JP6368808B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP6368808B2
JP6368808B2 JP2017015281A JP2017015281A JP6368808B2 JP 6368808 B2 JP6368808 B2 JP 6368808B2 JP 2017015281 A JP2017015281 A JP 2017015281A JP 2017015281 A JP2017015281 A JP 2017015281A JP 6368808 B2 JP6368808 B2 JP 6368808B2
Authority
JP
Japan
Prior art keywords
gas
gas supply
supply plate
hole
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017015281A
Other languages
Japanese (ja)
Other versions
JP2017107864A (en
Inventor
横川 賢悦
賢悦 横川
森 政士
政士 森
荒瀬 高男
高男 荒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2017015281A priority Critical patent/JP6368808B2/en
Publication of JP2017107864A publication Critical patent/JP2017107864A/en
Application granted granted Critical
Publication of JP6368808B2 publication Critical patent/JP6368808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus.

ドライエッチングに代表されるプラズマ処理は、真空排気手段を有する真空容器内に原料ガスを導入し、該原料ガスを電磁波によりプラズマ化して被加工試料にさらすことで被加工試料表面のマスク部以外をエッチングし、所望の形状を得る半導体微細加工処理である。被加工試料面内での加工均一性にはプラズマの分布、被加工試料面内の温度分布、供給ガスの組成および流量分布等が影響する。特に特許文献1に開示された平行平板型のプラズマ処理装置では、被加工試料の対面に配置される微細なガス放出孔が多数形成されたシャワープレートから原料ガスが供給され、かつ被加工試料とシャワープレート間の距離も比較的短いことからシャワープレートから供給されるガス供給分布が、加工速度や加工形状等に影響する。平行平板型のプラズマ処理装置は、この特性を活用して、加工速度や形状の被加工試料面内の分布を制御し、所望の均一性を得ることができる利点を有する。   In plasma processing represented by dry etching, a raw material gas is introduced into a vacuum vessel having a vacuum exhaust means, and the raw material gas is converted into plasma by electromagnetic waves and exposed to the sample to be processed, except for the mask portion on the surface of the sample to be processed. This is a semiconductor microfabrication process to obtain a desired shape by etching. The processing uniformity in the surface of the sample to be processed is affected by the distribution of plasma, the temperature distribution in the surface of the sample to be processed, the composition of the supply gas, the flow rate distribution, and the like. In particular, in the parallel plate type plasma processing apparatus disclosed in Patent Document 1, a raw material gas is supplied from a shower plate in which a large number of fine gas discharge holes arranged on the surface of the sample to be processed are formed. Since the distance between the shower plates is also relatively short, the gas supply distribution supplied from the shower plates affects the processing speed, the processing shape, and the like. The parallel plate type plasma processing apparatus has an advantage that the desired uniformity can be obtained by utilizing this characteristic to control the distribution of the processing speed and shape in the sample surface to be processed.

しかし、平行平板型のプラズマ処理装置は、シャワープレート近傍にプラズマを形成するための強い高周波電界が存在し、その電界によりシャワープレートに形成されたガス孔内で放電が生じる場合がある。ガス孔内での放電は、異物の発生やシャワープレート裏面に配置される導電性部材等からの汚染を生じさせる。またガス孔内での放電箇所に対応した被加工試料面位置での加工形状にも影響を与え不良発生の要因ともなる。さらにガス孔内での放電が生じる場合、シャワープレート孔の消耗量も増加し、シャワープレートの交換周期が短くなり製造コストの増加を招く等の課題がある。   However, in the parallel plate type plasma processing apparatus, there is a strong high-frequency electric field for forming plasma in the vicinity of the shower plate, and discharge may occur in the gas holes formed in the shower plate due to the electric field. The discharge in the gas hole causes the generation of foreign matter or contamination from a conductive member or the like disposed on the back surface of the shower plate. In addition, the machining shape at the sample surface position corresponding to the discharge location in the gas hole is also affected, which may cause defects. Further, when discharge occurs in the gas holes, the amount of consumption of the shower plate holes is increased, and there is a problem that the replacement period of the shower plate is shortened and the manufacturing cost is increased.

上記した課題に対応するため、通常シャワープレートに施すガス孔径を極力小径とする。例えば、0.1mm〜0.5mmのガス孔を用いることで、孔側壁での電子の消滅確立を高めてガス孔内での放電リスクを低減させることができる。しかし、ガス孔径の小径化だけでは、本質的なガス孔内での放電防止にはならず、放電条件の制約(放電電力や放出ガス流量の制限等)となってしまう。またガス孔を小径化するとシャワープレートの加工費が高額となり、コスト増加の要因となる。さらに、通常均一なガス放出にはシャワープレートの背面に位置する導体部に施されたガス孔とシャワープレートに施すガス孔位置を一致させる必要性があるが、ガス孔径が小さいとガス孔を一致させるのが精度上困難となり、ガス放出の面内均一が低下したり、ガス放出の再現性が得られなくなる場合が生じる。   In order to cope with the above-described problems, the diameter of the gas hole normally applied to the shower plate is made as small as possible. For example, by using gas holes of 0.1 mm to 0.5 mm, it is possible to increase the probability of annihilation of electrons on the side walls of the holes and reduce the discharge risk in the gas holes. However, simply reducing the diameter of the gas hole does not essentially prevent discharge in the gas hole, but restricts discharge conditions (such as restrictions on discharge power and discharge gas flow rate). Further, if the gas holes are made smaller in diameter, the processing cost of the shower plate becomes higher, which increases the cost. Furthermore, it is usually necessary to match the gas hole on the conductor located on the back of the shower plate with the gas hole position on the shower plate for uniform gas discharge. However, it is difficult to achieve accuracy, and in-plane uniformity of gas emission may be reduced, or reproducibility of gas emission may not be obtained.

また、特許文献1には、シャワープレートのガス孔内で生じる異常放電を抑制するために、上部電極は、第一のガス孔が施されたシャワープレートと、シャワープレート背面に配置され第二のガス孔が施された導体板と、導体板の中心部に配置され第三のガス孔が施された絶縁板と、導体板の背面に配置され温度制御機能及びガス分散部を有するアンテナ基材部からなり、シャワープレートと絶縁板との界面には径方向に第一の微小隙間を有し、絶縁板と導体板との界面には径方向に第二の微小隙間を有し、第一のガス孔と第三のガス孔の中心が周方向または径方向にずれているプラズマ処理装置が開示されている。   Further, in Patent Document 1, in order to suppress abnormal discharge generated in the gas holes of the shower plate, the upper electrode is disposed on the shower plate provided with the first gas holes and on the back surface of the shower plate. An antenna base material having a conductor plate provided with gas holes, an insulating plate provided at the center of the conductor plate and provided with a third gas hole, and a temperature control function and a gas dispersion portion provided on the back surface of the conductor plate A first minute gap in the radial direction at the interface between the shower plate and the insulating plate, and a second minute gap in the radial direction at the interface between the insulating plate and the conductor plate. A plasma processing apparatus is disclosed in which the centers of the gas hole and the third gas hole are shifted in the circumferential direction or the radial direction.

しかし、この装置では、導体板の中心部の異常放電の抑制は可能であるが、中心部以外の異常放電抑制は考慮されていない。また、上記の第一のガス孔と第三のガス孔は、ずれているが、この第一のガス孔と第三のガス孔のずれによるガス流れのコンダクタンス不足に対して十分に考慮されていない。   However, in this apparatus, although it is possible to suppress abnormal discharge at the central portion of the conductor plate, abnormal discharge suppression other than at the central portion is not considered. Further, although the first gas hole and the third gas hole are deviated, sufficient consideration is given to the lack of conductance of the gas flow due to the deviation of the first gas hole and the third gas hole. Absent.

以上の結果従来のシャワープレート構造では、エッチング条件の制約、均一性の低下および再現性の低下からプラズマによる加工性能の十分引き出せない場合がある。   As a result of the above, in the conventional shower plate structure, there are cases where the processing performance by the plasma cannot be sufficiently brought out due to the limitation of the etching conditions, the uniformity and the reproducibility.

特開2011−9249号公報JP 2011-9249 A

本発明は「背景技術」で述べた、プラズマ処理装置におけるガス放出の均一性、再現性の向上をはかり、さらにはガス供給手段部での異常放電発生やそれに起因する異物や汚染等にて制約される放電条件(放電電力や放出ガス流量)の大幅な緩和を可能とするガス供給手段を備えたプラズマ処理装置を実現するものであり、本発明の目的は、平行平板型のプラズマ処理装置であっても、広域なプロセス条件での安定したプラズマ生成と均一性や再現性に優れた加工性能を有するプラズマ処理装置を提供することにある。   The present invention aims to improve the uniformity and reproducibility of gas emission in the plasma processing apparatus described in the “Background Art”, and is further limited by the occurrence of abnormal discharge in the gas supply means, foreign matters and contamination resulting therefrom. The present invention is intended to realize a plasma processing apparatus having a gas supply means that can significantly reduce the discharge conditions (discharge power and discharge gas flow rate), and an object of the present invention is a parallel plate type plasma processing apparatus. Even so, an object of the present invention is to provide a plasma processing apparatus having stable plasma generation under a wide range of process conditions and processing performance excellent in uniformity and reproducibility.

上記目的を達成するための一実施形態として、 試料がプラズマ処理される処理室と、プラズマを生成するための高周波電力が供給され前記プラズマを生成するためのガスが供給されるガス供給部が形成された第一の電極と、前記第一の電極と対向し前記試料が載置される第二の電極とを備えるプラズマ処理装置において、
前記ガス供給部を貫通する複数の第一のガス孔を介してガスが供給され前記第一の電極の下方に配置された第一のガス供給板と前記第一のガス供給板を貫通する複数の第二のガス孔を介してガスが供給され前記第一のガス供給板の下方に配置された第二のガス供給板と前記第一の電極の温度を制御する温度制御手段をさらに備え、
前記第二のガス供給板は、内部を貫通する複数の第三のガス孔を有するとともに前記第二のガス孔を介して供給されたガスを前記第三のガス孔を介して前記処理室内に供給し、
第一のガス流路の各々の上方から前記第一のガス孔が接続され、
前記第一のガス流路の各々の下方から前記第二のガス孔が接続され、
第二のガス流路の各々の上方から前記第二のガス孔が接続され、
前記第二のガス流路の各々の下方から前記第三のガス孔が接続され、
前記第一のガス流路および前記第二のガス流路は、同心円状に前記第一のガス供給板に形成され、
前記第一の電極の材質は導体であり、
前記第一のガス供給板の材質および前記第二のガス供給板の材質は石英であり、
平面図における前記第一のガス流路と前記平面図における前記第二のガス流路は、重なっており、
前記第二のガス供給板の前記平面図における前記第一のガス孔が前記平面図における前記第三のガス孔の一方の隣に位置するように前記第一のガス孔が前記ガス供給部に形成され、
前記平面図における前記第二のガス孔が前記平面図における前記第三のガス孔の他方の隣に位置するように前記第二のガス孔が前記第一のガス供給板に形成され、
前記ガス供給部は、前記第一のガス供給板に接し、
前記第一のガス供給板は、前記第二のガス供給板に接し、
前記第一のガス流路および前記第二のガス流路の断面形状は、溝状であり、
前記第一のガス流路の幅は、前記ガス供給部と前記第一のガス供給板との接触面積が50%以上となる幅であり、
前記第二のガス流路の幅は、前記第一のガス供給板と前記第二のガス供給板との接触面積が50%以上となる幅であり、
前記第一のガス流路の深さおよび前記第二のガス流路の深さは、前記第一のガス流路内および前記第二のガス流路内に発生する電圧が放電開始電圧より小さくなる深さであり、
前記放電開始電圧は、パッシェンの法則に基づいて求められ、前記第一のガス流路内の圧力と前記第一のガス流路の深さとの積が1.5Torr×cm以下となる放電開始電圧であり、
前記第一のガス孔の孔径、前記第二のガス孔の孔径及び前記第三のガス孔の孔径は、それぞれ0.1mm〜1.0mmの範囲内の孔径であることを特徴とするプラズマ処理装置とする。
As an embodiment for achieving the above object, a processing chamber in which a sample is plasma-processed and a gas supply unit to which a high-frequency power for generating plasma is supplied and a gas for generating the plasma are supplied are formed. In a plasma processing apparatus comprising: the first electrode that has been made; and a second electrode that faces the first electrode and on which the sample is placed;
Plural penetrating the first gas supply plate and the first gas supply plate which gas is disposed below the supplied the first electrode via a plurality of first gas holes extending through the gas supply unit A temperature control means for controlling the temperature of the first electrode and a second gas supply plate disposed below the first gas supply plate to which gas is supplied through the second gas hole;
The second gas supply plate has a plurality of third gas holes penetrating through the second gas supply plate, and supplies the gas supplied through the second gas holes into the processing chamber through the third gas holes. Supply
The first gas hole is connected from above each of the first gas flow paths,
The second gas hole is connected from below each of the first gas flow paths,
The second gas hole is connected from above each of the second gas flow paths,
The third gas hole is connected from below each of the second gas flow paths,
The first gas flow path and the second gas flow path are concentrically formed on the first gas supply plate,
The material of the first electrode is a conductor,
The material of the first gas supply plate and the material of the second gas supply plate are quartz,
The first gas flow path in the plan view and the second gas flow path in the plan view overlap,
The first gas hole is located in the gas supply section so that the first gas hole in the plan view of the second gas supply plate is located next to one of the third gas holes in the plan view. Formed,
The second gas hole is formed in the first gas supply plate so that the second gas hole in the plan view is located next to the other of the third gas hole in the plan view;
The gas supply unit is in contact with the first gas supply plate,
The first gas supply plate is in contact with the second gas supply plate,
The cross-sectional shape of the first gas channel and the second gas channel is a groove shape,
The width of the first gas flow path is such that the contact area between the gas supply part and the first gas supply plate is 50% or more,
The width of the second gas flow path is such that the contact area between the first gas supply plate and the second gas supply plate is 50% or more,
The depth of the first gas channel and the depth of the second gas channel are such that the voltage generated in the first gas channel and the second gas channel is smaller than the discharge start voltage. The depth to be
The discharge start voltage is obtained based on Paschen's law, and the product of the pressure in the first gas flow path and the depth of the first gas flow path is 1.5 Torr × cm or less. And
The plasma treatment characterized in that the hole diameter of the first gas hole, the hole diameter of the second gas hole, and the hole diameter of the third gas hole are each in the range of 0.1 mm to 1.0 mm. A device.

また、試料がプラズマ処理される処理室と、プラズマを生成するための高周波電力が供給され前記プラズマを生成するためのガスが供給されるガス供給部が形成された第一の電極と、前記第一の電極と対向し前記試料が載置される第二の電極とを備えるプラズマ処理装置において、
前記ガス供給部を貫通する複数の第一のガス孔を介してガスが供給され前記第一の電極の下方に配置された第一のガス供給板と前記第一のガス供給板を貫通する複数の第二のガス孔を介してガスが供給され前記第一のガス供給板の下方に配置された第二のガス供給板と前記第一の電極の温度を制御する温度制御手段をさらに備え、
前記第二のガス供給板は、内部を貫通する複数の第三のガス孔を有するとともに前記第二のガス孔を介して供給されたガスを前記第三のガス孔を介して前記処理室内に供給し、
第一のガス流路の各々の上方から前記第一のガス孔が接続され、
前記第一のガス流路の各々の下方から前記第二のガス孔が接続され、
第二のガス流路の各々の上方から前記第二のガス孔が接続され、
前記第二のガス流路の各々の下方から前記第三のガス孔が接続され、
前記第一のガス流路および前記第二のガス流路は、放射状、螺旋状または格子状に前記第一のガス供給板に形成され、
前記第一の電極の材質は導体であり、
平面図における前記第一のガス流路と前記平面図における前記第二のガス流路は、重なっており
前記第二のガス供給板の前記平面図における前記第一のガス孔が前記平面図における前記第三のガス孔の一方の隣に位置するように前記第一のガス孔が前記ガス供給部に形成され、
前記平面図における前記第二のガス孔が前記平面図における前記第三のガス孔の他方の隣に位置するように前記第二のガス孔が前記第一のガス供給板に形成され、
前記ガス供給部は、前記第一のガス供給板に接し、
前記第一のガス供給板は、前記第二のガス供給板に接し、
前記第一のガス流路および前記第二のガス流路の断面形状は、溝状であり、
前記第一のガス流路の幅は、前記ガス供給部と前記第一のガス供給板との接触面積が50%以上となる幅であり、
前記第二のガス流路の幅は、前記第一のガス供給板と前記第二のガス供給板との接触面積が50%以上となる幅であり、
前記第一のガス流路の深さおよび前記第二のガス流路の深さは、前記第一のガス流路内および前記第二のガス流路内に発生する電圧が放電開始電圧より小さくなる深さであり、
前記放電開始電圧は、パッシェンの法則に基づいて求められ、前記第一のガス流路内の圧力と前記第一のガス流路の深さとの積が1.5Torr×cm以下となる放電開始電圧であり、
前記第一のガス孔の孔径、前記第二のガス孔の孔径及び前記第三のガス孔の孔径は、それぞれ0.1mm〜1.0mmの範囲内の孔径であることを特徴とするプラズマ処理装置とする。
更に、試料がプラズマ処理される処理室と、プラズマを生成するための高周波電力が供給され前記プラズマを生成するためのガスが供給されるガス供給部が形成された第一の電極と、前記第一の電極と対向し前記試料が載置される第二の電極とを備えるプラズマ処理装置において、
前記ガス供給部を貫通する複数の第一のガス孔を介してガスが供給され前記第一の電極の下方に配置された第一のガス供給板と前記第一のガス供給板を貫通する複数の第二のガス孔を介してガスが供給され前記第一のガス供給板の下方に配置された第二のガス供給板と前記第一の電極の温度を制御する温度制御手段をさらに備え、
前記第二のガス供給板は、内部を貫通する複数の第三のガス孔を有するとともに前記第二のガス孔を介して供給されたガスを前記第三のガス孔を介して前記処理室内に供給し、
第一のガス流路の各々の上方から前記第一のガス孔が接続され、
前記第一のガス流路の各々の下方から前記第二のガス孔が接続され、
第二のガス流路の各々の上方から前記第二のガス孔が接続され、
前記第二のガス流路の各々の下方から前記第三のガス孔が接続され、
前記第一のガス流路および前記第二のガス流路は、前記第一のガス供給板に形成され、
前記第一の電極の材質は導体であり、
前記第一のガス供給板の材質は、石英であり、
前記第二のガス供給板の材質は、酸化イットリウム(Y )であり、
平面図における前記第一のガス流路と前記平面図における前記第二のガス流路は、重なっており、
前記第二のガス供給板の前記平面図における前記第一のガス孔が前記平面図における前記第三のガス孔の一方の隣に位置するように前記第一のガス孔が前記ガス供給部に形成され、
前記平面図における前記第二のガス孔が前記平面図における前記第三のガス孔の他方の隣に位置するように前記第二のガス孔が前記第一のガス供給板に形成され、
前記ガス供給部は、前記第一のガス供給板に接し、
前記第一のガス供給板は、前記第二のガス供給板に接し、
前記第一のガス流路および前記第二のガス流路の断面形状は、溝状であり、
前記第一のガス流路の幅は、前記ガス供給部と前記第一のガス供給板との接触面積が50%以上となる幅であり、
前記第二のガス流路の幅は、前記第一のガス供給板と前記第二のガス供給板との接触面積が50%以上となる幅であり、
前記第一のガス流路の深さおよび前記第二のガス流路の深さは、前記第一のガス流路内および前記第二のガス流路内に発生する電圧が放電開始電圧より小さくなる深さであり、
前記放電開始電圧は、パッシェンの法則に基づいて求められ、前記第一のガス流路内の圧力と前記第一のガス流路の深さとの積が1.5Torr×cm以下となる放電開始電圧であり、
前記第一のガス孔の孔径、前記第二のガス孔の孔径及び前記第三のガス孔の孔径は、それぞれ0.1mm〜1.0mmの範囲内の孔径であることを特徴とするプラズマ処理装置とする。
更にまた、試料がプラズマ処理される処理室と、プラズマを生成するための高周波電力が供給され前記プラズマを生成するためのガスが供給されるガス供給部が形成された第一の電極と、前記第一の電極と対向し前記試料が載置される第二の電極とを備えるプラズマ処理装置において、
前記ガス供給部を貫通する複数の第一のガス孔を介してガスが供給され前記第一の電極の下方に配置された第一のガス供給板と前記第一のガス供給板を貫通する複数の第二のガス孔を介してガスが供給され前記第一のガス供給板の下方に配置された第二のガス供給板と前記第一の電極の温度を制御する温度制御手段をさらに備え、
前記第二のガス供給板は、内部を貫通する複数の第三のガス孔を有するとともに前記第二のガス孔を介して供給されたガスを前記第三のガス孔を介して前記処理室内に供給し、
第一のガス流路の各々の上方から前記第一のガス孔が接続され、
前記第一のガス流路の各々の下方から前記第二のガス孔が接続され、
第二のガス流路の各々の上方から前記第二のガス孔が接続され、
前記第二のガス流路の各々の下方から前記第三のガス孔が接続され、
前記第一のガス流路および前記第二のガス流路は、格子状に前記第一のガス供給板に形成され、
前記第一の電極の材質は導体であり、
平面図における前記第一のガス流路と前記平面図における前記第二のガス流路は、重なっており、
前記第二のガス供給板の前記平面図における前記第一のガス孔が前記平面図における前記第三のガス孔の一方の隣に位置するように前記第一のガス孔が前記ガス供給部に形成され、
前記平面図における前記第二のガス孔が前記平面図における前記第三のガス孔の他方の隣に位置するように前記第二のガス孔が前記第一のガス供給板に形成され、
前記ガス供給部は、前記第一のガス供給板に接し、
前記第一のガス供給板は、前記第二のガス供給板に接し、
前記第一のガス流路および前記第二のガス流路の断面形状は、溝状であり、
前記第一のガス流路の幅は、前記ガス供給部と前記第一のガス供給板との接触面積が50%以上となる幅であり、
前記第二のガス流路の幅は、前記第一のガス供給板と前記第二のガス供給板との接触面積が50%以上となる幅であり、
前記第一のガス流路の深さおよび前記第二のガス流路の深さは、前記第一のガス流路内および前記第二のガス流路内に発生する電圧が放電開始電圧より小さくなる深さであり、
前記放電開始電圧は、パッシェンの法則に基づいて求められ、前記第一のガス流路内の圧力と前記第一のガス流路の深さとの積が1.5Torr×cm以下となる放電開始電圧であり、
前記第一のガス孔の孔径、前記第二のガス孔の孔径及び前記第三のガス孔の孔径は、それぞれ0.1mm〜1.0mmの範囲内の孔径であることを特徴とするプラズマ処理装置とする。
A first electrode having a processing chamber in which the sample is plasma-treated, a gas supply unit to which a high-frequency power for generating plasma is supplied and a gas for generating the plasma is supplied; In a plasma processing apparatus comprising a second electrode facing the one electrode and mounting the sample,
Plural penetrating the first gas supply plate and the first gas supply plate which gas is disposed below the supplied the first electrode via a plurality of first gas holes extending through the gas supply unit A temperature control means for controlling the temperature of the first electrode and a second gas supply plate disposed below the first gas supply plate to which gas is supplied through the second gas hole;
The second gas supply plate has a plurality of third gas holes penetrating through the second gas supply plate, and supplies the gas supplied through the second gas holes into the processing chamber through the third gas holes. Supply
The first gas hole is connected from above each of the first gas flow paths,
The second gas hole is connected from below each of the first gas flow paths,
The second gas hole is connected from above each of the second gas flow paths,
The third gas hole is connected from below each of the second gas flow paths,
The first gas flow path and the second gas flow path are formed on the first gas supply plate in a radial, spiral or lattice shape,
The material of the first electrode is a conductor,
The first gas flow path in the plan view and the second gas flow path in the plan view overlap ,
The first gas hole is located in the gas supply section so that the first gas hole in the plan view of the second gas supply plate is located next to one of the third gas holes in the plan view. Formed,
The second gas hole is formed in the first gas supply plate so that the second gas hole in the plan view is located next to the other of the third gas hole in the plan view;
The gas supply unit is in contact with the first gas supply plate,
The first gas supply plate is in contact with the second gas supply plate,
The cross-sectional shape of the first gas channel and the second gas channel is a groove shape,
The width of the first gas flow path is such that the contact area between the gas supply part and the first gas supply plate is 50% or more,
The width of the second gas flow path is such that the contact area between the first gas supply plate and the second gas supply plate is 50% or more,
The depth of the first gas channel and the depth of the second gas channel are such that the voltage generated in the first gas channel and the second gas channel is smaller than the discharge start voltage. The depth to be
The discharge start voltage is obtained based on Paschen's law, and the product of the pressure in the first gas flow path and the depth of the first gas flow path is 1.5 Torr × cm or less. And
The plasma treatment characterized in that the hole diameter of the first gas hole, the hole diameter of the second gas hole, and the hole diameter of the third gas hole are each in the range of 0.1 mm to 1.0 mm. A device.
A first electrode having a processing chamber in which the sample is plasma-treated, a gas supply unit to which a high-frequency power for generating plasma is supplied and a gas for generating the plasma is supplied; In a plasma processing apparatus comprising a second electrode facing the one electrode and mounting the sample,
A gas is supplied through a plurality of first gas holes penetrating the gas supply part, and a first gas supply plate disposed below the first electrode and a plurality of penetrating the first gas supply plate A temperature control means for controlling the temperature of the first electrode and a second gas supply plate disposed below the first gas supply plate to which gas is supplied through the second gas hole;
The second gas supply plate has a plurality of third gas holes penetrating through the second gas supply plate, and supplies the gas supplied through the second gas holes into the processing chamber through the third gas holes. Supply
The first gas hole is connected from above each of the first gas flow paths,
The second gas hole is connected from below each of the first gas flow paths,
The second gas hole is connected from above each of the second gas flow paths,
The third gas hole is connected from below each of the second gas flow paths,
The first gas flow path and the second gas flow path are formed in the first gas supply plate,
The material of the first electrode is a conductor,
The material of the first gas supply plate is quartz,
The material of the second gas supply plate is yttrium oxide (Y 2 O 3 ),
The first gas flow path in the plan view and the second gas flow path in the plan view overlap,
The first gas hole is located in the gas supply section so that the first gas hole in the plan view of the second gas supply plate is located next to one of the third gas holes in the plan view. Formed,
The second gas hole is formed in the first gas supply plate so that the second gas hole in the plan view is located next to the other of the third gas hole in the plan view;
The gas supply unit is in contact with the first gas supply plate,
The first gas supply plate is in contact with the second gas supply plate,
The cross-sectional shape of the first gas channel and the second gas channel is a groove shape,
The width of the first gas flow path is such that the contact area between the gas supply part and the first gas supply plate is 50% or more,
The width of the second gas flow path is such that the contact area between the first gas supply plate and the second gas supply plate is 50% or more,
The depth of the first gas channel and the depth of the second gas channel are such that the voltage generated in the first gas channel and the second gas channel is smaller than the discharge start voltage. The depth to be
The discharge start voltage is obtained based on Paschen's law, and the product of the pressure in the first gas flow path and the depth of the first gas flow path is 1.5 Torr × cm or less. And
The plasma treatment characterized in that the hole diameter of the first gas hole, the hole diameter of the second gas hole, and the hole diameter of the third gas hole are each in the range of 0.1 mm to 1.0 mm. A device .
Furthermore, a processing chamber in which a sample is subjected to plasma processing, a first electrode in which a gas supply unit to which a high-frequency power for generating plasma is supplied and a gas for generating the plasma is supplied is formed, In a plasma processing apparatus comprising a second electrode facing the first electrode and on which the sample is placed,
A gas is supplied through a plurality of first gas holes penetrating the gas supply part, and a first gas supply plate disposed below the first electrode and a plurality of penetrating the first gas supply plate A temperature control means for controlling the temperature of the first electrode and a second gas supply plate disposed below the first gas supply plate to which gas is supplied through the second gas hole;
The second gas supply plate has a plurality of third gas holes penetrating through the second gas supply plate, and supplies the gas supplied through the second gas holes into the processing chamber through the third gas holes. Supply
The first gas hole is connected from above each of the first gas flow paths,
The second gas hole is connected from below each of the first gas flow paths,
The second gas hole is connected from above each of the second gas flow paths,
The third gas hole is connected from below each of the second gas flow paths,
The first gas flow path and the second gas flow path are formed in the first gas supply plate in a lattice shape,
The material of the first electrode is a conductor,
The first gas flow path in the plan view and the second gas flow path in the plan view overlap,
The first gas hole is located in the gas supply section so that the first gas hole in the plan view of the second gas supply plate is located next to one of the third gas holes in the plan view. Formed,
The second gas hole is formed in the first gas supply plate so that the second gas hole in the plan view is located next to the other of the third gas hole in the plan view;
The gas supply unit is in contact with the first gas supply plate,
The first gas supply plate is in contact with the second gas supply plate,
The cross-sectional shape of the first gas channel and the second gas channel is a groove shape,
The width of the first gas flow path is such that the contact area between the gas supply part and the first gas supply plate is 50% or more,
The width of the second gas flow path is such that the contact area between the first gas supply plate and the second gas supply plate is 50% or more,
The depth of the first gas channel and the depth of the second gas channel are such that the voltage generated in the first gas channel and the second gas channel is smaller than the discharge start voltage. The depth to be
The discharge start voltage is obtained based on Paschen's law, and the product of the pressure in the first gas flow path and the depth of the first gas flow path is 1.5 Torr × cm or less. And
The plasma treatment characterized in that the hole diameter of the first gas hole, the hole diameter of the second gas hole, and the hole diameter of the third gas hole are each in the range of 0.1 mm to 1.0 mm. A device.

本発明によれば、平行平板型のプラズマ処理装置であっても、広域なプロセス条件での安定したプラズマ生成と均一性や再現性に優れた加工性能を有するプラズマ処理装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a parallel plate type plasma processing apparatus, the plasma processing apparatus which has the processing performance excellent in the stable plasma production | generation in a wide range of process conditions and the uniformity and reproducibility can be provided. .

本発明の第1の実施例に係るプラズマ処理装置の基本構成断面図である。1 is a cross-sectional view of a basic configuration of a plasma processing apparatus according to a first embodiment of the present invention. 図1のAで示すガス供給手段部の概略構造断面図である。FIG. 2 is a schematic structural cross-sectional view of a gas supply unit shown by A in FIG. 1. 図1に示すプラズマ処理装置におけるガス供給手段部を下側(下部電極側)から見た概略構造平面図であり、上側は全体図、下側は部分拡大図を示す。It is the schematic structure top view which looked at the gas supply means part in the plasma processing apparatus shown in FIG. 1 from the lower side (lower electrode side), an upper side shows the whole figure, and the lower side shows the partial enlarged view. 従来のプラズマ処理装置における課題を説明するための要部(シャワープレートおよび上部電極)の概略構造断面図である。It is schematic structure sectional drawing of the principal part (shower plate and upper electrode) for demonstrating the subject in the conventional plasma processing apparatus. 図4に示す要部において、開口径による異常放電の生じやすさを説明するための上部電極の断面図であり、左側は開口径が大の場合、中央は開口径が中の場合、右側は開口径が小の場合を示す。4 is a cross-sectional view of the upper electrode for explaining the ease of occurrence of abnormal discharge due to the opening diameter in the main part shown in FIG. 4, the left side has a large opening diameter, the center has an opening diameter in the middle, the right side has The case where the opening diameter is small is shown. 放電開始電圧とpd積(雰囲気ガスの圧力と電極間距離との積)との関係を説明するための図である。It is a figure for demonstrating the relationship between a discharge start voltage and pd product (product of the pressure of atmospheric gas, and the distance between electrodes).

本発明の一実施形態では、被加工試料に対面する位置に配置される上部電極に平面状のガス供給手段を備え、該ガス供給手段が2層の同径部材で構成され、各層の部材それぞれに複数のガス放出孔を備え、さらに各層のガス孔間を平面方向に形成された溝状のガス連結構造にて流体連結させたガス供給構造を特徴とする。これにより、各層の部材に形成するガス孔が平面的に一致しないように配置することが可能となる。   In one embodiment of the present invention, the upper electrode arranged at a position facing the sample to be processed is provided with a planar gas supply means, the gas supply means is composed of two layers of the same diameter member, and each member of each layer And a gas supply structure in which a plurality of gas discharge holes are provided, and the gas holes of each layer are fluidly connected by a groove-like gas connection structure formed in a planar direction. Thereby, it becomes possible to arrange | position so that the gas hole formed in the member of each layer may not correspond planarly.

本発明によれば、被加工試料面に対して均一で安定なガス供給を再現性よく実現でき、さらにガス供給手段部で生じる異常放電にて制約される放電条件を大幅に緩和できるため広範なプロセス条件での処理が可能なプラズマ処理装置が提供可能となる。   According to the present invention, uniform and stable gas supply to the sample surface to be processed can be realized with good reproducibility, and further, discharge conditions restricted by abnormal discharge generated in the gas supply means can be greatly relaxed, so that a wide range is provided. A plasma processing apparatus capable of processing under process conditions can be provided.

以下、本発明について実施例を用いて説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例1を、図1を用いて説明する。図1は、本実施例におけるプラズマ処理装置の基本構成断面図を示す。まず図1における装置構成を説明する。図1は平行平板型のプラズマ処理装置を示し、被加工試料設置手段(試料ステージ)1上に配置される被加工試料(ウエハ)2の対向位置に配置される上部電極3および上部電極3の被加工試料2側にガス供給手段である同径の第1の平面状部材4と第2の平面状部材5とが配置されている。第1の平面状部材4および第2の平面状部材5へのガス供給は、通常アルミやステンレスで構成される上部電極3に形成されたガス供給部6から行われる。なお、第1と第2の平面状部材は同径である必要はないが、同径とした方が実用的である。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a cross-sectional view of a basic configuration of a plasma processing apparatus in the present embodiment. First, the apparatus configuration in FIG. 1 will be described. FIG. 1 shows a parallel plate type plasma processing apparatus, in which an upper electrode 3 and an upper electrode 3 arranged at positions opposed to a sample to be processed (wafer) 2 arranged on a sample setting means (sample stage) 1 are shown. A first planar member 4 and a second planar member 5 having the same diameter as gas supply means are arranged on the workpiece 2 side. Gas supply to the first planar member 4 and the second planar member 5 is performed from a gas supply unit 6 formed on the upper electrode 3 which is usually made of aluminum or stainless steel. The first and second planar members do not have to have the same diameter, but it is more practical to have the same diameter.

次に、ガス供給手段部について図2と図3を用いて説明する。図2は図1に示すプラズマ処理装置におけるガス供給手段部の概略構造断面図、図3は概略構造平面図であり、上部電極3のガス供給部6、第1の平面状部材4および第2の平面状部材5部分の詳細図を示す。図2は図1の点線部Aの詳細図で、上部電極3のガス供給部6、第1の平面状部材4のガス孔8および第2の平面状部材5部のガス孔10の断面図を示す。なお、ガス孔6、ガス孔8およびガス孔10は平面的にずれて配置されており、ガス孔6とガス孔8は第1の溝7を介して、ガス孔8とガス孔10は第2の溝9を介して接続されている。この構成について図3を用いて説明する。   Next, a gas supply means part is demonstrated using FIG. 2 and FIG. 2 is a schematic cross-sectional view of the gas supply means in the plasma processing apparatus shown in FIG. 1, and FIG. 3 is a schematic plan view of the gas supply unit 6, the first planar member 4 and the second electrode of the upper electrode 3. The detailed drawing of the planar member 5 part of is shown. FIG. 2 is a detailed view of the dotted line portion A of FIG. 1, and is a cross-sectional view of the gas supply portion 6 of the upper electrode 3, the gas holes 8 of the first planar member 4, and the gas holes 10 of the second planar member 5 portion. Indicates. The gas hole 6, the gas hole 8, and the gas hole 10 are arranged so as to be shifted in a plane. The gas hole 6 and the gas hole 8 are arranged via the first groove 7, and the gas hole 8 and the gas hole 10 are Two grooves 9 are connected. This configuration will be described with reference to FIG.

図3は、被加工試料2側から第2の平面状部材5を見た平面図を示す。プラズマの原料ガスは、導体で形成された上部電極3に形成されたガス供給部6から、周方向に形成された第1の溝7を介して、第1の平面状部材4のガス孔8に導かれる。また第1の平面状部材4のガス孔8を通過したガスは、平面的に第1の溝と重なるように周方向に形成された第2の溝9を介して、第2の平面状部材のガス孔10に導かれ、最終的に放電空間11に導入される構造となっている。図3に示されるように、上部電極3に形成されたガス供給部6(図3の点線にて示したガス孔)と第1の平面状部材4のガス孔8(図3にて細い実線にて示したガス孔)は平面的に一致しない箇所にそれぞれ形成される構造となっている。同様に、第1の平面状部材4のガス孔8(図3にて細い実線にて示したガス孔)と第2の平面状部材5のガス孔10(図3にて太い実線にて示したガス孔)も平面的に一致しない位置にそれぞれ形成されている。なお、第1の溝と第2の溝とは平面的に重なるように形成する必要はないが、重なるように形成した方が簡単な構造で製造し易い。   FIG. 3 is a plan view of the second planar member 5 viewed from the workpiece 2 side. The plasma source gas is supplied from the gas supply portion 6 formed in the upper electrode 3 formed of a conductor through the first groove 7 formed in the circumferential direction to the gas hole 8 of the first planar member 4. Led to. The gas that has passed through the gas holes 8 of the first planar member 4 passes through the second groove 9 formed in the circumferential direction so as to overlap the first groove in a planar manner. The gas hole 10 is guided to the discharge space 11 and finally introduced into the discharge space 11. As shown in FIG. 3, the gas supply part 6 (gas hole shown by the dotted line in FIG. 3) formed in the upper electrode 3 and the gas hole 8 (the thin solid line in FIG. 3) of the first planar member 4. The gas holes shown in Fig. 2 have structures formed respectively at locations that do not coincide with each other in plan view. Similarly, the gas hole 8 (gas hole shown by a thin solid line in FIG. 3) of the first planar member 4 and the gas hole 10 (shown by a thick solid line in FIG. 3) of the second planar member 5. The gas holes are also formed at positions that do not coincide with each other in a plane. Note that the first groove and the second groove do not have to be formed so as to overlap in a planar manner, but it is easier to manufacture the first groove and the second groove with a simple structure.

本実施例では、第1の平面状部材4および第2の平面状部材5に石英を用いた。また図2に示される第1の溝7および第2の溝9は第1の平面状部材の両面にそれぞれ形成した。なお、ガス供給手段は必ずしも2枚の平面状部材で構成する必要はないが、溝が形成し易いため2枚で構成する方が実用的である。また、第1の溝7や第2の溝9は第1の平面状部材4に設ける必要はなく、上部電極や第2の平面状部材に形成することもできるが、第1の平面状部材4の両面に設ける方が加工し易く実用的である。図1、図2、図3に示す第1の平面状部材4のガス孔8および第2の平面状部材5のガス孔10の孔径は0.4〜0.5mmとした。各平面状部材の厚さは15mmとした。また図2に第1の溝7と第2の溝は、溝幅(平面方向の空間幅)が3mm、溝高さを0.3mmとした。また本実施例では、第2の平面状部材5のガス孔10、第1の平面状部材4のガス孔8および上部電極3に形成されるガス供給部6を同心円状に配置し、第2の平面状部材5のガス孔10の孔数に対して、第1の平面状部材4のガス孔8および上部電極3に形成されるガス供給部6のガス孔数を半分とした。具体的には、第2の平面状部材5のガス孔10が750個、第1の平面状部材4のガス孔8および上部電極3に形成されるガス供給部6のガス孔数が375個とした。また図1の実施例における装置構成では、上部電極3に高周波電源13からの高周波電力を整合器12を介して供給し、該高周波電力と真空容器14の外に配置されたソレノイドコイル15による磁力の相互作用で放電空間11にプラズマ16を形成する構造となっている。被加工試料2を設置する被加工試料設置手段1には、プラズマ生成用とは別の高周波電源17が整合器18を介して接続されている。高周波電源17からの高周波電力は、プラズマ16中からイオンを加速して被加工試料2に照射する機能を有する。また被加工試料設置手段1には冷却手段19が接続されており、被加工試料2の温度を調節する機能を有する。図1の実施例では、上部電極3に供給する高周波電力の周波数を200MHz、被加工試料設置手段1に供給する高周波電力の周波数を4MHzとした。なお、符号24は上部電極温度制御手段である。   In this embodiment, quartz is used for the first planar member 4 and the second planar member 5. Moreover, the 1st groove | channel 7 and the 2nd groove | channel 9 which are shown by FIG. 2 were each formed in both surfaces of the 1st planar member. The gas supply means does not necessarily need to be composed of two planar members, but it is more practical to construct the gas supply means because two grooves are easily formed. Further, the first groove 7 and the second groove 9 do not need to be provided in the first planar member 4 and can be formed in the upper electrode or the second planar member. It is practical and easy to process on both sides. The diameters of the gas holes 8 of the first planar member 4 and the gas holes 10 of the second planar member 5 shown in FIGS. 1, 2, and 3 were 0.4 to 0.5 mm. The thickness of each planar member was 15 mm. In FIG. 2, the first groove 7 and the second groove have a groove width (space width in the plane direction) of 3 mm and a groove height of 0.3 mm. In this embodiment, the gas holes 10 of the second planar member 5, the gas holes 8 of the first planar member 4, and the gas supply portions 6 formed in the upper electrode 3 are arranged concentrically, and the second The number of gas holes of the gas supply part 6 formed in the gas hole 8 of the first planar member 4 and the upper electrode 3 was halved with respect to the number of gas holes 10 of the planar member 5. Specifically, the number of gas holes 10 in the second planar member 5 is 750, and the number of gas holes in the gas supply portion 6 formed in the gas holes 8 and the upper electrode 3 of the first planar member 4 is 375. It was. 1, the high frequency power from the high frequency power source 13 is supplied to the upper electrode 3 through the matching unit 12, and the high frequency power and the magnetic force generated by the solenoid coil 15 disposed outside the vacuum vessel 14 are used. Thus, the plasma 16 is formed in the discharge space 11 by the above interaction. A high-frequency power source 17 different from that for plasma generation is connected to the workpiece sample placement means 1 for placing the workpiece sample 2 via a matching unit 18. The high frequency power from the high frequency power source 17 has a function of accelerating ions from the plasma 16 and irradiating the sample 2 to be processed. Further, a cooling means 19 is connected to the workpiece sample setting means 1 and has a function of adjusting the temperature of the workpiece sample 2. In the embodiment of FIG. 1, the frequency of the high-frequency power supplied to the upper electrode 3 is 200 MHz, and the frequency of the high-frequency power supplied to the workpiece sample setting means 1 is 4 MHz. Reference numeral 24 denotes an upper electrode temperature control means.

次に本発明が解決しようとする従来装置における課題を図4にて説明する。図4は平行平板型装置の上部電極に施される一般的なガス供給構造の断面模式図で、ガス放出孔部近辺の拡大図を示す。通常図4に示すガス孔が平面方向に複数個配置されている。図4の従来装置では、導体で形成される上部電極20に形成されるガス供給部21と同一位置にシャワープレート22のガス孔23が形成される。   Next, problems in the conventional apparatus to be solved by the present invention will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view of a general gas supply structure applied to the upper electrode of the parallel plate apparatus, and shows an enlarged view near the gas discharge hole. Usually, a plurality of gas holes shown in FIG. 4 are arranged in the plane direction. In the conventional apparatus of FIG. 4, the gas hole 23 of the shower plate 22 is formed in the same position as the gas supply part 21 formed in the upper electrode 20 formed of a conductor.

図4の構造にて放電空間に安定したガス放出を行うには、上部電極20に形成されるガス供給部21とシャワープレート22のガス孔23を一致して配置する必要がる。このとき上部電極20に形成されるガス供給部21の大きさがシャワープレート22のガス孔23と同程度の大きさの場合、孔位置のずれにより孔毎にガスの放出量に差が生じたり、取り付け毎にその状況が変化し、ガス放出の均一性や再現性が得られなくなる。また使用中の温度上昇に伴う熱膨張等により、シャワープレート22のガス孔23と上部電極20に形成されるガス供給部21の相対位置が変化し、ガス放出の状態が経時的に変化してしまう場合も生じる。シャワープレート22は通常交換部品であるため、上部電極20からの着脱が必要であり、装着の毎に確実にガス孔が一致するよう高い取り付け精度が要求される。   In order to perform stable gas discharge into the discharge space with the structure of FIG. 4, it is necessary to arrange the gas supply part 21 formed in the upper electrode 20 and the gas hole 23 of the shower plate 22 in alignment. At this time, if the size of the gas supply part 21 formed in the upper electrode 20 is about the same size as the gas hole 23 of the shower plate 22, a difference in the amount of gas emission may occur for each hole due to the displacement of the hole position. The situation changes with each installation, and the uniformity and reproducibility of gas emission cannot be obtained. Further, due to thermal expansion accompanying a temperature rise during use, the relative position of the gas supply part 21 formed in the gas hole 23 of the shower plate 22 and the upper electrode 20 changes, and the state of gas emission changes over time. It may occur. Since the shower plate 22 is usually a replacement part, it needs to be attached to and detached from the upper electrode 20, and high attachment accuracy is required to ensure that the gas holes coincide with each other.

しかし、精度だけでは確実にガス孔を一致させるのは困難なため図4に示すように、上部電極20に施すガス供給部21の大きさをシャワープレート22のガス孔径に比べて大きくすることで、多少の孔ずれが生じてもガス孔同士が完全にずれるのを防止している。しかしこの構造では、上部電極20に施すガス供給部21の孔径を相当量拡大する必要があり、該ガス供給部21の孔内で異常放電を発生させるリスクが大きくなる。特に図4の構造では、シャワープレート22のガス孔23を介して、プラズマから電子等活性な粒子が直接ガス供給部21の孔内に侵入してくることから、空間の大きさに加えて放電のきっかけとなる活性粒子の混入が加わり異常放電がさらに生じやすい状況となる。よって、異常放電を防止するには上部電極20に印加する高周波電力やガス供給部21から放出するガス流量を制限する必要があり、プロセス性能に制約が生じる。   However, since it is difficult to make the gas holes coincide with each other only with accuracy, the size of the gas supply part 21 applied to the upper electrode 20 is made larger than the gas hole diameter of the shower plate 22 as shown in FIG. Even if some hole displacement occurs, the gas holes are prevented from being completely displaced. However, in this structure, it is necessary to considerably expand the hole diameter of the gas supply unit 21 applied to the upper electrode 20, and the risk of causing abnormal discharge in the hole of the gas supply unit 21 increases. In particular, in the structure of FIG. 4, since active particles such as electrons directly enter the hole of the gas supply unit 21 from the plasma through the gas hole 23 of the shower plate 22, the discharge is performed in addition to the size of the space. As a result, the active particles are mixed, and abnormal discharge is more likely to occur. Therefore, in order to prevent abnormal discharge, it is necessary to limit the high-frequency power applied to the upper electrode 20 and the gas flow rate emitted from the gas supply unit 21, which restricts the process performance.

また図4の構造では、通常導体で形成される上部電極20の表面が、シャワープレート22のガス孔23を介してプラズマから直接見通せる位置に配置されることになる。前記したように、シャワープレート22のガス孔からはプラズマ中より電子や活性な粒子が侵入してくるため、導体である上部電極の表面に影響を与え金属汚染や異物の発生を生じる場合もある。上部電極20の表面を安定な材料でコーティングする等の対策は可能であるが、コーティングは使用時間によりコーティングが劣化または剥離するため、前記汚染や異物の対策には定期的な上部電極20の部分的交換が必要となりランニングコストの増加や装置稼働率の低下をもたらす。   In the structure of FIG. 4, the surface of the upper electrode 20 formed of a normal conductor is disposed at a position where it can be directly seen from the plasma through the gas hole 23 of the shower plate 22. As described above, since electrons and active particles enter from the gas holes of the shower plate 22 from the plasma, the surface of the upper electrode, which is a conductor, is affected, and metal contamination and generation of foreign matter may occur. . Although measures such as coating the surface of the upper electrode 20 with a stable material are possible, the coating deteriorates or peels off depending on the usage time. Replacement is required, resulting in an increase in running costs and a reduction in equipment operation rate.

図4にて説明した課題に対して、図1、図2、図3を用いて説明した本実施例に係るプラズマ処理装置の動作とその効果を説明する。図2より第1の平面状部材4には、上部電極3側に第1の溝7が形成されており、この溝に上部電極3に形成されたガス供給部6からのガスが供給される。第1の溝7に供給されたガスは第1の溝7の平面方向に流れ、ガス供給部6とは平面的に異なる位置に配置されたガス孔8を介して第2の溝9に流れる。つづいてガスは第2の溝9の平面方向に流れ、ガス孔8とは平面的に異なる位置に配置されたガス孔10から放電空間11に放出される。上記ガスの流れから、上部電極3に形成されたガス供給部6、第1の平面状部材4のガス孔8および第2の平面状部材5のガス孔10は各孔径に対して十分広い溝幅を有する第1の溝7および第2の溝9を介して流体的に連結されるため、図4の従来装置構成で問題となるガス供給の連結部における孔ずれが生じない。この結果、安定かつ再現性の高いガス放出特性を維持できる。また前記理由から、上部電極3に形成されたガス供給部6の孔径を最小化でき、上部電極3に形成されたガス供給部6の異常放電を抑止できる。   With respect to the problem described with reference to FIG. 4, the operation and effect of the plasma processing apparatus according to the present embodiment described with reference to FIGS. 1, 2, and 3 will be described. As shown in FIG. 2, the first planar member 4 has a first groove 7 formed on the upper electrode 3 side, and gas is supplied from the gas supply unit 6 formed in the upper electrode 3 to the groove. . The gas supplied to the first groove 7 flows in the plane direction of the first groove 7, and flows to the second groove 9 via the gas hole 8 arranged at a position different from the gas supply unit 6 in a plane. . Subsequently, the gas flows in the plane direction of the second groove 9 and is discharged into the discharge space 11 from the gas hole 10 arranged at a position different from the gas hole 8 in a plane. From the gas flow, the gas supply section 6 formed in the upper electrode 3, the gas holes 8 of the first planar member 4, and the gas holes 10 of the second planar member 5 are grooves that are sufficiently wide with respect to each hole diameter. Since the fluid is connected via the first groove 7 and the second groove 9 having a width, there is no occurrence of a hole shift in the connecting portion of the gas supply, which is a problem in the conventional apparatus configuration of FIG. As a result, stable and highly reproducible gas release characteristics can be maintained. For the above reasons, the hole diameter of the gas supply unit 6 formed in the upper electrode 3 can be minimized, and abnormal discharge of the gas supply unit 6 formed in the upper electrode 3 can be suppressed.

次に、ガス供給部6の孔径が小さいほど異常放電が生じにくくなる理由について図5を用いて説明する。図5は図4の上部電極20に形成されるガス供給部21の詳細図を示し、ガス供給部21の径による等電位面の様子を示す。ガス供給部21の開口径が大きい場合、上部電極20に印加される高周波電力の電界による等電位面25が孔内に侵入(電界が孔内に侵入)する。その結果、ガス供給部21の孔内に電界26が発生し、この電界26によりガス供給部21内で放電が生じやすくなる。図5に示すように、ガス供給部21内に染込む等電位面25は、ガス供給部21の開口径が小さくなると少なくなり、同時にガス供給部21内に生じる電界26も無くなる。これによりガス供給部21の孔径が小さいほど異常放電のリスクを低減できる。   Next, the reason why abnormal discharge is less likely to occur as the hole diameter of the gas supply unit 6 is smaller will be described with reference to FIG. FIG. 5 is a detailed view of the gas supply unit 21 formed on the upper electrode 20 of FIG. 4 and shows the equipotential surface depending on the diameter of the gas supply unit 21. When the opening diameter of the gas supply unit 21 is large, the equipotential surface 25 due to the electric field of the high frequency power applied to the upper electrode 20 penetrates into the hole (the electric field penetrates into the hole). As a result, an electric field 26 is generated in the hole of the gas supply unit 21, and the electric field 26 tends to cause a discharge in the gas supply unit 21. As shown in FIG. 5, the equipotential surface 25 that penetrates into the gas supply unit 21 is reduced when the opening diameter of the gas supply unit 21 is reduced, and at the same time, the electric field 26 generated in the gas supply unit 21 is also eliminated. Thereby, the risk of abnormal discharge can be reduced as the hole diameter of the gas supply unit 21 is smaller.

またガス供給部21における異常放電の生じ易さは、図6に示すPaschenの法則からも説明できる。放電の生じやすさは、空間の大きさとその領域のガス圧力の積に依存する。図6は、ガス圧力pと空間の大きさdの積(pd積)に対する、各種ガスにおける放電開始電圧を示し、放電開始電圧が高いほど放電が生じにくいことを示す。ガス供給部6の異常放電は、上部電極3と第1の平面状部材4の界面付近で生じる。通常上部電極3と第1の平面状部材4の界面付近のガス圧力は、10〜15Torrである。よって図6からガス圧力が15Torrの場合、放電空間となるガス供給部6の孔径が1mm以下で放電開始電圧が高くなり異常放電が生じにくくなる。図5および図6での説明はあくまでもその傾向を示し、また放電空間も孔径のみではなく孔深さ方向もある程度影響する。よって、実際は孔径1mmよりさらに小さい孔径とすることで異常放電発生抑制のマージンを拡大できる。実際本実施例では、ガス供給部6の孔径を0.5mmとした。これによりガス供給部6での異常放電発生を大幅に抑制し、さらにガスの通過も容易になる構造を実現した。   The ease of occurrence of abnormal discharge in the gas supply unit 21 can also be explained from Paschen's law shown in FIG. The ease with which discharge occurs depends on the product of the size of the space and the gas pressure in that region. FIG. 6 shows the discharge start voltage in various gases with respect to the product (pd product) of the gas pressure p and the space size d, and shows that the higher the discharge start voltage, the less likely the discharge occurs. The abnormal discharge of the gas supply unit 6 occurs near the interface between the upper electrode 3 and the first planar member 4. Usually, the gas pressure near the interface between the upper electrode 3 and the first planar member 4 is 10 to 15 Torr. Therefore, from FIG. 6, when the gas pressure is 15 Torr, the discharge start voltage becomes high and the abnormal discharge is unlikely to occur when the hole diameter of the gas supply section 6 serving as the discharge space is 1 mm or less. The explanation in FIGS. 5 and 6 shows the tendency to the last, and the discharge space influences not only the hole diameter but also the hole depth direction to some extent. Therefore, in practice, the margin for suppressing the occurrence of abnormal discharge can be expanded by setting the hole diameter to be smaller than 1 mm. Actually, in this embodiment, the hole diameter of the gas supply unit 6 is set to 0.5 mm. As a result, the occurrence of abnormal discharge in the gas supply unit 6 is greatly suppressed, and a structure that facilitates the passage of gas is realized.

さらに、図2、図3を用いて説明した本実施例に係るプラズマ処理装置では、放電空間11からシャワープレートとして機能する第2の平面状部材5のガス孔10を介して直接見通せる部材は第1の平面状部材4であり、プラズマ16から活性な粒子が上部電極3に到達することはない(電子や励起された活性粒子は、第2の平面状部材5のガス孔10、第2の溝9、第1の平面状部材4のガス孔8を通過する過程でガス分子または通過する部材側壁との衝突により消滅または脱励起するため上部電極3面に到達できない)。これにより第1の平面状部材4および第2の平面状部材5を石英等の材料で形成することで導体である金属で形成される上部電極部材からの金属汚染や異物の発生を防止できる。金属汚染の観点からはプラズマが腐食性の場合、特に有効である。   Furthermore, in the plasma processing apparatus according to the present embodiment described with reference to FIGS. 2 and 3, the member that can be directly seen from the discharge space 11 through the gas hole 10 of the second planar member 5 that functions as a shower plate is the first member. 1 is a planar member 4, and active particles from the plasma 16 do not reach the upper electrode 3 (electrons and excited active particles are formed in the gas holes 10 of the second planar member 5, the second In the process of passing through the groove 9 and the gas hole 8 of the first planar member 4, it disappears or de-excites due to collision with gas molecules or the side wall of the passing member, so that it cannot reach the surface of the upper electrode 3). As a result, by forming the first planar member 4 and the second planar member 5 with a material such as quartz, it is possible to prevent metal contamination and foreign matter from the upper electrode member formed of a metal that is a conductor. From the viewpoint of metal contamination, it is particularly effective when the plasma is corrosive.

次に図1、図2、図3における第1の溝7および第2の溝9について説明する。本実施例では、第1の溝7および第2の溝9を第1の平面状部材4の表裏に形成し、その溝幅を3mm、溝高さを0.3mmとした。第1の溝7および第2の溝9は、図3に示すように同心円状の同一径に配置されたガス孔を連結するように形成した。図3に示す構成では、同心円状に配置したガス孔の径方向のピッチを10mm(径方向のガス孔間距離)とした。よって第1の溝7および第2の溝9の溝幅は各径に配置されるガス孔間が十分分離できる程度の幅として3mm(各径間のガス遮蔽幅7mm)とした。また第1の溝7および第2の溝9の溝の溝高さは該溝内での異常放電を抑制する目的で0.3mmとしている。プラズマ形成に用いる高周波電力の電界は、上部電極3、第1の平面状部材4および第2の平面状部材5の厚み方向に作用する。よって、該電界は第1の溝7および第2の溝9の溝高さ方向に作用することになり、異常放電の防止には該溝高さが重要なパラメータとなる。図6に空間での放電しやすさの目安として用いられるパッシェンの法則に基づく放電開始電圧のpd積(電界作用方向の距離と圧力の積)依存性を示す。図6から横軸であるpd積(電界作用方向の距離と圧力の積)が1.5Torr・cm以下の場合、放電開始電圧が急激に高くなることが確認できる。放電開始電圧が高くなるということは、放電が発生しにくくなることを意味する。本実施例では放電空間11の処理圧力が1×10−3Torrから0.15Torrの範囲であり、ガス流量は最大2000sccmである。この使用条件では、第1の溝7および第2の溝9部の圧力は最大15Torr程度となる。第1の溝7および第2の溝9内の最大圧力と図6とから、異常放電の防止には溝高さ×圧力(pd積)が1.5Torr・cm以下となることが望ましいと言える。よって、第1の溝7および第2の溝9の溝高さを1mm以下とすることで異常放電を抑制できることがわかる。本実施例では、さらに安全性を高める目的で第1の溝7および第2の溝9の溝高さを0.3mm(pd積0.5Torr・cm以下)とした。第1の溝7および第2の溝9の溝幅(本実施例では3mm)を比較的大きくできることで溝高さが0.3mmと異常放電に対して十分マージンを持っても平面方向のガスコンダクタンスを十分確保することができ、図3に示した各径内に均一なガスを供給することが可能となる。また溝幅は、あまり広くすると上部電極3、第1の平面状部材4、第2の平面状部材5それぞれの接触面積が小さくなってしまう。通常上部電極は上部電極温度制御手段24により温度制御されており、接触面積が小さいと各部材間での熱伝達が十分行えず、特にプラズマに接する第2の平面状部材5の温度制御が困難となる。よって、溝幅は各部材間の接触面積が50%以上確保できる程度の幅を有することが望ましい。また図3に示す構成では、第1の溝7および第2の溝9を同心円状に配置したが、各ガス孔を連結してガス流路として作用するならば放射状やら螺旋状、格子状に配置してもよい。但し、電界分布を考慮すると同心円状や格子状が望ましい。 Next, the first groove 7 and the second groove 9 in FIGS. 1, 2 and 3 will be described. In this example, the first groove 7 and the second groove 9 were formed on the front and back of the first planar member 4, and the groove width was 3 mm and the groove height was 0.3 mm. The first groove 7 and the second groove 9 were formed so as to connect gas holes arranged concentrically with the same diameter as shown in FIG. In the configuration shown in FIG. 3, the pitch in the radial direction of the gas holes arranged concentrically is 10 mm (distance between the gas holes in the radial direction). Therefore, the groove widths of the first groove 7 and the second groove 9 are set to 3 mm (gas shielding width 7 mm between each diameter) as a width that can sufficiently separate the gas holes arranged in each diameter. The groove height of the first groove 7 and the second groove 9 is set to 0.3 mm for the purpose of suppressing abnormal discharge in the grooves. The electric field of the high frequency power used for plasma formation acts in the thickness direction of the upper electrode 3, the first planar member 4, and the second planar member 5. Therefore, the electric field acts in the groove height direction of the first groove 7 and the second groove 9, and the groove height is an important parameter for preventing abnormal discharge. FIG. 6 shows the dependence of the discharge start voltage on the pd product (the product of the distance in the field action direction and the pressure) based on Paschen's law, which is used as a measure of the ease of discharge in space. It can be confirmed from FIG. 6 that when the pd product (the product of the distance in the electric field action direction and the pressure) on the horizontal axis is 1.5 Torr · cm or less, the discharge start voltage rapidly increases. A high discharge start voltage means that it is difficult for discharge to occur. In this embodiment, the processing pressure of the discharge space 11 is in the range of 1 × 10 −3 Torr to 0.15 Torr, and the gas flow rate is 2000 sccm at the maximum. Under this use condition, the pressure in the first groove 7 and the second groove 9 is about 15 Torr at maximum. From the maximum pressure in the first groove 7 and the second groove 9 and FIG. 6, it can be said that the groove height × pressure (pd product) is preferably 1.5 Torr · cm or less in order to prevent abnormal discharge. . Therefore, it can be seen that abnormal discharge can be suppressed by setting the height of the first groove 7 and the second groove 9 to 1 mm or less. In this example, the height of the first groove 7 and the second groove 9 was set to 0.3 mm (pd product 0.5 Torr · cm or less) for the purpose of further improving safety. Since the groove width (3 mm in this embodiment) of the first groove 7 and the second groove 9 can be made relatively large, the gas in the plane direction can be obtained even if the groove height is 0.3 mm and there is a sufficient margin for abnormal discharge. Sufficient conductance can be secured, and uniform gas can be supplied into each diameter shown in FIG. If the groove width is too large, the contact areas of the upper electrode 3, the first planar member 4, and the second planar member 5 are reduced. Usually, the temperature of the upper electrode is controlled by the upper electrode temperature control means 24. If the contact area is small, heat transfer between the members cannot be sufficiently performed, and in particular, it is difficult to control the temperature of the second planar member 5 in contact with the plasma. It becomes. Therefore, it is desirable that the groove width has such a width that a contact area between the members can be secured by 50% or more. In the configuration shown in FIG. 3, the first groove 7 and the second groove 9 are concentrically arranged. However, if each gas hole is connected to act as a gas flow path, the first groove 7 and the second groove 9 are arranged in a radial, spiral, or lattice shape. You may arrange. However, considering the electric field distribution, a concentric circle shape or a lattice shape is desirable.

本実施例における図1、図2、図3に示す構成では、第1の平面状部材4および第2の平面状部材5の材質を石英(SiO)としたが、他に酸化イットリウム(Y)、酸化アルミニュウム(Al)、炭化ケイ素(SiC)およびケイ素(Si)を用いても同様な効果があることは言うまでもない。また、図1、2、3に示す構成では、第1の平面状部材4および第2の平面状部材5の材質を同一材料(石英)で構成したが、前記したY、Al、SiC、Siおよび石英を組み合わせても同様な効果があることは言うまでもない。特に第2の平面状部材はプラズマ16に接するため、耐プラズマ性の高さを優先して選択することが望ましい。例えば、第2の平面状部材をYで構成し、第1の平面状部材をYまたはその他の材料で構成することで、プラズマによる消耗が少なく本実施例の効果を有した装置が実現可能となる。また被加工試料2に対面する位置に配置される上部電極3は、プラズマの生成と被加工試料2に印加される高周波電圧の対向アースとしての機能を有する。プラズマ生成や被加工試料2に印加される高周波電圧の対向アースの効果には第1の平面状部材4および第2の平面状部材5の導電性や誘電率が影響する。これら観点と前記したプラズマ耐性の観点からも第1の平面状部材4および第2の平面状部材5の材質の組み合わせを考慮することがある。例えば、実施例に示した第1の平面状部材4と第2の平面状部材5を共に石英(SiO)で形成する場合は、プラズマ生成の面では誘電率が低い(石英の比誘電率は約4)ことでプラズマ均一化に有利であるが、対向アースとしては誘電率が低いためインピーダンスが高くなることで不利となる。そこで第1の平面状部材4を石英で構成し、第2の平面状部材5を誘電率が高く対向アースとしてのインピーダンスを低くできるY(Yの比誘電率は約11で石英に比べ約2.75倍高い)で構成することで、実施例に記載した構成に対して対向アースとしての機能を高められると同時にプラズマ耐性を高めることが可能となる。 In the configuration shown in FIGS. 1, 2, and 3 in the present embodiment, the material of the first planar member 4 and the second planar member 5 is quartz (SiO 2 ), but yttrium oxide (Y Needless to say, the same effect can be obtained by using 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC) and silicon (Si). In the configuration shown in FIGS. 1, 2, and 3, the first planar member 4 and the second planar member 5 are made of the same material (quartz), but the above-described Y 2 O 3 and Al 2 are used. Needless to say, a combination of O 3 , SiC, Si and quartz has the same effect. In particular, since the second planar member is in contact with the plasma 16, it is desirable to select it with priority on the high plasma resistance. For example, the second planar member is made of Y 2 O 3 and the first planar member is made of Y 2 O 3 or other materials, so that the effect of the present embodiment is reduced with less plasma consumption. The device can be realized. Further, the upper electrode 3 disposed at a position facing the sample 2 to be processed has a function as a counter ground for generating plasma and applying a high frequency voltage to the sample 2 to be processed. The conductivity and dielectric constant of the first planar member 4 and the second planar member 5 affect the plasma generation and the effect of opposing grounding of the high-frequency voltage applied to the sample 2 to be processed. From these viewpoints and from the viewpoint of plasma resistance, a combination of materials of the first planar member 4 and the second planar member 5 may be considered. For example, when both the first planar member 4 and the second planar member 5 shown in the embodiment are made of quartz (SiO 2 ), the dielectric constant is low in terms of plasma generation (the relative dielectric constant of quartz). 4) is advantageous for plasma homogenization, but is disadvantageous because the impedance is high because the dielectric constant is low as the opposite ground. Therefore, the first planar member 4 is made of quartz, and the second planar member 5 has a high dielectric constant and can reduce the impedance as an opposing ground. Y 2 O 3 (the relative dielectric constant of Y 2 O 3 is about 11) In this case, it is possible to increase the function as an opposing ground with respect to the structure described in the embodiment and at the same time increase the plasma resistance.

本実施例では、プラズマの形成に200MHzの高周波電力、被加工試料2に印加する高周波電力を4MHzとしたが、他の周波数によるプラズマ生成および被加工試料バイアスを実施する場合においても本発明は同様な効果があることは言うまでもない。また同様にソレノイドコイル15による磁場の無い構成においても同様な効果があることは言うまでもない。   In this embodiment, the high-frequency power of 200 MHz is used for plasma formation and the high-frequency power applied to the workpiece 2 is 4 MHz. However, the present invention is the same when performing plasma generation and workpiece bias using other frequencies. Needless to say, there is a positive effect. Similarly, it goes without saying that the same effect can be obtained even in a configuration without a magnetic field by the solenoid coil 15.

また、本実施例では、第2の平面状部材5のガス孔数に対して第1の平面状部材4のガス孔8の数および上部電極3に施されたガス供給部6の数は半分としたが、同等な数またはさらに減少させた数形成してもそれぞれの位置が平面状で一致しないように配置せれていれば同様な効果があることは言うまでもない。   In this embodiment, the number of gas holes 8 in the first planar member 4 and the number of gas supply portions 6 applied to the upper electrode 3 are half of the number of gas holes in the second planar member 5. However, it is needless to say that the same effect can be obtained if the respective positions are arranged so as not to coincide with each other even if the same number or a further reduced number is formed.

また、本実施例では、第1の平面状部材4のガス孔8および第2の平面状部材5のガス孔10の孔径を0.4〜0.5mmとしたが、0.1mm〜1mmの範囲のガス孔径を用いても同様な効果があることは言うまでもない。   In this embodiment, the diameters of the gas holes 8 of the first planar member 4 and the gas holes 10 of the second planar member 5 are 0.4 to 0.5 mm. It goes without saying that the same effect can be obtained even when a gas pore diameter in the range is used.

また、本実施例では上部電極3をアルミまたはスレンレス等の金属で形成したが、その表面および原料ガスが接する部分を酸化シリコン(SiO)、酸化アルミニュウム)Al、酸化イットリウム(Y)、ポリイミドのいずれかでコーティングすることで汚染や異物のさらなる低減を図ることが可能となる。 In this embodiment, the upper electrode 3 is formed of a metal such as aluminum or selenium, but the surface and the portion in contact with the source gas are silicon oxide (SiO 2 ), aluminum oxide) Al 2 O 3 , yttrium oxide (Y 2). By coating with either O 3 ) or polyimide, it becomes possible to further reduce contamination and foreign matters.

図1〜図3に示す構成を有するプラズマエッチング装置を用いて、シリコンウエハ上に形成された半導体膜や絶縁膜をエッチングしたところ、従来に比してガスの均一性、再現性が改善され、放電条件が緩和され、ウエハ汚染や付着異物が低減された。   When etching a semiconductor film or an insulating film formed on a silicon wafer using a plasma etching apparatus having the configuration shown in FIGS. 1 to 3, the uniformity and reproducibility of the gas are improved as compared with the conventional case, Discharge conditions were relaxed, and wafer contamination and attached foreign matter were reduced.

以上、本実施例によれば、平行平板型のプラズマ処理装置であっても、広域なプロセス条件での安定したプラズマ生成と均一性や再現性に優れた加工性能を有するプラズマ処理装置を提供することができる。   As described above, according to the present embodiment, even a parallel plate type plasma processing apparatus provides a plasma processing apparatus having stable plasma generation under a wide range of process conditions and processing performance excellent in uniformity and reproducibility. be able to.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, or replace another configuration for a part of a certain configuration.

本発明は、半導体装置の製造装置、特にリソグラフィー技術によって描かれたパタンをマスクに半導体材料のエッチング処理を行うプラズマエッチング装置に関する。本発明により、被加工試料の対面する位置に配置した平面状のガス供給手段からの均一かつ再現性や安定性の高いガス供給が可能となる。さらに、該平面状のガス供給手段部での異常放電や汚染の発生抑制マージンを大幅に拡大できることで、これら防止のために通常実施する放電条件の制約を大幅に緩和することが可能となる。以上の結果、加工速度の均一性および加工形状の均一性やその再現性を向上させることが可能なプラズマ処理装置が実現できる。   The present invention relates to a semiconductor device manufacturing apparatus, and more particularly to a plasma etching apparatus that performs an etching process of a semiconductor material using a pattern drawn by a lithography technique as a mask. According to the present invention, a uniform, reproducible and highly stable gas supply from a planar gas supply means arranged at a position facing a sample to be processed becomes possible. Furthermore, since the margin for suppressing the occurrence of abnormal discharge and contamination in the planar gas supply means can be greatly expanded, it is possible to greatly relax the restrictions on the discharge conditions that are normally performed to prevent these. As a result, a plasma processing apparatus capable of improving the uniformity of the processing speed, the uniformity of the processing shape, and the reproducibility thereof can be realized.

1…被加工試料設置手段、2…被加工試料、3…上部電極、4…第1の平面状部材、5…第2の平面状部材、6…上部電極に形成されたガス供給部、7…第1の溝、8…第1の平面状部材4のガス孔、9…第2の溝、10…第2の平面状部材5のガス孔、11…放電空間、12…整合器、13…高周波電源、14…真空容器、15…ソレノイドコイル、16…プラズマ、17…高周波電源、18…整合器、19…冷却手段、20…上部電極、21…ガス供給部、22…シャワープレート、23…シャワープレート22のガス孔、24…上部電極温度制御手段、25…等電位面、26…電界。 DESCRIPTION OF SYMBOLS 1 ... Sample to be processed installation means, 2 ... Sample to be processed, 3 ... Upper electrode, 4 ... 1st planar member, 5 ... 2nd planar member, 6 ... Gas supply part formed in upper electrode, 7 DESCRIPTION OF SYMBOLS 1st groove | channel, 8 ... Gas hole of 1st planar member 4, 9 ... 2nd groove | channel, 10 ... Gas hole of 2nd planar member 5, 11 ... Discharge space, 12 ... Matching device, 13 DESCRIPTION OF SYMBOLS ... High frequency power supply, 14 ... Vacuum container, 15 ... Solenoid coil, 16 ... Plasma, 17 ... High frequency power supply, 18 ... Matching device, 19 ... Cooling means, 20 ... Upper electrode, 21 ... Gas supply part, 22 ... Shower plate, 23 ... gas holes in the shower plate 22, 24 ... upper electrode temperature control means, 25 ... equipotential surface, 26 ... electric field.

Claims (24)

試料がプラズマ処理される処理室と、プラズマを生成するための高周波電力が供給され前記プラズマを生成するためのガスが供給されるガス供給部が形成された第一の電極と、前記第一の電極と対向し前記試料が載置される第二の電極とを備えるプラズマ処理装置において、
前記ガス供給部を貫通する複数の第一のガス孔を介してガスが供給され前記第一の電極の下方に配置された第一のガス供給板と前記第一のガス供給板を貫通する複数の第二のガス孔を介してガスが供給され前記第一のガス供給板の下方に配置された第二のガス供給板と前記第一の電極の温度を制御する温度制御手段をさらに備え、
前記第二のガス供給板は、内部を貫通する複数の第三のガス孔を有するとともに前記第二のガス孔を介して供給されたガスを前記第三のガス孔を介して前記処理室内に供給し、
第一のガス流路の各々の上方から前記第一のガス孔が接続され、
前記第一のガス流路の各々の下方から前記第二のガス孔が接続され、
第二のガス流路の各々の上方から前記第二のガス孔が接続され、
前記第二のガス流路の各々の下方から前記第三のガス孔が接続され、
前記第一のガス流路および前記第二のガス流路は、同心円状に前記第一のガス供給板に形成され、
前記第一の電極の材質は導体であり、
前記第一のガス供給板の材質および前記第二のガス供給板の材質は石英であり、
平面図における前記第一のガス流路と前記平面図における前記第二のガス流路は、重なっており、
前記第二のガス供給板の前記平面図における前記第一のガス孔が前記平面図における前記第三のガス孔の一方の隣に位置するように前記第一のガス孔が前記ガス供給部に形成され、
前記平面図における前記第二のガス孔が前記平面図における前記第三のガス孔の他方の隣に位置するように前記第二のガス孔が前記第一のガス供給板に形成され、
前記ガス供給部は、前記第一のガス供給板に接し、
前記第一のガス供給板は、前記第二のガス供給板に接し、
前記第一のガス流路および前記第二のガス流路の断面形状は、溝状であり、
前記第一のガス流路の幅は、前記ガス供給部と前記第一のガス供給板との接触面積が50%以上となる幅であり、
前記第二のガス流路の幅は、前記第一のガス供給板と前記第二のガス供給板との接触面積が50%以上となる幅であり、
前記第一のガス流路の深さおよび前記第二のガス流路の深さは、前記第一のガス流路内および前記第二のガス流路内に発生する電圧が放電開始電圧より小さくなる深さであり、
前記放電開始電圧は、パッシェンの法則に基づいて求められ、前記第一のガス流路内の圧力と前記第一のガス流路の深さとの積が1.5Torr×cm以下となる放電開始電圧であり、
前記第一のガス孔の孔径、前記第二のガス孔の孔径及び前記第三のガス孔の孔径は、それぞれ0.1mm〜1.0mmの範囲内の孔径であることを特徴とするプラズマ処理装置。
A processing chamber in which a sample is plasma-treated, a first electrode in which a high-frequency power for generating plasma is supplied and a gas supply unit to which a gas for generating the plasma is supplied is formed, and the first electrode In a plasma processing apparatus comprising a second electrode facing the electrode and on which the sample is placed,
Plural penetrating the first gas supply plate and the first gas supply plate which gas is disposed below the supplied the first electrode via a plurality of first gas holes extending through the gas supply unit A temperature control means for controlling the temperature of the first electrode and a second gas supply plate disposed below the first gas supply plate to which gas is supplied through the second gas hole;
The second gas supply plate has a plurality of third gas holes penetrating through the second gas supply plate, and supplies the gas supplied through the second gas holes into the processing chamber through the third gas holes. Supply
The first gas hole is connected from above each of the first gas flow paths,
The second gas hole is connected from below each of the first gas flow paths,
The second gas hole is connected from above each of the second gas flow paths,
The third gas hole is connected from below each of the second gas flow paths,
The first gas flow path and the second gas flow path are concentrically formed on the first gas supply plate,
The material of the first electrode is a conductor,
The material of the first gas supply plate and the material of the second gas supply plate are quartz,
The first gas flow path in the plan view and the second gas flow path in the plan view overlap,
The first gas hole is located in the gas supply section so that the first gas hole in the plan view of the second gas supply plate is located next to one of the third gas holes in the plan view. Formed,
The second gas hole is formed in the first gas supply plate so that the second gas hole in the plan view is located next to the other of the third gas hole in the plan view;
The gas supply unit is in contact with the first gas supply plate,
The first gas supply plate is in contact with the second gas supply plate,
The cross-sectional shape of the first gas channel and the second gas channel is a groove shape,
The width of the first gas flow path is such that the contact area between the gas supply part and the first gas supply plate is 50% or more,
The width of the second gas flow path is such that the contact area between the first gas supply plate and the second gas supply plate is 50% or more,
The depth of the first gas channel and the depth of the second gas channel are such that the voltage generated in the first gas channel and the second gas channel is smaller than the discharge start voltage. The depth to be
The discharge start voltage is obtained based on Paschen's law, and the product of the pressure in the first gas flow path and the depth of the first gas flow path is 1.5 Torr × cm or less. And
The plasma treatment characterized in that the hole diameter of the first gas hole, the hole diameter of the second gas hole, and the hole diameter of the third gas hole are each in the range of 0.1 mm to 1.0 mm. apparatus.
請求項1に記載のプラズマ処理装置において、
前記処理室内に磁場を形成する磁場形成手段をさらに備え、
前記プラズマを生成するための高周波電力は、200MHzの高周波電力であり、
前記第二の電極に供給される高周波電力は、4MHzの高周波電力であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
Magnetic field forming means for forming a magnetic field in the processing chamber;
The high frequency power for generating the plasma is high frequency power of 200 MHz,
The high frequency power supplied to the second electrode is a high frequency power of 4 MHz .
請求項2に記載のプラズマ処理装置において、
前記第一のガス孔の数および前記第二のガス孔の数は、前記第三のガス孔の数の半分であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 2, wherein
The plasma processing apparatus , wherein the number of the first gas holes and the number of the second gas holes are half of the number of the third gas holes .
試料がプラズマ処理される処理室と、プラズマを生成するための高周波電力が供給され前記プラズマを生成するためのガスが供給されるガス供給部が形成された第一の電極と、前記第一の電極と対向し前記試料が載置される第二の電極とを備えるプラズマ処理装置において、
前記ガス供給部を貫通する複数の第一のガス孔を介してガスが供給され前記第一の電極の下方に配置された第一のガス供給板と前記第一のガス供給板を貫通する複数の第二のガス孔を介してガスが供給され前記第一のガス供給板の下方に配置された第二のガス供給板と前記第一の電極の温度を制御する温度制御手段をさらに備え、
前記第二のガス供給板は、内部を貫通する複数の第三のガス孔を有するとともに前記第二のガス孔を介して供給されたガスを前記第三のガス孔を介して前記処理室内に供給し、
第一のガス流路の各々の上方から前記第一のガス孔が接続され、
前記第一のガス流路の各々の下方から前記第二のガス孔が接続され、
第二のガス流路の各々の上方から前記第二のガス孔が接続され、
前記第二のガス流路の各々の下方から前記第三のガス孔が接続され、
前記第一のガス流路および前記第二のガス流路は、放射状、螺旋状または格子状に前記第一のガス供給板に形成され、
前記第一の電極の材質は導体であり、
平面図における前記第一のガス流路と前記平面図における前記第二のガス流路は、重なっており
前記第二のガス供給板の前記平面図における前記第一のガス孔が前記平面図における前記第三のガス孔の一方の隣に位置するように前記第一のガス孔が前記ガス供給部に形成され、
前記平面図における前記第二のガス孔が前記平面図における前記第三のガス孔の他方の隣に位置するように前記第二のガス孔が前記第一のガス供給板に形成され、
前記ガス供給部は、前記第一のガス供給板に接し、
前記第一のガス供給板は、前記第二のガス供給板に接し、
前記第一のガス流路および前記第二のガス流路の断面形状は、溝状であり、
前記第一のガス流路の幅は、前記ガス供給部と前記第一のガス供給板との接触面積が50%以上となる幅であり、
前記第二のガス流路の幅は、前記第一のガス供給板と前記第二のガス供給板との接触面積が50%以上となる幅であり、
前記第一のガス流路の深さおよび前記第二のガス流路の深さは、前記第一のガス流路内および前記第二のガス流路内に発生する電圧が放電開始電圧より小さくなる深さであり、
前記放電開始電圧は、パッシェンの法則に基づいて求められ、前記第一のガス流路内の圧力と前記第一のガス流路の深さとの積が1.5Torr×cm以下となる放電開始電圧であり、
前記第一のガス孔の孔径、前記第二のガス孔の孔径及び前記第三のガス孔の孔径は、それぞれ0.1mm〜1.0mmの範囲内の孔径であることを特徴とするプラズマ処理装置。
A processing chamber in which a sample is plasma-treated, a first electrode in which a high-frequency power for generating plasma is supplied and a gas supply unit to which a gas for generating the plasma is supplied is formed, and the first electrode In a plasma processing apparatus comprising a second electrode facing the electrode and on which the sample is placed,
Plural penetrating the first gas supply plate and the first gas supply plate which gas is disposed below the supplied the first electrode via a plurality of first gas holes extending through the gas supply unit A temperature control means for controlling the temperature of the first electrode and a second gas supply plate disposed below the first gas supply plate to which gas is supplied through the second gas hole;
The second gas supply plate has a plurality of third gas holes penetrating through the second gas supply plate, and supplies the gas supplied through the second gas holes into the processing chamber through the third gas holes. Supply
The first gas hole is connected from above each of the first gas flow paths,
The second gas hole is connected from below each of the first gas flow paths,
The second gas hole is connected from above each of the second gas flow paths,
The third gas hole is connected from below each of the second gas flow paths,
The first gas flow path and the second gas flow path are formed on the first gas supply plate in a radial, spiral or lattice shape,
The material of the first electrode is a conductor,
The first gas flow path in the plan view and the second gas flow path in the plan view overlap ,
The first gas hole is located in the gas supply section so that the first gas hole in the plan view of the second gas supply plate is located next to one of the third gas holes in the plan view. Formed,
The second gas hole is formed in the first gas supply plate so that the second gas hole in the plan view is located next to the other of the third gas hole in the plan view;
The gas supply unit is in contact with the first gas supply plate,
The first gas supply plate is in contact with the second gas supply plate,
The cross-sectional shape of the first gas channel and the second gas channel is a groove shape,
The width of the first gas flow path is such that the contact area between the gas supply part and the first gas supply plate is 50% or more,
The width of the second gas flow path is such that the contact area between the first gas supply plate and the second gas supply plate is 50% or more,
The depth of the first gas channel and the depth of the second gas channel are such that the voltage generated in the first gas channel and the second gas channel is smaller than the discharge start voltage. The depth to be
The discharge start voltage is obtained based on Paschen's law, and the product of the pressure in the first gas flow path and the depth of the first gas flow path is 1.5 Torr × cm or less. And
The plasma treatment characterized in that the hole diameter of the first gas hole, the hole diameter of the second gas hole, and the hole diameter of the third gas hole are each in the range of 0.1 mm to 1.0 mm. apparatus.
請求項4に記載のプラズマ処理装置において、
前記第一のガス供給板の材質および前記第二のガス供給板の材質は石英であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 4, wherein
The plasma processing apparatus, wherein the material of the first gas supply plate and the material of the second gas supply plate are quartz .
請求項4に記載のプラズマ処理装置において、
前記第一のガス供給板の材質は、石英であり、
前記第二のガス供給板の材質は、酸化イットリウム(Y )であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 4, wherein
The material of the first gas supply plate is quartz,
The plasma processing apparatus, wherein the material of the second gas supply plate is yttrium oxide (Y 2 O 3 ) .
請求項5に記載のプラズマ処理装置において、
前記処理室内に磁場を形成する磁場形成手段をさらに備え、
前記プラズマを生成するための高周波電力は、200MHzの高周波電力であり、
前記第二の電極に供給される高周波電力は、4MHzの高周波電力であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 5, wherein
Magnetic field forming means for forming a magnetic field in the processing chamber;
The high frequency power for generating the plasma is high frequency power of 200 MHz,
The high frequency power supplied to the second electrode is a high frequency power of 4 MHz .
請求項7に記載のプラズマ処理装置において、
前記第一のガス孔の数および前記第二のガス孔の数は、前記第三のガス孔の数の半分であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 7, wherein
The plasma processing apparatus , wherein the number of the first gas holes and the number of the second gas holes are half of the number of the third gas holes .
請求項6に記載のプラズマ処理装置において、
前記処理室内に磁場を形成する磁場形成手段をさらに備え、
前記プラズマを生成するための高周波電力は、200MHzの高周波電力であり、
前記第二の電極に供給される高周波電力は、4MHzの高周波電力であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 6, wherein
Magnetic field forming means for forming a magnetic field in the processing chamber;
The high frequency power for generating the plasma is high frequency power of 200 MHz,
The high frequency power supplied to the second electrode is a high frequency power of 4 MHz .
請求項9に記載のプラズマ処理装置において、
前記第一のガス孔の数および前記第二のガス孔の数は、前記第三のガス孔の数の半分であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 9, wherein
The plasma processing apparatus , wherein the number of the first gas holes and the number of the second gas holes are half of the number of the third gas holes .
試料がプラズマ処理される処理室と、プラズマを生成するための高周波電力が供給され前記プラズマを生成するためのガスが供給されるガス供給部が形成された第一の電極と、前記第一の電極と対向し前記試料が載置される第二の電極とを備えるプラズマ処理装置において、
前記ガス供給部を貫通する複数の第一のガス孔を介してガスが供給され前記第一の電極の下方に配置された第一のガス供給板と前記第一のガス供給板を貫通する複数の第二のガス孔を介してガスが供給され前記第一のガス供給板の下方に配置された第二のガス供給板と前記第一の電極の温度を制御する温度制御手段をさらに備え、
前記第二のガス供給板は、内部を貫通する複数の第三のガス孔を有するとともに前記第二のガス孔を介して供給されたガスを前記第三のガス孔を介して前記処理室内に供給し、
第一のガス流路の各々の上方から前記第一のガス孔が接続され、
前記第一のガス流路の各々の下方から前記第二のガス孔が接続され、
第二のガス流路の各々の上方から前記第二のガス孔が接続され、
前記第二のガス流路の各々の下方から前記第三のガス孔が接続され、
前記第一のガス流路および前記第二のガス流路は、前記第一のガス供給板に形成され、
前記第一の電極の材質は導体であり、
前記第一のガス供給板の材質は、石英であり、
前記第二のガス供給板の材質は、酸化イットリウム(Y )であり、
平面図における前記第一のガス流路と前記平面図における前記第二のガス流路は、重なっており、
前記第二のガス供給板の前記平面図における前記第一のガス孔が前記平面図における前記第三のガス孔の一方の隣に位置するように前記第一のガス孔が前記ガス供給部に形成され、
前記平面図における前記第二のガス孔が前記平面図における前記第三のガス孔の他方の隣に位置するように前記第二のガス孔が前記第一のガス供給板に形成され、
前記ガス供給部は、前記第一のガス供給板に接し、
前記第一のガス供給板は、前記第二のガス供給板に接し、
前記第一のガス流路および前記第二のガス流路の断面形状は、溝状であり、
前記第一のガス流路の幅は、前記ガス供給部と前記第一のガス供給板との接触面積が50%以上となる幅であり、
前記第二のガス流路の幅は、前記第一のガス供給板と前記第二のガス供給板との接触面積が50%以上となる幅であり、
前記第一のガス流路の深さおよび前記第二のガス流路の深さは、前記第一のガス流路内および前記第二のガス流路内に発生する電圧が放電開始電圧より小さくなる深さであり、
前記放電開始電圧は、パッシェンの法則に基づいて求められ、前記第一のガス流路内の圧力と前記第一のガス流路の深さとの積が1.5Torr×cm以下となる放電開始電圧であり、
前記第一のガス孔の孔径、前記第二のガス孔の孔径及び前記第三のガス孔の孔径は、それぞれ0.1mm〜1.0mmの範囲内の孔径であることを特徴とするプラズマ処理装置。
A processing chamber in which a sample is plasma-treated, a first electrode in which a high-frequency power for generating plasma is supplied and a gas supply unit to which a gas for generating the plasma is supplied is formed, and the first electrode In a plasma processing apparatus comprising a second electrode facing the electrode and on which the sample is placed,
A gas is supplied through a plurality of first gas holes penetrating the gas supply part, and a first gas supply plate disposed below the first electrode and a plurality of penetrating the first gas supply plate A temperature control means for controlling the temperature of the first electrode and a second gas supply plate disposed below the first gas supply plate to which gas is supplied through the second gas hole;
The second gas supply plate has a plurality of third gas holes penetrating through the second gas supply plate, and supplies the gas supplied through the second gas holes into the processing chamber through the third gas holes. Supply
The first gas hole is connected from above each of the first gas flow paths,
The second gas hole is connected from below each of the first gas flow paths,
The second gas hole is connected from above each of the second gas flow paths,
The third gas hole is connected from below each of the second gas flow paths,
The first gas flow path and the second gas flow path are formed in the first gas supply plate,
The material of the first electrode is a conductor,
The material of the first gas supply plate is quartz,
The material of the second gas supply plate is yttrium oxide (Y 2 O 3 ),
The first gas flow path in the plan view and the second gas flow path in the plan view overlap,
The first gas hole is located in the gas supply section so that the first gas hole in the plan view of the second gas supply plate is located next to one of the third gas holes in the plan view. Formed,
The second gas hole is formed in the first gas supply plate so that the second gas hole in the plan view is located next to the other of the third gas hole in the plan view;
The gas supply unit is in contact with the first gas supply plate,
The first gas supply plate is in contact with the second gas supply plate,
The cross-sectional shape of the first gas channel and the second gas channel is a groove shape,
The width of the first gas flow path is such that the contact area between the gas supply part and the first gas supply plate is 50% or more,
The width of the second gas flow path is such that the contact area between the first gas supply plate and the second gas supply plate is 50% or more,
The depth of the first gas channel and the depth of the second gas channel are such that the voltage generated in the first gas channel and the second gas channel is smaller than the discharge start voltage. The depth to be
The discharge start voltage is obtained based on Paschen's law, and the product of the pressure in the first gas flow path and the depth of the first gas flow path is 1.5 Torr × cm or less. And
The plasma treatment characterized in that the hole diameter of the first gas hole, the hole diameter of the second gas hole, and the hole diameter of the third gas hole are each in the range of 0.1 mm to 1.0 mm. apparatus.
請求項11に記載のプラズマ処理装置において、
前記第一のガス流路および前記第二のガス流路は、同心円状に前記第一のガス供給板に形成されていることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 11, wherein
The plasma processing apparatus, wherein the first gas channel and the second gas channel are concentrically formed on the first gas supply plate .
請求項11に記載のプラズマ処理装置において、
前記第一のガス流路および前記第二のガス流路は、放射状に前記第一のガス供給板に形成されていることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 11, wherein
The plasma processing apparatus, wherein the first gas channel and the second gas channel are radially formed on the first gas supply plate .
請求項11に記載のプラズマ処理装置において、
前記第一のガス流路および前記第二のガス流路は、螺旋状に前記第一のガス供給板に形成されていることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 11, wherein
The plasma processing apparatus, wherein the first gas passage and the second gas passage are spirally formed on the first gas supply plate .
請求項11に記載のプラズマ処理装置において、
前記第一のガス流路および前記第二のガス流路は、格子状に前記第一のガス供給板に形成されていることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 11, wherein
The plasma processing apparatus, wherein the first gas channel and the second gas channel are formed on the first gas supply plate in a lattice shape.
請求項12に記載のプラズマ処理装置において、
前記処理室内に磁場を形成する磁場形成手段をさらに備え、
前記プラズマを生成するための高周波電力は、200MHzの高周波電力であり、
前記第二の電極に供給される高周波電力は、4MHzの高周波電力であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 12, wherein
Magnetic field forming means for forming a magnetic field in the processing chamber;
The high frequency power for generating the plasma is high frequency power of 200 MHz,
The high frequency power supplied to the second electrode is a high frequency power of 4 MHz .
請求項13に記載のプラズマ処理装置において、The plasma processing apparatus according to claim 13, wherein
前記処理室内に磁場を形成する磁場形成手段をさらに備え、Magnetic field forming means for forming a magnetic field in the processing chamber;
前記プラズマを生成するための高周波電力は、200MHzの高周波電力であり、The high frequency power for generating the plasma is high frequency power of 200 MHz,
前記第二の電極に供給される高周波電力は、4MHzの高周波電力であることを特徴とするプラズマ処理装置。The high frequency power supplied to the second electrode is a high frequency power of 4 MHz.
請求項14に記載のプラズマ処理装置において、The plasma processing apparatus according to claim 14, wherein
前記処理室内に磁場を形成する磁場形成手段をさらに備え、Magnetic field forming means for forming a magnetic field in the processing chamber;
前記プラズマを生成するための高周波電力は、200MHzの高周波電力であり、The high frequency power for generating the plasma is high frequency power of 200 MHz,
前記第二の電極に供給される高周波電力は、4MHzの高周波電力であることを特徴とするプラズマ処理装置。The high frequency power supplied to the second electrode is a high frequency power of 4 MHz.
請求項15に記載のプラズマ処理装置において、The plasma processing apparatus according to claim 15, wherein
前記処理室内に磁場を形成する磁場形成手段をさらに備え、Magnetic field forming means for forming a magnetic field in the processing chamber;
前記プラズマを生成するための高周波電力は、200MHzの高周波電力であり、The high frequency power for generating the plasma is high frequency power of 200 MHz,
前記第二の電極に供給される高周波電力は、4MHzの高周波電力であることを特徴とするプラズマ処理装置。The high frequency power supplied to the second electrode is a high frequency power of 4 MHz.
試料がプラズマ処理される処理室と、プラズマを生成するための高周波電力が供給され前記プラズマを生成するためのガスが供給されるガス供給部が形成された第一の電極と、前記第一の電極と対向し前記試料が載置される第二の電極とを備えるプラズマ処理装置において、A processing chamber in which a sample is plasma-treated, a first electrode in which a high-frequency power for generating plasma is supplied and a gas supply unit to which a gas for generating the plasma is supplied is formed, and the first electrode In a plasma processing apparatus comprising a second electrode facing the electrode and on which the sample is placed,
前記ガス供給部を貫通する複数の第一のガス孔を介してガスが供給され前記第一の電極の下方に配置された第一のガス供給板と前記第一のガス供給板を貫通する複数の第二のガス孔を介してガスが供給され前記第一のガス供給板の下方に配置された第二のガス供給板と前記第一の電極の温度を制御する温度制御手段をさらに備え、A gas is supplied through a plurality of first gas holes penetrating the gas supply part, and a first gas supply plate disposed below the first electrode and a plurality of penetrating the first gas supply plate A temperature control means for controlling the temperature of the first electrode and a second gas supply plate disposed below the first gas supply plate to which gas is supplied through the second gas hole;
前記第二のガス供給板は、内部を貫通する複数の第三のガス孔を有するとともに前記第二のガス孔を介して供給されたガスを前記第三のガス孔を介して前記処理室内に供給し、The second gas supply plate has a plurality of third gas holes penetrating through the second gas supply plate, and supplies the gas supplied through the second gas holes into the processing chamber through the third gas holes. Supply
第一のガス流路の各々の上方から前記第一のガス孔が接続され、The first gas hole is connected from above each of the first gas flow paths,
前記第一のガス流路の各々の下方から前記第二のガス孔が接続され、The second gas hole is connected from below each of the first gas flow paths,
第二のガス流路の各々の上方から前記第二のガス孔が接続され、The second gas hole is connected from above each of the second gas flow paths,
前記第二のガス流路の各々の下方から前記第三のガス孔が接続され、The third gas hole is connected from below each of the second gas flow paths,
前記第一のガス流路および前記第二のガス流路は、格子状に前記第一のガス供給板に形成され、The first gas flow path and the second gas flow path are formed in the first gas supply plate in a lattice shape,
前記第一の電極の材質は導体であり、The material of the first electrode is a conductor,
平面図における前記第一のガス流路と前記平面図における前記第二のガス流路は、重なっており、The first gas flow path in the plan view and the second gas flow path in the plan view overlap,
前記第二のガス供給板の前記平面図における前記第一のガス孔が前記平面図における前記第三のガス孔の一方の隣に位置するように前記第一のガス孔が前記ガス供給部に形成され、The first gas hole is located in the gas supply section so that the first gas hole in the plan view of the second gas supply plate is located next to one of the third gas holes in the plan view. Formed,
前記平面図における前記第二のガス孔が前記平面図における前記第三のガス孔の他方の隣に位置するように前記第二のガス孔が前記第一のガス供給板に形成され、The second gas hole is formed in the first gas supply plate so that the second gas hole in the plan view is located next to the other of the third gas hole in the plan view;
前記ガス供給部は、前記第一のガス供給板に接し、The gas supply unit is in contact with the first gas supply plate,
前記第一のガス供給板は、前記第二のガス供給板に接し、The first gas supply plate is in contact with the second gas supply plate,
前記第一のガス流路および前記第二のガス流路の断面形状は、溝状であり、The cross-sectional shape of the first gas channel and the second gas channel is a groove shape,
前記第一のガス流路の幅は、前記ガス供給部と前記第一のガス供給板との接触面積が50%以上となる幅であり、The width of the first gas flow path is such that the contact area between the gas supply part and the first gas supply plate is 50% or more,
前記第二のガス流路の幅は、前記第一のガス供給板と前記第二のガス供給板との接触面積が50%以上となる幅であり、The width of the second gas flow path is such that the contact area between the first gas supply plate and the second gas supply plate is 50% or more,
前記第一のガス流路の深さおよび前記第二のガス流路の深さは、前記第一のガス流路内および前記第二のガス流路内に発生する電圧が放電開始電圧より小さくなる深さであり、The depth of the first gas channel and the depth of the second gas channel are such that the voltage generated in the first gas channel and the second gas channel is smaller than the discharge start voltage. The depth to be
前記放電開始電圧は、パッシェンの法則に基づいて求められ、前記第一のガス流路内の圧力と前記第一のガス流路の深さとの積が1.5Torr×cm以下となる放電開始電圧であり、The discharge start voltage is obtained based on Paschen's law, and the product of the pressure in the first gas flow path and the depth of the first gas flow path is 1.5 Torr × cm or less. And
前記第一のガス孔の孔径、前記第二のガス孔の孔径及び前記第三のガス孔の孔径は、それぞれ0.1mm〜1.0mmの範囲内の孔径であることを特徴とするプラズマ処理装置。The plasma treatment characterized in that the hole diameter of the first gas hole, the hole diameter of the second gas hole, and the hole diameter of the third gas hole are each in the range of 0.1 mm to 1.0 mm. apparatus.
請求項20に記載のプラズマ処理装置において、The plasma processing apparatus according to claim 20,
前記第一のガス供給板の材質および前記第二のガス供給板の材質は石英であることを特徴とするプラズマ処理装置。The plasma processing apparatus, wherein the material of the first gas supply plate and the material of the second gas supply plate are quartz.
請求項20に記載のプラズマ処理装置において、The plasma processing apparatus according to claim 20,
前記第一のガス供給板の材質は、石英であり、The material of the first gas supply plate is quartz,
前記第二のガス供給板の材質は、酸化イットリウム(YThe material of the second gas supply plate is yttrium oxide (Y 2 O 3 )であることを特徴とするプラズマ処理装置。The plasma processing apparatus characterized by the above-mentioned.
請求項21に記載のプラズマ処理装置において、The plasma processing apparatus according to claim 21, wherein
前記処理室内に磁場を形成する磁場形成手段をさらに備え、Magnetic field forming means for forming a magnetic field in the processing chamber;
前記プラズマを生成するための高周波電力は、200MHzの高周波電力であり、The high frequency power for generating the plasma is high frequency power of 200 MHz,
前記第二の電極に供給される高周波電力は、4MHzの高周波電力であることを特徴とするプラズマ処理装置。The high frequency power supplied to the second electrode is a high frequency power of 4 MHz.
請求項22に記載のプラズマ処理装置において、The plasma processing apparatus according to claim 22,
前記処理室内に磁場を形成する磁場形成手段をさらに備え、Magnetic field forming means for forming a magnetic field in the processing chamber;
前記プラズマを生成するための高周波電力は、200MHzの高周波電力であり、The high frequency power for generating the plasma is high frequency power of 200 MHz,
前記第二の電極に供給される高周波電力は、4MHzの高周波電力であることを特徴とするプラズマ処理装置。The high frequency power supplied to the second electrode is a high frequency power of 4 MHz.
JP2017015281A 2017-01-31 2017-01-31 Plasma processing equipment Active JP6368808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017015281A JP6368808B2 (en) 2017-01-31 2017-01-31 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015281A JP6368808B2 (en) 2017-01-31 2017-01-31 Plasma processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012229710A Division JP2014082354A (en) 2012-10-17 2012-10-17 Plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2017107864A JP2017107864A (en) 2017-06-15
JP6368808B2 true JP6368808B2 (en) 2018-08-01

Family

ID=59060085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015281A Active JP6368808B2 (en) 2017-01-31 2017-01-31 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP6368808B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287162A (en) * 2005-04-05 2006-10-19 Nisshinbo Ind Inc Composite electrode plate, its usage, and plasma etching device mounted therewith
JP4557814B2 (en) * 2005-06-09 2010-10-06 パナソニック株式会社 Plasma processing equipment
JP4819411B2 (en) * 2005-06-22 2011-11-24 東京エレクトロン株式会社 Plasma processing equipment
TWI423308B (en) * 2005-09-01 2014-01-11 Panasonic Corp A plasma processing apparatus, a plasma processing method, and a dielectric window for use therefor and a method of manufacturing the same
JP5010234B2 (en) * 2006-10-23 2012-08-29 北陸成型工業株式会社 Shower plate in which gas discharge hole member is integrally sintered and manufacturing method thereof
JP2010263049A (en) * 2009-05-01 2010-11-18 Ulvac Japan Ltd Dry etching apparatus
JP5455462B2 (en) * 2009-06-23 2014-03-26 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP5702964B2 (en) * 2010-07-27 2015-04-15 日本発條株式会社 Ground electrode contact and method of manufacturing the same

Also Published As

Publication number Publication date
JP2017107864A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
KR101495230B1 (en) Plasma treatment apparatus
TWI720010B (en) Plasma etching systems and methods with secondary plasma injection
KR101039087B1 (en) Plasma processing apparatus
EP2490245B1 (en) Upper electrode and plasma processing apparatus
US11004716B2 (en) Electrostatic chuck assembly and semiconductor manufacturing apparatus including the same
JP4995907B2 (en) Apparatus for confining plasma, plasma processing apparatus and semiconductor substrate processing method
JP5377587B2 (en) Antenna, plasma processing apparatus, and plasma processing method
JP2019004141A (en) Semiconductor processing chamber improving flow of precursor
US10418224B2 (en) Plasma etching method
JP5455462B2 (en) Plasma processing equipment
JP2019009424A (en) Multi-zone semiconductor substrate supports
TW201929037A (en) Plasma processing apparatus
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
TW202027161A (en) Method for etching, and plasma processing device
JP5367000B2 (en) Plasma processing equipment
JP6368808B2 (en) Plasma processing equipment
JP7133454B2 (en) Plasma processing equipment
JP5568608B2 (en) Plasma processing equipment
JP6551673B2 (en) Plasma processing apparatus and plasma processing method
JP2004186404A (en) Plasma processing apparatus
JP2017120847A (en) Plasma processing device
JP2022166511A (en) Electrode for plasma processing device and plasma processing device
JP2004241592A (en) Plasma processing apparatus
JP2019160714A (en) Plasma processing apparatus
JPH07263411A (en) Plasma etching device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6368808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350