平均高さは0.5nm〜50nmが好ましく、より好ましくは0.5nm〜30nmである。また、OLEDの光を取出す面(光取出し面)の最前面に設ける光取出し膜として本発明の構造体を適用する場合、凸部の平均高さは40nm〜500nmが好ましい。凸部の平均高さが500nmより高い場合、透明性を失い、光取出し効率が悪くなる場合があるためである。   A preferable average height of the protrusions may be selected depending on the application location. For example, when the structure of the present invention is applied as a light extraction film provided between a transparent substrate such as glass and a transparent electrode such as ITO (Indium Tin Oxide) in an OLED, the average of convex portions is considered in consideration of short-circuit characteristics. The height is preferably 0.5 nm to 50 nm, more preferably 0.5 nm to 30 nm. Moreover, when applying the structure of this invention as a light extraction film | membrane provided in the forefront surface of the light extraction surface (light extraction surface) of OLED, 40 nm-500 nm of the average height of a convex part are preferable. This is because if the average height of the protrusions is higher than 500 nm, the transparency may be lost and the light extraction efficiency may deteriorate.

本発明の凹凸を表面に有する構造体は、例えば、上記(A)成分及び上記(B)成分を含有する構造体形成用組成物(以下、ワニスとも記載する。)を基材上に塗布する塗布工程と、塗布工程の後に引き置く引き置き工程と、引き置き工程の後に焼成する焼成工程とを有する形成方法によって得ることができる。   The structure having unevenness on the surface of the present invention is, for example, applied on a substrate with a composition for forming a structure (hereinafter also referred to as varnish) containing the component (A) and the component (B). It can be obtained by a forming method including an application step, a leaving step for drawing after the applying step, and a firing step for baking after the drawing step.

(A)成分は、ポリイミド(第1の重合体)、又は、焼成によりイミド化してポリイミド(第1の重合体)になるポリイミド前駆体(第1の重合体前駆体)である。すなわち、(A)成分は、製造される本発明の構造体においては、ポリイミド(第1の重合体)になる成分である。ポリイミド前駆体とは、ポリアミック酸(ポリアミド酸ともいわれる)やポリアミック酸エステル等である。なお、(A)成分であるポリイミドやポリイミド前駆体はこれまで自己組織化材料として検討されたことはない。   The component (A) is polyimide (first polymer) or a polyimide precursor (first polymer precursor) that is imidized by firing to become a polyimide (first polymer). That is, (A) component is a component which becomes a polyimide (1st polymer) in the structure of this invention manufactured. The polyimide precursor is a polyamic acid (also called polyamic acid), a polyamic acid ester, or the like. In addition, the polyimide and polyimide precursor which are (A) components have not been examined as a self-organization material until now.

ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体は、ジアミン成分と、テトラカルボン酸成分と反応させることにより、得られるものである。ポリアミック酸エステルは、ポリアミック酸のカルボキシル基をエステルに変換する方法でも得られる。そして、これらポリアミック酸やポリアミック酸エステル等のポリイミド前駆体をイミド化することで、ポリイミドが得られる。なお、ジアミン成分は1種類でも2種類以上でもよく、また、テトラカルボン酸成分も1種類でも2種類以上でもよい。   Polyimide precursors such as polyamic acid and polyamic acid ester are obtained by reacting a diamine component with a tetracarboxylic acid component. The polyamic acid ester can also be obtained by a method of converting the carboxyl group of the polyamic acid into an ester. And a polyimide is obtained by imidating polyimide precursors, such as these polyamic acids and polyamic acid ester. The diamine component may be one type or two or more types, and the tetracarboxylic acid component may be one type or two or more types.

テトラカルボン酸成分とは、テトラカルボン酸及びテトラカルボン酸誘導体から選択される少なくとも一種である。テトラカルボン酸誘導体としては、テトラカルボン酸ジハライド、テトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリド、テトラカルボン酸ジエステル等が挙げられる。例えば、テトラカルボン酸ジハライド、テトラカルボン酸二無水物などとジアミン成分とを反応させることで、ポリアミック酸を得ることができる。また、テトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分とを適当な縮合剤や塩基の存在下等にて反応させることにより、ポリアミック酸エステルを得ることができる。   The tetracarboxylic acid component is at least one selected from tetracarboxylic acids and tetracarboxylic acid derivatives. Examples of the tetracarboxylic acid derivative include tetracarboxylic acid dihalide, tetracarboxylic dianhydride, tetracarboxylic acid diester dichloride, and tetracarboxylic acid diester. For example, a polyamic acid can be obtained by reacting a diamine component with a tetracarboxylic acid dihalide, tetracarboxylic dianhydride, or the like. In addition, a polyamic acid ester can be obtained by reacting a tetracarboxylic acid diester dichloride with a diamine component or reacting a tetracarboxylic acid diester with a diamine component in the presence of a suitable condensing agent or base.

テトラカルボン酸成分として、下記式(2)で示されるテトラカルボン酸二無水物が挙げられる。   Examples of the tetracarboxylic acid component include a tetracarboxylic dianhydride represented by the following formula (2).

Figure 0006384668
(式(2)中、Zは炭素数4〜6の非芳香族環状炭化水素基を含有する炭素数4〜13の4価の有機基である。)
Figure 0006384668
(In the formula (2), Z 1 is a tetravalent organic group having 4 to 13 carbon atoms which contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms.)

式(2)中、Zの具体例としては、下記式(2a)〜式(2j)で表される4価の有機基が挙げられる。In formula (2), specific examples of Z 1 include tetravalent organic groups represented by the following formulas (2a) to (2j).

Figure 0006384668
(式(2a)中、Z〜Zは水素原子、メチル基、塩素原子またはベンゼン環であり、それぞれ、同じであっても異なっていてもよく、式(2g)中、ZおよびZは水素原子またはメチル基であり、それぞれ、同じであっても異なっていてもよい。)
Figure 0006384668
(In the formula (2a), Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, which may be the same or different, and in the formula (2g), Z 6 and Z 7 is a hydrogen atom or a methyl group, which may be the same or different.

式(2)中、Zの特に好ましい構造は、重合反応性や合成の容易性から、式(2a)、式(2c)、式(2d)、式(2e)、式(2f)または式(2g)である。なかでも、式(2a)、式(2e)、式(2f)または式(2g)が好ましい。In formula (2), particularly preferred structure of Z 1 is represented by formula (2a), formula (2c), formula (2d), formula (2e), formula (2f) or formula from the viewpoint of polymerization reactivity and ease of synthesis. (2g). Among these, the formula (2a), the formula (2e), the formula (2f), or the formula (2g) is preferable.

また、テトラカルボン酸成分全量に対する式(2)で示されるテトラカルボン酸二無水物の割合は特に限定されず、例えば、テトラカルボン酸成分全量の5〜40モル%が上記式(2)で示されるテトラカルボン酸二無水物であることが好ましく、より好ましくは、10〜30モル%である。   Moreover, the ratio of the tetracarboxylic dianhydride shown by Formula (2) with respect to the tetracarboxylic-acid component whole quantity is not specifically limited, For example, 5-40 mol% of the tetracarboxylic-acid component whole quantity shows by said Formula (2). The tetracarboxylic dianhydride is preferably 10 to 30 mol%.

上記式(2)で示されるテトラカルボン酸二無水物以外のその他テトラカルボン酸二無水物としては、ピロメリット酸、2,3,6,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、2,3,6,7−アントラセンテトラカルボン酸、1,2,5,6−アントラセンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)エーテル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)メタン、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ビス(3,4−ジカルボキシフェニル)ジメチルシラン、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン、2,3,4,5−ピリジンテトラカルボン酸、2,6−ビス(3,4−ジカルボキシフェニル)ピリジン、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸または1,3−ジフェニル−1,2,3,4−シクロブタンテトラカルボン酸の二無水物が挙げられる。   Other tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride represented by the above formula (2) include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6 -Naphthalene tetracarboxylic acid, 1,4,5,8-naphthalene tetracarboxylic acid, 2,3,6,7-anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3 ', 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic Acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propa 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4 -Dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ', 4,4'-diphenylsulfonetetra And dianhydrides of carboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid.

テトラカルボン酸ジエステルも特に限定されない。その具体例を以下に挙げる。
脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4−シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5−テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4−ジカルボキシ−1−シクロヘキシルコハク酸ジアルキルエステル、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸ジアルキルエステル、1,2,3,4−ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸ジアルキルエステル、3,3’,4,4’−ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5−トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス−3,7−ジブチルシクロオクタ−1,5−ジエン−1,2,5,6−テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン−3,4,7,8−テトラカルボン酸−3,4:7,8−ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン−4,5,11,12−テトラカルボン酸−4,5:11,12−ジアルキルエステル、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレンー1,2−ジカルボンジアルキルエステルなどが挙げられる。
Tetracarboxylic acid diesters are not particularly limited. Specific examples are given below.
Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1 , 3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1 -Cyclohexyl succinic acid dialkyl ester, 3,4-dicarboxy- , 2,3,4-Tetrahydro-1-naphthalene succinic acid dialkyl ester, 1,2,3,4-butanetetracarboxylic acid dialkyl ester, bicyclo [3,3,0] octane-2,4,6,8- Tetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-dicyclohexyltetracarboxylic acid dialkyl ester, 2,3,5-tricarboxycyclopentylacetic acid dialkyl ester, cis-3,7-dibutylcycloocta-1,5- Diene-1,2,5,6-tetracarboxylic acid dialkyl ester, tricyclo [4.2.1.0 2,5 ] nonane-3,4,7,8-tetracarboxylic acid-3, 4: 7,8 A dialkyl ester, hexacyclo [6.6.0.1 2,7 . 0 3,6 . 1 9,14 . 0 10,13] hexadecane -4,5,11,12- tetracarboxylic acid-4,5: 11,12-dialkyl ester, 4- (2,5-di-oxo-tetrahydrofuran-3-yl) -1,2, Examples include 3,4-tetrahydronaphthalene-1,2-dicarboxylic dialkyl ester.

芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’−ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’−ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4−ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4−ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4−ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4−ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6−ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7−ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。   As the aromatic tetracarboxylic acid dialkyl ester, pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-benzophenone tetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalene tetracarboxylic acid dialkyl ester, 2,3,6,7- Naphthalene tetracarboxylic acid dialkyl ester And the like.

テトラカルボン酸成分と反応させるジアミン成分は特に限定されず、一般的なジアミンを用いることができる。ジアミン成分として、例えば、p−フェニレンジアミン、2,3,5,6−テトラメチル−p−フェニレンジアミン、2,5−ジメチル−p−フェニレンジアミン、m−フェニレンジアミン、2,4−ジメチル−m−フェニレンジアミン、2,5−ジアミノトルエン、2,6−ジアミノトルエン、2,5−ジアミノフェノール、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、2,4−ジアミノベンジルアルコール、4,6−ジアミノレゾルシノール、4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、3,3’−ジカルボキシ−4,4’−ジアミノビフェニル、3,3’−ジフルオロ−4,4’−ビフェニル、3,3’−トリフルオロメチル−4,4’−ジアミノビフェニル、3,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、2,2’−ジアミノビフェニル、2,3’−ジアミノビフェニル、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2’−ジアミノジフェニルメタン、2,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルエーテル、2,3’−ジアミノジフェニルエーテル、4,4’−スルホニルジアニリン、3,3’−スルホニルジアニリン、ビス(4−アミノフェニル)シラン、ビス(3−アミノフェニル)シラン、ジメチル−ビス(4−アミノフェニル)シラン、ジメチル−ビス(3−アミノフェニル)シラン、4,4’−チオジアニリン、3,3’−チオジアニリン、4,4’−ジアミノジフェニルアミン、3,3’−ジアミノジフェニルアミン、3,4’−ジアミノジフェニルアミン、2,2’−ジアミノジフェニルアミン、2,3’−ジアミノジフェニルアミン、N−メチル(4,4’−ジアミノジフェニル)アミン、N−メチル(3,3’−ジアミノジフェニル)アミン、N−メチル(3,4’−ジアミノジフェニル)アミン、N−メチル(2,2’−ジアミノジフェニル)アミン、N−メチル(2,3’−ジアミノジフェニル)アミン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、1,4−ジアミノナフタレン、2,2’−ジアミノベンゾフェノン、2,3’−ジアミノベンゾフェノン、1,5−ジアミノナフタレン、1,6−ジアミノナフタレン、1,7−ジアミノナフタレン、1,8−ジアミノナフタレン、2,5−ジアミノナフタレン、2,6−ジアミノナフタレン、2,7−ジアミノナフタレン、2,8−ジアミノナフタレン、1,2−ビス(4−アミノフェニル)エタン、1,2−ビス(3−アミノフェニル)エタン、1,3−ビス(4−アミノフェニル)プロパン、1,3−ビス(3−アミノフェニル)プロパン、1,4−ビス(4−アミノフェニル)ブタン、1,4−ビス(3−アミノフェニル)ブタン、ビス(3,5−ジエチル−4−アミノフェニル)メタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(4−アミノベンジル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4’−[1,4−フェニレンビス(メチレン)]ジアニリン、4,4’−[1,3−フェニレンビス(メチレン)]ジアニリン、3,4’−[1,4−フェニレンビス(メチレン)]ジアニリン、3,4’−[1,3−フェニレンビス(メチレン)]ジアニリン、3,3’−[1,4−フェニレンビス(メチレン)]ジアニリン、3,3’−[1,3−フェニレンビス(メチレン)]ジアニリン、1,4−フェニレンビス[(4−アミノフェニル)メタノン]、1,4−フェニレンビス[(3−アミノフェニル)メタノン]、1,3−フェニレンビス[(4−アミノフェニル)メタノン]、1,3−フェニレンビス[(3−アミノフェニル)メタノン]、1,4−フェニレンビス(4−アミノベンゾエート)、1,4−フェニレンビス(3−アミノベンゾエート)、1,3−フェニレンビス(4−アミノベンゾエート)、1,3−フェニレンビス(3−アミノベンゾエート)、ビス(4−アミノフェニル)テレフタレート、ビス(3−アミノフェニル)テレフタレート、ビス(4−アミノフェニル)イソフタレート、ビス(3−アミノフェニル)イソフタレート、N,N’−(1,4−フェニレン)ビス(4−アミノベンズアミド)、N,N’−(1,3−フェニレン)ビス(4−アミノベンズアミド)、N,N’−(1,4−フェニレン)ビス(3−アミノベンズアミド)、N,N’−(1,3−フェニレン)ビス(3−アミノベンズアミド)、N,N’−ビス(4−アミノフェニル)テレフタルアミド、N,N’−ビス(3−アミノフェニル)テレフタルアミド、N,N’−ビス(4−アミノフェニル)イソフタルアミド、N,N’−ビス(3−アミノフェニル)イソフタルアミド、9,10−ビス(4−アミノフェニル)アントラセン、4,4’−ビス(4−アミノフェノキシ)ジフェニルスルホン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン、2,2’−ビス(4−アミノフェニル)プロパン、2,2’−ビス(3−アミノフェニル)プロパン、2,2’−ビス(3−アミノ−4−メチルフェニル)プロパン、3,5−ジアミノ安息香酸、2,5−ジアミノ安息香酸、1,3−ビス(4−アミノフェノキシ)プロパン、1,3−ビス(3−アミノフェノキシ)プロパン、1,4−ビス(4−アミノフェノキシ)ブタン、1,4−ビス(3−アミノフェノキシ)ブタン、1,5−ビス(4−アミノフェノキシ)ペンタン、1,5−ビス(3−アミノフェノキシ)ペンタン、1,6−ビス(4−アミノフェノキシ)へキサン、1,6−ビス(3−アミノフェノキシ)へキサン、1,7−ビス(4−アミノフェノキシ)ヘプタン、1,7−(3−アミノフェノキシ)ヘプタン、1,8−ビス(4−アミノフェノキシ)オクタン、1,8−ビス(3−アミノフェノキシ)オクタン、1,9−ビス(4−アミノフェノキシ)ノナン、1,9−ビス(3−アミノフェノキシ)ノナン、1,10−(4−アミノフェノキシ)デカン、1,10−(3−アミノフェノキシ)デカン、1,11−(4−アミノフェノキシ)ウンデカン、1,11−(3−アミノフェノキシ)ウンデカン、1,12−(4−アミノフェノキシ)ドデカン、1,12−(3−アミノフェノキシ)ドデカンなどの芳香族ジアミン、ビス(4−アミノシクロヘキシル)メタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタンなどの脂環式ジアミン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノへキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカンなどの脂肪族ジアミン等の汎用ジアミンが挙げられる。   The diamine component to be reacted with the tetracarboxylic acid component is not particularly limited, and general diamines can be used. Examples of the diamine component include p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, and 2,4-dimethyl-m. -Phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4 -Diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-dicarboxy-4 4'-diaminobiphenyl, 3,3'-difluoro-4,4'-biphenyl, 3,3'-trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'- Diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane 2,3′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 2,2′-diaminodiphenyl ether, 2,3′-diaminodiphenyl ether, 4, , 4′-sulfonyldianiline, 3,3′-su Phonyldianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, 3 , 3′-thiodianiline, 4,4′-diaminodiphenylamine, 3,3′-diaminodiphenylamine, 3,4′-diaminodiphenylamine, 2,2′-diaminodiphenylamine, 2,3′-diaminodiphenylamine, N-methyl ( 4,4'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) Amine, N-methyl (2,3′-diaminodiphenyl) amine, 4,4′- Diaminobenzophenone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2,3′-diaminobenzophenone, 1,5-diaminonaphthalene, 1, , 6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1, 2-bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (3-aminophenyl) butane Bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-amino) Phenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1 , 4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,4 ′-[1,4-phenylenebis (methylene)] dianiline, 3,4 '-[1,3-phenylenebis (methylene)] dianiline, 3,3'-[1,4-phenylenebis (methylene)] dianiline, 3,3 '-[1,3-phenylenebis (methyl) )] Dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone ], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis ( 3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzene) NsN), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1 , 3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis ( 4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropro 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) Hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4- Aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pen 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3- Aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis ( 3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3- Aromatic diamines such as aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane, bis (4-aminosilane) To cycloaliphatic) methane, alicyclic diamines such as bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diamino General purpose aliphatic diamines such as xanthone, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane Examples include diamines.

このような汎用ジアミンは、ポリアミック酸の合成に用いるジアミン成分の50〜95モル%となる量を用いることが好ましく、より好ましくはジアミン成分の70〜90モル%である。   Such a general-purpose diamine is preferably used in an amount of 50 to 95 mol% of the diamine component used for the synthesis of the polyamic acid, and more preferably 70 to 90 mol% of the diamine component.

また、ジアミン成分として、長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基や、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基を側鎖として有するジアミンを挙げることができる。具体的には例えば下記式(3)、(4)、(5)、(6)で表されるジアミンを挙げることができるが、これに限定されるものではない。   In addition, as a diamine component, a long-chain alkyl group, a group having a ring structure or a branched structure in the middle of a long-chain alkyl group, a steroid group, or a group in which some or all of the hydrogen atoms of these groups are replaced with fluorine atoms Can be mentioned as a side chain. Specific examples include diamines represented by the following formulas (3), (4), (5), and (6), but are not limited thereto.

Figure 0006384668
(式(3)中、l、m及びnはそれぞれ独立に0又は1の整数を表し、Rは炭素数2〜6のアルキレン基、−O−、−COO−、−OCO−、−NHCO−、−CONH−、又は炭素数1〜3のアルキレン−エーテル基を表し、R、R及びRはそれぞれ独立にフェニレン基又はシクロアルキレン基を表し、Rは水素原子、炭素数2〜24のアルキル基又はフッ素含有アルキル基、一価の芳香環、一価の脂肪族環、一価の複素環、又はそれらからなる一価の大環状置換体を表す。)
Figure 0006384668
(In formula (3), l, m, and n each independently represent an integer of 0 or 1, and R 3 represents an alkylene group having 2 to 6 carbon atoms, —O—, —COO—, —OCO—, —NHCO. -, -CONH-, or an alkylene ether group having 1 to 3 carbon atoms, R 4 , R 5 and R 6 each independently represent a phenylene group or a cycloalkylene group, and R 7 is a hydrogen atom or a carbon number of 2 -24 represents an alkyl group or a fluorine-containing alkyl group, a monovalent aromatic ring, a monovalent aliphatic ring, a monovalent heterocyclic ring, or a monovalent macrocyclic substituent composed of these.

なお、上記式(3)中のRは、合成の容易性の観点からは、−O−、−COO−、−CONH−、炭素数1〜3のアルキレン−エーテル基が好ましい。R 3 in the above formula (3) is preferably —O—, —COO—, —CONH—, or an alkylene-ether group having 1 to 3 carbon atoms from the viewpoint of ease of synthesis.

また、式(3)中のR、R及びRは、合成の容易性の観点から、下記表1に示すl、m、n、R、R及びRの組み合わせが好ましい。In addition, R 4 , R 5 and R 6 in the formula (3) are preferably combinations of l, m, n, R 4 , R 5 and R 6 shown in the following Table 1 from the viewpoint of ease of synthesis.

Figure 0006384668
Figure 0006384668

そして、l、m、nの少なくとも一つが1である場合、式(3)中のRは、好ましくは水素原子または炭素数2〜14のアルキル基もしくはフッ素含有アルキル基であり、より好ましくは水素原子または炭素数2〜12のアルキル基もしくはフッ素含有アルキル基である。また、l、m、nがともに0である場合、Rは、好ましくは炭素数12〜22のアルキル基またはフッ素含有アルキル基、一価の芳香環、一価の脂肪族環、一価の複素環、それらからなる一価の大環状置換体であり、より好ましくは炭素数12〜20のアルキル基またはフッ素含有アルキル基である。When at least one of l, m and n is 1, R 7 in formula (3) is preferably a hydrogen atom, an alkyl group having 2 to 14 carbon atoms or a fluorine-containing alkyl group, more preferably A hydrogen atom, an alkyl group having 2 to 12 carbon atoms, or a fluorine-containing alkyl group. When l, m, and n are all 0, R 7 is preferably an alkyl group having 12 to 22 carbon atoms or a fluorine-containing alkyl group, a monovalent aromatic ring, a monovalent aliphatic ring, a monovalent Heterocycles and monovalent macrocyclic substituents made of them, more preferably alkyl groups having 12 to 20 carbon atoms or fluorine-containing alkyl groups.

Figure 0006384668
(式(4)及び式(5)中、A10は−COO−、−OCO−、−CONH−、−NHCO−、−CH−、−O−、−CO−、又は−NH−を表し、A11は単結合若しくはフェニレン基を表し、aは−R−(R−(R−(R−R(R、R、R、R、R、l、m、nは、上記式(3)における定義と同じである)を表し、a’は上記aと同一の構造から水素等の元素が一つ取れた構造である二価の基を表す。)
Figure 0006384668
(Formula (4) and the formula (5), A 10 is -COO -, - OCO -, - CONH -, - NHCO -, - CH 2 -, - O -, - CO-, or -NH- and represents , a 11 represents a single bond or a phenylene radical, a -R 3 - (R 4) l - (R 5) m - (R 6) n -R 7 (R 3, R 4, R 5, R 6 , R 7 , l, m, and n are the same as defined in the above formula (3), and a ′ is a divalent structure in which one element such as hydrogen is removed from the same structure as a. Represents a group of

Figure 0006384668
(式(6)中、A14は、フッ素原子で置換されていてもよい炭素数3〜20のアルキル基であり、A15は、1,4−シクロへキシレン基、又は1,4−フェニレン基であり、A16は、酸素原子、又は−COO−*(ただし、「*」を付した結合手がA15と結合する)であり、A17は酸素原子、又は−COO−*(ただし、「*」を付した結合手が(CH)aと結合する。)である。また、aは0又は1であり、aは2〜10の整数であり、aは0又は1である。)
Figure 0006384668
(In the formula (6), A 14 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, A 15 is 1,4-cyclohexylene group, or 1,4-phenylene A 16 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 15 ), and A 17 is an oxygen atom or —COO— * (wherein , "*" is a bond marked with a (CH 2) binds to a 2.). Further, a 1 is 0 or 1, a 2 is an integer of 2 to 10, a 3 0 Or 1.

式(3)における二つのアミノ基(−NH)の結合位置は限定されない。具体的には、側鎖(−R−(R−(R−(R−R)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。The bonding position of the two amino groups (—NH 2 ) in Formula (3) is not limited. Specifically, the side chains relative to (-R 3 - (R 4) l - - (R 5) m (R 6) n -R 7), the position of the 2,3 on the benzene ring, 2,4 Position, 2, 5 position, 2, 6 position, 3, 4 position, 3, 5 position. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.

式(3)の具体的な構造としては、下記の式[A−1]〜式[A−24]で示されるジアミンを例示することができるが、これに限定されるものではない。   Specific examples of the structure of the formula (3) include diamines represented by the following formulas [A-1] to [A-24], but are not limited thereto.

Figure 0006384668
(式[A−1]〜式[A−5]中、Aは、炭素数2〜24のアルキル基又はフッ素含有アルキル基である。)
Figure 0006384668
(In Formula [A-1] to Formula [A-5], A 1 is an alkyl group having 2 to 24 carbon atoms or a fluorine-containing alkyl group.)

Figure 0006384668
(式[A−6]及び式[A−7]中、Aは、−O−、−OCH−、−CHO−、−COOCH−、又は−CHOCO−を示し、Aは炭素数1〜22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure 0006384668
(In Formula [A-6] and Formula [A-7], A 2 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and 3 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.

Figure 0006384668
(式[A−8]〜式[A−10]中、Aは、−COO−、−OCO−、−CONH−、−NHCO−、−COOCH−、−CHOCO−、−CHO−、−OCH−、又は−CH−を示し、Aは炭素数1〜22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure 0006384668
(In formula [A-8] to formula [A-10], A 4 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2. O—, —OCH 2 —, or —CH 2 — is shown, and A 5 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.

Figure 0006384668
(式[A−11]及び式[A−12]中、Aは、−COO−、−OCO−、−CONH−、−NHCO−、−COOCH−、−CHOCO−、−CHO−、−OCH−、−CH−、−O−、又は−NH−を示し、Aはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure 0006384668
(In Formula [A-11] and Formula [A-12], A 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2. O—, —OCH 2 —, —CH 2 —, —O—, or —NH— is shown, and A 7 is fluorine group, cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy Group or hydroxyl group.)

Figure 0006384668
(式[A−13]及び式[A−14]中、Aは、炭素数3〜12のアルキル基であり、1,4−シクロヘキシレンのシス−トランス異性は、それぞれトランス異性体である。)
Figure 0006384668
(In Formula [A-13] and Formula [A-14], A 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .)

Figure 0006384668
(式[A−15]及び式[A−16]中、Aは、炭素数3〜12のアルキル基であり、1,4−シクロヘキシレンのシス−トランス異性は、それぞれトランス異性体である。)
Figure 0006384668
(In Formula [A-15] and Formula [A-16], A 9 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .)

Figure 0006384668
Figure 0006384668

式(4)で表されるジアミンの具体例としては、下記の式[A−25]〜式[A−30]で示されるジアミンを挙げることができるが、これに限るものではない。   Specific examples of the diamine represented by the formula (4) include diamines represented by the following formulas [A-25] to [A-30], but are not limited thereto.

Figure 0006384668
(式[A−25]〜式[A−30]中、A12は、−COO−、−OCO−、−CONH−、−NHCO−、−CH−、−O−、−CO−、又は−NH−を示し、A13は炭素数1〜22のアルキル基又はフッ素含有アルキル基を示す。)
Figure 0006384668
(In the formulas [A-25] to [A-30], A 12 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or It indicates -NH-, a 13 represents an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.)

式(5)で表されるジアミンの具体例としては、下記の式[A−31]〜式[A−32]で示されるジアミンを挙げることができるが、これに限るものではない。   Specific examples of the diamine represented by the formula (5) include diamines represented by the following formulas [A-31] to [A-32], but are not limited thereto.

Figure 0006384668
Figure 0006384668

このような長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基や、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基を側鎖として有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の0〜50モル%となる量を用いることが好ましく、より好ましくはジアミン成分の10〜40モル%である。   Such a long chain alkyl group, a group having a ring structure or a branched structure in the middle of a long chain alkyl group, a steroid group, or a group in which some or all of the hydrogen atoms of these groups are replaced with fluorine atoms is a side chain. It is preferable to use the quantity which becomes 0-50 mol% of the diamine component used for the synthesis | combination of a polyamic acid, and, more preferably, it is 10-40 mol% of a diamine component.

また、ジアミン成分として、光反応性基を有するジアミンが挙げられる。光反応性基を有するジアミンとしては、ビニル基、アクリル基、メタクリル基、アリル基、スチリル基、シンナモイル基、カルコニル基、クマリン基、マレイミド基などの光反応性基を側鎖として有するジアミン、例えば下記の一般式(7)で表されるジアミンを挙げることができるが、これに限定されるものではない。   Moreover, the diamine which has a photoreactive group is mentioned as a diamine component. Examples of the diamine having a photoreactive group include a diamine having a photoreactive group such as a vinyl group, an acrylic group, a methacryl group, an allyl group, a styryl group, a cinnamoyl group, a chalconeyl group, a coumarin group, and a maleimide group as a side chain. Although the diamine represented by following General formula (7) can be mentioned, it is not limited to this.

Figure 0006384668
(式(7)中の、Rは単結合又は−CH−、−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、−N(CH)CO−、のいずれかを表し、Rは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、アルキレン基の−CH−は−CF−又は−CH=CH−で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、二価の炭素環、二価の複素環。R10はビニル基、アクリル基、メタクリル基、アリル基、スチリル基、−N(CHCHCH、又は下記式で表される構造を表す。)
Figure 0006384668
(In the formula (7), R 8 is a single bond or —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, — N (CH 3 ) —, —CON (CH 3 ) —, —N (CH 3 ) CO—, wherein R 9 is a single bond, or an unsubstituted or substituted carbon atom. Represents an alkylene group of 1 to 20, wherein —CH 2 — in the alkylene group may be optionally replaced by —CF 2 — or —CH═CH—, and any of the following groups is not adjacent to each other: And may be replaced by these groups: -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, a divalent carbocycle, and a divalent heterocycle. 10 vinyl group, acryl group, methacryl group, an allyl group, a styryl group, N (CH 2 CHCH 2) represents a 2, or represented by the following formula structure.)

Figure 0006384668
Figure 0006384668

なお、上記式(7)中のRは、通常の有機合成的手法で形成させることができるが、合成の容易性の観点から、−CH−、−O−、−COO−、−NHCO−、−NH−、−CHO−が好ましい。R 8 in the above formula (7) can be formed by a general organic synthetic method, but from the viewpoint of ease of synthesis, —CH 2 —, —O—, —COO—, —NHCO. -, - NH -, - CH 2 O- are preferable.

また、Rの任意の−CH−を置き換える二価の炭素環や二価の複素環の炭素環や複素環としては、具体的には以下のような構造が挙げられるが、これに限定されるものではない。Specific examples of the divalent carbocycle or divalent heterocycle carbocycle or heterocycle for replacing any —CH 2 — in R 9 include the following structures, but are not limited thereto. Is not to be done.

Figure 0006384668
Figure 0006384668

10は、光反応性の観点から、ビニル基、アクリル基、メタクリル基、アリル基、スチリル基、−N(CHCHCH又は下記式で表される構造であることが好ましい。R 10 is preferably a vinyl group, an acrylic group, a methacryl group, an allyl group, a styryl group, —N (CH 2 CHCH 2 ) 2 or a structure represented by the following formula from the viewpoint of photoreactivity.

Figure 0006384668
Figure 0006384668

また、上記式(7)の−R−R−R10は、より好ましくは下記の構造である。Moreover, -R < 8 > -R < 9 > -R < 10 > of the said Formula (7) has the following structure more preferably.

Figure 0006384668
Figure 0006384668

式(7)における二つのアミノ基(−NH)の結合位置は限定されない。具体的には、側鎖(−R−R−R10)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。The bonding position of the two amino groups (—NH 2 ) in Formula (7) is not limited. Specifically, with respect to the side chain (—R 8 —R 9 —R 10 ), 2, 3 positions, 2, 4 positions, 2, 5 positions, 2, 6 positions on the benzene ring, Examples include positions 3, 4 and 3, 5. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.

光反応性基を有するジアミンとしては、具体的には以下のような化合物が挙げられるが、これに限定されるものではない。   Specific examples of the diamine having a photoreactive group include, but are not limited to, the following compounds.

Figure 0006384668
(式中、Xは単結合、又は、−O−、−COO−、−NHCO−、−NH−より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表す。)
Figure 0006384668
(In the formula, X is a single bond or a linking group selected from —O—, —COO—, —NHCO—, and —NH—, Y is a single bond, or carbon that is unsubstituted or substituted by a fluorine atom. Represents an alkylene group of the number 1-20.)

また、このような光反応性基を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の0〜70モル%となる量を用いることが好ましく、より好ましくは0〜60モル%である。   Moreover, it is preferable to use the quantity used as 0-70 mol% of the diamine component used for the synthesis | combination of a polyamic acid for diamine which has such a photoreactive group, More preferably, it is 0-60 mol%.

ジアミン成分とテトラカルボン酸二無水物成分との重合反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリアミック酸等のポリイミド前駆体が溶解するものであれば特に限定されない。具体例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、γ−ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3−メチル−3−メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n−へキサン、n−ペンタン、n−オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチルエチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、ジグライムまたは4−ヒドロキシ−4−メチル−2−ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。   The polymerization reaction of the diamine component and the tetracarboxylic dianhydride component is usually performed in an organic solvent. The organic solvent used at that time is not particularly limited as long as the generated polyimide precursor such as polyamic acid dissolves. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, γ-butyrolactone, isopropyl alcohol. , Methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, Ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene Glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, di Propylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl -3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n-pentane, n -Octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, 3-methoxypropion Acid methyl, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, 3-metho Shipuropion propyl, 3-methoxy propionic acid butyl, and the like diglyme or 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.

ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、または有機溶媒に分散、あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分またはテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させてもよい。その際の重合温度は−20℃〜150℃の任意の温度を選択することができるが、好ましくは−5℃〜100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量のポリイミド前駆体(ひいてはポリイミド)を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、ジアミン成分及びテトラカルボン酸成分の総量の濃度は、反応液中で好ましくは1〜50質量%、より好ましくは5〜30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。   When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is. And a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent, a method of alternately adding a tetracarboxylic acid component and a diamine component, and the like. Any of these methods may be used. In addition, when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted. Although the polymerization temperature in that case can select the arbitrary temperature of -20 degreeC-150 degreeC, Preferably it is the range of -5 degreeC-100 degreeC. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polyimide precursor (and thus polyimide), and if the concentration is too high, the viscosity of the reaction solution becomes too high. Uniform stirring becomes difficult. Therefore, the concentration of the total amount of the diamine component and the tetracarboxylic acid component is preferably 1 to 50% by mass, more preferably 5 to 30% by mass in the reaction solution. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.

ポリアミック酸等のポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8〜1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。   In the polymerization reaction of a polyimide precursor such as polyamic acid, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.

なお、ポリアミック酸エステルは、上記のようにテトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分を適当な縮合剤、塩基の存在下にて反応させることにより得ることができる。または、上記の方法で予めポリアミック酸を合成し、高分子反応を利用してポリアミック酸のカルボキシル基をエステル化することでも得ることができる。   The polyamic acid ester can be obtained by reacting the tetracarboxylic acid diester dichloride with the diamine component as described above, or reacting the tetracarboxylic acid diester with the diamine component in the presence of an appropriate condensing agent or base. it can. Alternatively, it can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxyl group of the polyamic acid using a polymer reaction.

具体的には、例えば、テトラカルボン酸ジエステルジクロリドとジアミン成分とを塩基と有機溶剤の存在下で−20℃〜150℃、好ましくは0℃〜50℃において、30分〜24時間、好ましくは1時間〜4時間反応させることによって、ポリアミック酸エステルを合成することができる。   Specifically, for example, tetracarboxylic acid diester dichloride and a diamine component are present in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 By reacting for 4 to 4 hours, a polyamic acid ester can be synthesized.

塩基としては、ピリジン、トリエチルアミン、4−ジメチルアミノピリジンが使用できるが、反応が穏和に進行するためピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2〜4倍モルであることが好ましい。   As the base, pyridine, triethylamine, and 4-dimethylaminopyridine can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.

また、テトラカルボン酸ジエステルとジアミン成分を、縮合剤存在下にて重縮合する場合、塩基として、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’−カルボニルジイミダゾール、ジメトキシ−1,3,5−トリアジニルメチルモルホリニウム、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウム テトラフルオロボラート、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスファート、(2,3−ジヒドロ−2−チオキソ−3−ベンゾオキサゾリル)ホスホン酸ジフェニル、4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)4−メトキシモルホリウムクロリド n−水和物などが使用できる。   Further, when polycondensation of a tetracarboxylic acid diester and a diamine component in the presence of a condensing agent, as a base, triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium Tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxa Zolyl) phosphonic acid diphenyl, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl And 4-methoxy mol ho potassium chloride n- hydrate can be used.

また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量は反応させるジアミンまたはテトラカルボン酸ジエステルに対して0.1〜1.0倍モル量であることが好ましい。   In the method using the condensing agent, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.

上記の反応に用いる溶媒は、上記にて示したポリアミック酸を合成する際に用いられる溶媒と同様の溶媒で行うことができるが、モノマーおよびポリマーの溶解性からN−メチル−2−ピロリドン、γ−ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、テトラカルボン酸成分とジアミン成分の反応溶液中での合計濃度が1〜30質量%が好ましく、5〜20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることがよく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。   The solvent used in the above reaction can be the same solvent as that used in the synthesis of the polyamic acid shown above. However, N-methyl-2-pyrrolidone, γ -Butyrolactone is preferable, and these may be used alone or in combination. The concentration at the time of synthesis is preferably 1 to 30% by mass of the total concentration of the tetracarboxylic acid component and the diamine component in the reaction solution from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. -20 mass% is more preferable. Moreover, in order to prevent hydrolysis of tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.

このようにして重合されたポリイミド前駆体は、例えば、下記式[a]で示される繰り返し単位を有する重合体である。   The polyimide precursor thus polymerized is, for example, a polymer having a repeating unit represented by the following formula [a].

Figure 0006384668
(式[a]中、R11は、原料のテトラカルボン酸成分に由来する4価の有機基であり、R12は、原料のジアミン成分に由来する2価の有機基であり、A11およびA12は、水素原子または炭素数1〜4のアルキル基であり、それぞれ同じであっても異なってもよく、jは正の整数を示す。)
Figure 0006384668
(In the formula [a], R 11 is a tetravalent organic group derived from the raw material tetracarboxylic acid component, R 12 is a divalent organic group derived from the raw material diamine component, and A 11 and A 12 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different, and j represents a positive integer.)

上記式[a]において、R11およびR12がそれぞれ1種類であり同一の繰り返し単位を有する重合体でもよく、また、R11やR12が複数種であり異なる構造の繰り返し単位を有する重合体でもよい。In the above formula [a], each of R 11 and R 12 may be one type and a polymer having the same repeating unit, or R 11 and R 12 may be a plurality of types and a polymer having a repeating unit having a different structure. But you can.

上記式[a]において、R11は原料である下記式[c]等で示されるテトラカルボン酸成分に由来する基である。また、R12は原料である下記式[b]等で示されるジアミン成分に由来する基である。In the above formula [a], R 11 is a group derived from a tetracarboxylic acid component represented by the following formula [c] or the like which is a raw material. R 12 is a group derived from a diamine component represented by the following formula [b] as a raw material.

Figure 0006384668
Figure 0006384668

そして、このようなポリイミド前駆体を脱水閉環させることにより、ポリイミドが得られる。   And a polyimide is obtained by carrying out dehydration ring closure of such a polyimide precursor.

ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化またはポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。   Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.

ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃〜400℃、好ましくは120℃〜250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。   The temperature at which the polyimide precursor is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and is preferably performed while removing water generated by the imidization reaction from the system.

ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、−20〜250℃、好ましくは0〜180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5〜30モル倍、好ましくは2〜20モル倍であり、酸無水物の量はアミド酸基の1〜50モル倍、好ましくは3〜30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミンまたはトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸または無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。   The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.

なお、ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体や、ポリイミドの反応溶液から、生成したポリイミド前駆体やポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼンまたは水などを挙げることができる。溶媒に投入して沈殿させたポリイミド前駆体やポリイミドは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収したポリイミド前駆体やポリイミドを、有機溶媒に再溶解させ、再沈殿回収する操作を2〜10回繰り返すと、ポリイミド前駆体やポリイミド中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類または炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層、精製の効率が上がるので好ましい。   In addition, what is necessary is just to throw a reaction solution into a solvent and to precipitate, when collect | recovering the produced | generated polyimide precursors and a polyimide from polyimide precursors, such as polyamic acid and polyamic acid ester, and the reaction solution of a polyimide. Examples of the solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polyimide precursor or polyimide that has been deposited in a solvent and collected can be collected by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating. Moreover, the polyimide precursor and polyimide which collect | recovered and collect | recovered are redissolved in an organic solvent, and the operation which carries out reprecipitation collection | recovery is repeated 2 to 10 times, The impurity in a polyimide precursor or a polyimide can be decreased. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.

ポリイミドのアミド酸基の脱水閉環率(イミド化率)は必ずしも100%である必要はなく、0%から100%の範囲で用途や目的に応じて任意に選ぶことができるが、50%〜100%が好ましい。   The dehydration cyclization rate (imidation rate) of the amic acid group of polyimide does not necessarily need to be 100%, and can be arbitrarily selected in the range of 0% to 100% depending on the application and purpose. % Is preferred.

ポリイミド前駆体やポリイミドの分子量は、溶媒への溶解性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000〜1,000,000とするのが好ましく、より好ましくは、10,000〜150,000である。重量平均分子量が5,000より低い場合、溶解性が高くなり構造体を得にくくなる場合がある。また、重量平均分子量が1,000,000より高いと溶媒への溶解性が低下し、ポリマー溶液を得られない場合がある。   The molecular weight of the polyimide precursor or polyimide is preferably 5,000 to 1,000,000, more preferably a weight average molecular weight measured by a GPC (Gel Permeation Chromatography) method in consideration of solubility in a solvent. Is 10,000-150,000. When the weight average molecular weight is lower than 5,000, the solubility may increase and it may be difficult to obtain the structure. On the other hand, when the weight average molecular weight is higher than 1,000,000, the solubility in a solvent is lowered, and a polymer solution may not be obtained.

また、(B)成分は、(A)成分とは異なる第2の重合体又は第2の重合体前駆体、及び、プロピレングリコールモノメチルエーテルの少なくとも一方である。   Moreover, (B) component is at least one of the 2nd polymer or 2nd polymer precursor different from (A) component, and propylene glycol monomethyl ether.

第2の重合体としては、(A)成分とは異なるポリイミドや、ポリシロキサン、ポリアクリル酸、トリアセチルセルロース、ポリエチレンテレフタレート、シクロオレフィン(コ)ポリマー、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリアミド、ポリオレフィン、ポリプロピレン、ポリエチレン、ポリエチレンナフタレート、ポリエーテルスルフォン等が挙げられる。第2の重合体前駆体としては、焼成によりイミド化してポリイミド(第2の重合体)になるポリイミド前駆体が挙げられる。第2の重合体や第2の重合体前駆体の分子量は、溶媒への溶解性を考慮した場合、GPC法で測定した重量平均分子量で5,000〜1,000,000とするのが好ましく、より好ましくは、10,000〜150,000である。また、スパッタ等の耐性等を考慮すると、ポリイミドやポリイミド前駆体が好ましい。(B)成分のポリイミドやポリイミド前駆体としては、上記第1の重合体及び第1の重合体前駆体で例示したものと同じポリイミドやポリイミド前駆体が挙げられる。勿論(A)成分とは異なるポリイミドやポリイミド前駆体である必要がある。   As the second polymer, polyimide different from the component (A), polysiloxane, polyacrylic acid, triacetylcellulose, polyethylene terephthalate, cycloolefin (co) polymer, polyvinyl alcohol, polycarbonate, polystyrene, polyamide, polyolefin, Examples include polypropylene, polyethylene, polyethylene naphthalate, and polyether sulfone. As a 2nd polymer precursor, the polyimide precursor which is imidized by baking and becomes a polyimide (2nd polymer) is mentioned. The molecular weight of the second polymer or the second polymer precursor is preferably 5,000 to 1,000,000 as a weight average molecular weight measured by the GPC method in consideration of solubility in a solvent. More preferably, it is 10,000-150,000. In consideration of resistance such as sputtering, polyimide and a polyimide precursor are preferable. (B) As a polyimide and polyimide precursor of a component, the same polyimide and polyimide precursor as what was illustrated by the said 1st polymer and 1st polymer precursor are mentioned. Of course, it is necessary to be a polyimide or a polyimide precursor different from the component (A).

ここで、(B)成分が第2の重合体又は第2の重合体前駆体を含む場合、第1の重合体又は第1の重合体前駆体、及び、第2の重合体又は第2の重合体前駆体の少なくとも一方は、分子内又は分子間で水素結合を形成しうる結合、及び、分子内又は分子間で水素結合を形成しうる置換基から選択される少なくとも一種を有することが好ましい。自己組織化が生じ易くなるからである。なお、このように第1の重合体又は第1の重合体前駆体、及び、第2の重合体又は第2の重合体前駆体の少なくとも一方が、分子内又は分子間で水素結合を形成しうる結合、及び、分子内又は分子間で水素結合を形成しうる置換基から選択される少なくとも一種を有すると、得られる本発明の構造体は、第1の重合体及び第2の重合体を有し、第1の重合体及び第2の重合体の少なくとも一方が、分子内又は分子間で水素結合を形成しうる結合、及び、分子内又は分子間で水素結合を形成しうる置換基から選択される少なくとも一種を有することになる。   Here, when the component (B) includes the second polymer or the second polymer precursor, the first polymer or the first polymer precursor, and the second polymer or the second polymer At least one of the polymer precursors preferably has at least one selected from a bond capable of forming a hydrogen bond within a molecule or between molecules and a substituent capable of forming a hydrogen bond within a molecule or between molecules. . This is because self-organization tends to occur. In this way, at least one of the first polymer or the first polymer precursor and the second polymer or the second polymer precursor forms a hydrogen bond in the molecule or between the molecules. And at least one selected from substituents capable of forming hydrogen bonds within or between molecules, the resulting structure of the present invention comprises the first polymer and the second polymer. And at least one of the first polymer and the second polymer is a bond capable of forming a hydrogen bond within a molecule or between molecules, and a substituent capable of forming a hydrogen bond within a molecule or between molecules. You will have at least one selected.

分子内又は分子間で水素結合を形成しうる結合としては、上記式(1)で表される2価の基が挙げられる。また、分子内又は分子間で水素結合を形成しうる置換基としては、ヒドロキシル基、チオール基、アミノ基、カルボキシル基が挙げられる。   Examples of the bond that can form a hydrogen bond within a molecule or between molecules include a divalent group represented by the above formula (1). Examples of the substituent capable of forming a hydrogen bond within a molecule or between molecules include a hydroxyl group, a thiol group, an amino group, and a carboxyl group.

このような分子内又は分子間で水素結合を形成しうる結合や、分子内又は分子間で水素結合を形成しうる置換基は、例えば、これらの結合又は置換基を有するジアミン成分や、テトラカルボン酸成分を原料とすることにより、ポリイミドやポリイミド前駆体に導入することができる。   Such a bond capable of forming a hydrogen bond within or between molecules or a substituent capable of forming a hydrogen bond within or between molecules includes, for example, a diamine component having these bonds or substituents, tetracarboxylic By using an acid component as a raw material, it can be introduced into a polyimide or a polyimide precursor.

(A)成分と(B)成分の混合割合は、自己組織化を生じさせることができれば特に限定されないが、例えば、(B)成分が第2の重合体又は第2の重合体前駆体である場合は、(A)成分:(B)成分=40〜60:60〜40(質量比)が好ましく、特に好ましくは、(A)成分:(B)成分=45〜55:55〜45(質量比)である。また、(B)成分がプロピレングリコールモノメチルエーテルである場合は、構造体形成用組成物(ワニス)中で重合体が析出しない範囲で選択すれば特に限定されないが、(A)成分:(B)成分=99〜70:1〜30(質量比)が好ましい。   The mixing ratio of the component (A) and the component (B) is not particularly limited as long as self-assembly can be caused. For example, the component (B) is the second polymer or the second polymer precursor. In this case, (A) component: (B) component = 40-60: 60-40 (mass ratio) is preferable, and (A) component: (B) component = 45-55: 55-45 (mass) is particularly preferable. Ratio). In addition, when component (B) is propylene glycol monomethyl ether, there is no particular limitation as long as the polymer is selected in a range in which the polymer does not precipitate in the structure-forming composition (varnish), but component (A): (B) Component = 99-70: 1-30 (mass ratio) is preferable.

構造体形成用組成物は、第1重合体、第1重合体前駆体、第2重合体や第2重合体前駆体以外のその他の重合体を含有していてもよい。以下、第1重合体、第1重合体前駆体、第2重合体、第2重合体前駆体、その他の重合体を合わせて、重合体成分とも記載する。その他の重合体として、第1重合体、第1重合体前駆体、第2重合体や第2重合体前駆体以外のポリイミド前駆体、ポリイミド、ポリシロキサン、ポリアクリル酸、トリアセチルセルロース、ポリエチレンテレフタレート、シクロオレフィン(コ)ポリマー、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリアミド、ポリオレフィン、ポリプロピレン、ポリエチレン、ポリエチレンナフタレート、ポリエーテルスルフォン等が挙げられる。   The composition for forming a structure may contain a first polymer, a first polymer precursor, a second polymer, or another polymer other than the second polymer precursor. Hereinafter, the first polymer, the first polymer precursor, the second polymer, the second polymer precursor, and other polymers are collectively referred to as a polymer component. As other polymers, first polymer, first polymer precursor, polyimide precursor other than second polymer and second polymer precursor, polyimide, polysiloxane, polyacrylic acid, triacetyl cellulose, polyethylene terephthalate , Cycloolefin (co) polymer, polyvinyl alcohol, polycarbonate, polystyrene, polyamide, polyolefin, polypropylene, polyethylene, polyethylene naphthalate, polyethersulfone and the like.

構造体形成用組成物がその他の重合体を含有する場合、重合体成分全量におけるその他の重合体の含有量は0.5質量%〜50質量%、好ましくは1質量%〜30質量%である。   When the composition for forming a structure contains other polymer, the content of the other polymer in the total amount of the polymer component is 0.5% by mass to 50% by mass, preferably 1% by mass to 30% by mass. .

構造体形成用組成物が含有する重合体成分は、1質量%〜20質量%が好ましく、より好ましくは3質量%〜15質量%、特に好ましくは3質量%〜10質量%である。   The polymer component contained in the structure-forming composition is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.

構造体形成用組成物が含有する溶媒は、第1の重合体、第1の重合体前駆体、第2の重合体や、第2の重合体前駆体等の重合体成分を溶解させる有機溶媒であれば特に限定されない。その具体例として、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、2−ピロリドン、N−エチルピロリドン、N−ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ−ブチロラクトン、3−メトキシ−N,N−ジメチルプロパンアミド、3−エトキシ−N,N−ジメチルプロパンアミド、3−ブトキシ−N,N−ジメチルプロパンアミド、1,3−ジメチル−イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4−ヒドロキシ−4−メチル−2−ペンタノン、2−ブトキシエタノール、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。   The solvent contained in the structure-forming composition is an organic solvent that dissolves polymer components such as the first polymer, the first polymer precursor, the second polymer, and the second polymer precursor. If it is, it will not specifically limit. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetra Methylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropane Amide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, - hydroxy-4-methyl-2-pentanone, 2-butoxyethanol, propylene glycol monomethyl ether acetate. These may be used alone or in combination.

構造体形成用組成物は、構造体の物理的強度を向上するために、架橋剤を含有することができる。架橋剤としては、アルコキシアルキル化されたアミノ基を有する化合物、多官能(メタ)アクリレート化合物、エポキシまたはオキセタン化合物、ヒドロキシメチル基置換フェノール化合物、ブロック化イソシアナートを含有する化合物等が挙げられる。これらの架橋剤は、単独で又は二種以上を組み合わせて用いることができる。   The composition for forming a structure can contain a crosslinking agent in order to improve the physical strength of the structure. Examples of the crosslinking agent include a compound having an alkoxyalkylated amino group, a polyfunctional (meth) acrylate compound, an epoxy or oxetane compound, a hydroxymethyl group-substituted phenol compound, and a compound containing a blocked isocyanate. These crosslinking agents can be used alone or in combination of two or more.

アルコキシアルキル化されたアミノ基を有する化合物としては、例えば、(ポリ)メチロール化メラミン、(ポリ)メチロール化グリコールウリル、(ポリ)メチロール化ベンゾグアナミン、(ポリ)メチロール化ウレア等の、一分子内に複数個の活性メチロール基を有する含窒素化合物であって、そのメチロール基のヒドロキシル基の水素原子の少なくとも一つが、メチル基、ブチル基等のアルキル基によって置換された化合物を挙げることができる。   Examples of compounds having an alkoxyalkylated amino group include (poly) methylolated melamine, (poly) methylolated glycoluril, (poly) methylolated benzoguanamine, and (poly) methylolated urea in one molecule. A nitrogen-containing compound having a plurality of active methylol groups, in which at least one hydrogen atom of the hydroxyl group of the methylol group is substituted with an alkyl group such as a methyl group or a butyl group.

アルコキシアルキル化されたアミノ基を有する化合物は、複数の置換化合物を混合した混合物である場合があり、一部自己縮合してなるオリゴマー成分を含む混合物も存在し、そのような混合物も使用することができる。より具体的には、例えば、ヘキサメトキシメチルメラミン(日本サイテックインダストリーズ(株)製、CYMEL(登録商標)303)、テトラブトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)製、CYMEL(登録商標)1170)、テトラメトキシメチルベンゾグアナミン(日本サイテックインダストリーズ(株)製、CYMEL(登録商標)1123)等のCYMELシリーズの商品、メチル化メラミン樹脂((株)三和ケミカル製、ニカラック(登録商標)MW−30HM、同MW−390、同MW−100LM、同MX−750LM)、メチル化尿素樹脂((株)三和ケミカル製、ニカラック(登録商標)MX−270、同MX−280、同MX−290)等のニカラックシリーズの商品を挙げることができる。   The compound having an alkoxyalkylated amino group may be a mixture in which a plurality of substituted compounds are mixed, and there is also a mixture containing an oligomer component partially self-condensed, and such a mixture should also be used. Can do. More specifically, for example, hexamethoxymethyl melamine (manufactured by Nippon Cytec Industries, Ltd., CYMEL (registered trademark) 303), tetrabutoxymethyl glycoluril (manufactured by Nippon Cytec Industries, Ltd., CYMEL (registered trademark) 1170). , CYMEL series products such as tetramethoxymethylbenzoguanamine (Nippon Cytec Industries, Ltd., CYMEL (registered trademark) 1123), methylated melamine resin (manufactured by Sanwa Chemical Co., Ltd., Nicalac (registered trademark) MW-30HM, MW-390, MW-100LM, MX-750LM), methylated urea resin (manufactured by Sanwa Chemical Co., Ltd., Nicalac (registered trademark) MX-270, MX-280, MX-290), etc. List the products of the Nicarak series It can be.

多官能(メタ)アクリレート化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、エチレングルコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングルコールジ(メタ)アクリレート、トリエチレングルコールジ(メタ)アクリレート、ジプロピレングルコールジ(メタ)アクリレート、ビス(2−ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート等を挙げることができる。より具体的には、例えば、NKエステル701A、同A−DCP、同A−DON−N、同A−HD−N、同A−NOD−N、同DCP、同DOD−N、同HD−N、同NOD−N、同NPG、同A−TMM−3、同A−TMM−3L、同A−TMM−3LMN、同A−TMPT、同TMPT、同A−TMMT、同AD−TMP、同A−DPH、同A−9550、同A−9530、同ADP−51EH、同ATM−31EH、UA−7100(以上、新中村化学工業株式会社製)、KAYARAD(登録商標)T−1420、同D−330、同D−320、同D−310、同DPCA−20、同DPCA−30、同DPCA−60、同DPCA−120、同TMPTA、同PET−30、同DPHA、同DPHA−2C(以上、日本化薬株式会社製)、UA−306H、UA−306T、UA−306I、UA−510H(以上、共栄社化学株式会社製)等が挙げられる   Examples of the polyfunctional (meth) acrylate compound include trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol penta. (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin tri (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, ethylene glycol di (meth) acrylate, 1,3-butane Diol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) Examples include acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and bis (2-hydroxyethyl) isocyanurate di (meth) acrylate. it can. More specifically, for example, NK ester 701A, A-DCP, A-DON-N, A-HD-N, A-NOD-N, DCP, DOD-N, HD-N NOD-N, NPG, A-TMM-3, A-TMM-3L, A-TMM-3LMN, A-TMPT, TMPT, A-TMMT, AD-TMP, A -DPH, A-9550, A-9530, ADP-51EH, ATM-31EH, UA-7100 (manufactured by Shin-Nakamura Chemical Co., Ltd.), KAYARAD (registered trademark) T-1420, D- 330, D-320, D-310, DPCA-20, DPCA-30, DPCA-60, DPCA-120, TMPTA, PET-30, DPHA, DPHA-2C (above, Nippon Kayaku Co., Ltd. Ltd.), UA-306H, UA-306T, UA-306I, UA-510H (or include Kyoeisha Chemical Co., Ltd.) and the like

エポキシまたはオキセタン化合物としては、例えば1,4−ブタンジオールジグリシジルエーテル、1,2−エポキシ−4−(エポキシエチル)シクロヘキサン、グリセロールトリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、2,6−ジグリシジルフェニルグリシジルエーテル、1,1,3−トリス[p−(2,3−エポキシプロポキシ)フェニル]プロパン、1,2−シクロヘキサンジカルボン酸ジグリシジルエステル、4,4’−メチレンビス(N,N−ジグリシジルアニリン)、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、トリメチロールエタントリグリシジルエーテル、ビスフェノール−A−ジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等が挙げられる。より具体的には、例えば、YH−434、YH434L(東都化成(株)製)、シクロヘキセンオキサイド構造を有するエポキシ樹脂である、エポリードGT−401、同GT−403、同GT−301、同GT−302、セロキサイド2021、セロキサイド3000(ダイセル化学工業(株)製)、ビスフェノールA型エポキシ樹脂である、エピコート(現、jER)1001、同1002、同1003、同1004、同1007、同1009、同1010、同828(以上、ジャパンエポキシレジン(株)製)、ビスフェノールF型エポキシ樹脂である、エピコート(現、jER)807(ジャパンエポキシレジン(株)製)、フェノールノボラック型エポキシ樹脂である、エピコート(現、jER)152、同154(以上、ジャパンエポキシレジン(株)製)、EPPN201、同202(以上、日本化薬(株)製)、クレゾールノボラック型エポキシ樹脂である、EOCN−102、EOCN−103S、EOCN−104S、EOCN−1020、EOCN−1025、EOCN−1027(以上、日本化薬(株)製)、エピコート(現、jER)180S75(ジャパンエポキシレジン(株)製)、脂環式エポキシ樹脂である、デナコールEX−252(ナガセケムテックス(株)製)、CY175、CY177、CY179(以上、CIBA−GEIGY A.G製)、アラルダイトCY−182、同CY−192、同CY−184(以上、CIBA−GEIGY A.G製)、エピクロン200、同400(以上、大日本インキ工業(株)製)、エピコート(現、jER)871、同872(以上、ジャパンエポキシレジン(株)製)、ED−5661、ED−5662(以上、セラニーズコーティング(株)製)、脂肪族ポリグリシジルエーテルである、デナコールEX−611、同EX−612、同EX−614、同EX−622、同EX−411、同EX−512、同EX−522、同EX−421、同EX−313、同EX−314、同EX−321(ナガセケムテックス(株)製)等が挙げられる。   Examples of the epoxy or oxetane compound include 1,4-butanediol diglycidyl ether, 1,2-epoxy-4- (epoxyethyl) cyclohexane, glycerol triglycidyl ether, diethylene glycol diglycidyl ether, and 2,6-diglycidyl phenyl glycidyl. Ether, 1,1,3-tris [p- (2,3-epoxypropoxy) phenyl] propane, 1,2-cyclohexanedicarboxylic acid diglycidyl ester, 4,4′-methylenebis (N, N-diglycidylaniline) 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, trimethylolethane triglycidyl ether, bisphenol-A-diglycidyl ether, pentaerythritol polyglycidyl ether Tel and the like. More specifically, for example, YH-434, YH434L (manufactured by Tohto Kasei Co., Ltd.), epoxy resins having a cyclohexene oxide structure, Epolide GT-401, GT-403, GT-301, GT- 302, Celoxide 2021, Celoxide 3000 (manufactured by Daicel Chemical Industries, Ltd.), bisphenol A type epoxy resin, Epicoat (currently jER) 1001, 1002, 1003, 1004, 1007, 1009, 1010 828 (above, manufactured by Japan Epoxy Resins Co., Ltd.), Epicoat (currently jER) 807 (produced by Japan Epoxy Resins Co., Ltd.), which is a bisphenol F type epoxy resin, Epicoat (which is a phenol novolac type epoxy resin) (Currently jER) 152, 154 (above, Japan) Epoxy Resin Co., Ltd.), EPPN 201, 202 (manufactured by Nippon Kayaku Co., Ltd.), cresol novolac type epoxy resin, EOCN-102, EOCN-103S, EOCN-104S, EOCN-1020, EOCN- 1025, EOCN-1027 (manufactured by Nippon Kayaku Co., Ltd.), Epicort (currently jER) 180S75 (manufactured by Japan Epoxy Resin Co., Ltd.), alicyclic epoxy resin, Denacol EX-252 (Nagase ChemteX) CY175, CY177, CY179 (above, CIBA-GEIGY AG), Araldite CY-182, CY-192, CY-184 (above, CIBA-GEIGY AG), Epicron 200, 400 (above, manufactured by Dainippon Ink Industries, Ltd.), Epicoat (currently jER) 871, 872 (above, Japan Epoxy Resin Co., Ltd.), ED-5661, ED-5661 (above, Celanese Coating Co., Ltd.), aliphatic polyglycidyl ether, Denacol EX-611, EX-612, EX-614, EX-622, EX-411, EX-512, EX-522, EX-522, EX-421, EX-313, EX-314, EX-321 ( Nagase ChemteX Corporation).

ヒドロキシメチル基置換フェノール化合物としては、例えば、2−ヒドロキシメチル−4,6−ジメチルフェノール、1,3,5−トリヒドロキシメチルベンゼン、3,5−ジヒドロキシメチル−4−メトキシトルエン[2,6−ビス(ヒドロキシメチル)−p−クレゾール]等を挙げることができる。   Examples of the hydroxymethyl group-substituted phenol compound include 2-hydroxymethyl-4,6-dimethylphenol, 1,3,5-trihydroxymethylbenzene, 3,5-dihydroxymethyl-4-methoxytoluene [2,6- Bis (hydroxymethyl) -p-cresol] and the like.

ブロック化イソシアナートを含有する化合物はイソシアネート基(−N=C=O)が適当な保護基によりブロックされた化合物である。ブロック剤としては、例えば、メタノール、エタノール、イソプロパノール、n−ブタノール、2−エトキシヘキサノール、2−N,N−ジメチルアミノエタノール、2−エトキシエタノール、シクロヘキサノール等のアルコール類、フェノール、o−ニトロフェノール、p−クロロフェノール、o−クレゾール、m−クレゾール、p−クレゾール等のフェノール類、ε−カプロラクタム等のラクタム類、アセトンオキシム、メチルエチルケトンオキシム、メチルイソブチルケトンオキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム等のオキシム類、ピラゾール、3,5−ジメチルピラゾール、3−メチルピラゾール等のピラゾール類、ドデカンチオール、ベンゼンチオール等のチオール類が挙げられる。より具体的には、例えば、VESTANAT(登録商標)T,同HB、同HT、同B、同DS(以上、エボニック(株)製)、タケネート(登録商標)B−830、B−815N、B−842N、B−870N、B−874N、B−882N、B−7005、B−7030、B−7075、B−5010(以上、三井化学ポリウレタン(株)製)等が挙げられる。   A compound containing a blocked isocyanate is a compound in which an isocyanate group (—N═C═O) is blocked with a suitable protecting group. Examples of the blocking agent include methanol, ethanol, isopropanol, n-butanol, 2-ethoxyhexanol, 2-N, N-dimethylaminoethanol, 2-ethoxyethanol, cyclohexanol, and other alcohols, phenol, o-nitrophenol. , Phenols such as p-chlorophenol, o-cresol, m-cresol, p-cresol, lactams such as ε-caprolactam, acetone oxime, methyl ethyl ketone oxime, methyl isobutyl ketone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime, etc. Oximes, pyrazoles such as pyrazole, 3,5-dimethylpyrazole and 3-methylpyrazole, and thiols such as dodecanethiol and benzenethiol . More specifically, for example, VESTANAT (registered trademark) T, HB, HT, B, DS (above, manufactured by Evonik), Takenate (registered trademark) B-830, B-815N, B -842N, B-870N, B-874N, B-882N, B-7005, B-7030, B-7075, B-5010 (above, Mitsui Chemicals Polyurethane Co., Ltd.) etc. are mentioned.

以上の架橋剤の中では耐熱性や保存安定性の観点からエポキシ基またはブロックイソシアナートを含有する化合物が好ましい。   Among the above crosslinking agents, compounds containing an epoxy group or a block isocyanate are preferred from the viewpoints of heat resistance and storage stability.

構造体形成用組成物は、構造体と基材との密着性を向上するために、密着促進剤を含有することができる。密着促進剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−メチルアミノプロピルトリメトキシシラン、N,N−ジメチルアミノプロピルトリメトキシシラン、3−2−(イミダゾリン−1−イル)−プロピルトリエトキシシラン等が挙げられる。   The composition for forming a structure can contain an adhesion promoter in order to improve the adhesion between the structure and the substrate. Examples of the adhesion promoter include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane , 3-ureidopropyltriethoxysilane, N-methylaminopropyltrimethoxysilane, N, N-dimethylaminopropyltrimethoxysilane, 3-2- (imidazolin-1-yl) -propyltriethoxysilane, and the like. It is.

また、構造体形成用組成物は、界面活性剤を含有することができる。界面活性剤は例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフエノールエーテル、ポリオキシエチレンノニルフエノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロツクコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップEF301、EF303、EF352((株)トーケムプロダクツ製)、商品名メガファックF−553、F−554、F171、F173、R−08、R−30、R−30−N(大日本インキ化学工業(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、商品名アサヒガードAG710,サーフロンS−382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマ−KP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤は単独で使用してもよいし、また二種以上の組み合わせで使用することもできる。   Moreover, the composition for forming a structure can contain a surfactant. Surfactants include, for example, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octyl phenol ether, polyoxyethylene nonyl phenol Polyoxyethylene alkyl allyl ethers such as ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as nopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, trade names EFTOP EF301, EF303, EF352 (Made by Tochem Products Co., Ltd.), trade names MegaFuck F-553, F-554, F171, F173, R-08, R-30, R-30-N (Dainippon Ink Chemical Co., Ltd.) Fluorosurfactants such as Fluorard FC430, FC431 (manufactured by Sumitomo 3M Limited), trade names Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) And Ganoderma siloxane polymer -KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like. These surfactants may be used alone or in combination of two or more.

このような構造体形成用組成物を用いると、後段の塗布工程、引き置き工程及び焼成工程を経ることにより、ポリイミドやポリイミド前駆体等の自己組織化が生じ、構造体に凹凸を形成できる。具体的には、ポリイミド又はポリイミド前駆体と該ポリイミド又はポリイミド前駆体とは異なる重合体とを含有する構造体形成用組成物を用いると、ポリイミド又はポリイミド前駆体及び異なる重合体の分子が集合等して自己組織化が生じて凹凸が形成される。また、ポリイミド又はポリイミド前駆体とプロピレングリコールモノメチルエーテルとを含む構造体形成用組成物を用いると、ポリイミド又はポリイミド前駆体の分子が集合等して自己組織化が生じて凹凸が形成される。プロピレングリコールモノメチルエーテルは、(A)成分であるポリイミドやポリイミド前駆体の溶解性が極めて低い貧溶媒であるため、ポリイミド又はポリイミド前駆体の自己組織化が生じると推測される。なお、詳しくは後述するが、ポリイミドやポリイミド前駆体等による自己組織化の有無や程度は、(A)成分と(B)成分の種類や混合比、固形分濃度、塗布方法、焼成温度、引き置き時間(放置時間)等の製造条件に依存するため、自己組織化に影響を与えるこれらの製造条件を適宜設定する必要がある。   When such a structure-forming composition is used, self-organization of polyimide, a polyimide precursor, or the like occurs through a subsequent coating process, a placing process, and a baking process, and irregularities can be formed in the structure. Specifically, when a composition for forming a structure containing a polyimide or a polyimide precursor and a polymer different from the polyimide or the polyimide precursor is used, the molecules of the polyimide or the polyimide precursor and different polymers are gathered. As a result, self-organization occurs and irregularities are formed. Further, when a composition for forming a structure containing polyimide or a polyimide precursor and propylene glycol monomethyl ether is used, molecules of the polyimide or polyimide precursor are aggregated to cause self-organization to form irregularities. Propylene glycol monomethyl ether is a poor solvent in which the solubility of the polyimide or polyimide precursor as the component (A) is extremely low, and it is estimated that self-organization of the polyimide or polyimide precursor occurs. In addition, although mentioned later in detail, the presence or absence and degree of self-organization by polyimide, polyimide precursor, etc. are the type and mixing ratio of (A) component and (B) component, solid content concentration, coating method, firing temperature, pulling. Since it depends on manufacturing conditions such as placing time (leaving time), it is necessary to appropriately set these manufacturing conditions that affect self-organization.

このような構造体形成用組成物を基材上に塗布する(塗布工程)。基材は構造体形成用組成物を塗布することができれば特に限定されないが、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムガリウム亜鉛酸化物(IGZO)、ガラス、シリコン、シリコーン、窒化珪素、コバルト、アルミニウム、ジルコニウム、クロム、ニッケル、亜鉛、鉄、ルテニウム及びこれらの合金等からなる基板が挙げられる。   Such a structure-forming composition is applied onto a substrate (application step). The substrate is not particularly limited as long as the composition forming composition can be applied, but indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium zinc oxide (IGZO), glass, silicon, silicone And a substrate made of silicon nitride, cobalt, aluminum, zirconium, chromium, nickel, zinc, iron, ruthenium, and alloys thereof.

塗布方法は、例えば、スピンコート法、スリットコート法、ディップ法、フローコート法、インクジェット法、スプレー法、バーコート法、グラビアコート法、ロールコート法、オフセット印刷法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等が挙げられる。中でもスピンコート法が好ましく、例えばスピンコート条件は、10〜10000rpmの回転数で、3〜60秒間とすればよい。   Coating methods include, for example, spin coating method, slit coating method, dip method, flow coating method, ink jet method, spray method, bar coating method, gravure coating method, roll coating method, offset printing method, transfer printing method, brush coating, Examples thereof include a blade coating method and an air knife coating method. Of these, the spin coating method is preferable. For example, the spin coating condition may be 10 to 10,000 rpm and 3 to 60 seconds.

塗布工程により形成される塗膜の膜厚としては、例えば5nm〜1μmの範囲とすることが可能であるが、得られる構造体表面に形成される凹凸の凸部の平均高さを0.5nm〜500nmとするためには、塗布工程により形成される塗膜の膜厚は5nm〜500nmの範囲であることが好ましい。   The film thickness of the coating film formed by the coating process can be in the range of, for example, 5 nm to 1 μm, but the average height of the uneven protrusions formed on the surface of the resulting structure is 0.5 nm. In order to set it to -500 nm, it is preferable that the film thickness of the coating film formed by an application | coating process is the range of 5 nm-500 nm.

塗布工程の後、引き置く、すなわち、塗布工程により基材上に形成された塗膜を、そのまま放置する(引き置き工程)。引き置き時間(放置時間)は例えば10秒〜72時間の間で選択されれば良いが、放置時間は実際に製造するプロセスのタクトタイムに直結し、短ければ製造時間が短くなり好ましいため、10秒〜10分が好ましく、より好ましくは10秒〜5分である。   After the coating process, the film is placed, that is, the coating film formed on the substrate by the coating process is left as it is (placing process). The holding time (leaving time) may be selected, for example, from 10 seconds to 72 hours, but the leaving time is directly related to the tact time of the actual manufacturing process. The time is preferably from 10 seconds to 10 minutes, more preferably from 10 seconds to 5 minutes.

引き置き工程の後、焼成する(焼成工程)。焼成機器は特に限定されず、例えば、ホットプレート、オーブン、ファーネスが挙げられる。また、焼成工程を行う雰囲気も特に限定されず、例えば、大気中、窒素等の不活性ガス雰囲気中や、真空中等で焼成すればよい。中でも、自己組織化により形成される凹凸の凸部平均高さを高くするためには、大気中で焼成することが好ましい。   After the placing step, firing is performed (firing step). A baking apparatus is not specifically limited, For example, a hotplate, oven, and furnace are mentioned. Also, the atmosphere in which the firing step is performed is not particularly limited, and for example, the firing may be performed in the atmosphere, an inert gas atmosphere such as nitrogen, or in a vacuum. Among them, firing in the air is preferable in order to increase the average height of the unevenness formed by self-organization.

焼成温度は特に限定されないが、例えば構造体形成用組成物が含有する溶媒を揮発させることができる40℃〜250℃で行うことが好ましい。なお、得られる構造体の形状を安定させるためには、焼成温度は70℃〜120℃であることが好ましい。このように比較的幅広い温度での焼成が可能なため、本発明の構造体を適用するデバイス種に対応した設計が可能であり、プロセスマージンを拡大でき、本発明の構造体は例えばオプトデバイス等に好適に用いることができる。   Although a calcination temperature is not specifically limited, For example, it is preferable to carry out at 40 to 250 degreeC which can volatilize the solvent which the composition for structure formation contains. In addition, in order to stabilize the shape of the structure obtained, it is preferable that a calcination temperature is 70 to 120 degreeC. Since firing at a relatively wide temperature is possible in this way, design corresponding to the device type to which the structure of the present invention is applied is possible, the process margin can be expanded, and the structure of the present invention is, for example, an opto device or the like. Can be suitably used.

焼成時間も特に限定されず、例えば、5〜40分程度とすることができる。目的とするイミド化率によって変化させてもよい。具体例としては、焼成温度が230℃の場合、20分間以上であることが好ましい。また、焼成工程は、40℃〜120℃程度の低温の焼成と、180℃〜250℃程度の高温の焼成の両方を順に行ってもよい。   The firing time is not particularly limited, and can be, for example, about 5 to 40 minutes. You may change with the target imidation ratio. As a specific example, when the firing temperature is 230 ° C., it is preferably 20 minutes or more. Moreover, you may perform both a low temperature baking about 40 to 120 degreeC, and a high temperature baking about 180 to 250 degreeC in order at a baking process.

なお、上記塗布工程、引き置き工程及び焼成工程は、常温及び常湿の環境下で行うことができる。   In addition, the said application | coating process, a leaving process, and a baking process can be performed in normal temperature and a normal humidity environment.

このように、上記(A)成分及び上記(B)成分という特定の成分を含有する構造体形成用組成物を基材上に塗布し、放置した後に、焼成するという容易な形成方法によって、ポリイミドやポリイミド前駆体等を自己組織化させて、表面に凹凸を有する構造体を得ることができる。例えば、ドライエッチング工程、高温の焼成工程や、高湿環境下での操作等、複雑な操作を経ることなく、構造体を形成できる。また、工程数が少ないため製造工程は短く、複雑な操作を行うための高価な設備も不要であるため、安価に製造できる。   In this way, the composition for forming a structure containing the specific component (A) and the component (B) is applied onto a substrate, left to stand, and then baked to form a polyimide. Or a polyimide precursor or the like can be self-organized to obtain a structure having irregularities on the surface. For example, the structure can be formed without complicated operations such as a dry etching process, a high-temperature baking process, and an operation in a high-humidity environment. In addition, since the number of processes is small, the manufacturing process is short, and expensive equipment for performing complicated operations is not necessary, so that it can be manufactured at low cost.

上記形成方法では、ポリスチレンとポリメタクリル酸メチルとのブロックコポリマーを用いた場合と比べて、顕著に再現性良く構造体を形成できる。したがって、日間差等が抑制されて、目的とするフラクタルパターンの凹凸を有する構造体を、安定製造することができる。   In the above formation method, a structure can be formed with significantly good reproducibility compared with the case where a block copolymer of polystyrene and polymethyl methacrylate is used. Therefore, the difference in day and the like can be suppressed, and the structure having the unevenness of the target fractal pattern can be stably manufactured.

さらに、本発明の構造体は構造体形成用組成物、塗布方法、塗布後の放置時間、焼成温度等を調整することで、得られるフラクタルパターンの形状をコントロールでき、例えば、凸部の平均高さを所望の値にすることができる。   Furthermore, the structure of the present invention can control the shape of the obtained fractal pattern by adjusting the composition for forming a structure, the coating method, the standing time after coating, the firing temperature, etc. The thickness can be set to a desired value.

また、本発明の構造体はフォトリソグラフィやインプリントのように規格化されたパターンを作製、転写した構造体ではなく、フラクタルな表面形状を有する構造体であるため、光学的に干渉縞を発生しにくい。   In addition, the structure of the present invention is not a structure in which a standardized pattern such as photolithography or imprint is produced and transferred, but a structure having a fractal surface shape, so that optical interference fringes are generated. Hard to do.

また、本発明の構造体はポリイミドを含むため、ポリイミドが有する高透明性、耐アルカリ性、耐薬品性、高屈折率、ドライエッチング耐性、ITOスパッタ耐性などの化学的及び物理的に有用な特性を兼ね備え、永久膜としての信頼性が高い。   In addition, since the structure of the present invention contains polyimide, it has chemically and physically useful characteristics such as high transparency, alkali resistance, chemical resistance, high refractive index, dry etching resistance, and ITO sputtering resistance. Combined and highly reliable as a permanent film.

本発明の構造体は、種々の電子デバイスを構成する部材として用いることができる。適用できる電子デバイスは特に限定されないが、例えば、オプトデバイス(光学素子)、半導体デバイス、太陽電池、ディスプレイ、記憶媒体、バイオチップ等が挙げられる。以下にオプトデバイスである有機発光ダイオード(OLED)を例に説明する。   The structure of the present invention can be used as a member constituting various electronic devices. The applicable electronic device is not particularly limited, and examples thereof include an optical device (optical element), a semiconductor device, a solar cell, a display, a storage medium, and a biochip. Hereinafter, an organic light emitting diode (OLED) which is an opto device will be described as an example.

図1は、OLEDを模式的に示す概略断面図である。図1(a)に示すように、OLEDは、透明基板11、透明電極13、正孔輸送層14、発光層15及び電極16がこの順に積層された構造であり、本発明においては、透明基板11と透明電極13との間に、本発明の構造体からなる光取出し膜12が設けられている。   FIG. 1 is a schematic cross-sectional view schematically showing an OLED. As shown in FIG. 1 (a), the OLED has a structure in which a transparent substrate 11, a transparent electrode 13, a hole transport layer 14, a light emitting layer 15 and an electrode 16 are laminated in this order. A light extraction film 12 made of the structure of the present invention is provided between the transparent electrode 13 and the transparent electrode 13.

光取出し膜12は、上記形成方法によって透明基板11上に形成されたものであり、ポリイミドを含み、図1(a)においては、透明電極13側の表面に自己組織化により形成された凹凸を有する。凹凸の大きさは、例えば、凸部の平均高さが、0.5nm〜50nmである。   The light extraction film 12 is formed on the transparent substrate 11 by the above-described forming method, and includes polyimide. In FIG. 1A, the unevenness formed by self-organization is formed on the surface on the transparent electrode 13 side. Have. As for the size of the irregularities, for example, the average height of the convex portions is 0.5 nm to 50 nm.

本発明の構造体からなる光取出し膜12が設けられている他は、従来のOLEDと同様であるが、具体例を以下に例示する。   Although it is the same as that of the conventional OLED except that the light extraction film 12 made of the structure of the present invention is provided, specific examples are illustrated below.

透明基板11としては、ガラス基板、トリアセチルセルロース、ポリエチレンテレフタレート、ポリメタクリル酸メチル、シクロオレフィン(コ)ポリマー、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリイミド、ポリアミド、ポリオレフィン、ポリプロピレン、ポリエチレン、ポリエチレンナフタレート、ポリエーテルスルフォン、並びにこれらポリマーを組み合わせた共重合体などのプラスチック基板等が挙げられる。   As the transparent substrate 11, glass substrate, triacetyl cellulose, polyethylene terephthalate, polymethyl methacrylate, cycloolefin (co) polymer, polyvinyl alcohol, polycarbonate, polystyrene, polyimide, polyamide, polyolefin, polypropylene, polyethylene, polyethylene naphthalate, poly Examples include ether sulfone and plastic substrates such as copolymers obtained by combining these polymers.

透明電極(陽極)13としては、ITO、IZO、IGZO等が挙げられる。   Examples of the transparent electrode (anode) 13 include ITO, IZO, and IGZO.

電極(陰極)16としては、アルミニウム、インジウム、金、銀等や、これらの合金等が挙げられる。   Examples of the electrode (cathode) 16 include aluminum, indium, gold, silver, and alloys thereof.

発光層15を構成する発光材料としては、アルミニウム錯体等の低分子系発光材料、π共役ポリマー等の高分子系発光材料や、これら発光材料に有色色素をドーパントとして加えた材料が挙げられる。   Examples of the light emitting material constituting the light emitting layer 15 include a low molecular light emitting material such as an aluminum complex, a high molecular light emitting material such as a π-conjugated polymer, and a material obtained by adding a colored dye to the light emitting material as a dopant.

このようなOLEDでは、透明電極13及び電極16に電圧を印加することにより電子と正孔が注入され、発光層15で結合する。そして、この発光層15での結合エネルギーによって、発光層15の発光材料が励起され、励起状態から基底状態に戻る際に光(蛍光)が発生する。この光を、透明基板11側から取り出す。   In such an OLED, electrons and holes are injected by applying a voltage to the transparent electrode 13 and the electrode 16, and are combined by the light emitting layer 15. The light emitting material of the light emitting layer 15 is excited by the binding energy in the light emitting layer 15, and light (fluorescence) is generated when returning from the excited state to the ground state. This light is extracted from the transparent substrate 11 side.

発光層15で発生した光は、発光層15、正孔輸送層14、透明電極13、透明基板11の各界面で反射等するため、透明基板11側から取り出される光の強度は、通常大きく低下するが、上記OLEDにおいては、本発明の構造体を光取出し膜12として設けているため、光取出し効率は非常に高い。   Since the light generated in the light emitting layer 15 is reflected at each interface of the light emitting layer 15, the hole transport layer 14, the transparent electrode 13, and the transparent substrate 11, the intensity of light extracted from the transparent substrate 11 side is usually greatly reduced. However, in the OLED, since the structure of the present invention is provided as the light extraction film 12, the light extraction efficiency is very high.

また、ITO等の透明電極13は通常スパッタリング法で設けられるが、本発明の構造体はポリイミドを含むものであるため丈夫であり、スパッタリング耐性に優れており、スパッタリング後も凹凸形状を十分維持することができる。なお、ポリスチレンとポリメタクリル酸メチルとのブロックコポリマーを用いた自己組織化膜からなる光取出し膜とした場合は、その上にスパッタリング法で透明電極13を設けると、凹凸形状が崩れ、光取出し効率は大幅に減少する。また、本発明の構造体はポリイミド(屈折率約1.65)を含むので屈折率が比較的高いため、例えば透明電極13であるITO(屈折率約2.1)と透明基板11であるガラス(屈折率約1.4)との間の屈折率とすることができる。   Moreover, although the transparent electrode 13 such as ITO is usually provided by a sputtering method, the structure of the present invention is durable because it contains polyimide, has excellent sputtering resistance, and can maintain a sufficiently uneven shape after sputtering. it can. In addition, when it is set as the light extraction film | membrane which consists of a self-organization film | membrane using the block copolymer of polystyrene and polymethyl methacrylate, when the transparent electrode 13 is provided on it by the sputtering method, the uneven | corrugated shape will collapse | crumble and light extraction efficiency Is greatly reduced. Further, since the structure of the present invention contains polyimide (refractive index of about 1.65) and has a relatively high refractive index, for example, ITO (refractive index of about 2.1) as the transparent electrode 13 and glass as the transparent substrate 11. The refractive index can be between (refractive index of about 1.4).

本発明の構造体からなる光取出し膜12を設ける位置は透明基板11と透明電極13との間に限定されず、光取り出し面の最前面、例えば、図1(b)に示すように、透明基板11の透明電極13とは反対側の面に設けるようにしてもよい。光取出し膜12は、上記形成方法によって透明基板11上に形成されたものであり、ポリイミドを含み、図1(b)においては、透明電極13側とは反対側の表面に自己組織化により形成された凹凸を有する。凹凸の大きさは、例えば、凸部の平均高さが、40nm〜500nmである。その他については、上記図1(a)と同様であり、説明は省略する。また、本発明の構造体からなる光取出し膜12を設ける位置は、透明電極13と正孔輸送層14や発光層15の間でもよい。   The position at which the light extraction film 12 made of the structure of the present invention is provided is not limited between the transparent substrate 11 and the transparent electrode 13, and the front surface of the light extraction surface, for example, as shown in FIG. You may make it provide in the surface on the opposite side to the transparent electrode 13 of the board | substrate 11. FIG. The light extraction film 12 is formed on the transparent substrate 11 by the above-described forming method, includes polyimide, and is formed by self-assembly on the surface opposite to the transparent electrode 13 in FIG. 1B. Have unevenness. As for the size of the irregularities, for example, the average height of the convex portions is 40 nm to 500 nm. About others, it is the same as that of the said Fig.1 (a), and description is abbreviate | omitted. The position where the light extraction film 12 made of the structure of the present invention is provided may be between the transparent electrode 13 and the hole transport layer 14 or the light emitting layer 15.

以下、実施例及び比較例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものでない。なお、実施例で用いた各測定装置は以下のとおりである。また、分子量の測定、イミド化率の測定方法、略称も以下に示す。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to these Examples. In addition, each measuring apparatus used in the Example is as follows. In addition, measurement of molecular weight, measurement method of imidation rate, and abbreviations are also shown below.

AFM(原子間力顕微鏡)はエスアイアイ・ナノテクノロジー(株)社製Nano Navi L−traceを用いて測定した。カンチレバーはSI−DF40(背面ALコート)を用いた。走査範囲は5μm×5μm、走査周波数は1.0Hzで測定した。   AFM (atomic force microscope) was measured using Nano Navi L-trace manufactured by SII Nanotechnology. The cantilever used was SI-DF40 (back surface AL coat). The scanning range was 5 μm × 5 μm, and the scanning frequency was 1.0 Hz.

スピンコーターはBrewer Science株式会社 Cee200Xを使用した。   Brewer Science Co., Ltd. Cee200X was used as the spin coater.

膜厚はジェー・エー・ウーラム・ジャパン社製、多入射角分光エリプソメーターVASEを用いて測定した。   The film thickness was measured using a multi incident angle spectroscopic ellipsometer VASE manufactured by JA Woollam Japan.

蛍光スペクトルは、株式会社日立ハイテクノロジーズ社製分光蛍光光度計F−7000を使用した。   A fluorescence spectrophotometer F-7000 manufactured by Hitachi High-Technologies Corporation was used for the fluorescence spectrum.

<分子量の測定>
ポリアミック酸およびポリイミドの分子量は、該ポリアミック酸やポリイミドをGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC−101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・HO)が30ミリモル/L、リン酸・無水結晶(o−リン酸)が30ミリモル/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作製用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約900000、150000、100000、30000)、および、ポリマーラボラトリー社製ポリエチレングリコール(分子量約12000、4000、1000)。
<Measurement of molecular weight>
The molecular weight of polyamic acid and polyimide is measured by GPC (normal temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and weight average molecular weight (Mw) are calculated as polyethylene glycol and polyethylene oxide equivalent values. did.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L , Tetrahydrofuran (THF) at 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparation of calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30000) manufactured by Tosoh Corporation, and polyethylene glycol (molecular weight: about 12000, 4000, 1000) manufactured by Polymer Laboratory .

<イミド化率の測定>
ポリイミドのイミド化率は次のようにして測定した。
ポリイミド粉末20mgをNMRサンプル管に入れ、重水素化ジメチルスルホキシド(DMSO−d、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNM−ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm〜10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い次式によって求めた。
イミド化率(%)=(1−α・x/y)×100
上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン一個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
The imidation ratio of polyimide was measured as follows.
20 mg of polyimide powder was put into an NMR sample tube, and 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS (tetramethylsilane) mixture) was added and completely dissolved. 500 MHz proton NMR was measured for this solution with the NMR measuring device by the JEOL datum company (JNM-ECA500). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by following Formula using the integrated value.
Imidation ratio (%) = (1−α · x / y) × 100
In the above formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is one NH group proton of the amic acid in the case of polyamic acid (imidation rate is 0%). The number ratio of the reference protons.

<略称>
NBoc3TBS:下記式で表されるジアミン
<Abbreviation>
NBoc3TBS: diamine represented by the following formula

Figure 0006384668
(式中、Bocはtert−ブトキシカルボニル基を表し、t−Buはtert−ブチル基を表す。)
DADPA:下記式で表される4,4‘−ジアミノジフェニルアミン
Figure 0006384668
(In the formula, Boc represents a tert-butoxycarbonyl group, and t-Bu represents a tert-butyl group.)
DADPA: 4,4′-diaminodiphenylamine represented by the following formula

Figure 0006384668
DDM;下記式で表される4,4−ジアミノジフェニルメタン
Figure 0006384668
DDM: 4,4-diaminodiphenylmethane represented by the following formula

Figure 0006384668
PCH7AB:下記式で表される1,3−ジアミノ−4−〔4−(トランス−4−n−ヘプチルシクロヘキシル)フェノキシ〕ベンゼン
Figure 0006384668
PCH7AB: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene represented by the following formula

Figure 0006384668
TDA:3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸二無水物
Figure 0006384668
TDA: 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride

Figure 0006384668
NMP:N−メチル−2−ピロリドン
GBL:γ−ブチロラクトン
Figure 0006384668
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone

[重合体の合成]
<合成例1>
撹拌装置付きおよび窒素導入管付きの200ml四つ口フラスコに1,3−ビス(4−アミノフェノキシ)ベンゼンを14.03g(48.0mmol)、NMPを141.3g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を10.05g(46.0mmol)、および固形分濃度が12質量%になるようにNMPを加え、23℃の水浴中で20時間撹拌してポリアミック酸の溶液(P1と略す)を得た。また、このポリアミック酸の分子量はMn=15466、Mw=41241であった。P1をNMPで希釈し、固形分濃度が6質量%及び1質量%のワニスを調製した。
[Synthesis of polymer]
<Synthesis Example 1>
To a 200 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 14.03 g (48.0 mmol) of 1,3-bis (4-aminophenoxy) benzene and 141.3 g of NMP were added and stirred while feeding nitrogen. Dissolved. While stirring this diamine solution, 10.05 g (46.0 mmol) of pyromellitic dianhydride and NMP were added so that the solid concentration was 12% by mass, and the mixture was stirred in a water bath at 23 ° C. for 20 hours. A solution of polyamic acid (abbreviated as P1) was obtained. Moreover, the molecular weight of this polyamic acid was Mn = 15466 and Mw = 41241. P1 was diluted with NMP to prepare varnishes having a solid content concentration of 6% by mass and 1% by mass.

<合成例2>
撹拌装置付きおよび窒素導入管付きの100ml四つ口フラスコに4,4’−ジアミノジフェニルメタンを4.02g(20.3mmol)、1,3−ビス(4−アミノフェネチル)ウレアを2.60g(8.7mmol)、NMPを70.8g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4−シクロブタンテトラカルボン酸二無水物を5.61g(28.5mmol)、および固形分濃度が12質量%になるようにNMPを加え、23℃の水浴中で5時間撹拌してポリアミック酸の溶液(P2と略す)を得た。また、このポリアミック酸の分子量はMn=10120、Mw=22465であった。P2をNMPで希釈し、固形分濃度が6質量%及び1質量%のワニスを調製した。
<Synthesis Example 2>
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.02 g (20.3 mmol) of 4,4′-diaminodiphenylmethane and 2.60 g of 1,3-bis (4-aminophenethyl) urea (8 7 mmol) and 70.8 g of NMP were added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, NMP was added so that 5.61 g (28.5 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and a solid content concentration of 12% by mass were obtained. Was stirred for 5 hours in a water bath to obtain a polyamic acid solution (abbreviated as P2). Moreover, the molecular weight of this polyamic acid was Mn = 10120 and Mw = 22465. P2 was diluted with NMP to prepare varnishes having a solid content concentration of 6% by mass and 1% by mass.

<合成例3>
撹拌装置付きおよび窒素導入管付きの100ml四つ口フラスコに4,4’−ジアミノジフェニルメタンを4.59g(23.1mmol)、p−フェニレンジアミンを1.07g(9.9mmol)、NMPを70.6g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4−シクロブタンテトラカルボン酸二無水物を6.36g(32.4mmol)、および固形分濃度が12質量%になるようにNMPを加え、23℃の水浴中で5時間撹拌してポリアミック酸の溶液(P3と略す)を得た。また、このポリアミック酸の分子量はMn=13899、Mw=30991であった。P3をNMPで希釈し、固形分濃度が6質量%のワニスを調製した。
<Synthesis Example 3>
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, 4.59 g (23.1 mmol) of 4,4′-diaminodiphenylmethane, 1.07 g (9.9 mmol) of p-phenylenediamine, and 70. NMP. 6 g was added and dissolved by stirring while feeding nitrogen. While stirring the diamine solution, 6.36 g (32.4 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and NMP were added so that the solid content concentration was 12% by mass, and 23 ° C. Was stirred in a water bath for 5 hours to obtain a polyamic acid solution (abbreviated as P3). Moreover, the molecular weight of this polyamic acid was Mn = 13899 and Mw = 30991. P3 was diluted with NMP to prepare a varnish having a solid content concentration of 6% by mass.

<合成例4>
撹拌装置付きおよび窒素導入管付きの50ml四つ口フラスコに4,4’−ジアミノジフェニルメタンを2.66g(13.4mmol)、4,4’−ジアミノベンズアニリドを1.31g(5.8mmol)、NMPを34.1g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4−シクロブタンテトラカルボン酸二無水物を3.54g(1.8mmol)、および固形分濃度が12質量%になるようにNMPを加え、23℃の水浴中で5時間撹拌してポリアミック酸の溶液(P4と略す)を得た。また、このポリアミック酸の分子量はMn=12254、Mw=27234であった。P4をNMPで希釈し、固形分濃度が6質量%のワニスを調製した。
<Synthesis Example 4>
In a 50 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, 2.66 g (13.4 mmol) of 4,4′-diaminodiphenylmethane, 1.31 g (5.8 mmol) of 4,4′-diaminobenzanilide, 34.1 g of NMP was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, NMP was added so that 3.54 g (1.8 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and a solid concentration of 12% by mass were added, and 23 ° C. Was stirred for 5 hours in a water bath to obtain a polyamic acid solution (abbreviated as P4). Moreover, the molecular weight of this polyamic acid was Mn = 12254 and Mw = 27234. P4 was diluted with NMP to prepare a varnish having a solid content concentration of 6% by mass.

<合成例5>
攪拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、p−フェニレンジアミンを2.81g(26.0mmol)、NBoc3TBSを1.10g(2.89mmol)入れ、NMPを51.99g、GBLを155.97g、塩基としてピリジンを5.16g(65.18mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながらジメチル 1,3−ビス(クロロカルボニル)シクロブタン−2,4−ジカルボキシレートを8.83g(27.2mmol)添加し、水冷下4時間反応させた。4時間後、アクリロイルクロリドを0.75g(8.3mmol)加えて、水冷下で30分間反応させた。得られたポリアミック酸エステル溶液を905gの2−プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、448gの2−プロパノールで5回洗浄し、乾燥することでポリアミック酸エステルの粉末を得た。このポリアミック酸エステルの分子量はMn=15623、Mw=30510であった。ポリアミック酸エステル粉末はGBLで希釈し、固形分濃度が10質量%、6質量%及び1質量%のワニス(P5と略す)を調製した。
<Synthesis Example 5>
A 300 mL four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 2.81 g (26.0 mmol) of p-phenylenediamine, 1.10 g (2.89 mmol) of NBoc3TBS, 51.999 g of NMP, and 155.GBL were added. 97 g and 5.16 g (65.18 mmol) of pyridine as a base were added and dissolved by stirring. Next, 8.83 g (27.2 mmol) of dimethyl 1,3-bis (chlorocarbonyl) cyclobutane-2,4-dicarboxylate was added while stirring the diamine solution, and the mixture was reacted for 4 hours under water cooling. After 4 hours, 0.75 g (8.3 mmol) of acryloyl chloride was added and reacted for 30 minutes under water cooling. The obtained polyamic acid ester solution was added to 905 g of 2-propanol with stirring, and the deposited precipitate was collected by filtration, then washed with 448 g of 2-propanol five times and dried to obtain a polyamic acid ester. Of powder was obtained. The molecular weight of this polyamic acid ester was Mn = 15623 and Mw = 30510. The polyamic acid ester powder was diluted with GBL to prepare varnishes (abbreviated as P5) having solid content concentrations of 10 mass%, 6 mass%, and 1 mass%.

<合成例6>
撹拌装置付きおよび窒素導入管付きの100ml四つ口フラスコにDADPAを3.99g(20.0mmol)、DDMを0.99g(5.0mmol)、NMPを72.4g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4−シクロブタンテトラカルボン酸二無水物を3.57g(18.3mmol)加え、23℃の水浴中で2時間撹拌後、TDAを1.50g(5.0mmol)、NMPを13.58g加え、23℃の水浴中で3時間攪拌し固形分濃度が10.5質量%のポリアミック酸の溶液(P6と略す)を得た。また、ポリアミック酸の分子量はMn=14375、Mw=34127であった。P6はNMPで希釈し、固形分濃度が10質量%、6質量%及び1質量%のワニスを調製した。
<Synthesis Example 6>
To a 100 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, add 3.99 g (20.0 mmol) of DADPA, 0.99 g (5.0 mmol) of DDM, and 72.4 g of NMP, and stir while feeding nitrogen. Dissolved. While stirring this diamine solution, 3.57 g (18.3 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was added and stirred in a water bath at 23 ° C. for 2 hours. 5.0 mmol) and 13.58 g of NMP were added and stirred in a 23 ° C. water bath for 3 hours to obtain a polyamic acid solution (abbreviated as P6) having a solid content concentration of 10.5% by mass. The molecular weight of the polyamic acid was Mn = 14375 and Mw = 34127. P6 was diluted with NMP to prepare varnishes having solid content concentrations of 10 mass%, 6 mass%, and 1 mass%.

<合成例7>
撹拌装置付きおよび窒素導入管付きの2000mlセパラブルフラスコにp−フェニレンジアミンを48.67g(0.45mol)、4−(オクタデシルオキシ)―1,3−フェニレンジアミンを18.83g(0.05mol)、NMPを1233g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらTDAを150.14g(0.5mmol)、およびNMPを加え、50℃で24時間撹拌してポリアミック酸の溶液を得た。このポリアミック酸溶液を5質量%に希釈し、さらにイミド化触媒としてピリジン237.9g、無水酢酸510.6gを加え、40℃で3時間反応させた。この溶液を17.4Lのメタノール中に投入し、得られた沈殿物を濾別、乾燥し、白色のポリイミド粉末を得た。得られたポリイミドは、Mn=9273、Mw=18815であった。またイミド化率は84%であった。ポリイミド粉末をNMPに溶解し、固形分濃度が6質量%のワニス(P7と略す)を調製した。
<Synthesis Example 7>
In a 2000 ml separable flask with a stirrer and a nitrogen inlet tube, 48.67 g (0.45 mol) of p-phenylenediamine and 18.83 g (0.05 mol) of 4- (octadecyloxy) -1,3-phenylenediamine , 1233 g of NMP was added and stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 150.14 g (0.5 mmol) of TDA and NMP were added, and the mixture was stirred at 50 ° C. for 24 hours to obtain a polyamic acid solution. This polyamic acid solution was diluted to 5% by mass, and 237.9 g of pyridine and 510.6 g of acetic anhydride were further added as an imidization catalyst, followed by reaction at 40 ° C. for 3 hours. This solution was put into 17.4 L of methanol, and the resulting precipitate was separated by filtration and dried to obtain a white polyimide powder. The obtained polyimide had Mn = 9273 and Mw = 18815. Further, the imidization ratio was 84%. The polyimide powder was dissolved in NMP to prepare a varnish (abbreviated as P7) having a solid content concentration of 6% by mass.

<合成例8>
撹拌装置付きおよび窒素導入管付きの2000mlセパラブルフラスコに4,4’−ジアミノジフェニルメタンを198.27g(1.0mol)、NMPとGBLの混合溶媒(NMP:GBL=25.3:74.7(体積比))を1111g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4−シクロブタンテトラカルボン酸二無水物を98.05g(0.5mol)、ピロメリット酸二無水物を98.98g(0.44mol)を加え、室温で5時間反応させポリアミック酸の溶液(P8と略す)を得た。ポリアミック酸はMn=11067、Mw=26270であった。P8をNMPで希釈し、固形分濃度が6質量%のワニスを調製した。
<Synthesis Example 8>
198.27 g (1.0 mol) of 4,4′-diaminodiphenylmethane and a mixed solvent of NMP and GBL (NMP: GBL = 25.3: 74.7) in a 2000 ml separable flask equipped with a stirrer and a nitrogen introduction tube 1111 g of volume ratio)) was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 98.05 g (0.5 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 98.98 g (0.44 mol) of pyromellitic dianhydride were added, The mixture was reacted at room temperature for 5 hours to obtain a polyamic acid solution (abbreviated as P8). The polyamic acid had a Mn of 11067 and Mw of 26270. P8 was diluted with NMP to prepare a varnish having a solid content concentration of 6% by mass.

<合成例9>
ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸二無水物(2.50g、10.00mmol)、3,5−ジアミノ安息香酸(1.07g、7.03mmol)、PCH7AB(4.95g、13.01mmol)をNMP(34.05g)中で混合し、80℃で1時間反応させた後、1,2,3,4−シクロブタンテトラカルボン酸二無水物(1.93g、9.84mmol)とNMP(7.73g)を加え、40℃で6時間反応させ固形分濃度が20質量%のポリアミック酸の溶液(P9と略す)を得た。ポリアミック酸のMn=13400、Mw=58000であった。P9をNMPで希釈し、固形分濃度が6質量%のワニスを調製した。
<Synthesis Example 9>
Bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride (2.50 g, 10.00 mmol), 3,5-diaminobenzoic acid (1.07 g, 7.03 mmol) , PCH7AB (4.95 g, 13.01 mmol) in NMP (34.05 g), reacted at 80 ° C. for 1 hour, and then 1,2,3,4-cyclobutanetetracarboxylic dianhydride (1 .93 g, 9.84 mmol) and NMP (7.73 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (abbreviated as P9) having a solid content concentration of 20 mass%. It was Mn = 13400 and Mw = 58000 of the polyamic acid. P9 was diluted with NMP to prepare a varnish having a solid content concentration of 6% by mass.

<合成例10>
ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸二無水物(3.94g、15.75mmol)、3,5−ジアミノ安息香酸(1.60g、10.52mmol)、PCHAB7(4.00g、10.51mmol)をNMP(38.14g)中で混合し、80℃で1時間反応させた後、1,2,3,4−シクロブタンテトラカルボン酸二無水物(1.01g、5.15mmol)とNMP(4.04g)を加え、40℃で6時間反応させポリアミック酸溶液を得た。
<Synthesis Example 10>
Bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride (3.94 g, 15.75 mmol), 3,5-diaminobenzoic acid (1.60 g, 10.52 mmol) , PCHAB7 (4.00 g, 10.51 mmol) were mixed in NMP (38.14 g), reacted at 80 ° C. for 1 hour, and then 1,2,3,4-cyclobutanetetracarboxylic dianhydride (1 0.01 g, 5.15 mmol) and NMP (4.04 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.

このポリアミック酸溶液(20.0g)にNMPを加え固形分濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(4.17g)、ピリジン(1.29g)を加え、50℃で2時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は49%であり、Mn=17200、Mw=63000であった。ポリイミド粉末をNMPに溶解し、固形分濃度が6質量%のワニス(P10と略す)を調製した。   After adding NMP to this polyamic acid solution (20.0 g) and diluting the solid content concentration to 6% by mass, acetic anhydride (4.17 g) and pyridine (1.29 g) were added as imidization catalysts, Reacted for hours. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide was 49%, and Mn = 17200 and Mw = 63000. The polyimide powder was dissolved in NMP to prepare a varnish (abbreviated as P10) having a solid content concentration of 6% by mass.

[構造体形成用組成物の調製及び構造体の作製]
製膜及び焼成工程は全て室温が23℃、相対湿度が55%RHのクラス1000のクリーンルームの中で行った。
[Preparation of structure-forming composition and preparation of structure]
The film forming and baking processes were all performed in a class 1000 clean room having a room temperature of 23 ° C. and a relative humidity of 55% RH.

<実施例1>
20mLの一つ口ナス型フラスコに合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)とを加え、マグネティックスターラーを用いて撹拌し、均一なワニス(構造体形成用組成物)を得た。このワニスを、3cm×4cmで厚みが150nmのITOが表面に積層された厚さ1.1mmのガラス(以下、ガラス基材とも記載する。)のガラス面(すなわち、ITOが形成された面とは反対側の面)に、スピンコートにより塗布し、塗膜を形成した。スピンコート終了後、10秒間放置し、次いで80℃のホットプレート上で5分間焼成した後、230℃のホットプレートで30分間焼成し、膜厚100nmの膜(構造体)を得た。
<Example 1>
To a 20 mL one-necked eggplant-shaped flask, 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2 were added, and a magnetic stirrer was used. And stirred to obtain a uniform varnish (composition forming composition). This varnish is a glass surface (that is, a surface on which ITO is formed) of 1.1 mm-thick glass (hereinafter also referred to as a glass substrate) on which ITO having a thickness of 3 cm × 4 cm and a thickness of 150 nm is laminated. Was coated on the opposite side) by spin coating to form a coating film. After completion of the spin coating, the film was left for 10 seconds, then baked on a hot plate at 80 ° C. for 5 minutes, and then baked on a hot plate at 230 ° C. for 30 minutes to obtain a film (structure) having a thickness of 100 nm.

<実施例2>
合成例2で得た5.0gのP2(6質量%)の代わりに合成例3で得た5.0gのP3(6質量%)を用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 2>
The same operation as in Example 1 was performed except that 5.0 g of P3 (6% by mass) obtained in Synthesis Example 3 was used instead of 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2. Thus, a uniform varnish was obtained, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例3>
合成例2で得た5.0gのP2(6質量%)の代わりに合成例4で得た5.0gのP4(6質量%)を用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 3>
The same operation as in Example 1 was performed except that 5.0 g of P4 (6% by mass) obtained in Synthesis Example 4 was used instead of 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2. Thus, a uniform varnish was obtained, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例4>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例7で得た5.0gのP7(6質量%)と合成例8で得た5.0gのP8(6質量%)を用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 4>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 5.0 g of P7 (6%) obtained in Synthesis Example 7 was obtained. Mass%) and 5.0 g of P8 (6 mass%) obtained in Synthesis Example 8 were used, and the same operation as in Example 1 was performed to obtain a uniform varnish, and on the glass substrate. A film with a thickness of 100 nm was obtained.

<実施例5>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例5で得た5.0gのP5(6質量%)と合成例7で得た5.0gのP7(6質量%)を用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 5>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 5.0 g of P5 (6 Mass%) and 5.0 g of P7 (6 mass%) obtained in Synthesis Example 7 were used, and the same operation as in Example 1 was performed to obtain a uniform varnish, and on the glass substrate. A film with a thickness of 100 nm was obtained.

<実施例6>
合成例2で得た5.0gのP2(6質量%)の代わりに合成例6で得た5.0gのP6(6質量%)を用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 6>
The same operation as in Example 1 was performed except that 5.0 g of P6 (6% by mass) obtained in Synthesis Example 6 was used instead of 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2. Thus, a uniform varnish was obtained, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例7>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例6で得た5.0gのP6(6質量%)と合成例7で得た5.0gのP7(6質量%)とを用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 7>
Instead of 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2, 5.0 g of P6 (6 Mass%) and 5.0 g of P7 (6 mass%) obtained in Synthesis Example 7 were used, the same operation as in Example 1 was performed to obtain a uniform varnish, and on the glass substrate. A film with a thickness of 100 nm was obtained.

<実施例8>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例2で得た5.0gのP2(6質量%)と合成例9で得た5.0gのP9(6質量%)とを用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 8>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 5.0 g of P2 (6%) obtained in Synthesis Example 2 was obtained. Mass%) and 5.0 g of P9 obtained in Synthesis Example 9 (6 mass%) were used in the same manner as in Example 1 to obtain a uniform varnish. A film with a thickness of 100 nm was obtained.

<実施例9>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例2で得たP2(6質量%)と合成例10で得たP10(6質量%)を用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 9>
Instead of 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2, P2 (6 mass%) obtained in Synthesis Example 2 and Except for using P10 (6% by mass) obtained in Synthesis Example 10, the same operation as in Example 1 was performed to obtain a uniform varnish, and a film having a thickness of 100 nm was obtained on a glass substrate. .

<実施例10>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例7で得た5.0gのP7(6質量%)と合成例10で得た5.0gのP10(6質量%)を用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 10>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 5.0 g of P7 (6%) obtained in Synthesis Example 7 was obtained. Mass%) and 5.0 g of P10 (6 mass%) obtained in Synthesis Example 10 were used, and the same operation as in Example 1 was performed to obtain a uniform varnish, and on the glass substrate. A film with a thickness of 100 nm was obtained.

<実施例11>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例5で得た3.0gのP5(6質量%)と、合成例7で得た3.0gのP7(6質量%)と、合成例9で得た3.0gのP9(6質量%)とを用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 11>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 3.0 g of P5 (6 Mass%), 3.0 g of P7 (6 mass%) obtained in Synthesis Example 7, and 3.0 g of P9 (6 mass%) obtained in Synthesis Example 9 were used. The same operation was performed to obtain a uniform varnish, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例12>
合成例2で得た5.0gのP2(6質量%)の代わりに0.5gのプロピレングリコールモノメチルエーテル(PGME)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 12>
A uniform varnish was obtained by performing the same operation as in Example 1 except that 0.5 g of propylene glycol monomethyl ether (PGME) was used instead of 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2. In addition, a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例13>
スピンコート、放置及び焼成を、酸素濃度が20ppmの窒素雰囲気のグローブボックス中で行った以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 13>
A uniform varnish is obtained by performing the same operation as in Example 1 except that spin coating, leaving and baking are performed in a glove box having a nitrogen atmosphere with an oxygen concentration of 20 ppm, and a film is formed on a glass substrate. A film with a thickness of 100 nm was obtained.

<実施例14>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例5で得た5.0gのP5(6質量%)と合成例6で得た5.0gのP6(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 14>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 5.0 g of P5 (6 % Mass) and 5.0 g of P6 (6 mass%) obtained in Synthesis Example 6 were used to obtain a uniform varnish by performing the same operation as in Example 1, and a film on a glass substrate. A film with a thickness of 100 nm was obtained.

<実施例15>
スピンコート、放置及び焼成を、酸素濃度が20ppmのグローブボックス中で行った以外は実施例14と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 15>
A uniform varnish is obtained by performing the same operation as in Example 14 except that spin coating, standing and baking are performed in a glove box having an oxygen concentration of 20 ppm, and a film having a thickness of 100 nm is formed on a glass substrate. Got.

<実施例16>
230℃のホットプレートで30分間焼成する操作を行わなかった以外は、実施例1と同様の操作を行って、ガラス基材上に膜厚120nmの膜を得た。
<Example 16>
A film having a thickness of 120 nm was obtained on a glass substrate by performing the same operation as in Example 1 except that the operation for baking for 30 minutes on a 230 ° C. hot plate was not performed.

<実施例17>
230℃のホットプレートで30分間焼成する操作を行わなかった以外は、実施例14と同様の操作を行って、ガラス基材上に膜厚120nmの膜を得た。
<Example 17>
A film having a thickness of 120 nm was obtained on a glass substrate by performing the same operation as in Example 14 except that the operation for baking for 30 minutes on a 230 ° C. hot plate was not performed.

<実施例18>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例1で得た5.0gのP1(1質量%)と合成例2で得た5.0gのP2(1質量%)とを用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚20nmの膜を得た。
<Example 18>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 5.0 g of P1 (1) obtained in Synthesis Example 1 Mass%) and 5.0 g of P2 (1 mass%) obtained in Synthesis Example 2 were used to obtain a uniform varnish by performing the same operation as in Example 1, and on the glass substrate. A film with a thickness of 20 nm was obtained.

<実施例19>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例5で得た5.0gのP5(1質量%)と合成例6で得た5.0gのP6(1質量%)とを用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚20nmの膜を得た。
<Example 19>
Instead of 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2, 5.0 g of P5 (1) obtained in Synthesis Example 5 Mass%) and 5.0 g of P6 (1 mass%) obtained in Synthesis Example 6 were used to obtain a uniform varnish by performing the same operation as in Example 1, and on the glass substrate. A film with a thickness of 20 nm was obtained.

<実施例20>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例5で得た5.0gのP5(10質量%)と合成例6で得た5.0gのP6(10質量%)とを用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚200nmの膜を得た。
<Example 20>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 5.0 g of P5 (10%) obtained in Synthesis Example 5 was used. Mass%) and 5.0 g of P6 (10 mass%) obtained in Synthesis Example 6 were used, and the same operation as in Example 1 was performed to obtain a uniform varnish. A film with a thickness of 200 nm was obtained.

<実施例21>
ホットプレート上で5分間焼成する温度を40℃に変更した以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 21>
A uniform varnish was obtained by performing the same operation as in Example 1 except that the temperature for baking for 5 minutes on the hot plate was changed to 40 ° C., and a film having a thickness of 100 nm was obtained on the glass substrate.

<実施例22>
ホットプレート上で5分間焼成する温度を70℃に変更した以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 22>
A uniform varnish was obtained by performing the same operation as in Example 1 except that the temperature for baking for 5 minutes on the hot plate was changed to 70 ° C., and a film having a thickness of 100 nm was obtained on the glass substrate.

<実施例23>
ホットプレート上で5分間焼成する温度を90℃に変更した以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 23>
A uniform varnish was obtained by performing the same operation as in Example 1 except that the temperature for baking for 5 minutes on the hot plate was changed to 90 ° C., and a film having a thickness of 100 nm was obtained on the glass substrate.

<実施例24>
ホットプレート上で5分間焼成する温度を120℃に変更した以外は実施例1と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 24>
A uniform varnish was obtained by performing the same operation as in Example 1 except that the temperature for baking for 5 minutes on a hot plate was changed to 120 ° C., and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例25>
ホットプレート上で5分間焼成する温度を40℃に変更した以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 25>
A uniform varnish was obtained by performing the same operation as in Example 14 except that the temperature for baking for 5 minutes on the hot plate was changed to 40 ° C., and a film having a thickness of 100 nm was obtained on the glass substrate.

<実施例26>
ホットプレート上で5分間焼成した焼成温度を70℃に変更した以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 26>
A uniform varnish was obtained by performing the same operation as in Example 14 except that the firing temperature after firing for 5 minutes on a hot plate was changed to 70 ° C., and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例27>
ホットプレート上で5分間焼成した焼成温度を90℃に変更した以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 27>
A uniform varnish was obtained by performing the same operation as in Example 14 except that the firing temperature after firing for 5 minutes on a hot plate was changed to 90 ° C., and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例28>
ホットプレート上で5分間焼成した焼成温度を120℃に変更した以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 28>
A uniform varnish was obtained by performing the same operation as in Example 14 except that the firing temperature after firing for 5 minutes on a hot plate was changed to 120 ° C., and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例29>
スピンコート終了後の放置時間を1分間に変更した以外は実施例1と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 29>
A uniform varnish was obtained by performing the same operation as in Example 1 except that the standing time after completion of spin coating was changed to 1 minute, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例30>
スピンコート終了後の放置時間を5分間に変更した以外は実施例1と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 30>
A uniform varnish was obtained by performing the same operation as in Example 1 except that the standing time after completion of the spin coating was changed to 5 minutes, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例31>
スピンコート終了後の放置時間を10分間に変更した以外は実施例1と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 31>
A uniform varnish was obtained by performing the same operation as in Example 1 except that the standing time after completion of spin coating was changed to 10 minutes, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例32>
スピンコート終了後の放置時間を72時間に変更した以外は実施例1と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 32>
A uniform varnish was obtained by performing the same operation as in Example 1 except that the standing time after completion of the spin coating was changed to 72 hours, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例33>
スピンコート終了後の放置時間を1分間に変更した以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 33>
A uniform varnish was obtained by performing the same operation as in Example 14 except that the standing time after completion of spin coating was changed to 1 minute, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例34>
スピンコート終了後の放置時間を5分間に変更した以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 34>
A uniform varnish was obtained by performing the same operation as in Example 14 except that the standing time after completion of spin coating was changed to 5 minutes, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例35>
スピンコート終了後の放置時間を10分間に変更した以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 35>
A uniform varnish was obtained by performing the same operation as in Example 14 except that the standing time after completion of spin coating was changed to 10 minutes, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例36>
スピンコート終了後の放置時間を72時間に変更した以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 36>
A uniform varnish was obtained by performing the same operation as in Example 14 except that the standing time after completion of spin coating was changed to 72 hours, and a film having a thickness of 100 nm was obtained on a glass substrate.

<実施例37>
合成例1で得たP1(6質量%)を4.0gとし合成例2で得たP2(6質量%)を6.0gとした以外は実施例1と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 37>
A uniform varnish was obtained by performing the same operation as in Example 1 except that P1 (6% by mass) obtained in Synthesis Example 1 was 4.0 g and P2 (6% by mass) obtained in Synthesis Example 2 was 6.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<実施例38>
合成例1で得たP1(6質量%)を6.0gとし合成例2で得たP2(6質量%)を4.0gとした以外は実施例1と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 38>
A uniform varnish was obtained by performing the same operation as in Example 1 except that P1 (6% by mass) obtained in Synthesis Example 1 was 6.0 g and P2 (6% by mass) obtained in Synthesis Example 2 was 4.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<実施例39>
合成例5で得たP5(6質量%)を1.0gとし合成例6で得たP6(6質量%)を9.0gとした以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 39>
A uniform varnish was obtained by performing the same operation as in Example 14, except that P5 (6% by mass) obtained in Synthesis Example 5 was 1.0 g and P6 (6% by mass) obtained in Synthesis Example 6 was 9.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<実施例40>
合成例5で得たP5(6質量%)を2.0gとし合成例6で得たP6(6質量%)を8.0gとした以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 40>
A uniform varnish was obtained by performing the same operation as in Example 14, except that P5 (6% by mass) obtained in Synthesis Example 5 was 2.0 g and P6 (6% by mass) obtained in Synthesis Example 6 was 8.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<実施例41>
合成例5で得たP5(6質量%)を3.0gとし合成例6で得たP6(6質量%)を7.0gとした以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 41>
A uniform varnish was obtained by performing the same operation as in Example 14, except that P5 (6% by mass) obtained in Synthesis Example 5 was 3.0 g, and P6 (6% by mass) obtained in Synthesis Example 6 was 7.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<実施例42>
合成例5で得たP5(6質量%)を4.0gとし合成例6で得たP6(6質量%)を6.0gとした以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 42>
A uniform varnish was obtained by performing the same operation as in Example 14 except that P5 (6% by mass) obtained in Synthesis Example 5 was set to 4.0 g and P6 (6% by mass) obtained in Synthesis Example 6 was changed to 6.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<実施例43>
合成例5で得たP5(6質量%)を6.0gとし合成例6で得たP6(6質量%)を4.0gとした以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 43>
A uniform varnish was obtained by performing the same operation as in Example 14 except that P5 (6% by mass) obtained in Synthesis Example 5 was 6.0 g and P6 (6% by mass) obtained in Synthesis Example 6 was 4.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<実施例44>
合成例5で得たP5(6質量%)を7.0gとし合成例6で得たP6(6質量%)を3.0gとした以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 44>
A uniform varnish was obtained by performing the same operation as in Example 14 except that P5 (6% by mass) obtained in Synthesis Example 5 was 7.0 g and P6 (6% by mass) obtained in Synthesis Example 6 was 3.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<実施例45>
合成例5で得たP5(6質量%)を8.0gとし合成例6で得たP6(6質量%)を2.0gとした以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 45>
A uniform varnish was obtained by performing the same operation as in Example 14 except that P5 (6% by mass) obtained in Synthesis Example 5 was 8.0 g and P6 (6% by mass) obtained in Synthesis Example 6 was 2.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<実施例46>
合成例5で得たP5(6質量%)を9.0gとし合成例6で得たP6(6質量%)を1.0gとした以外は実施例14と同様の操作を行って均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Example 46>
A uniform varnish was obtained by performing the same operation as in Example 14 except that P5 (6% by mass) obtained in Synthesis Example 5 was 9.0 g, and P6 (6% by mass) obtained in Synthesis Example 6 was 1.0 g. Moreover, the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<比較例1>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例1で得た10.0gのP1(6質量%)を用いた以外は、実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 1>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 10.0 g of P1 (6 The same operation as Example 1 was performed except having used (mass%), and a uniform varnish was obtained and a film with a film thickness of 100 nm was obtained on the glass substrate.

<比較例2>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例2で得た10.0gのP2(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative example 2>
Instead of 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2, 10.0 g of P2 (6 The same operation as Example 1 was performed except having used (mass%), and the uniform varnish was obtained and the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<比較例3>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例3で得た10.0gのP3(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 3>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 10.0 g of P3 (6 The same operation as Example 1 was performed except having used (mass%), and the uniform varnish was obtained and the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<比較例4>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例4で得た10.0gのP4(6質量%)を用いた以外は比較例1と同様に試験しガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 4>
Instead of 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2, 10.0 g of P4 (6 The test was conducted in the same manner as in Comparative Example 1 except that a film having a thickness of 100 nm was obtained on a glass substrate.

<比較例5>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例5で得た10.0gのP5(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 5>
Instead of 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2, 10.0 g of P5 (6 The same operation as Example 1 was performed except having used (mass%), and the uniform varnish was obtained and the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<比較例6>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例6で得た10.0gのP6(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 6>
Instead of 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2, 10.0 g of P6 (6 The same operation as Example 1 was performed except having used (mass%), and the uniform varnish was obtained and the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<比較例7>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例7で得た10.0gのP7(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 7>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 10.0 g of P7 (6 The same operation as Example 1 was performed except having used (mass%), and the uniform varnish was obtained and the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<比較例8>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例8で得た10.0gのP8(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 8>
Instead of 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2, 10.0 g of P8 (6 The same operation as Example 1 was performed except having used (mass%), and the uniform varnish was obtained and the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<比較例9>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例9で得た10.0gのP9(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 9>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 10.0 g of P9 (6%) obtained in Synthesis Example 9 The same operation as Example 1 was performed except having used (mass%), and the uniform varnish was obtained and the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<比較例10>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例10で得た10.0gのP10(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 10>
Instead of 5.0 g of P1 (6 mass%) obtained in Synthesis Example 1 and 5.0 g of P2 (6 mass%) obtained in Synthesis Example 2, 10.0 g of P10 (6 The same operation as Example 1 was performed except having used (mass%), and the uniform varnish was obtained and the film | membrane with a film thickness of 100 nm was obtained on the glass base material.

<比較例11>
80℃のホットプレート上での5分間の焼成、及び、230℃のホットプレートでの30分間の焼成を行わなかった以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 11>
A uniform varnish was obtained by performing the same operation as in Example 1 except that baking for 5 minutes on a hot plate at 80 ° C. and baking for 30 minutes on a hot plate at 230 ° C. were not performed. A film having a thickness of 100 nm was obtained on a glass substrate.

<比較例12>
合成例1で得た5.0gのP1(6質量%)と合成例2で得た5.0gのP2(6質量%)の代わりに、合成例7で得た2.0gのP7(6質量%)と合成例8で得た8.0gのP8(6質量%)を用いた以外は実施例1と同様の操作を行って、均一なワニスを得、また、ガラス基材上に膜厚100nmの膜を得た。
<Comparative Example 12>
Instead of 5.0 g of P1 (6% by mass) obtained in Synthesis Example 1 and 5.0 g of P2 (6% by mass) obtained in Synthesis Example 2, 2.0 g of P7 (6 Mass%) and 8.0 g of P8 (6 mass%) obtained in Synthesis Example 8 were used to obtain a uniform varnish by performing the same operation as in Example 1, and a film on a glass substrate. A film with a thickness of 100 nm was obtained.

<比較例13>
ガラス基材上に光取出し膜を設けない例として、実施例1と同様のガラス基材を用意した。
<Comparative Example 13>
As an example in which the light extraction film is not provided on the glass substrate, the same glass substrate as in Example 1 was prepared.

[AFMによる表面観察]
各実施例1〜46及び比較例1〜12で得られたガラス基材上の膜(構造体)の表面を、AFMを用いて5μm×5μmのサイズでスキャンして観察し、自己組織化によって形成された凹凸の有無を評価し、また、凸部の平均高さ(表面粗さRa)を求めた。なお、膜に、自己組織化による凹凸が形成されていた場合(すなわちフラクタルな模様が形成されていた場合)は○、自己組織化による凹凸が形成されていない場合(すなわちフラクタルな模様が形成されていない場合)は×とした。また、光取出し膜のない比較例13については、ガラス面(すなわち、ITOが形成された面とは反対側の面)の表面を、上記実施例1と同様にして、AFMによる観察及び凸部の平均高さの測定を行った。結果を表2−1及び表2−2に示す。また、観察結果の一例として、実施例1のAFM像を図2に、実施例14のAFM像を図3に、比較例2のAFM像を図4に示す。
[Surface observation by AFM]
The surface of the film (structure) on the glass substrate obtained in each of Examples 1 to 46 and Comparative Examples 1 to 12 was observed by scanning with a size of 5 μm × 5 μm using AFM, and by self-organization. The presence or absence of formed irregularities was evaluated, and the average height (surface roughness Ra) of the convex portions was determined. When the film has unevenness due to self-organization (that is, when a fractal pattern is formed), the film has no unevenness due to self-organization (that is, a fractal pattern is formed). (If not present) is marked as x. In Comparative Example 13 without the light extraction film, the surface of the glass surface (that is, the surface opposite to the surface on which ITO was formed) was observed by AFM and the convex portion in the same manner as in Example 1 above. The average height of was measured. The results are shown in Table 2-1 and Table 2-2. As an example of the observation result, the AFM image of Example 1 is shown in FIG. 2, the AFM image of Example 14 is shown in FIG. 3, and the AFM image of Comparative Example 2 is shown in FIG.

[相対蛍光強度の測定]
100mLの一つ口ナス型フラスコに9.0gのポリメチルメタクリレート(重量平均分子量;15000、Aldrich社製)、0.18gの3−ヒドロキシフラボン(東京化成工業株式会社製)、82.62gのプロピレングリコールモノメチルエーテルアセテート(PGMEA)を加え、マグネティックスターラーを用いて撹拌し、均一なワニスを得た。ここで得られたワニスは蛍光強度を測定するときの標準液とした。
[Measurement of relative fluorescence intensity]
In a 100 mL one-necked eggplant type flask, 9.0 g of polymethyl methacrylate (weight average molecular weight; 15000, manufactured by Aldrich), 0.18 g of 3-hydroxyflavone (manufactured by Tokyo Chemical Industry Co., Ltd.), 82.62 g of propylene Glycol monomethyl ether acetate (PGMEA) was added and stirred using a magnetic stirrer to obtain a uniform varnish. The varnish obtained here was used as a standard solution for measuring fluorescence intensity.

このワニス(標準液)を、実施例1〜46及び比較例1〜12で作製した各構造体が形成されたガラス基材のITO面側にスピンコートして、80℃のホットプレートで10秒間焼成し、膜厚が100nmの標準膜を作製した。そして、蛍光スペクトルの測定条件を、励起波長が341.0nm、蛍光開始波長が450nm、蛍光終了波長が700nm、スキャンスピードが240nm/minとし、励起光を標準膜側から照射し、構造体側から光を取出し、蛍光は531.0nmに現れる極大蛍光ピークを読み取ることで蛍光強度を求めた。   This varnish (standard solution) was spin-coated on the ITO surface side of the glass substrate on which each structure produced in Examples 1 to 46 and Comparative Examples 1 to 12 was formed, and then heated for 10 seconds on an 80 ° C. hot plate. Baking was performed to prepare a standard film having a thickness of 100 nm. The measurement conditions of the fluorescence spectrum are as follows: excitation wavelength is 341.0 nm, fluorescence start wavelength is 450 nm, fluorescence end wavelength is 700 nm, scan speed is 240 nm / min, excitation light is irradiated from the standard film side, and light is emitted from the structure side. The fluorescence intensity was determined by reading the maximum fluorescence peak appearing at 531.0 nm.

また、比較例13は、上記のワニス(標準液)をガラス基材のITO面側にスピンコートして80℃のホットプレートで10秒間焼成し、膜厚が100nmの標準膜を作製した。そして、上記実施例1と同様の方法で、蛍光強度を求めた。   In Comparative Example 13, the above varnish (standard solution) was spin-coated on the ITO surface side of the glass substrate and baked on a hot plate at 80 ° C. for 10 seconds to produce a standard film having a thickness of 100 nm. And the fluorescence intensity was calculated | required by the method similar to the said Example 1. FIG.

蛍光強度は相対比較で行い、比較例1で得た構造体を測定した蛍光強度を1.00と規格化した。実施例1〜46及び比較例1〜13の相対蛍光強度を表2−1及び表2−2に示す。   The fluorescence intensity was measured by relative comparison, and the fluorescence intensity measured for the structure obtained in Comparative Example 1 was normalized to 1.00. The relative fluorescence intensities of Examples 1-46 and Comparative Examples 1-13 are shown in Tables 2-1 and 2-2.

Figure 0006384668
Figure 0006384668

Figure 0006384668
Figure 0006384668

表2−1及び表2−2に示すように、実施例1〜46の全てで自己組織化によって形成された凹凸を表面に有する構造体、すなわち、フラクタルな模様の凹凸を表面に有する構造体が形成されていた。一方、比較例1〜12では、自己組織化による凹凸は形成されていなかった。そして、実施例1〜46は比較例1〜12と比べて、相対蛍光強度が高く、光取出し膜として使用すると、光取出し効率を向上できることが確認された。したがって、本発明の構造体は、LED素子等のオプトデバイスの光取出し膜等として、好適に使用できると言える。これらの結果について、以下にさらに詳述する。   As shown in Table 2-1 and Table 2-2, in all of Examples 1 to 46, a structure having unevenness formed on the surface by self-organization, that is, a structure having unevenness of a fractal pattern on the surface Was formed. On the other hand, in Comparative Examples 1-12, the unevenness | corrugation by self-organization was not formed. And it was confirmed that Examples 1-46 had high relative fluorescence intensity compared with Comparative Examples 1-12, and if it was used as a light extraction film | membrane, light extraction efficiency could be improved. Therefore, it can be said that the structure of the present invention can be suitably used as a light extraction film of an opto device such as an LED element. These results are described in further detail below.

重合体の組み合わせとしては、実施例1〜3、6及び8はポリアミック酸とポリアミック酸とを、実施例4、7及び9はポリアミック酸とポリイミドとを、実施例10はポリイミドとポリイミドとを、実施例14はポリアミック酸とポリアミック酸エステルとを、実施例5はポリイミドとポリアミック酸エステルとを混合した例であるが、いずれの混合においても、自己組織化によって形成された凹凸を表面に有する構造体が形成されていた。また、実施例11はポリアミック酸、ポリイミド及びポリアミック酸エステルの3種類の重合体を混合した例であるが、この場合も、自己組織化によって形成された凹凸を表面に有する構造体を形成した。さらに、実施例12は単一の重合体を用いており、異なる重合体を混合していない系であるが、重合体を含むワニスの中に重合体に対して溶解性が極めて低い貧溶媒であるPGMEを加えているため自己組織化し、自己組織化によって形成された凹凸を表面に有する構造体を形成することがわかった。なお、実施例1〜6、12、13、15、16、18〜24、29〜32、37〜39は、フラクタルな模様の基本図形単位が、図3に示すように、ミミズ状であった。また、実施例7〜11、14、17、25〜28、33、43〜46は、フラクタルな模様の基本図形単位が、図4に示すように、半球状であった。また、実施例34〜36、40〜42は、フラクタルな模様の基本図形単位が、穴形状であった。   As a combination of polymers, Examples 1-3, 6 and 8 are polyamic acid and polyamic acid, Examples 4, 7 and 9 are polyamic acid and polyimide, Example 10 is polyimide and polyimide, Example 14 is an example in which a polyamic acid and a polyamic acid ester are mixed, and Example 5 is an example in which a polyimide and a polyamic acid ester are mixed. In any mixing, a structure having irregularities formed by self-organization on the surface. The body was formed. Further, Example 11 is an example in which three types of polymers of polyamic acid, polyimide and polyamic acid ester are mixed. In this case as well, a structure having irregularities formed by self-assembly on the surface was formed. Furthermore, Example 12 uses a single polymer and is a system in which different polymers are not mixed, but it is a poor solvent having extremely low solubility in the polymer in the varnish containing the polymer. Since a certain PGME was added, it was found that a self-organized structure having a surface with irregularities formed by self-organization was formed. In Examples 1 to 6, 12, 13, 15, 16, 18 to 24, 29 to 32, and 37 to 39, the basic figure unit of the fractal pattern was an earthworm shape as shown in FIG. . In Examples 7 to 11, 14, 17, 25 to 28, 33, and 43 to 46, the basic figure unit of the fractal pattern was hemispherical as shown in FIG. In Examples 34 to 36 and 40 to 42, the basic figure unit of the fractal pattern was a hole shape.

そして、実施例1〜11の相対蛍光強度を比較すると、実施例2のみ相対蛍光強度が1.30を下回っており、相対蛍光強度は重合体を構成するモノマー(ジアミン成分やテトラカルボン酸成分)骨格に依存する傾向を確認した。実施例2では、用いた構造体形成用組成物が含有する重合体を構成するモノマー骨格に、分子内又は分子間で水素結合を形成しうる結合及び分子内又は分子間で水素結合を形成しうる置換基のいずれも有しておらず、混合した2種の重合体のいずれか1つにも含まれていないことに起因して、実施例2では相対強度が比較的低かったと考えられる。   And when the relative fluorescence intensity of Examples 1-11 is compared, only Example 2 has relative fluorescence intensity less than 1.30, and the relative fluorescence intensity is a monomer (diamine component or tetracarboxylic acid component) constituting the polymer. The tendency depending on the skeleton was confirmed. In Example 2, a bond capable of forming a hydrogen bond within a molecule or between molecules and a hydrogen bond within a molecule or between molecules are formed in the monomer skeleton constituting the polymer contained in the structure forming composition used. It is considered that the relative strength was relatively low in Example 2 because it did not have any of the possible substituents and was not included in any one of the two kinds of mixed polymers.

実施例1及び13〜15はスピンコート、スピンコート後の放置及び焼成の雰囲気が異なる例である。雰囲気が、大気中、酸素濃度が20ppmの窒素中のいずれでも、自己組織化による凹凸を表面に有する構造体が形成されており、自己組織化が生じるか否かは、これらのプロセスの雰囲気に依存しないことがわかった。また、窒素雰囲気中では、凸部の平均高さが低下し、相対蛍光強度が低下する傾向であることから、好ましくは大気中で焼成したほうが良いことがわかった。   Examples 1 and 13 to 15 are examples in which atmospheres for spin coating, standing after spin coating, and firing are different. Whether the atmosphere is air or nitrogen having an oxygen concentration of 20 ppm, a structure having irregularities due to self-organization is formed on the surface, and whether or not self-organization occurs depends on the atmosphere of these processes. It turns out that it does not depend. In addition, in a nitrogen atmosphere, it has been found that the average height of the convex portions tends to decrease and the relative fluorescence intensity tends to decrease.

実施例1及び16、実施例14及び17、比較例11は、焼成工程が異なる例である。230℃で30分間の焼成及び80℃で5分間の焼成をした実施例1及び実施例14や、230℃で30分間の焼成はしなかったが80℃で5分間焼成した実施例16及び実施例17では自己組織化により凹凸が形成されていたが、焼成を行わなかった比較例11では自己組織化は生じなかったことから、自己組織化による形成された凹凸を有する構造体を形成するには、焼成工程が必須であることがわかった。なお、実施例1、16、14及び17においては、80℃での5分間の焼成によって、自己組織化が生じていたといえる。   Examples 1 and 16, Examples 14 and 17, and Comparative Example 11 are examples in which the firing process is different. Example 1 and Example 14 which were baked at 230 ° C. for 30 minutes and baked at 80 ° C. for 5 minutes, and Example 16 and Example which were baked at 230 ° C. for 30 minutes but were baked at 80 ° C. for 5 minutes In Example 17, irregularities were formed by self-organization, but in Comparative Example 11 in which no firing was performed, no self-organization occurred, and thus a structure having irregularities formed by self-organization was formed. Found that the firing step was essential. In Examples 1, 16, 14, and 17, it can be said that self-organization occurred by baking at 80 ° C. for 5 minutes.

実施例1及び21〜24、実施例14及び25〜28は、焼成温度が異なる例である。スピンコート後に焼成する温度は、40℃〜120℃のいずれでも、自己組織化による形成された凹凸を有する構造体が形成されることがわかった。また、相対蛍光強度は焼成温度が70℃以上で安定化することから、焼成温度は70℃以上が好ましいことがわかった。   Examples 1 and 21 to 24, and Examples 14 and 25 to 28 are examples having different firing temperatures. It was found that a structure having irregularities formed by self-organization was formed at any temperature between 40 ° C. and 120 ° C. after baking by spin coating. Moreover, since the relative fluorescence intensity was stabilized when the firing temperature was 70 ° C. or higher, it was found that the firing temperature was preferably 70 ° C. or higher.

実施例1及び18、実施例14、19及び20は、構造体形成用組成物の固形分濃度、すなわち、重合体の濃度が異なる例である。固形分濃度の増加による膜厚の増加に依存せず、自己組織化による凹凸を表面に有する構造体が形成されることがわかった。また、相対蛍光強度は、固形分濃度が最も高く凸部の平均高さが最も高い実施例20が強くなり、構造体が光を取り出す最前面に設置される場合は固形分濃度が高く膜厚が大きいほうが有利であることがわかった。   Examples 1 and 18, Examples 14, 19 and 20 are examples in which the solid content concentration of the structure-forming composition, that is, the polymer concentration is different. It was found that a structure having irregularities on the surface due to self-organization was formed without depending on an increase in film thickness due to an increase in solid content concentration. In addition, the relative fluorescence intensity is strong in Example 20 where the solid content concentration is the highest and the average height of the convex portion is the highest, and when the structure is installed on the forefront where light is extracted, the solid content concentration is high and the film thickness is high. It has been found that a larger is advantageous.

実施例1及び29〜32、実施例14及び33〜36は、スピンコート終了後の放置時間が異なる例である。スピンコート終了後の放置時間は、10秒間〜72時間のいずれでも自己組織化により形成された凹凸を有する構造体が形成されることがわかった。放置時間は実際に製造するプロセスのタクトタイムに直結し、短ければ製造時間が短くなり好ましいため、10秒〜10分が好ましく、より好ましくは10秒以上〜5分であるといえる。   Examples 1 and 29 to 32, and Examples 14 and 33 to 36 are examples in which the standing time after the end of spin coating is different. It was found that a structure having irregularities formed by self-organization was formed at any standing time after the spin coating was 10 seconds to 72 hours. The standing time is directly related to the tact time of the actual manufacturing process, and is preferably 10 seconds to 10 minutes, more preferably 10 seconds to 5 minutes.

実施例1、37及び38、実施例14及び39〜46は、重合体の混合割合が異なる例である。相対蛍光強度の増加の点から、異なる重合体である第1の重合体と第2の重合体との混合率は第1の重合体:第2の重合体=40:60(質量%)から第1の重合体:第2の重合体=60:40(質量%)の範囲内が好ましいことがわかり、どちらかの重合体の比率が70質量%以上となると低下することがわかった。   Examples 1, 37 and 38 and Examples 14 and 39 to 46 are examples in which the mixing ratio of the polymers is different. From the viewpoint of increasing the relative fluorescence intensity, the mixing ratio of the first polymer and the second polymer, which are different polymers, is from the first polymer: second polymer = 40: 60 (mass%). It was found that the ratio of the first polymer: the second polymer = 60: 40 (mass%) was preferable, and it was found that the ratio decreased when the ratio of either polymer was 70 mass% or more.

また、実施例4及び比較例12も、重合体の混合割合が異なる例である。ポリアミック酸を含有するP8及びポリイミドを含有するP7混合した構造体形成用組成物を用いた場合は、実施例4では自己組織化により形成された凹凸を有する構造体が形成されたが、重合体比をポリイミド:ポリアミック酸=20:80(質量%)にした比較例12では、自己組織化による凹凸は形成されなかった。これは、このP7のポリイミドと、P8のポリアミック酸の場合は、異なる2種類のポリイミド等を用いているが、上層(ポリイミド)と下層(ポリアミック酸)にきれいに分離するため、膜表面は上層のポリイミドの単独膜と同じになり、自己組織化が生じず、フラクタルな模様は発現しなかったためと推測される。   Moreover, Example 4 and Comparative Example 12 are also examples in which the mixing ratio of the polymers is different. In the case of using the structure forming composition mixed with P8 containing polyamic acid and P7 containing polyimide, in Example 4, a structure having irregularities formed by self-organization was formed. In Comparative Example 12 in which the ratio was polyimide: polyamic acid = 20: 80 (mass%), irregularities due to self-organization were not formed. In the case of this P7 polyimide and P8 polyamic acid, two different types of polyimide are used, but the upper surface (polyimide) and lower layer (polyamic acid) are separated cleanly, so the film surface is the upper layer This is presumed to be the same as a single polyimide film, because no self-organization occurred and no fractal pattern was developed.

比較例1〜12は、自己組織化による凹凸が表面に形成されている構造体を有する実施例と比べて、相対蛍光強度が低く、光取出し効率は悪かった。なお、比較例1〜12の中には比較的凸部の平均高さが高い凹凸が形成されているものもあるが、図4に示すように、比較例2等で形成された凹凸は、自己組織化により形成された凹凸ではない。すなわち、50μm四方に基本単位図形が観察されず、膜表面の面内で均一な膜荒れに起因する凹凸であった。   In Comparative Examples 1 to 12, the relative fluorescence intensity was low and the light extraction efficiency was poor as compared with Examples having a structure in which irregularities due to self-organization were formed on the surface. In addition, although some of Comparative Examples 1 to 12 have irregularities with a relatively high average height of the convex portions, as shown in FIG. 4, the irregularities formed in Comparative Example 2 and the like are It is not unevenness formed by self-organization. That is, the basic unit figure was not observed in a 50 μm square, and was unevenness caused by uniform film roughness in the surface of the film surface.

比較例13は光取出し膜を設けなかった場合の相対蛍光強度であるが、最も取出し光取り出し効率が悪かった。このことから、ポリイミド及びポリイミド前駆体は光取出し膜として用いると光取出し効率は向上するが、自己組織化によって形成された凹凸を表面に有する構造体とすると、さらに光取出し効率が高まることがわかった。   Comparative Example 13 shows the relative fluorescence intensity when no light extraction film is provided, but the extraction light extraction efficiency was the worst. From this, it can be seen that the light extraction efficiency is improved when polyimide and polyimide precursor are used as the light extraction film, but the light extraction efficiency is further increased when the structure has irregularities formed by self-organization on the surface. It was.

また、上記実施例1〜46は、それぞれ30回繰り返しても、同じ結果(自己組織化による凹凸の形成、凸部の平均高さ)が得られ、再現性が非常に良いことが確認された。   Moreover, even if the said Examples 1-46 were repeated 30 times, respectively, the same result (formation of the unevenness | corrugation by self-organization, the average height of a convex part) was obtained, and it was confirmed that reproducibility is very good. .

11 透明基板 12 光取出し膜
13 透明電極 14 正孔輸送層
15 発光層 16 電極
DESCRIPTION OF SYMBOLS 11 Transparent substrate 12 Light extraction film | membrane 13 Transparent electrode 14 Hole transport layer 15 Light emitting layer 16 Electrode

Claims (7)

ポリイミドからなる第1の重合体と、前記第1の重合体とは異なりかつ前記第1の重合体と分離しないポリイミドからなる第2の重合体、及びプロピレングリコールモノメチルエーテルと、を含み、前記第1の重合体及び第2の重合体の自己組織化によって形成された凹凸を表面に有し、前記表面に形成された凸部の平均高さが0.5nm〜500nmであることを特徴とする構造体。 Comprising a first polymer made of polyimide, a second polymer consisting of different and does not separate from the first polymer polyimide and said first polymer, and propylene glycol monomethyl ether, and the It has unevenness formed on the surface by self-organization of the first polymer and the second polymer, and the average height of the protrusions formed on the surface is 0.5 nm to 500 nm, Structure. 前記第1の重合体及び第2の重合体の少なくとも一方は、分子内又は分子間で水素結合を形成しうる結合、及び、分子内又は分子間で水素結合を形成しうる置換基から選択される少なくとも一種を有することを特徴とする請求項1に記載する構造体。   At least one of the first polymer and the second polymer is selected from a bond capable of forming a hydrogen bond within a molecule or between molecules and a substituent capable of forming a hydrogen bond within a molecule or between molecules. The structure according to claim 1, comprising at least one of the following. 前記分子内又は分子間で水素結合を形成しうる結合が下記式(1)で表され、前記分子内又は分子間で水素結合を形成しうる置換基がヒドロキシル基、チオール基、アミノ基及びカルボキシル基から選択される基であることを特徴とする請求項2に記載する構造体。
Figure 0006384668
A bond capable of forming a hydrogen bond within the molecule or between the molecules is represented by the following formula (1), and a substituent capable of forming a hydrogen bond within the molecule or between the molecules includes a hydroxyl group, a thiol group, an amino group, and a carboxyl. The structure according to claim 2, wherein the structure is a group selected from groups.
Figure 0006384668
請求項1〜3のいずれか一項に記載する構造体からなることを特徴とする光取出し膜。   It consists of a structure as described in any one of Claims 1-3, The light extraction film | membrane characterized by the above-mentioned. 請求項4に記載する光取出し膜を有することを特徴とする電子デバイス。   An electronic device comprising the light extraction film according to claim 4. 発光ダイオードであることを特徴とする請求項5に記載する電子デバイス。   6. The electronic device according to claim 5, wherein the electronic device is a light emitting diode. 自己組織化によって形成される凹凸を表面に有する構造体の形成方法であって、
下記(A)成分及び下記(B)成分を含有する構造体形成用組成物を基材上に塗布する塗布工程と、塗布工程の後に引き置く引き置き工程と、引き置き工程の後に40℃〜250℃で焼成する焼成工程とを有することを特徴とする構造体の形成方法。
(A)成分:ポリイミドからなる第1の重合体又はポリイミド前駆体からなる第1の重合体前駆体。
(B)成分:(A)成分とは異なり(A)成分と分離しないポリイミドからなる第2の重合体又はポリイミド前駆体からなる第2の重合体前駆体、及び、プロピレングリコールモノメチルエーテル。
A method of forming a structure having irregularities formed on a surface by self-assembly,
A coating process for applying a composition for forming a structure containing the following (A) component and the following (B) component on a substrate, a leaving process for drawing after the coating process, and 40 ° C. after the holding process And a baking process for baking at 250 ° C.
Component (A): a first polymer made of polyimide or a first polymer precursor made of polyimide precursor.
Component (B): (A) differs from component (A) a second polymer precursor comprising a second polymer or a polyimide precursor comprising a polyimide which does not separate the components, and propylene glycol monomethyl ether.
JP2014539793A 2012-10-03 2013-10-02 Structure, light extraction film, electronic device, and method of forming structure Active JP6384668B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012221667 2012-10-03
JP2012221667 2012-10-03
PCT/JP2013/076850 WO2014054703A1 (en) 2012-10-03 2013-10-02 Structure, light extraction film, electronic device, and method for forming structure

Publications (2)

Publication Number Publication Date
JPWO2014054703A1 JPWO2014054703A1 (en) 2016-08-25
JP6384668B2 true JP6384668B2 (en) 2018-09-05

Family

ID=50435024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014539793A Active JP6384668B2 (en) 2012-10-03 2013-10-02 Structure, light extraction film, electronic device, and method of forming structure

Country Status (3)

Country Link
JP (1) JP6384668B2 (en)
TW (1) TWI535335B (en)
WO (1) WO2014054703A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI701272B (en) * 2015-09-30 2020-08-11 日商荒川化學工業股份有限公司 Resin composition, adhesive, film-like adhesive material, adhesive sheet, multilayer circuit board, copper foil with resin, copper clad laminate, printed circuit board

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3321901B2 (en) * 1993-04-27 2002-09-09 宇部興産株式会社 Manufacturing method of roughened polyimide film
JPH0820721A (en) * 1994-07-05 1996-01-23 Shin Etsu Chem Co Ltd Polyimide film and its production
JP4834949B2 (en) * 2003-07-24 2011-12-14 東レ株式会社 Thermosetting resin composition and electronic component using the same
JP2009013384A (en) * 2007-07-09 2009-01-22 Nippon Paint Co Ltd Easily slipable anti-blocking photocurable resin composition, anti-blocking structure with the same coated and cured on base material, and method of manufacturing the same
WO2009096204A1 (en) * 2008-01-29 2009-08-06 Konica Minolta Opto, Inc. Organic electroluminescence element, display device and lighting equipment
TW200950174A (en) * 2008-03-28 2009-12-01 Sumitomo Chemical Co Organic electroluminescent element
JP2012103506A (en) * 2010-11-10 2012-05-31 Tokyo Univ Of Science Pattern forming method
WO2013099937A1 (en) * 2011-12-28 2013-07-04 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment membrane, liquid crystal display element, and method for manufacturing liquid crystal display element
WO2013111836A1 (en) * 2012-01-26 2013-08-01 日産化学工業株式会社 Method for preparing polyimide varnish, and liquid crystal aligning agent

Also Published As

Publication number Publication date
JPWO2014054703A1 (en) 2016-08-25
WO2014054703A1 (en) 2014-04-10
TW201419943A (en) 2014-05-16
TWI535335B (en) 2016-05-21

Similar Documents

Publication Publication Date Title
JP6883640B2 (en) A resin precursor and a resin composition containing the same, a resin film and a method for producing the same, and a laminate and a method for producing the same.
EP2803702B1 (en) Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
KR101951501B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI637026B (en) Liquid crystal alignment treatment agent and liquid crystal display element using same
WO2014098235A1 (en) Polyimide precursor and resin composition containing same
TW200914494A (en) Thermoset coating-forming resin composition
US8871894B2 (en) Production method of polyhydroxyimide
TWI564283B (en) A liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device
US9382381B2 (en) Aromatic polyamide and film-forming composition containing same
WO2015194562A1 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
TW201504282A (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
TWI654222B (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
TWI452104B (en) A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
CN111133054B (en) Polyimide precursor resin composition, polyimide resin composition, and polyimide resin film
KR101856274B1 (en) Liquid crysatal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20150087401A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20160034984A (en) Liquid-crystal display element, liquid-crystal alignment agent, and liquid-crystal alignment film
TWI596157B (en) A liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal aligning film, and a liquid crystal aligning film,
JP2016026162A (en) Diamine compound, polyimide precursor and polyimide
KR20180061414A (en) Composition liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
TWI735408B (en) Use of liquid crystal display element, liquid crystal alignment film and use of liquid crystal alignment treatment agent
JP6384668B2 (en) Structure, light extraction film, electronic device, and method of forming structure
KR101842740B1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TW201107367A (en) Photosensitive polyester composition for forming thermoset film
CN112888996A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R151 Written notification of patent or utility model registration

Ref document number: 6384668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151