JP6380448B2 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP6380448B2
JP6380448B2 JP2016075800A JP2016075800A JP6380448B2 JP 6380448 B2 JP6380448 B2 JP 6380448B2 JP 2016075800 A JP2016075800 A JP 2016075800A JP 2016075800 A JP2016075800 A JP 2016075800A JP 6380448 B2 JP6380448 B2 JP 6380448B2
Authority
JP
Japan
Prior art keywords
engine
mode
learning
control
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016075800A
Other languages
English (en)
Other versions
JP2017185883A (ja
Inventor
弘樹 遠藤
弘樹 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016075800A priority Critical patent/JP6380448B2/ja
Priority to US15/476,153 priority patent/US10279797B2/en
Priority to CN201710206752.7A priority patent/CN107415934B/zh
Publication of JP2017185883A publication Critical patent/JP2017185883A/ja
Application granted granted Critical
Publication of JP6380448B2 publication Critical patent/JP6380448B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • B60W2510/0642Idle condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/065Idle condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/91Battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンと回転電機とを搭載したハイブリッド車両のエンジン制御に関する。
従来より、エンジンと回転電機とを搭載したハイブリッド車両が公知である。このようなハイブリット車両に搭載されたエンジンにおいては、エンジンを適切な状態で運転するためのフィードバック制御が行なわれる。このフィードバック制御の精度を向上させるために、エンジンの動作中にエンジンのフィードバック制御の制御量(たとえば、スロットル開度の制御量や燃料噴射量の制御量)のずれを制御の結果(実績値)に基づいて補正するための学習値の算出(以下、このような学習値の算出を学習と記載する)が行なわれる。
一方、ハイブリッド車両においては、燃費向上を目的として走行中にエンジンの間欠運転が許容される運転モードが選択される場合がある。エンジンの間欠停止時においては、学習を実施することができない。そのため、選択される運転モードに応じて、燃費の向上と学習の実施とを両立するようにエンジンを動作させることが求められる。
たとえば、特開2009−274553号公報(特許文献1)には、アイドル制御量の学習が完了していない場合に、燃費優先指示スイッチにより燃費の優先が指示されていないときはエンジンの間欠運転が許容されず、燃費優先指示スイッチにより燃費の優先が指示されているときはエンジンの間欠運転が許容される技術が開示される。
特開2009−274553号公報
上述した特許文献1においては、エンジンの間欠運転の許否にかかわらずフィードバック制御の制御量の学習は、同じように行なわれている。しかしながら、エンジンの間欠運転の許否にかかわらず学習を同じように行なうと、学習が完了するまでエンジンを停止できない場合がある。そのため、たとえば、エンジンの間欠運転(間欠停止)を許容される運転モードがユーザによって選択された場合など、ユーザにより間欠運転が求められる状況でエンジンの作動状態が継続する可能性がある。
このような問題は、エンジンの間欠運転が許容される程度が異なる2つの運転モードがユーザにより選択可能な場合にも同様のことがいえる。すなわち、たとえば、エンジンの間欠運転がより許容される一方の運転モードが選択されている場合に、他方の運転モードが選択されている場合と同様に学習を行なうと、学習が完了するまでエンジンの作動状態が継続する可能性がある。その結果、燃費が悪化したり、ドライバビリティが悪化したりする可能性がある。
本発明は、上述した課題を解決するためのものであって、車両の運転モードにしたがったエンジンの制御をしつつ、エンジンのフィードバック制御の制御量のずれを補正するための学習値の算出を適切に実施するハイブリッド車両を提供することである。
この発明のある局面に係るハイブリッド車両は、エンジンと、駆動輪に接続された回転電機と、車両の運転中において、エンジンの間欠運転を含んでエンジンおよび回転電機の出力配分を制御するとともに、出力配分に基づく動作指令に従ってエンジンおよび回転電機の動作を制御する制御装置とを備える。出力配分は、エンジンの間欠運転を制御するためのエンジン停止条件およびエンジン始動条件のうちの少なくとも一方の条件が互いに異なる複数のモードを切り替えて制御される。複数のモードは、第1のモードと、第1のモードと比較してエンジンの停止期間が増加するように少なくとも一方の条件が設定された第2のモードとを含む。制御装置は、第1のモードの適用中におけるエンジンの動作時には、第1学習時間を用いてエンジンのフィードバック制御の制御量のずれを補正するための学習値を算出する一方で、第2のモードの適用中におけるエンジンの動作時には、第1学習時間よりも短い第2学習時間を用いて学習値を算出する。
第2のモードの適用中には、エンジンが停止しやすい。そのため、第1学習時間よりも短い第2学習時間を用いて学習値を算出することにより、たとえば、学習が完了するまでエンジンの作動状態を継続する場合には、学習によってエンジンの作動状態が継続することを抑制することができる。そのため、車両の運転モードにしたがったエンジンの制御をしつつ、学習値の算出を適切に実施することができる。
好ましくは、制御装置は、第2のモードの適用中におけるエンジンの動作時には、第1のモードの適用中におけるエンジンの動作時と比較して、制御量の変化範囲が拡大するように制御量の上限値および下限値の少なくとも一方を変化させる。
第1学習時間よりも短い第2学習時間を用いて学習値を算出する場合、算出された学習値の精度が低下する場合がある。この場合、フィードバック制御中に制御量の変動が生じ得る。そのため、このような制御量の変動に対して、制御量の変化範囲を拡大させることによって、エンジンを適切に制御することができる。これにより、ドライバビリティの悪化および燃費の悪化を抑制することができる。
この発明によると、車両の運転モードにしたがったエンジンの制御をしつつ、エンジンのフィードバック制御の制御量のずれを補正するための学習値の算出を適切に実施するハイブリッド車両を提供することができる。
車両の全体構成を概略的に示すブロック図である。 図1に示すエンジンの構成を詳細に説明するための図である。 ISC制御を説明するための制御ブロック図である。 CDモードおよびCSモードを説明するための図である。 ECUで実行される制御処理を説明するためのフローチャートである。 ECUの動作を説明するためのタイミングチャートである。 フィードバック量の変化範囲を拡大することによる効果を説明するための図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
図1は、本発明の実施の形態に係る車両の全体構成を概略的に示すブロック図である。図1を参照して、車両1は、エンジン100と、モータジェネレータ10,20と、遊星歯車装置30と、駆動輪350と、駆動輪350に対して機械的に接続された出力軸650と、バッテリ150と、システムメインリレー(SMR:System Main Relay)160と、電力制御ユニット(PCU:Power Control Unit)200と、充電リレー(以下、CHRと記載する)210と、充電装置220と、インレット230と、電子制御ユニット(ECU:Electronic Control Unit)300とを備える。
車両1は、エンジン100とモータジェネレータ20との少なくとも一方の動力を用いて走行する。車両1は、エンジン100の動力を用いずにモータジェネレータ20の動力を用いる電気自動車走行(EV走行)と、エンジン100およびモータジェネレータ20の両方の動力を用いるハイブリッド自動車走行(HV走行)との間で車両1の走行態様を切り替えることができる。
エンジン100は、ガソリンエンジンまたはディーゼルエンジン等の内燃機関である。エンジン100は、ECU300からの制御信号に応じて車両1が走行するための動力を発生する。エンジン100により発生した動力は遊星歯車装置30に出力される。エンジンのより詳細な構成については、後述する。
モータジェネレータ10,20の各々は、たとえば、3相交流永久磁石型同期モータである。モータジェネレータ(第1のモータジェネレータ:MG1)10は、ロータ610およびステータ618を有する。ロータ610は、遊星歯車装置30のサンギヤSの回転に伴って回転するサンギヤ軸62と機械的に連結される。モータジェネレータ(第2のモータジェネレータ:MG2)20は、ロータ620およびステータ628を有する。ロータ620は、出力軸650に対して機械的に接続される。なお、図1の例では、モータジェネレータ20のロータ620が出力軸650と直接連結されているが、ロータ620は、変速機(減速機)を介在して、出力軸650と機械的に接続されてもよい。
遊星歯車装置30は、エンジン100、モータジェネレータ10および出力軸650を機械的に連結し、エンジン100、モータジェネレータ10および出力軸650の間でトルクを伝達可能に構成されている。具体的には、遊星歯車装置30は、回転要素としてサンギヤSと、リングギヤRと、キャリアCAと、ピニオンギヤPとを含む。サンギヤSは、サンギヤ軸62を経由して、モータジェネレータ10のロータ610と連結される。リングギヤRは、出力軸650に連結される。ピニオンギヤPは、サンギヤSとリングギヤRとに噛合する。キャリアCAは、エンジン100のクランクシャフト110に連結されるとともに、ピニオンギヤPが自転かつ公転できるようにピニオンギヤPを保持する。このように、モータジェネレータ10,20は、遊星歯車装置30を介して、車輪(駆動輪350)に対して機械的に連結される。モータジェネレータ20は、「駆動輪に接続された回転電機」の一実施例に対応する。
バッテリ150は、再充電が可能に構成された蓄電装置の代表例として示される。バッテリ150は、代表的にはニッケル水素二次電池もしくはリチウムイオン二次電池などの二次電池によって構成される。蓄電装置としては、電気二重層キャパシタなどのキャパシタを用いることも可能である。バッテリ150の電圧は、たとえば200V程度である。
SMR160は、バッテリ150とPCU200とに接続されている。SMR160は、ECU300からの制御信号に応じて、バッテリ150とPCU200との間の状態を導通状態(オン)および遮断状態(オフ)のいずれかに切り替える。
PCU200は、バッテリ150に蓄えられた直流電力を昇圧し、昇圧された電圧を交流電圧に変換してモータジェネレータ10およびモータジェネレータ20に供給する。また、PCU200は、モータジェネレータ10およびモータジェネレータ20により発電された交流電力を直流電力に変換してバッテリ150に供給する。
このように、PCU200による直流/交流電力変換を通じて、モータジェネレータ10,20の出力(トルク、回転数)は制御される。モータジェネレータ10は、エンジン100を始動させる際にはバッテリ150の電力を用いてエンジン100のクランクシャフト110を回転させるように制御される。また、モータジェネレータ10は、エンジン100の動力を用いて発電するように制御することも可能である。モータジェネレータ10によって発電された交流電力は、PCU200により直流電力に変換されてバッテリ150に充電される。また、モータジェネレータ10によって発電された交流電力がモータジェネレータ20に供給される場合もある。
モータジェネレータ20は、バッテリ150からの供給電力およびモータジェネレータ10による発電電力の少なくとも一方を用いて出力軸650を回転させる。また、モータジェネレータ20は、回生制動によって発電することも可能である。モータジェネレータ20によって発電された交流電力は、PCU200により直流電力に変換される。変換された直流電力は、バッテリ150の充電に用いられる。
CHR210は、バッテリ150と充電装置220とに接続される。CHR210は、ECU300からの制御信号に応じて、バッテリ150と充電装置220との間の状態を導通状態(オン)および遮断状態(オフ)のいずれかに切り替える。
充電装置220は、インレット230に接続され、インレット230から供給される交流電力を直流電力に変換してバッテリ150に供給する。インレット230は、車両1の外部に設けられる交流電源250に接続される充電プラグ240が取り付け可能な構造を有している。
ECU300は、充電プラグ240がインレット230に取り付けられた場合に、CHR210をオンし(SMR160をオフし)、交流電源250から供給される交流電力を充電装置220を用いて直流電力に変換してバッテリ150を充電する。ECU300は、バッテリ150が満充電状態になる場合に充電装置220の動作を停止して、CHR210をオフする。
図2は、図1に示すエンジン100の構成を詳細に説明するための図である。エンジン100は、複数の気筒(たとえば、4気筒)を有する。図2では、説明の便宜上、1本の気筒を代表的に示している。
図1および図2を参照して、エンジン100の吸気側には、インテークマニホールド102が設けられる。インテークマニホールド102は、各気筒の吸気ポートに接続される吸気枝管と、共通のサージタンクとを含む。サージタンクには、吸気通路103の一方端が接続され、吸気通路103の他方端にはエアクリーナ108が接続されている。吸気通路103の一方端と他方端との間には、電子スロットル106が設けられる。電子スロットル106は、吸入空気量を調整するためのスロットルバルブ104と、スロットルバルブ104を作動させるためのスロットルモータ(図示せず)とを含む。また、電子スロットル106には、スロットル開度センサ120が設けられる。
電子スロットル106は、ECU300の制御信号に応じて、スロットルモータが駆動されることにより、スロットルバルブ104の開度(以下、スロットル開度と記載する)が制御される。ECU300は、スロットル開度を制御することによって、吸気通路103における吸入空気量を制御する。
エンジン100には、燃料噴射装置130と点火装置140が設けられる。燃料噴射装置130は、各気筒の吸気ポートに設けられる燃料噴射インジェクタ132を含む。燃料噴射インジェクタ132は、ECU300からの制御信号に応じて、吸気ポートに向けて燃料を噴射する。ECU300は、燃料噴射インジェクタ132から吸気ポートへの燃料噴射時間を調整することによって各気筒に供給される燃料噴射量を制御する。
点火装置140は、各気筒の頂部に設けられる点火プラグ142を含む。点火プラグ142は、ECU300からの制御信号に基づく点火時期に点火する。
エンジン100の排気側には、エキゾーストマニホールド112が設けられる。エキゾーストマニホールド112には、排気通路113の一方端が接続される。排気通路113の途中には、排気ガスを浄化するための触媒116が設けられる。インテークマニホールド102と触媒116との間には、空燃比を検出するための空燃比センサ122が設けられる。
エアクリーナ108から吸入される空気は、吸気ポートにおいて燃料噴射インジェクタ132から噴射される燃料と混合され、吸気バルブが開いた際に燃焼室に導入される。圧縮行程を経て点火プラグ142の点火によって混合気が燃焼すると、燃焼圧によりピストンが押し下げられ、クランクシャフト110が回転する。燃焼後のガス(排気ガス)は、排気バルブが開いた際に燃焼室から排気ポートを経由してエキゾーストマニホールド112に流通する。エキゾーストマニホールド112に流通した排気ガスは、排気通路113を流通し、触媒116によって浄化された後、車外に排出される。
ECU300は、いずれも図示しないが、CPU(Central Processing Unit)と、メモリと、入出力バッファ等とを含んで構成される。ECU300は、各センサおよび機器からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、車両1が所望の走行状態となるように各種機器を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。なお、本実施の形態では、1つに統合されたECU300によって車両1に含まれる各機器を制御するものとして説明するが、複数のECUを組み合わせて車両1に含まれる各機器を制御するようにしてもよい。
ECU300には、スロットル開度センサ120、空燃比センサ122、エアフローメータ124、吸気温センサ126、水温センサ128、クランク角センサ478、レゾルバ12,22、車速センサ652、および、アクセル開度センサ310などが直接的あるいは通信線を介して間接的に接続されている。
スロットル開度センサ120は、スロットルバルブ開度Thを検出する。空燃比センサ122は、空燃比AFRを示す信号をECU300に出力する。エアフローメータ124は、吸入空気量VOLを検出する。吸気温センサ126は、吸気通路を流通する空気の温度TAを検出する。水温センサ128は、エンジン100のウォータジャケット(図示せず)内の冷却水の温度TWを検出する。クランク角センサ478は、クランクシャフト110の回転角(クランク角)CAを検出する。レゾルバ12は、モータジェネレータ10の回転数(MG1回転数)Nm1を検出する。レゾルバ22は、モータジェネレータ20の回転数(MG2回転数)Nm2を検出する。各センサは、その検出結果を示す信号をECU300に出力する。
車速センサ652は、出力軸650の回転数Npを検出して、その検出結果を示す信号をECU300に出力する。ECU300は、車速センサ652からの信号に基づいて車速Vを算出する。
アクセル開度センサ310は、アクセルペダル312(図2参照)の開度(アクセル開度)Accを検出して、その検出結果を示す信号をECU300に出力する。ECU300は、アクセル開度Accおよび車速Vに基づいて、エンジン100への要求出力を設定する。ECU300は、車両1の走行状況に応じて、エンジン100が設定された要求出力を発生するための動作点(エンジン回転速度とエンジントルクとの組合せ)で動作するように、エンジン100の吸入空気量、点火時期、燃料噴射時期、燃料噴射量等を制御する。
特に、エンジン100においては、エンジン100を適正な状態で運転するために、ECU300によって、スロットル開度(吸入空気量)の制御や燃料噴射量の制御に対してフィードバック制御が行なわれる。
以下に、エンジン100のISC(Idle Speed Control)制御を本実施の形態におけるエンジン100の制御に対して行なわれるフィードバック制御の一例として説明する。
図3は、ECU300によって実行されるISC制御の制御ブロック図の一例を示す。ECU300は、エンジン100がアイドル状態に移行すると、ブロック302にて、目標アイドル回転数Ne_tを算出する。ECU300は、たとえば、エンジン100の暖機状態(すなわち、冷却水の温度TW)等に基づいて目標アイドル回転数Ne_tを算出する。
ECU300は、加算点303にて、ブロック302にて算出された目標アイドル回転数Ne_tと、後述するブロック308にて算出されたエンジン100の実回転数Neとの回転数差(Ne_t−Ne)を算出する。
ブロック304にて、ECU300は、算出された回転数差に基づいてフィードバック量FBを算出する。なお、フィードバック量FBには、上限値と下限値とが設定されている。そのため、ECU300は、たとえば、フィードバック量FBが上限値FBuを上回る場合には、上限値FBuをフィードバック量FBとして算出する。一方、ECU300は、フィードバック量FBが下限値FBlを下回る場合には、下限値FBlをフィードバック量FBとして算出する。
加算点305にて、ECU300は、ブロック304にて算出されたフィードバック量FBにブロック309にて読み出された学習値Lを加算する。ブロック306にて、ECU300は、フィードバック量FBに学習値Lが加算された値(FB+L)をスロットル開度Thfbに換算する。ECU300は、換算されたスロットル開度Thfbとエンジン100がアイドル状態である場合のスロットル開度の初期値Th(0)との和をスロットル開度の指令値として制御信号を生成する。ECU300は、生成した制御信号をエンジン100に出力する。
ブロック308にて、ECU300は、クランク角センサ478からの検出信号に基づくクランク角CAからエンジン100の実回転数Neを算出して、算出した実回転数Neを加算点303に入力する。ブロック309にて、ECU300は、メモリ等の格納領域から学習値Lを読み出す。
学習値Lは、エンジン100の動作中にエンジン100のフィードバック制御の制御量のずれを補正する。ECU300は、たとえば、スロットル開度の初期値Th(0)と、エンジン100を目標アイドル回転数Ne_tで一定の状態にした場合におけるスロットル開度の収束値との差分(エンジン100の実回転数Neを目標アイドル回転数Ne_tで一定の状態にした場合におけるフィードバック量の収束値)を学習値として取得し、メモリ等の格納領域に記憶する。
ECU300は、予め定められた学習開始条件が成立した場合に予め設定された学習値を用いて学習値Lを算出する。
一方、ECU300は、車両1の運転中において、エンジン100の間欠運転を含んでエンジン100およびモータジェネレータ10,20の出力配分を制御するとともに、出力配分に基づく動作指令に従ってエンジン100およびモータジェネレータ10,20の動作を制御する。
この出力配分は、エンジン100の間欠運転を制御するためのエンジン停止条件およびエンジン始動条件のうちの少なくとも一方の条件が互いに異なる複数の運転モードを切り替えて制御される。そして、複数の運転モードは、第1のモードと、第1のモードと比較してエンジン100の停止期間が増加するように上述の少なくとも一方の条件が設定された第2のモードとを含む。本実施の形態においては、「第1のモード」は、CS(Charge Sustaining)モードであるものとし、「第2のモード」は、CD(Charge Depleting)モードであるものとする。
すなわち、ECU300は、CDモードとCSモードとを選択的に適用して車両1の走行を制御する走行制御を実行する。ECU300は、たとえば、運転席に設けられるスイッチ(図示せず)がユーザによって操作されることによってCDモードおよびCSモードのうちのいずれかを選択する。
なお、ECU300は、システム起動後の初期設定としてCDモードを選択し、バッテリ150のSOC(State Of Charge)がしきい値よりも低下した場合にCSモードに自動で移行してもよい。以下、CDモードおよびCSモードについて説明する。
図4は、CDモードおよびCSモードを説明するための図である。図4を参照して、たとえば、外部充電によりバッテリ150が満充電状態となった後、CDモードで走行が開始されるものとする。
CDモードは、SOCを消費するモードであり、基本的には、バッテリ150に蓄えられた電力(主には外部充電による電気エネルギー)を消費するものである。すなわち、CDモードは、SOCの低下を許容するモードである。CDモードでの走行時は、SOCを維持するためにはエンジン100は作動しない。これにより、車両1の減速時等に回収される回生電力やエンジン100の作動に伴ない発電される電力により一時的にSOCが増加することはあるものの、結果的に充電よりも放電の割合の方が相対的に大きくなり、全体としては走行距離の増加に伴ないSOCが減少する。
CSモードは、SOCを所定レベルに維持するモードである。一例として、時刻t1において、SOCの低下を示す所定値SLにSOCが低下すると、CSモードが選択され、その後のSOCが制御範囲RNG内に制御される。すなわち、CSモードは、制御範囲RNGの下限未満へのSOCの低下を許容しないモードである。具体的には、SOCが制御範囲RNGの下限(エンジン始動しきい値)に達するとエンジン100が作動し、SOCが制御範囲RNGの上限に達するとエンジン100が停止する。このように、エンジン100が作動及び停止を適宜繰り返す(間欠運転)ことによって、SOCが制御範囲RNG内に制御される。このように、CSモードでは、SOCを維持するためにエンジン100が作動する。
なお、CDモードにおいても、大きな走行駆動力が要求されればエンジン100は作動する。一方、CSモードにおいても、SOCが上昇すればエンジン100は停止する。すなわち、CDモードは、エンジン100を常時停止させて走行するEV走行に限定されるものではなく、CSモードも、エンジン100を常時作動させて走行するHV走行に限定されるものではない。CDモードにおいても、CSモードにおいても、EV走行とHV走行とが可能である。
以上のように構成する車両1においては、上述したCDモードあるいはCSモードの選択中においては、燃費向上を目的として車両1の運転中にエンジン100が間欠停止する場合がある。エンジン100が間欠停止する場合には、上述したエンジン100のフィードバック制御の学習を実施することができない。そのため、燃費の向上と学習の実施とを両立するようにエンジン100を動作させることが求められる。
しかしながら、CDモードとCSモードとにおいては、エンジンの間欠運転が許容される程度が異なるため、両方の運転モードで学習制御を同じように行なうと、CDモードの選択中に、学習が完了するまでエンジンを停止できない場合がある。そのため、エンジンの間欠運転(間欠停止)がより許容されるCDモードがユーザによって選択された場合など、ユーザにより間欠運転が求められる状況でエンジンの作動状態が継続する場合がある。その結果、燃費が悪化したり、ドライバビリティが悪化したりする可能性がある。
そこで、本実施の形態においては、ECU300は、CSモードの適用中におけるエンジン100の動作時には、第1学習時間を用いてエンジン100のフィードバック制御の制御量のずれを補正するための学習値を算出する。一方、ECU300は、CDモードの適用中におけるエンジン100の動作時には、第1学習時間よりも短い第2学習時間を用いて学習値を算出するものとする。
CDモードの適用中には、エンジンが停止しやすい。そのため、第1学習時間よりも短い第2学習時間を用いて学習値を算出することにより、学習が完了するまでエンジン100の作動状態を継続する場合には、学習によってエンジンの作動状態が継続することを抑制することができる。
図5は、本実施の形態において、ECU300が実行する制御処理を示すフローチャートである。
ステップ(以下、ステップを「S」と記載する)100にて、ECU300は、CSモードが選択されているか否かを判定する。ECU300は、たとえば、CSモードが選択される毎にオン状態にされるフラグに基づいてCSモードが選択されているか否かを判定する。CSモードが選択されていると判定されると(S100にてYES)、処理はS102に移される。S102にて、ECU300は、第1学習時間を設定する。
S104にて、ECU300は、フィードバック量FBの上限値FBuおよび下限値FBlとして通常値を設定する。
一方、S100にて、CSモードが選択されていないと判定されると(S100にてNO)、S106にて、ECU300は、第2学習時間を設定する。
S108にて、ECU300は、フィードバック量FBの上限値FBuおよび下限値FBlとして拡大値を設定する。ECU300は、CSモードの適用中におけるエンジン100の動作時と比較して、フィードバック量FBの変化範囲が拡大するようにフィードバック量FBの上限値FBuおよび下限値FBlの少なくとも一方を変化させた値を拡大値として設定する。これは、第2学習時間を第1学習時間よりも短い時間に設定したことによって、学習値の精度が低くなり、フィードバック量FBの変動が生じる場合があるためである。
S110にて、ECU300は、学習開始条件が成立するか否かを判定する。学習開始条件は、たとえば、エンジン100の暖機が完了しているという条件や、エンジン100がアイドル状態であるという条件や、エンジン100の実回転数Neが目標アイドル回転数Ne_tである場合におけるフィードバック量FBと学習値Lとの和のうちのフィードバック量FBの割合がしきい値以上であるという条件等を含む。学習開始条件としては、これらに特に限定されるものではない。学習開始条件が成立していると判定される場合(S110にてYES)、処理はS112に移される。
S112にて、ECU300は、エンジン停止禁止フラグをオン状態にする。ECU300は、エンジン停止禁止フラグがオン状態である間、エンジン100の停止を抑制する。
S114にて、ECU300は、学習制御を実行する。すなわち、ECU300は、S102またはS106にて設定された学習時間が経過するまでに学習値を算出する。
ECU300は、たとえば、目標アイドル回転数Ne_tとエンジン100の実回転数Neとの回転数差がしきい値よりも小さい収束状態が一定時間継続する場合のフィードバック量FBの収束値と前回の学習値Lとの和を今回の学習値Lとして算出する。
S116にて、ECU300は、設定された学習時間が経過するか否かを判定する。設定された学習時間が経過すると判定される場合(S116にてYES)、処理はS118に移される。
S118にて、ECU300は、メモリ等の格納領域に記憶された学習値の更新処理を実行する。ECU300は、たとえば、設定された学習時間が経過するまでに今回の学習値Lが算出された場合には、算出された今回の学習値Lを用いて学習値を更新する。ECU300は、収束状態が一定時間継続する前に、設定された学習時間が経過した場合には、設定された学習時間が経過した時点のフィードバック量FBと前回の学習値Lとの和を用いて学習値を更新する。S120にて、ECU300は、エンジン停止禁止フラグをオフ状態にする。なお、学習開始条件が成立していないと判定される場合(S110にてNO)、ECU300は、この処理を終了する。
以上のような構造およびフローチャートに基づく本実施の形態に係る車両1に搭載されたECU300の動作について図6を参照しつつ説明する。たとえば、CDモードが選択され、かつ、エンジン100がオフ状態である場合を想定する。図6の縦軸は、エンジン100の動作状態と、エンジン停止禁止フラグの状態と、学習制御の実行状態とを示す。図6の横軸は、時間を示す。
CDモードが選択される場合(S100にてNO)、第2学習時間が設定される(S106)。このとき、フィードバック量FBの上限値FBuおよび下限値FBlとして拡大値が設定される(S108)。
時間T(0)にて、CDモードの選択中に大きな走行駆動力が要求される場合、図6のラインLN1に示すようにエンジン100が始動する。時間T(1)にて、学習開始条件が成立する場合に(S110にてYES)、図6のラインLN2に示すようにエンジン停止禁止フラグがオン状態になるとともに(S112)、図6のラインLN3に示すように学習制御が実行される(S114)。
そのため、時間T(2)にて、大きな走行駆動力が要求されなくなり、エンジン100の停止条件が成立していても、エンジン停止禁止フラグがオン状態であるため、エンジン100の作動状態が継続される。なお、破線ラインLN4は、学習開始条件が成立していない場合(S110にてNO)、時間T(2)にて、エンジン100の動作が停止されることを示している。
時間T(3)にて、設定された学習時間(第2学習時間)が経過すると(S116にてYES)、図6のラインLN3に示すように学習制御が終了され、更新処理が実行される(S118)。そして、図6のラインLN2に示すようにエンジンの停止禁止フラグがオフ状態になる(S120)。そのため、図6のラインLN1に示すようにエンジン100の動作が停止される。
時間T(4)にて、運転モードがCDモードからCSモードに切り替えられる場合(S100にてYES)、第1学習時間が設定される(S102)。このとき、フィードバック量FBの上限値FBuおよび下限値FBlとして通常値が設定される(S106)。
時間T(5)にて、CSモードの選択中にSOCが所定値SLよりも低下した場合や、あるいは、大きな走行駆動力が要求される場合、図6のラインLN1に示すようにエンジン100が始動する。時間T(6)にて、学習開始条件が成立する場合に(S110にてYES)、図6のラインLN2に示すようにエンジン停止禁止フラグがオン状態になるとともに(S112)、図6のラインLN3に示すように学習制御が実行される(S114)。
そのため、時間T(7)にて、たとえば、SOCが回復してエンジン100の停止条件が成立していても、エンジン停止禁止フラグがオン状態であるため、エンジン100の作動状態が継続される。なお、図6の破線ラインLN5は、学習開始条件が成立していない場合(S110にてNO)、時間T(7)にて、エンジン100の動作が停止されることを示している。
時間T(8)にて、設定された学習時間(第1学習時間)が経過すると(S116にてYES)、図6のLN3に示すように学習制御が終了され、更新処理が実行される(S118)。そして、図6のラインLN2に示すようにエンジンの停止禁止フラグがオフ状態になる(S120)。そのため、図6のラインLN1に示すようにエンジン100の動作が停止される。
CDモードの適用中におけるエンジンの動作時には、第1学習時間よりも短い第2学習時間が設定される。そのため、CDモード中に学習制御が非実行であればエンジン100が停止していた時点(時間T(2))から学習制御が終了する時点(時間T(3))までのエンジン100の作動継続時間は、CSモード中に学習制御が非実行であればエンジン100が停止していた時点(時間T(7))から学習制御が終了する時点(時間T(8))までのエンジン100の作動継続時間よりも短くなる。
以上のようにして、本実施の形態に係るハイブリッド車両によると、CDモードの適用中には、エンジン100が停止しやすい。そのため、第1学習時間よりも短い第2学習時間を用いて学習値を算出することにより、学習が完了するまでエンジン100の作動状態が継続するようにしても、学習によってエンジン100の作動状態が継続することを抑制することができる。そのため、車両の運転モードにしたがったエンジンの制御をしつつ、学習値の算出を適切に実施するハイブリッド車両を提供することができる。
また、CDモードの適用中におけるエンジン100の動作時には、CSモードの適用中におけるエンジン100の動作時と比較して、制御量であるフィードバック量FBの変化範囲が拡大するようにフィードバック量FBの上限値および下限値の少なくとも一方が変化される。
第1学習時間よりも短い第2学習時間を用いて学習値を算出する場合、第1学習時間を用いて学習値を算出する場合よりも学習値の精度が低下する場合がある。
たとえば、図7に示すように、目標アイドル回転数Ne_tとエンジン100の実回転数Neとの回転数差がしきい値よりも小さくなる場合のスロットル開度の制御量がC(0)であると仮定した場合、CSモード中に第1学習時間を用いて学習値Lが算出される場合には、フィードバック量がゼロになる。
一方、CDモード中に第2学習時間を用いて学習値Lよりも低い学習値L’が算出される場合には、目標アイドル回転数Ne_tとエンジン100の実回転数Neとの間に回転数差が生じる。そのため、回転数差を解消するために、フィードバック量FBの変動が生じ得る。そのため、このようなフィードバック量FBの変動に対して、フィードバック量FBの変化範囲を拡大させることによって、エンジン100を適切に制御することができる。これにより、ドライビリティの悪化および燃費の悪化を抑制することができる。
また、車両1は、車両1の外部の交流電源250を用いてバッテリ150の充電が可能な構成を有しており、車両1の走行開始時においては、交流電源250を用いた充電が行われることによってバッテリ150のSOCが高い場合がある。このような場合、車両1は、ユーザによりCDモードが選択される機会が多い。そのため、このような車両1に対して上述したような第2学習時間を設定することにより、よりドライバビリティの悪化および燃費の悪化を抑制することができる。
以下、変形例について記載する。
本実施の形態においては、学習制御の実行中にエンジン100の停止を禁止する場合に本発明を適用するものとして説明したが、たとえば、学習制御の実行中にエンジン100の停止条件が成立する場合には、学習制御を中断してエンジン100を停止させる場合に本発明を適用してもよい。
CDモードの適用中においてはエンジン100の動作時間がCSモードの適用中よりも短くなる傾向にある。そのため、CDモードの適用中における学習制御の学習時間として第1学習時間よりも短い第2学習時間を設定することによって学習制御の実行機会の減少を抑制することができる。そのため、車両の運転モードにしたがったエンジンの制御をしつつ、学習値の算出を適切に実施するハイブリッド車両を提供することができる。
本実施の形態においては、スロットル開度の初期値Th(0)と、エンジン100を目標アイドル回転数Ne_tで一定の状態にした場合におけるスロットル開度の収束値との差分(エンジン100を目標アイドル回転数Ne_tで一定の状態にした場合におけるフィードバック量の収束値)を学習値として算出するものとして説明したが、学習方法としては、以下の方法で行なわれてもよい。
たとえば、ECU300は、目標アイドル回転数Ne_tとエンジン100の実回転数Neとの差がしきい値よりも小さい状態を維持する。ECU300は、この状態でフィードバック量FBと学習値Lとの和のうちのフィードバック量FBの割合が所定の割合(たとえば、ゼロ)になるまで前回の学習値Lに予め定められた時間が経過する毎に所定値を加算していく。ECU300は、設定された学習時間が経過するまでにフィードバック量FBの割合が所定の割合に到達した場合には、その時点の学習値を今回の学習値とし、所定の割合に到達する前に設定された学習時間が経過した場合には、設定された学習時間が経過した時点の学習値を今回の学習値としてもよい。
また、本実施の形態においては、学習時間が経過した場合には、学習時間が経過した時点の学習値を今回の学習値として設定するものとして説明したが、たとえば、学習時間が経過した場合には、学習値の更新を行なわない(すなわち、前回の学習値を維持する)ようにしてもよい。
本実施の形態においては、ISC制御をエンジン100で行なわれるフィードバック制御の一例として説明したが、特にISC制御に限定されるものではない。たとえば、空燃比制御や点火時期制御に本発明を適用してもよい。たとえば、空燃比センサ122により検出される実空燃比がエンジン100の目標空燃比になるように燃料噴射量をフィードバック制御する場合に適用してもよい。すなわち、目標空燃比と実空燃比との差分に基づくフィードバック量に学習値を加算して制御量のずれを補正する場合の学習値の学習時間を上述したように運転モードに応じて切り替えるようにしてもよい。
本実施の形態においては、運転モードとしてCSモードとCDモードとを含むものとして説明したが、第1のモードと、第1のモードよりもエンジンの停止期間が増加するように設定されたエンジン始動条件またはエンジン停止条件を有する第2のモードとの間で、異なる学習時間が設定されればよく、運転モードとして、特に、上述したCSモードとCDモードとに限定されるものではない。
たとえば、運転モードとして、たとえば、上述したCDモードと、CDモードよりもさらにエンジン100の停止期間が増加するように設定されたエンジン始動条件またはエンジン停止条件を有する特殊CDモードとの間で、異なる学習時間が設定されてもよい。特殊CDモードでは、たとえば、全開時あるいは全開に相当する駆動力が要求された場合を除き、エンジン100を停止し、全開時あるいは全開に相当する駆動力が要求された場合にのみエンジン100を始動するモードである。
本実施の形態においては、運転モードとして2つのモードを有するものとして説明したが、3つ以上のモードを有するものであってもよい。すなわち、3つ以上のモードのうちの第1のモードと、第1のモードよりもエンジンの停止期間が増加するように設定されたエンジン始動条件またはエンジン停止条件を有する第2のモードとの間で、異なる学習時間が設定されてもよい。
本実施の形態においては、外部の交流電源250を用いてバッテリ150の充電が可能な構成を有するハイブリッド車両を一例として説明したが、このような構成を省略したハイブリッド車両であってもよい。
なお、上記した変形例は、その全部または一部を適宜組み合わせて実施してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、10,20 モータジェネレータ、12,22 レゾルバ、30 遊星歯車装置、62 サンギヤ軸、100 エンジン、102 インテークマニホールド、103 吸気通路、104 スロットルバルブ、106 電子スロットル、108 エアクリーナ、110 クランクシャフト、112 エキゾーストマニホールド、113 排気通路、116 触媒、120 スロットル開度センサ、122 空燃比センサ、124 吸気温センサ、126 エアフローメータ、128 水温センサ、130 燃料噴射装置、132 燃料噴射インジェクタ、140 点火装置、 142 点火プラグ、150 バッテリ、160 SMR、200 PCU、210 CHR、220 充電装置、230 インレット、240 充電プラグ、250 交流電源、310 アクセル開度センサ、312 アクセルペダル、350 駆動輪、478 クランク角センサ、610,620 ロータ、618,628 ステータ、650 出力軸、652 車速センサ。

Claims (2)

  1. エンジンと、
    駆動輪に接続された回転電機と、
    車両の運転中において、前記エンジンの間欠運転を含んで前記エンジンおよび前記回転電機の出力配分を制御するとともに、前記出力配分に基づく動作指令に従って前記エンジンおよび前記回転電機の動作を制御する制御装置とを備え、
    前記出力配分は、前記エンジンの間欠運転を制御するためのエンジン停止条件およびエンジン始動条件のうちの少なくとも一方の条件が互いに異なる複数のモードを切り替えて制御され、
    前記複数のモードは、第1のモードと、前記第1のモードと比較して前記エンジンの停止期間が増加するように前記少なくとも一方の条件が設定された第2のモードとを含み、
    前記制御装置は、
    前記第1のモードの適用中における前記エンジンの動作時には、第1学習時間が経過するまでに、前記エンジンの吸入空気量の制御および燃料噴射量の制御のうちの少なくとも一方の制御に対するフィードバック制御の制御量のずれを補正するための学習値を算出する一方で、
    前記第2のモードの適用中における前記エンジンの動作時には、前記第1学習時間よりも短い第2学習時間が経過するまでに前記学習値を算出する、ハイブリッド車両。
  2. 前記制御装置は、前記第2のモードの適用中における前記エンジンの動作時には、前記第1のモードの適用中における前記エンジンの動作時と比較して、前記制御量の変化範囲が拡大するように前記制御量の上限値および下限値の少なくとも一方を変化させる、請求項1に記載のハイブリッド車両。
JP2016075800A 2016-04-05 2016-04-05 ハイブリッド車両 Expired - Fee Related JP6380448B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016075800A JP6380448B2 (ja) 2016-04-05 2016-04-05 ハイブリッド車両
US15/476,153 US10279797B2 (en) 2016-04-05 2017-03-31 Control device for hybrid vehicle and control method for hybrid vehicle
CN201710206752.7A CN107415934B (zh) 2016-04-05 2017-03-31 用于混合动力车辆的控制装置及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075800A JP6380448B2 (ja) 2016-04-05 2016-04-05 ハイブリッド車両

Publications (2)

Publication Number Publication Date
JP2017185883A JP2017185883A (ja) 2017-10-12
JP6380448B2 true JP6380448B2 (ja) 2018-08-29

Family

ID=59959062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075800A Expired - Fee Related JP6380448B2 (ja) 2016-04-05 2016-04-05 ハイブリッド車両

Country Status (3)

Country Link
US (1) US10279797B2 (ja)
JP (1) JP6380448B2 (ja)
CN (1) CN107415934B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398886B2 (ja) * 2018-07-02 2023-12-15 東京エレクトロン株式会社 流量制御器、ガス供給系及び流量制御方法
JP6690743B1 (ja) * 2019-01-23 2020-04-28 トヨタ自動車株式会社 機械学習装置
JP7211254B2 (ja) * 2019-05-09 2023-01-24 トヨタ自動車株式会社 車両制御装置
JP7400657B2 (ja) * 2020-08-05 2023-12-19 トヨタ自動車株式会社 エンジン制御装置
JP7444004B2 (ja) * 2020-09-15 2024-03-06 株式会社デンソー 噴射制御装置
CN114261280B (zh) * 2020-09-16 2023-09-05 广汽埃安新能源汽车有限公司 加速踏板自适应方法、车载控制器、汽车及存储介质
WO2024057421A1 (ja) * 2022-09-13 2024-03-21 日産自動車株式会社 ハイブリッド車両の制御方法、及びハイブリッド車両の制御システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3141823B2 (ja) * 1997-10-08 2001-03-07 トヨタ自動車株式会社 車載内燃機関の制御装置
JP2000120460A (ja) * 1998-10-14 2000-04-25 Daihatsu Motor Co Ltd ハイブリッド自動車
JP3341281B2 (ja) * 1999-04-08 2002-11-05 トヨタ自動車株式会社 空燃比学習制御装置
JP4572712B2 (ja) * 2005-03-25 2010-11-04 トヨタ自動車株式会社 車両およびその制御方法
DE102008000911A1 (de) * 2008-04-01 2009-10-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP2009274553A (ja) 2008-05-14 2009-11-26 Toyota Motor Corp 車両およびその制御方法
JP2010001759A (ja) * 2008-06-18 2010-01-07 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP5299456B2 (ja) * 2011-03-18 2013-09-25 トヨタ自動車株式会社 内燃機関の制御装置
KR101500389B1 (ko) * 2014-03-19 2015-03-10 현대자동차 주식회사 하이브리드 차량의 유압지령 학습장치 및 방법
US9598071B2 (en) * 2014-03-21 2017-03-21 Ford Global Technologies, Llc Method and system for adaptive motor power loss estimation in hybrid electric vehicles

Also Published As

Publication number Publication date
US10279797B2 (en) 2019-05-07
US20170282892A1 (en) 2017-10-05
CN107415934A (zh) 2017-12-01
JP2017185883A (ja) 2017-10-12
CN107415934B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
JP6380448B2 (ja) ハイブリッド車両
JP4519085B2 (ja) 内燃機関の制御装置
JP5505509B2 (ja) パワートレーン、内燃機関の制御方法および制御装置
JP6149841B2 (ja) ハイブリッド自動車
JP2010179780A (ja) ハイブリッド車およびその制御方法
US20140309832A1 (en) Hybrid vehicle
JP2014092066A (ja) Egrバルブ故障検出装置
JP2010042700A (ja) ハイブリッド車両およびその制御方法
JP2009280094A (ja) 動力出力装置およびその制御方法並びに車両
JP4752919B2 (ja) エンジンの制御装置
JP2005320911A (ja) 動力出力装置およびこれを搭載する自動車並びにその制御方法
JP2010241386A (ja) ハイブリッド車両およびその制御方法
JP5949369B2 (ja) 内燃機関の停止制御装置
JP2013154699A (ja) 車両用制御装置
JP5617691B2 (ja) 車両および車両用制御方法
JP2009173164A (ja) 駆動装置およびこれを搭載する自動車並びに駆動装置の制御方法
JP3928597B2 (ja) 駆動装置およびその制御方法並びに自動車
JP2014189081A (ja) ハイブリッド自動車
JP2018069779A (ja) ハイブリッド自動車
JP2009279965A (ja) ハイブリッド車およびその制御方法
JP2017128212A (ja) ハイブリッド自動車
JP2007283899A (ja) 内燃機関装置およびその制御方法並びに車両
JP2014077363A (ja) ハイブリッド車両の制御装置
JP2007196908A (ja) 車両の制御装置
JP2020132109A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6380448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees