JP2004241592A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2004241592A
JP2004241592A JP2003028900A JP2003028900A JP2004241592A JP 2004241592 A JP2004241592 A JP 2004241592A JP 2003028900 A JP2003028900 A JP 2003028900A JP 2003028900 A JP2003028900 A JP 2003028900A JP 2004241592 A JP2004241592 A JP 2004241592A
Authority
JP
Japan
Prior art keywords
plasma
processing apparatus
coil
induction
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003028900A
Other languages
Japanese (ja)
Other versions
JP3797975B2 (en
Inventor
Manabu Edamura
学 枝村
Takeshi Miya
豪 宮
Takeshi Yoshioka
健 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003028900A priority Critical patent/JP3797975B2/en
Publication of JP2004241592A publication Critical patent/JP2004241592A/en
Application granted granted Critical
Publication of JP3797975B2 publication Critical patent/JP3797975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a nonuniformity in the circumferential direction caused by the structure of an inductively coupled plasma processing apparatus. <P>SOLUTION: In the plasma processing apparatus comprising an electrode 6 provided inside a processing chamber 1, induction coils 10 that are provided in an upper portion of the processing chamber 1 via an insulative layer 9 and equipped with annular electric conductor covers 11 in contact with the induction coils 10, and a high frequency electric source 13 for feeding electric power to the induction coils 10, induction currents are generated in the annular conductors 11 by the induction coils 10 to apply induction heating to plasma by the induction currents flowing through the conductors 11. An induced magnetic field generated by the induction coils 10 is shielded so as not to leak into a region where the plasma is generated. Since the currents for effecting the induction heating to the plasma flow through the annular conductors 11, there exists no terminal in contrary to the case with a normal coil, so that perfect circumferential directional uniformity of the plasma can be realized. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、液晶ディスプレー用基板等の製造において、エッチングや成膜等の処理に好適なプラズマ処理装置に関するものである。
【0002】
【従来の技術】
半導体デバイスの微細化に対応して、プラズマプロセスにおいては、ウエハ内で均一な処理結果が実現できるプロセス条件(プロセスウインドウ)が年々狭くなってきており、これからのプラズマプロセス装置には、より完全なプロセス状態の制御が求められている。これを実現するためには、プラズマの分布やプロセスガスの解離やリアクタ内の表面反応を極めて高精度に制御できる装置が必要になる。
【0003】
現在、これらのプラズマプロセス装置に用いられるプラズマ源として高周波誘導結合型プラズマ源がある。誘導結合型プラズマ処理装置は、チャンバの一部である石英などの絶縁材を介して処理チャンバの外に配置された、一般的には、ループ、コイル、あるいは、螺旋といった形状をした高周波コイルに、数100kHzから、数100MHzの高周波電力を給電し、コイルによって形成される誘導電界によって、プラズマ中の電子を加速することによって、処理チャンバ内に導入されたプロセスガスにエネルギを供給し、プラズマを発生、維持する方式のプラズマ装置である(例えば、特許文献1参照)。
【0004】
また、コイルをチャンバ内に設けた構造の高周波誘導結合型プラズマ処理装置もあり、このプラズマ処理装置では、高周波誘導コイルである螺旋型のコイルを、チャンバ内の、被処理物である半導体ウエハに対向する位置に設置している(例えば、特許文献2参照)。
【0005】
これらのプラズマ処理装置は、プラズマ中に誘導電流が生じ、電気回路的には、プラズマと高周波コイルが誘導結合している(コイルを一次コイル、プラズマ中の電流を2次コイルとみなしたトランス回路)ため、誘導結合型プラズマ処理装置と呼ばれる。誘導結合型プラズマ処理装置の利点は、単純なコイルと高周波電源という簡単で安価な構成で、数mTorrの低圧下で、1E11〜1E12(cm−3)という比較的高密度のプラズマを発生できること、被処理物に対向して、平面的にコイルを配置することによって、大面積のプラズマを容易に発生させることができること、処理チャンバ内部がシンプルであるがゆえに、処理中に被処理物上に飛来する異物を少なくできる可能性があること等が挙げられる。これらの装置では、低圧下で、高密度のプラズマを発生することによって、イオンの平均自由行程が大きく、被処理物に入射するイオンの方向性がよいので、微細加工に適しており、かつ高い処理速度が得られている。
【0006】
プラズマプロセスで主に処理される被処理物である半導体ウエハは円形をしており、これ用のプラズマ処理装置のチャンバもこれに応じて、水平な内断面が円形をしている。たとえばプラズマエッチング装置においては、中心あるいは側面からガスが導入され、多くの装置においては下側に排気される。ウエハのエッチング結果は完全にウエハ面内で均一であることが望ましいが、反応室内部のプラズマや解離種や反応生成物の分布によってウエハ上の反応の現象が完全に均一であることはない。例えば、反応生成物は、ウエハより生成されるので、どうしても反応室中心部で濃度が高くなる。
【0007】
この濃度不均一によるエッチング不均一をカバーするために、外周でプラズマ密度を中心よりも下げる、あるいは、ウエハの温度を中心部より外周部で低くする等、の手段を講じることにより、ウエハのエッチング結果を均一にする必要がある。
【0008】
一方、ウエハの周方向についても、ガス流れやプラズマ生成の不均一により、不均一性が生じることがあるが、これはウエハ径方向の不均一性と異なり、解決できる不均一である。ガス流れについては、下部の排気構造を最適化することにより、ほとんど周方向に均一にすることができる。誘導結合型プラズマ処理装置においては、その構造に起因する周方向の不均一性が生じる。
【0009】
すなわち、Richard S. Wiseらの論文に記載されているように、コイルには必ず、高周波電源側に接続される端と、設置側に接続される端があり、コイルの構造に起因するプラズマの周方向の不均一が生じる。また、低密度の領域ではコイルにかかる電圧によって直接電子が加速され、容量結合的に生成されるプラズマの影響が無視できない。コイルにかかる電圧は一定ではないので、この容量結合的なプラズマは電圧の高いところで多く生成し、周方向の不均一が生じる(例えば、非特許文献1参照)。
【0010】
このような問題を解決するために、例えば、全く同じ複数のコイルを、一定角度ごとに並列して設置する構造が提案されている(例えば、特許文献3参照)。特許文献3においては、3系統のコイルが、120度おきに設置されている。しかしながら、このような構造をとるとコイルの数が多くなるとともに、コイルへの電力の供給が中心からに限定されてしまい、装置設計上の制約が大きくなる。
【0011】
【特許文献1】
特開平2−235332号公報
【特許文献2】
特開平7−106095号公報
【特許文献3】
米国特許第5753044号明細書
【非特許文献1】
Appl. Phys. Lett. 68, 2499 (1996):Richard S. Wise
【0012】
【発明が解決しようとする課題】
本発明は、前述したような従来技術の問題点である誘導結合プラズマ装置における、周方向のプラズマ不均一の問題を解決し、自在な場所でプラズマを生成し、より広い条件下で、安定したプラズマを高い効率で生成するプラズマ処理装置を提供することを課題とする。
【0013】
【課題を解決するための手段】
上記課題は、次に説明するような構成によって解決される。例えば、誘導コイルに接する形でリング形の導体を設け、まず、プラズマではなくこの導体に誘導電流が流れるようにする。次にリング状の導体に流れる誘導電流によってプラズマが誘導加熱するようにする。誘導コイルによって生成される誘導磁界はプラズマが生成される領域まで漏れないようにシールドしておく。すなわち、通常の装置においては、誘導コイルが一次コイル、プラズマが二次コイルとして誘導結合しプラズマが生成されるが、本発明においては、誘導コイルが一次コイル、リング状の導体が二次コイル、プラズマが三次コイルとなりプラズマが生成される。プラズマを誘導加熱する電流は、リング状の導体に流れる電流であり、通常のコイルのように端をもたないため、完全な周方向のプラズマ均一性が実現される。
【0014】
前記コイルに誘導結合するように設置されたリング状の導体は、円形、リング形、ないしは、概ねこれらの形状と見なせる導電性部材である。
【0015】
【発明の実施の形態】
本発明は、半導体デバイスの製造の分野に限定されるものではなく、液晶ディスプレイの製造や、各種材料の成膜、表面処理に適用が可能であるが、ここでは、半導体デバイス製造用のプラズマエッチング装置を例にとって、実施例を示すことにする。
【0016】
図1に、本発明の一実施例を示す。図中の処理チャンバ1は、例えば、表面をアルマイト処理したアルミニウム製かステンレス製の真空容器であり、電気的に接地されている。処理チャンバ1は、真空排気手段2、および、被処理物である半導体ウエハ3を搬入出するための搬送システム4を備える。処理チャンバ1中には、半導体ウエハ3を載置するための電極6が設置される。搬送システム4により、処理チャンバ中に搬入されたウエハは、電極上に運ばれ、電極6により保持される。電極6には、プラズマ処理中に半導体ウエハ3に入射するイオンのエネルギを制御する目的で、整合器7を介して、高周波電源8が接続される。エッチング処理用のガスが、導入口5より、チャンバ内に導入される。
【0017】
一方、ウエハと対向する位置には、高周波誘導コイル10が、石英やアルミナセラミック等の絶縁材9を介して大気側、ウエハ1の対向面に設置される。高周波誘導コイル10には、それを覆うように図2に示すような構造のリング状の導電体カバー11が設置されている。導電体カバーは誘導コイルとは電気的に絶縁されており、高周波誘導コイルの誘導磁場を妨げるように、すなわち逆向きに導電体カバーに高周波電流が流れる。この導電体カバーは、発熱ロスを少なくするために、表面を銅などの低電気抵抗材料を用いる。また、磁場シールド効果をもたせるための磁性体と2層にしてもよい。
【0018】
高周波誘導コイル10には、整合器12を介して高周波電源13から電力が供給される。
【0019】
また、図3に示すように、誘導電流が流れる部分を規定するために、流れて欲しくない部分にコイルを横切るようにスリット18を設けることが有効である。このとき、スリットの巾が大きいと誘導磁界が外に漏れてしまう。図4にスリット巾と誘導磁場強度との関係を示すように、スリットの巾を狭くする事によって、外に漏れる誘導磁場をさげることができるので、図4より明らかなようにスリットの巾は2mm以下にするのが望ましい。
【0020】
導電体に誘導された電流は、今度はプラズマと誘導結合し、プラズマを生成、維持する。誘導結合プラズマ装置は、着火時、低密度時には、誘導コイルに生じる高電圧によって容量結合的にプラズマが生成することが知られている。図1のような構成にするとコイルに生じる電圧がさほど高くなく、その結果プラズマが着火しなくなるという問題がある。そのため、図1に示した実施例においては、プラズマを着火し、ある一定密度までひきあげるための別のプラズマ源19が設置されている。
【0021】
図5に本発明による別の実施例を示す。図5の実施例においては、図1における別のプラズマ源に相当するものとして、通常の誘導コイル15が処理チャンバの中心付近に設置されている。近年、ウエハが大きくなったことにより処理チャンバ内のプラズマ均一性が重要となっている。プラズマ均一性を制御するためには、複数系統の誘導コイルを設置し、これらのコイルの電流バランスを変える方法が有効である。図5の実施例においては、中心に設置された誘導コイルによりプラズマを着火し、高密度まで引き上げると共に、外周部近傍に設置された導電体を流れる電流により、周方向均一性の優れたプラズマを大面積で生成する。
【0022】
誘導コイル15と導電体11を流れる電流のバランスを制御する事によりプラズマの分布制御が実現される。この中心部に設置された誘導コイル15は、コイル端をもつために、このコイルによって生成されるプラズマは、若干偏心する可能性があるが、中心付近のプラズマ生成よりも外周部のプラズマ生成の方がはるかに軸対称性のよいプラズマの生成には重要である。したがって、外側にある導電体にある程度の電流を流し、外周部でのプラズマ生成が行われている条件においては、周方向の均一性が高いプラズマを生成することができる。
【0023】
図6に本発明による別の実施例を示す。図5の構成に加えて、図7に示したような放射状にスリット18の入った導電性部材であるファラデーシールド16をプラズマと誘導コイル・導電体の間に設置したものである。ファラデーシールドはコイル・導電体とプラズマとの間の容量結合を遮断するシールドで、通常は電気的に接地され、コイルの電圧の効果によるプラズマの周方向の不均一を解消すると共に、絶縁材の消耗を防止する。
【0024】
ファラデーシールドは通常接地されるが、絶縁材表面の反応を制御するためには、図8の実施例に示すように、この部品に高周波電圧を印加することも効果的である。このとき前述のように、誘導結合プラズマ装置は、着火時、低密度時には、誘導コイルに生じる高電圧によって容量結合的にプラズマが生成することが知られているので、このシールドに電圧を印加することにより、プラズマを着火させることができる。すなわち、図1で説明した別のプラズマ源としても機能する。
【0025】
図9は、本発明のさらに別の実施例である。図9においては、ほぼ平板状の導電体17に誘導電流を流して、その電流によってプラズマを生成する。平板状の導電体は、図10に示すようなスリット18が入っており、誘導電流はリング状に繋がった部分を集中して流れる。スリットの巾は、誘導コイルが生成する誘導磁界がプラズマに対して影響しないよう、十分小さくするようことが望ましい(2mm以下)。リング状の部分を流れる誘導電流が、プラズマを効率的に生成する。
【0026】
以上、本発明の実施の形態を半導体デバイス製造用のプラズマエッチング装置を例にとって示したが、本発明は、プラズマエッチング装置に限定されることなく、プラズマCVD装置、プラズマアッシング装置、プラズマスパッタ装置などに適用が可能であり、半導体デバイスの処理のみならず、液晶ディスプレイ基板の処理や、その他、表面処理全般に適用が可能である。
【0027】
【発明の効果】
以上、説明したように、本発明のプラズマ処理装置によれば、周方向の完全なプラズマ均一性が実現される。プラズマエッチング結果も周方向で均一になり、プラズマエッチングプロセス条件を構築する際には、径方向の均一性だけを考慮すればよく、エッチング条件を決めることが簡易かつ迅速になる。その結果、全体としてのプラズマ処理性能、および装置の稼働率が向上し、ハイスループットでの微細なエッチング加工や、高品質な成膜加工、表面処理等が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例にかかるプラズマ処理装置の構造を説明する図。
【図2】本発明の一実施例に用いる誘導コイルの形状を説明する図。
【図3】本発明の一実施例に用いる誘導コイルの形状の変形例を説明する図。
【図4】図4に示した誘導コイルのスリットと誘導磁界の関係を説明する図。
【図5】本発明の一実施例にかかるプラズマ処理装置の構造を説明する図。
【図6】本発明の一実施例にかかるプラズマ処理装置の構造を説明する図。
【図7】本発明に用いるファラデーシールドの形状を説明する図。
【図8】本発明の一実施例にかかるプラズマ処理装置の構造を説明する図。
【図9】本発明の一実施例にかかるプラズマ処理装置の構造を説明する図。
【図10】本発明に用いる平板状の導電体の形状を説明する図。
【符号の説明】
1…処理チャンバ、2…真空排気手段、3…半導体ウエハ、4…搬送システム、5…ガス吹き出し口、6…電極、7…整合器、8…高周波電源、9…絶縁材、10…誘導コイル、11…導電体カバー、12…整合器、13…高周波電源、14…電力分岐回路、15…(内)誘導コイル、16…ファラデーシールド、17…平板状の導電体、18…スリット、19…別のプラズマ源。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma processing apparatus suitable for processing such as etching and film formation in the production of semiconductors, substrates for liquid crystal displays, and the like.
[0002]
[Prior art]
In accordance with the miniaturization of semiconductor devices, in a plasma process, process conditions (process window) capable of achieving a uniform processing result in a wafer are becoming narrower year by year, and a more complete plasma process apparatus will be used in the future. Control of the process state is required. In order to realize this, a device that can control the distribution of plasma, the dissociation of process gas, and the surface reaction in the reactor with extremely high precision is required.
[0003]
At present, there is a high frequency inductively coupled plasma source as a plasma source used in these plasma processing apparatuses. An inductively coupled plasma processing apparatus is generally provided with a high-frequency coil having a shape such as a loop, a coil, or a spiral disposed outside a processing chamber via an insulating material such as quartz which is a part of the chamber. By supplying high frequency power of several hundred kHz to several hundred MHz and accelerating electrons in the plasma by an induced electric field formed by the coil, energy is supplied to the process gas introduced into the processing chamber, and the plasma is supplied. This is a plasma apparatus that generates and maintains a plasma (see, for example, Patent Document 1).
[0004]
There is also a high-frequency inductively coupled plasma processing apparatus having a structure in which a coil is provided in a chamber. In this plasma processing apparatus, a helical coil that is a high-frequency induction coil is attached to a semiconductor wafer that is an object to be processed in a chamber. They are installed at opposing positions (for example, see Patent Document 2).
[0005]
In these plasma processing apparatuses, an induced current is generated in the plasma, and in terms of an electric circuit, the plasma and the high-frequency coil are inductively coupled (a transformer circuit that regards the coil as a primary coil and the current in the plasma as a secondary coil). Therefore, it is called an inductively coupled plasma processing apparatus. The advantage of the inductively coupled plasma processing apparatus is that it can generate relatively high-density plasma of 1E11 to 1E12 (cm−3) under a low pressure of several mTorr with a simple and inexpensive configuration including a simple coil and a high-frequency power supply. By arranging the coil in a plane opposite to the object to be processed, large-area plasma can be easily generated, and since the inside of the processing chamber is simple, it can fly over the object during processing. For example, there is a possibility that the amount of foreign substances to be reduced can be reduced. In these devices, by generating high-density plasma under low pressure, the mean free path of ions is large, and the directionality of ions incident on the object to be processed is good. Processing speed is obtained.
[0006]
A semiconductor wafer, which is an object to be processed mainly in a plasma process, has a circular shape, and a chamber of a plasma processing apparatus for the semiconductor wafer has a circular inner cross section correspondingly. For example, in a plasma etching apparatus, gas is introduced from the center or the side, and in many apparatuses, the gas is exhausted downward. It is desirable that the etching result of the wafer is completely uniform within the wafer surface, but the reaction phenomenon on the wafer is not completely uniform due to the distribution of plasma, dissociated species and reaction products inside the reaction chamber. For example, since the reaction product is generated from the wafer, the concentration always increases in the center of the reaction chamber.
[0007]
In order to cover the etching non-uniformity due to the non-uniform concentration, the plasma density is reduced at the outer periphery from the center or the temperature of the wafer is decreased at the outer periphery from the center, and the wafer is etched. The results need to be uniform.
[0008]
On the other hand, in the circumferential direction of the wafer, non-uniformity may occur due to non-uniformity of gas flow and plasma generation. However, unlike the non-uniformity in the wafer radial direction, the non-uniformity can be solved. The gas flow can be made almost uniform in the circumferential direction by optimizing the lower exhaust structure. In the inductively coupled plasma processing apparatus, there is a non-uniformity in the circumferential direction due to its structure.
[0009]
That is, Richard S.D. As described in Wise et al.'S paper, the coil always has an end connected to the high-frequency power supply side and an end connected to the installation side, and the unevenness in the circumferential direction of the plasma due to the structure of the coil. Occurs. In a low-density region, electrons are directly accelerated by a voltage applied to the coil, and the effect of capacitively generated plasma cannot be ignored. Since the voltage applied to the coil is not constant, a large amount of this capacitively-coupled plasma is generated at a high voltage, causing non-uniformity in the circumferential direction (for example, see Non-Patent Document 1).
[0010]
In order to solve such a problem, for example, a structure has been proposed in which a plurality of identical coils are installed in parallel at a predetermined angle (for example, see Patent Document 3). In Patent Literature 3, three coils are installed every 120 degrees. However, such a structure increases the number of coils and limits the supply of electric power to the coils from the center, thereby increasing restrictions on device design.
[0011]
[Patent Document 1]
JP-A-2-235332 [Patent Document 2]
Japanese Patent Application Laid-Open No. 7-106095 [Patent Document 3]
US Pat. No. 5,753,044 [Non-Patent Document 1]
Appl. Phys. Lett. 68, 2499 (1996): Richard S. et al. Wise
[0012]
[Problems to be solved by the invention]
The present invention solves the problem of inhomogeneous plasma in the circumferential direction in the inductively coupled plasma device which is a problem of the prior art as described above, generates plasma in an arbitrary place, and is stable under wider conditions. It is an object to provide a plasma processing apparatus that generates plasma with high efficiency.
[0013]
[Means for Solving the Problems]
The above problem is solved by a configuration described below. For example, a ring-shaped conductor is provided so as to be in contact with the induction coil, and first, an induced current flows through this conductor instead of the plasma. Next, the plasma is induction-heated by an induction current flowing through the ring-shaped conductor. The induction magnetic field generated by the induction coil is shielded so as not to leak to the region where the plasma is generated. That is, in a normal device, an induction coil is a primary coil, plasma is inductively coupled as a secondary coil to generate plasma, but in the present invention, an induction coil is a primary coil, a ring-shaped conductor is a secondary coil, The plasma becomes a tertiary coil, and plasma is generated. The current for inductively heating the plasma is a current flowing through the ring-shaped conductor, and has no end unlike a normal coil, so that complete uniformity of the plasma in the circumferential direction is realized.
[0014]
The ring-shaped conductor provided so as to be inductively coupled to the coil is a conductive member that can be regarded as having a circular shape, a ring shape, or approximately these shapes.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is not limited to the field of semiconductor device manufacturing, and can be applied to liquid crystal display manufacturing, film formation of various materials, and surface treatment. An embodiment will be described by taking an apparatus as an example.
[0016]
FIG. 1 shows an embodiment of the present invention. The processing chamber 1 in the drawing is, for example, a vacuum vessel made of aluminum or stainless steel whose surface is anodized, and is electrically grounded. The processing chamber 1 includes a vacuum evacuation unit 2 and a transfer system 4 for loading and unloading a semiconductor wafer 3 as an object to be processed. An electrode 6 for mounting the semiconductor wafer 3 is provided in the processing chamber 1. The wafer carried into the processing chamber by the transfer system 4 is carried on the electrodes and held by the electrodes 6. A high-frequency power supply 8 is connected to the electrode 6 via a matching unit 7 for the purpose of controlling the energy of ions incident on the semiconductor wafer 3 during the plasma processing. An etching gas is introduced into the chamber from the inlet 5.
[0017]
On the other hand, at a position facing the wafer, a high-frequency induction coil 10 is installed on the atmosphere side, on the facing surface of the wafer 1 via an insulating material 9 such as quartz or alumina ceramic. The high frequency induction coil 10 is provided with a ring-shaped conductor cover 11 having a structure as shown in FIG. The conductor cover is electrically insulated from the induction coil, and a high-frequency current flows through the conductor cover so as to obstruct the induction magnetic field of the high-frequency induction coil, that is, in the opposite direction. The conductor cover uses a low electric resistance material such as copper for the surface in order to reduce heat loss. Also, a magnetic material for providing a magnetic field shielding effect and two layers may be used.
[0018]
Power is supplied to the high-frequency induction coil 10 from the high-frequency power supply 13 via the matching unit 12.
[0019]
In addition, as shown in FIG. 3, in order to define a portion where the induced current flows, it is effective to provide a slit 18 so as to cross the coil in a portion where the induced current does not want to flow. At this time, if the width of the slit is large, the induction magnetic field leaks out. As shown in FIG. 4, the relationship between the slit width and the induction magnetic field strength is shown. By reducing the width of the slit, the induction magnetic field leaking to the outside can be reduced. As is clear from FIG. 4, the slit width is 2 mm. It is desirable to do the following.
[0020]
The current induced in the conductor, in turn, inductively couples with the plasma to create and maintain the plasma. It is known that an inductively coupled plasma device generates plasma in a capacitively coupled manner by a high voltage generated in an induction coil at the time of ignition or low density. With the configuration shown in FIG. 1, there is a problem that the voltage generated in the coil is not so high, and as a result, the plasma does not ignite. Therefore, in the embodiment shown in FIG. 1, another plasma source 19 for igniting the plasma and drawing it to a certain density is provided.
[0021]
FIG. 5 shows another embodiment according to the present invention. In the embodiment of FIG. 5, a normal induction coil 15 is installed near the center of the processing chamber, which corresponds to another plasma source in FIG. In recent years, as wafers have become larger, plasma uniformity in the processing chamber has become important. In order to control the plasma uniformity, it is effective to install a plurality of induction coils and change the current balance of these coils. In the embodiment shown in FIG. 5, the plasma is ignited by an induction coil installed at the center, pulled up to a high density, and a current flowing through a conductor installed near the outer peripheral portion is used to generate plasma having excellent circumferential uniformity. Generate in large area.
[0022]
By controlling the balance between the current flowing through the induction coil 15 and the current flowing through the conductor 11, plasma distribution control is realized. Since the induction coil 15 installed at the center has a coil end, the plasma generated by the coil may be slightly eccentric, but the plasma generated at the outer peripheral portion is more eccentric than the plasma generated near the center. It is more important to generate plasma with much better axial symmetry. Therefore, under a condition in which a certain amount of current is applied to the outer conductor and plasma is generated in the outer peripheral portion, plasma with high uniformity in the circumferential direction can be generated.
[0023]
FIG. 6 shows another embodiment according to the present invention. In addition to the configuration shown in FIG. 5, a Faraday shield 16, which is a conductive member having slits 18 radially as shown in FIG. 7, is provided between the plasma and the induction coil / conductor. The Faraday shield is a shield that cuts off the capacitive coupling between the coil / conductor and the plasma.It is usually electrically grounded, and eliminates the non-uniformity of the plasma in the circumferential direction due to the effect of the voltage of the coil. Prevent wear.
[0024]
Although the Faraday shield is usually grounded, it is also effective to apply a high-frequency voltage to this component as shown in the embodiment of FIG. 8 in order to control the reaction on the surface of the insulating material. At this time, as described above, in the inductively coupled plasma device, it is known that plasma is generated capacitively by a high voltage generated in the induction coil at the time of ignition or low density, so that a voltage is applied to this shield. Thereby, plasma can be ignited. That is, it also functions as another plasma source described in FIG.
[0025]
FIG. 9 shows still another embodiment of the present invention. In FIG. 9, an induced current is caused to flow through a substantially flat conductor 17 to generate plasma by the current. The plate-shaped conductor has a slit 18 as shown in FIG. 10, and the induced current flows intensively in a portion connected in a ring shape. The width of the slit is desirably small enough (2 mm or less) so that the induction magnetic field generated by the induction coil does not affect the plasma. The induced current flowing through the ring-shaped portion efficiently generates plasma.
[0026]
As described above, the embodiments of the present invention have been described by taking a plasma etching apparatus for manufacturing a semiconductor device as an example. However, the present invention is not limited to a plasma etching apparatus, but includes a plasma CVD apparatus, a plasma ashing apparatus, a plasma sputtering apparatus, and the like. The present invention is applicable not only to semiconductor device processing, but also to liquid crystal display substrate processing and other general surface treatments.
[0027]
【The invention's effect】
As described above, according to the plasma processing apparatus of the present invention, complete plasma uniformity in the circumferential direction is realized. The plasma etching result is also uniform in the circumferential direction, and only the radial uniformity needs to be considered when establishing the plasma etching process conditions, and the etching conditions can be determined easily and quickly. As a result, the plasma processing performance as a whole and the operation rate of the apparatus are improved, and high-throughput fine etching, high-quality film formation, surface treatment, and the like can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a structure of a plasma processing apparatus according to one embodiment of the present invention.
FIG. 2 is a diagram illustrating the shape of an induction coil used in one embodiment of the present invention.
FIG. 3 is a diagram illustrating a modification of the shape of the induction coil used in the embodiment of the present invention.
FIG. 4 is a view for explaining a relationship between a slit of the induction coil shown in FIG. 4 and an induction magnetic field.
FIG. 5 is a diagram illustrating a structure of a plasma processing apparatus according to one embodiment of the present invention.
FIG. 6 is a diagram illustrating a structure of a plasma processing apparatus according to one embodiment of the present invention.
FIG. 7 is a diagram illustrating the shape of a Faraday shield used in the present invention.
FIG. 8 is a diagram illustrating the structure of a plasma processing apparatus according to one embodiment of the present invention.
FIG. 9 is a diagram illustrating a structure of a plasma processing apparatus according to one embodiment of the present invention.
FIG. 10 is a diagram illustrating the shape of a flat conductor used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Processing chamber, 2 ... Vacuum exhaust means, 3 ... Semiconductor wafer, 4 ... Transport system, 5 ... Gas outlet, 6 ... Electrode, 7 ... Matching device, 8 ... High frequency power supply, 9 ... Insulating material, 10 ... Induction coil , 11: Conductor cover, 12: Matching device, 13: High frequency power supply, 14: Power branching circuit, 15: (Inner) induction coil, 16: Faraday shield, 17: Flat conductor, 18: Slit, 19 ... Another plasma source.

Claims (5)

処理チャンバと処理用のガスの導入手段および排気手段と、被処理物を載置するステージと、プラズマを発生させるための電力供給手段を備え、前記電力供給手段と接続された少なくとも一つの誘導コイルが、前記コイルに誘導結合するように設置された円形、リング形、ないしは、概ねこれらの形状と見なせる導電性部材に誘導電流を生じさせ、前記導電性部材を流れる誘導電流によって、処理チャンバ内にプラズマを生成することを特徴とするプラズマ処理装置。At least one induction coil connected to the power supply unit, comprising: a processing chamber, a gas introduction unit and a gas exhaust unit for processing, a stage on which a workpiece is mounted, and a power supply unit for generating plasma. Generates an induced current in a circular, ring-shaped, or conductive member that can be generally regarded as having such a shape that is installed to be inductively coupled to the coil, and the induced current flowing through the conductive member causes the induced current to flow into the processing chamber. A plasma processing apparatus for generating plasma. 請求項1記載のプラズマ処理装置において、直接プラズマと誘導結合する別の誘導コイルを備えたことを特徴とするプラズマ処理装置。The plasma processing apparatus according to claim 1, further comprising another induction coil that is inductively coupled directly to the plasma. 請求項1記載のプラズマ処理装置において、少なくとも誘導コイルとプラズマ発生空間との間に、前記コイルを横切る方向にスリットが入った導電体を設け、かつ、その導電体が電気的に接地可能であることを特徴とするプラズマ処理装置。2. The plasma processing apparatus according to claim 1, wherein a conductor having a slit in a direction crossing the coil is provided at least between the induction coil and the plasma generation space, and the conductor can be electrically grounded. A plasma processing apparatus characterized by the above-mentioned. 請求項1記載のプラズマ処理装置において、少なくとも誘導コイルとプラズマ発生空間との間に、前記コイルを横切る方向にスリットが入った導電体を設け、かつ、その導電体に高周波電圧が印加可能であることを特徴とするプラズマ処理装置。2. The plasma processing apparatus according to claim 1, wherein a conductor having a slit in a direction crossing the coil is provided at least between the induction coil and the plasma generation space, and a high-frequency voltage can be applied to the conductor. A plasma processing apparatus characterized by the above-mentioned. 請求項1記載のプラズマ処理装置において、なんらかの補助プラズマ生成手段を設けたことを特徴とするプラズマ処理装置。2. The plasma processing apparatus according to claim 1, further comprising some auxiliary plasma generating means.
JP2003028900A 2003-02-05 2003-02-05 Plasma processing equipment Expired - Lifetime JP3797975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028900A JP3797975B2 (en) 2003-02-05 2003-02-05 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028900A JP3797975B2 (en) 2003-02-05 2003-02-05 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2004241592A true JP2004241592A (en) 2004-08-26
JP3797975B2 JP3797975B2 (en) 2006-07-19

Family

ID=32956225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028900A Expired - Lifetime JP3797975B2 (en) 2003-02-05 2003-02-05 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3797975B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216903A (en) * 2005-02-07 2006-08-17 Hitachi High-Technologies Corp Plasma processing unit
TWI555446B (en) * 2009-10-27 2016-10-21 Tokyo Electron Ltd Plasma processing device and plasma processing method
JP7339327B2 (en) 2018-07-25 2023-09-05 ラム リサーチ コーポレーション Magnetic shield for plasma sources

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216903A (en) * 2005-02-07 2006-08-17 Hitachi High-Technologies Corp Plasma processing unit
TWI555446B (en) * 2009-10-27 2016-10-21 Tokyo Electron Ltd Plasma processing device and plasma processing method
JP7339327B2 (en) 2018-07-25 2023-09-05 ラム リサーチ コーポレーション Magnetic shield for plasma sources

Also Published As

Publication number Publication date
JP3797975B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP5264231B2 (en) Plasma processing equipment
JP5454467B2 (en) Plasma etching processing apparatus and plasma etching processing method
US6727654B2 (en) Plasma processing apparatus
JP4869059B2 (en) Antenna, plasma processing apparatus, and substrate processing method
US6576860B2 (en) Plasma processing method and apparatus for eliminating damages in a plasma process of a substrate
US6320320B1 (en) Method and apparatus for producing uniform process rates
US6624084B2 (en) Plasma processing equipment and plasma processing method using the same
KR100652983B1 (en) Plasma processing apparatus and method
US6887340B2 (en) Etch rate uniformity
US8636871B2 (en) Plasma processing apparatus, plasma processing method and storage medium
US6518705B2 (en) Method and apparatus for producing uniform process rates
JP2000323458A (en) Plasma processing method and device
US20070227666A1 (en) Plasma processing apparatus
JP7140610B2 (en) Plasma processing equipment
JP2011096689A (en) Plasma processing apparatus
US6850012B2 (en) Plasma processing apparatus
JP2009123929A (en) Plasma treatment apparatus
JP3254069B2 (en) Plasma equipment
US20040163595A1 (en) Plasma processing apparatus
JPH07106095A (en) Plasma processing device
JP3797975B2 (en) Plasma processing equipment
JPH07106096A (en) Plasma processing device
KR100603286B1 (en) Antenna having multiple central axix and inductively coupled plasma generating apparatus applying the same
JP7329131B2 (en) Plasma processing apparatus and plasma processing method
IL159935A (en) Method and apparatus for producing uniform process rates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Ref document number: 3797975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term