JP6368113B2 - Passenger boarding bridge - Google Patents

Passenger boarding bridge Download PDF

Info

Publication number
JP6368113B2
JP6368113B2 JP2014064033A JP2014064033A JP6368113B2 JP 6368113 B2 JP6368113 B2 JP 6368113B2 JP 2014064033 A JP2014064033 A JP 2014064033A JP 2014064033 A JP2014064033 A JP 2014064033A JP 6368113 B2 JP6368113 B2 JP 6368113B2
Authority
JP
Japan
Prior art keywords
tunnel
rainwater
boarding bridge
passenger boarding
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014064033A
Other languages
Japanese (ja)
Other versions
JP2015182746A (en
Inventor
貴裕 吉本
貴裕 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries Ltd filed Critical Shinmaywa Industries Ltd
Priority to JP2014064033A priority Critical patent/JP6368113B2/en
Publication of JP2015182746A publication Critical patent/JP2015182746A/en
Application granted granted Critical
Publication of JP6368113B2 publication Critical patent/JP6368113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、旅客搭乗橋に関する。   The present invention relates to a passenger boarding bridge.

空港のターミナルビルと航空機との間の乗客の乗降に用いる設備として、旅客搭乗橋が知られている。旅客搭乗橋が、航空機の乗降部と接続されると、旅客搭乗橋を用いて航空機への歩行通路が形成される。これにより、ターミナルビルと航空機との間での乗客の直接の乗降ができる。   A passenger boarding bridge is known as a facility used for passengers getting on and off between an airport terminal building and an aircraft. When the passenger boarding bridge is connected to the boarding / alighting section of the aircraft, a walking path to the aircraft is formed using the passenger boarding bridge. As a result, passengers can get on and off directly between the terminal building and the aircraft.

上記旅客搭乗橋のトンネル部では、隣り合うトンネルが、外側と内側の相対関係において入れ子状に嵌合されているので、外側トンネルと内側トンネルの隙間からトンネル部の歩行通路へ雨水が浸入しないように、従来から、様々な排水構造が提案されている。   In the tunnel section of the above passenger boarding bridge, adjacent tunnels are nested in a relative relationship between the outside and the inside, so that rainwater does not enter the walking path of the tunnel section from the gap between the outside tunnel and the inside tunnel. Conventionally, various drainage structures have been proposed.

例えば、特許文献1には、トンネル部の屋根に降り注ぎ、トンネル部の側壁部に伝わって下方に流れる雨水の排水について、従来よりもコンパクトな構造が記載されている。   For example, Patent Document 1 describes a structure that is more compact than conventional drainage of rainwater that pours onto the roof of the tunnel portion and flows down to the side wall portion of the tunnel portion.

特開2005−193830号公報JP 2005-193830 A

しかし、特許文献1では、トンネル部のフラットな屋根における雨水の排水については十分に検討されていない。   However, Patent Document 1 does not sufficiently study drainage of rainwater on the flat roof of the tunnel portion.

本発明の一態様(aspect)は、このような事情に鑑みてなされたものであり、トンネル部のフラットな屋根における雨水の排水を従来よりも適切に行い得る旅客搭乗橋を提供することを目的とする。   One aspect (aspect) of the present invention has been made in view of such circumstances, and an object thereof is to provide a passenger boarding bridge capable of appropriately draining rainwater on a flat roof of a tunnel portion as compared with the conventional one. And

本発明の一態様の旅客搭乗橋は、隣り合うトンネルが入れ子状に嵌合されて、キャブとロタンダとの間において前後方向に相対移動することで伸縮するトンネル部と、前記トンネル部の屋根を構成する平板部材と、前記平板部材の外表面に設けられている雨水誘導部と、を備え、前記雨水誘導部は、前記トンネル部が、前記ロタンダに対して傾倒した場合、前記平板部材に降り注いだ雨水を、前記トンネル部の側壁部にまで誘導するように構成されている。   The passenger boarding bridge according to one aspect of the present invention includes a tunnel portion that is telescopically moved by a relative movement in the front-rear direction between a cab and a rotander, in which adjacent tunnels are nested, and a roof of the tunnel portion. And a rainwater guide portion provided on an outer surface of the flat plate member, and the rainwater guide portion pours onto the flat plate member when the tunnel portion is tilted with respect to the rotander. It is configured to guide rainwater to the side wall portion of the tunnel portion.

本発明の一態様の旅客搭乗橋は、トンネル部のフラットな屋根における雨水の排水を従来よりも適切に行い得る。   The passenger boarding bridge according to one aspect of the present invention can drain rainwater more appropriately than before in the flat roof of the tunnel portion.

図1は、実施形態の旅客搭乗橋の一例を示す図である。Drawing 1 is a figure showing an example of a passenger boarding bridge of an embodiment. 図2は、図1のトンネル部の屋根の一例を示す図である。FIG. 2 is a view showing an example of the roof of the tunnel portion of FIG. 図3は、図1のトンネル部が、ロタンダに対して下方に傾倒した場合の雨水の排水の説明に用いる図である。FIG. 3 is a diagram used for explaining drainage of rainwater when the tunnel portion of FIG. 1 is tilted downward with respect to the rotunda. 図4は、図1の雨水誘導部における突起部の高さ及び交差角度の導出の説明に用いる図である。FIG. 4 is a diagram used for explaining the derivation of the height of the protrusion and the crossing angle in the rainwater guiding portion of FIG. 図5は、実施形態の変形例1の雨水誘導部の一例を示した図である。FIG. 5 is a diagram illustrating an example of the rainwater guiding unit according to the first modification of the embodiment.

(実施形態)
上記のとおり、特許文献1の旅客搭乗橋では、トンネル部のフラットな屋根における雨水の排水については十分に検討されていない。そこで、本発明者は、鋭意検討の結果、トンネル部の屋根を構成する平板部材の外表面に雨水誘導部を設けることを着想した。
(Embodiment)
As described above, in the passenger boarding bridge of Patent Document 1, the drainage of rainwater on the flat roof of the tunnel portion has not been sufficiently studied. Therefore, the present inventor has conceived of providing a rainwater guiding portion on the outer surface of the flat plate member constituting the roof of the tunnel portion as a result of intensive studies.

すなわち、本発明の第1の態様の旅客搭乗橋は、隣り合うトンネルが入れ子状に嵌合されて、キャブとロタンダとの間において前後方向に相対移動することで伸縮するトンネル部と、トンネル部の屋根を構成する平板部材と、平板部材の外表面に設けられている雨水誘導部と、を備え、雨水誘導部は、トンネル部が、ロタンダに対して傾倒した場合、平板部材に降り注いだ雨水を、トンネル部の側壁部にまで誘導するように構成されている。   That is, the passenger boarding bridge according to the first aspect of the present invention includes a tunnel portion in which adjacent tunnels are fitted in a nested manner, and are expanded and contracted by relative movement in the front-rear direction between the cab and the rotander, and the tunnel portion. And a rainwater guide portion provided on the outer surface of the flat plate member. When the tunnel portion is tilted with respect to the rotunda, the rainwater guide portion is rainwater that has poured onto the flat plate member. Is guided to the side wall portion of the tunnel portion.

かかる構成によると、旅客搭乗橋において、トンネル部のフラットな屋根における雨水の排水を従来よりも適切に行い得る。つまり、トンネル部の屋根を構成する平板部材の外表面に雨水誘導部を設けることで、トンネル部が、ロタンダに対して傾倒した場合、雨水誘導部を用いて、トンネル部の側壁部にまで雨水を適切に誘導できる。   According to such a configuration, drainage of rainwater on the flat roof of the tunnel portion can be performed more appropriately than before in the passenger boarding bridge. In other words, by providing the rainwater guide part on the outer surface of the flat plate member that constitutes the roof of the tunnel part, when the tunnel part is tilted with respect to the rotunda, the rainwater guide part is used to reach the side wall part of the tunnel part. Can be guided appropriately.

また、本発明の第2の態様の旅客搭乗橋は、第1の態様の旅客搭乗橋において、雨水誘導部は、平板部材の外表面上に設けられた複数の突起部を備え、突起部は、トンネル部の幅方向に対して所定の交差角度で交わるように、トンネル部の幅方向の両端部にまで延在している。   Further, the passenger boarding bridge of the second aspect of the present invention is the passenger boarding bridge of the first aspect, wherein the rainwater guiding portion includes a plurality of protrusions provided on the outer surface of the flat plate member, The tunnel portion extends to both ends in the width direction of the tunnel portion so as to intersect with the width direction of the tunnel portion at a predetermined crossing angle.

かかる構成によると、複数の突起部を用いて雨水誘導部を簡易かつ適切に形成できる。   According to such a configuration, it is possible to easily and appropriately form the rainwater guiding portion using the plurality of protrusions.

また、本発明の第3の態様の旅客搭乗橋は、第2の態様の旅客搭乗橋において、トンネル部が、ロタンダに対して傾倒した場合、雨水がトンネル部の側壁部から排水されないと仮定することで突起部により雨水を支え得る水溜め領域の体積と、隣り合う突起部間における降雨量の予測値と、に基づいて設定される。   The passenger boarding bridge according to the third aspect of the present invention assumes that in the passenger boarding bridge according to the second aspect, when the tunnel portion tilts with respect to the rotunda, rainwater is not drained from the side wall portion of the tunnel portion. Thus, it is set based on the volume of the water reservoir region that can support rainwater by the protrusions and the predicted value of the rainfall amount between the adjacent protrusions.

かかる構成によると、突起部の高さ及び交差角度を適切に導出できる。なお、これらの導出の詳細は後述する。   According to such a configuration, the height and the crossing angle of the protrusion can be appropriately derived. Details of these derivations will be described later.

以下、本実施形態の具体例について図面を参照しながら説明する。なお、以下では、全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、重複する説明を省略する。また、本実施形態は、以下の具体例に限定されない。例えば、以下では、航空旅客搭乗橋について説明するが、本実施形態は、客船用の旅客搭乗橋に用いることもできる。   Hereinafter, specific examples of the present embodiment will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description is omitted. Moreover, this embodiment is not limited to the following specific examples. For example, although an air passenger boarding bridge will be described below, the present embodiment can also be used for a passenger boarding bridge for passenger ships.

[装置の全体構成]
図1は、実施形態の旅客搭乗橋の一例を示す図である。ここでは、トンネル部10の全長が伸びた状態が示されている。
[Overall configuration of the device]
Drawing 1 is a figure showing an example of a passenger boarding bridge of an embodiment. Here, a state in which the entire length of the tunnel portion 10 is extended is shown.

以下、便宜上、旅客搭乗橋100のトンネル部10の全長が伸縮する方向を前後方向とし、旅客搭乗橋100に重力が作用する方向を上下方向とし、トンネル部10の幅方向(前後方向及び上下方向に直交する方向)を左右方向として説明する。また、図1に示すように、旅客搭乗橋100において、航空機200側を「前」とし、ターミナルビル(図示せず)側を「後」として説明する。   Hereinafter, for convenience, the direction in which the entire length of the tunnel portion 10 of the passenger boarding bridge 100 expands and contracts is defined as the front-rear direction, the direction in which gravity acts on the passenger boarding bridge 100 is defined as the vertical direction, and the width direction of the tunnel portion 10 (front-rear direction and vertical direction). The direction orthogonal to the left and right directions will be described. Further, as shown in FIG. 1, in the passenger boarding bridge 100, the aircraft 200 side is described as “front”, and the terminal building (not shown) side is described as “rear”.

本実施形態の旅客搭乗橋100は、ターミナルビルの出入口に接続されたロタンダ(後方円形室)12と、ロタンダ12に接続されたトンネル部10と、トンネル部10の前方の端部に配されたキャブ(前方円形室)20と、を備える。   A passenger boarding bridge 100 according to the present embodiment is arranged at a rotunda (rear circular chamber) 12 connected to an entrance / exit of a terminal building, a tunnel part 10 connected to the rotander 12, and an end part in front of the tunnel part 10. A cab (front circular chamber) 20.

トンネル部10は、隣り合うトンネル10A、10Bが、外側と内側の相対関係において入れ子状に嵌合されており、キャブ20とロタンダ12との間において、トンネル部10の全長が前後方向に伸縮可能に構成されている。具体的には、ドライブコラム15が、トンネル部10を挟むようにトンネル部10の適所(具体的には、外側トンネル10Bの前方の部分)に連結されている。よって、ドライブコラム15の下端の駆動輪が地面18(エプロン18)の上を走行すると、トンネル部10に、前後方向の伸縮運動の動力が伝わる。そして、トンネル部10の全長が伸びることにより、トンネル部10の前方端に配されたキャブ20が航空機200の乗降部に到達すると、空港のターミナルビルの乗降部と航空機200の乗降部との間の乗客の歩行通路が形成される。このとき、ドライブコラム15の上下の伸縮運動により、トンネル部10が、ロタンダ12に対して上下に傾倒できる。   In the tunnel portion 10, adjacent tunnels 10 </ b> A and 10 </ b> B are fitted in a nested manner in a relative relationship between the outside and the inside, and the entire length of the tunnel portion 10 can be expanded and contracted between the cab 20 and the rotander 12. It is configured. Specifically, the drive column 15 is coupled to an appropriate position of the tunnel portion 10 (specifically, a portion in front of the outer tunnel 10B) so as to sandwich the tunnel portion 10 therebetween. Therefore, when the driving wheel at the lower end of the drive column 15 travels on the ground 18 (apron 18), the power of the telescopic movement in the front-rear direction is transmitted to the tunnel portion 10. And when the cab 20 arranged at the front end of the tunnel part 10 reaches the boarding / alighting part of the aircraft 200 by extending the entire length of the tunnel part 10, the distance between the boarding / alighting part of the airport terminal building and the boarding / alighting part of the aircraft 200 is A passenger walkway is formed. At this time, the tunnel part 10 can be tilted up and down with respect to the rotander 12 by the vertical expansion and contraction of the drive column 15.

なお、キャブ20内には、操作盤(図示せず)が配置され、オペレータが、操作盤のジョイスティック(図示せず)を用いて、旅客搭乗橋100の各機器(例えば、ドライブコラム15等)を操作できる。また、補助階段16は、トンネル部10の内部とエプロン18とを連絡するように、トンネル部10のサイドに設けられている。補助階段16は、例えば、オペレータがキャブ20に出入りするのに使用される。   An operation panel (not shown) is arranged in the cab 20, and an operator uses the joystick (not shown) of the operation panel to each device (for example, the drive column 15) of the passenger boarding bridge 100. Can be operated. The auxiliary staircase 16 is provided on the side of the tunnel portion 10 so as to connect the inside of the tunnel portion 10 and the apron 18. The auxiliary staircase 16 is used, for example, for an operator to enter and exit the cab 20.

[トンネル部の雨水誘導部の構成]
次に、トンネル部10の雨水誘導部50の構成について図面を参照しながら説明する。
[Configuration of rainwater guidance section in tunnel]
Next, the configuration of the rainwater guiding unit 50 of the tunnel unit 10 will be described with reference to the drawings.

図2は、図1のトンネル部の屋根の一例を示す図である。図2(a)には、トンネル部10の屋根を形成する平板部材30を平面視した図が示され、図2(b)には、図2(a)のB−B部の断面図が示されている。   FIG. 2 is a view showing an example of the roof of the tunnel portion of FIG. 2A shows a plan view of the flat plate member 30 that forms the roof of the tunnel portion 10, and FIG. 2B shows a cross-sectional view of the BB portion of FIG. 2A. It is shown.

図1及び図2に示すように、雨水誘導部50は、平板部材30の外表面に設けられている。そして、雨水誘導部50は、トンネル部10が、ロタンダ12に対して傾倒した場合、平板部材30に降り注いだ雨水を、トンネル部10の側壁部にまで誘導するように構成されている。   As shown in FIGS. 1 and 2, the rainwater guiding portion 50 is provided on the outer surface of the flat plate member 30. And the rainwater guidance | induction part 50 is comprised so that the rainwater which poured on the flat plate member 30 may be guide | induced to the side wall part of the tunnel part 10, when the tunnel part 10 inclines with respect to the rotander 12. FIG.

具体的には、雨水誘導部50は、平板部材30の外表面上に設けられた複数の帯状の突起部31を備える。突起部31はそれぞれ、トンネル部10の左右方向300に対して所定の交差角度θで交わるように、トンネル部10の左右方向300の両端部にまで延在している。   Specifically, the rainwater guiding unit 50 includes a plurality of strip-shaped protrusions 31 provided on the outer surface of the flat plate member 30. Each of the protrusions 31 extends to both ends of the tunnel portion 10 in the left-right direction 300 so as to intersect the left-right direction 300 of the tunnel portion 10 at a predetermined intersection angle θ.

本実施形態では、突起部31がそれぞれ、平板部材30の外表面上に平行に設けられている。これにより、隣り合う突起部31間に平行四辺形領域Sが形成されている。   In the present embodiment, the protrusions 31 are provided in parallel on the outer surface of the flat plate member 30. Thereby, a parallelogram region S is formed between the adjacent protrusions 31.

なお、突起部31の材質は、雨水を誘導できれば、どのようなものであっても構わない。突起部31の材質として、例えば、金属、樹脂又はゴム等を例示できる。突起部31を金属で構成する場合は、例えば、平板部材30の外表面の適所に金属製の棒部材を溶接で接合するとよい。突起部31を樹脂で構成する場合は、例えば、平板部材30の外表面の適所に樹脂製の棒部材を接着材で接合するとよい。   Note that the projection 31 may be made of any material as long as it can induce rainwater. Examples of the material of the protruding portion 31 include metal, resin, rubber, and the like. When the protrusion 31 is made of metal, for example, a metal bar member may be joined to the outer surface of the flat plate member 30 by welding. When the protrusion 31 is made of resin, for example, a resin bar member may be bonded to an appropriate position on the outer surface of the flat plate member 30 with an adhesive.

以上により、トンネル部10の屋根をフラットな板で構成できる。なお、平板部材30の剛性が不十分な場合は、例えば、トラス状の補強部材(図示せず)で平板部材30を下方から保持しても構わない。   By the above, the roof of the tunnel part 10 can be comprised with a flat board. When the rigidity of the flat plate member 30 is insufficient, for example, the flat plate member 30 may be held from below by a truss-shaped reinforcing member (not shown).

また、本実施形態では、複数の突起部31を用いて雨水誘導部50を簡易かつ適切に形成できる。つまり、トンネル部10の屋根をフラットな板で構成した場合でも、内側トンネル10Aの平板部材30に突起部31を設けることで、内側トンネル10Aの屋根に降り注いだ雨水を外側トンネル10Bの歩行通路上に浸入させずに、外部へ適切に排水できる。   Moreover, in this embodiment, the rainwater guidance | induction part 50 can be formed simply and appropriately using the some projection part 31. FIG. That is, even when the roof of the tunnel portion 10 is formed of a flat plate, the rainwater that has poured onto the roof of the inner tunnel 10A is provided on the walking path of the outer tunnel 10B by providing the protrusion 31 on the flat plate member 30 of the inner tunnel 10A. It is possible to drain properly to the outside without intruding into the water.

例えば、図3に示す如く、トンネル部10が、ロタンダ12に対して下方に傾倒した場合、内側トンネル10Aの屋根に降り注いだ雨水は、内側トンネル10Aの側壁部へと適切に誘導される。このとき、外側トンネル10Bの端部よりも後方の内側トンネル10Aの側壁部を伝わって下方に流れる雨水Aは、そのまま、エプロン18に落下する。また、外側トンネル10Bとの間の内側トンネル10Aの側壁部を伝わって下方に流れる雨水Bは、外側トンネル10Bの下方に配された公知のガーターパン(例えば、上記特許文献1参照)等を用いることで適宜の排水口から外部へ排水される。   For example, as shown in FIG. 3, when the tunnel portion 10 is tilted downward with respect to the rotander 12, rainwater that has poured onto the roof of the inner tunnel 10 </ b> A is appropriately guided to the side wall portion of the inner tunnel 10 </ b> A. At this time, rainwater A that flows downward through the side wall of the inner tunnel 10A behind the end of the outer tunnel 10B falls to the apron 18 as it is. Moreover, the rainwater B which flows down through the side wall part of the inner tunnel 10A between the outer tunnel 10B and the known garter pan (for example, refer to the above-mentioned Patent Document 1) arranged below the outer tunnel 10B is used. It drains from the appropriate drainage port to the outside.

[突起部の高さ及び交差角度の導出]
<記号の定義>
まず、以下の説明及び、これに関連する図2及び図4に用いる記号の意味を、まとめて定義する。
[Derivation of protrusion height and crossing angle]
<Definition of symbols>
First, the meanings of symbols used in the following description and related FIGS. 2 and 4 are collectively defined.

L:突起部31の高さ
P:隣り合う突起部31間の距離
W:トンネル部10の幅寸法
θ:トンネル部10の左右方向300に対する突起部31の交差角度
α:トンネル部10が、ロタンダ12に対して傾倒した場合の勾配角度
K:トンネル部10が、ロタンダ12に対して傾倒した場合、雨水がトンネル部10の側壁部から排水されないと仮定することで突起部31により雨水を支え得る三角錐状の水溜め領域
V:水溜め領域Kの体積
X:水溜め領域Kの三角錐底面の一辺の距離(前後方向の距離)
Y:水溜め領域Kの三角錐底面の一辺の距離(左右方向300の距離)
H:水溜め領域Kの高さH
Q:隣り合う突起部31間における降雨量の予測値
なお、上記記号のうち、隣り合う突起部31間の距離P及びトンネル部10の幅寸法Wは、既知の数値として扱う。突起部31の勾配角度αも、トンネル部10が、ロタンダ12に対して傾倒するときに想定される最大勾配を用い、既知の数値として扱う。
L: Height of the protrusion 31 P: Distance between adjacent protrusions 31 W: Width of the tunnel 10 θ: Crossing angle of the protrusion 31 with respect to the horizontal direction 300 of the tunnel 10 α: The tunnel 10 is rotunda Inclination angle when tilted with respect to 12 K: When the tunnel portion 10 is tilted with respect to the rotander 12, the rainwater can be supported by the projection 31 by assuming that rainwater is not drained from the side wall portion of the tunnel portion 10. Triangular pyramid reservoir area V: Volume of the reservoir area K X: Distance of one side of the triangular pyramid bottom of the reservoir area K (distance in the front-rear direction)
Y: Distance of one side of the bottom surface of the triangular pyramid of the water reservoir region K (distance in the left-right direction 300)
H: Height H of the water reservoir area K
Q: Predicted value of rainfall amount between adjacent protrusions 31 Of the above symbols, the distance P between adjacent protrusions 31 and the width dimension W of the tunnel part 10 are treated as known numerical values. The gradient angle α of the protrusion 31 is also treated as a known numerical value using the maximum gradient assumed when the tunnel portion 10 is tilted with respect to the rotander 12.

<隣り合う突起部31間における降雨量の予測値Qの導出>
以下、隣り合う突起部31間における降雨量の予測値Qの導出について説明する。
<Derivation of Predicted Value Q of Rainfall Between Adjacent Protrusions 31>
Hereinafter, the derivation of the predicted value Q of the rainfall amount between the adjacent protrusions 31 will be described.

降雨量の予測値Qとして、国内で過去に観測された、1時間あたりの最大の降雨強度N(cm/hr)を、隣り合う突起部31間の平行四辺形領域S(図2参照)に降った雨量に換算した数値を用いる。   As the predicted value Q of rainfall, the maximum rainfall intensity N (cm / hr) per hour observed in the past in the country is applied to the parallelogram region S (see FIG. 2) between the adjacent protrusions 31. Use the value converted to the amount of rainfall.

つまり、図2に示す如く、平行四辺形領域Sの面積はP・Wとなるので、1秒当たりの隣り合う突起部31間における降雨量の予測値Q(cm/sec)は、以下の式(1)の如く定式化できる。
Q=N・P・W/3600・・・(1)
That is, as shown in FIG. 2, since the area of the parallelogram region S is P · W, the predicted value Q (cm 3 / sec) of rainfall between adjacent protrusions 31 per second is as follows: Formula (1) can be formulated.
Q = N · P · W / 3600 (1)

<水溜め領域の体積Vの導出>
以下、トンネル部10が、ロタンダ12に対して勾配角度αで下方に傾倒した場合、雨水がトンネル部10の側壁部から排水されないと仮定することで突起部31により雨水を支え得る水溜め領域Kの体積Vの導出について説明する。
<Derivation of volume V of water reservoir area>
Hereinafter, when the tunnel portion 10 is tilted downward with a gradient angle α with respect to the rotander 12, a water reservoir region K that can support the rainwater by the protrusion 31 by assuming that rainwater is not drained from the side wall portion of the tunnel portion 10. Derivation of the volume V of will be described.

図4(a)、(b)に示すように、水溜め領域Kの体積Vは、突起部31の交差角度θ、突起部31の高さL及び勾配角度αを用いて、以下の如く、定式化できる。   As shown in FIGS. 4A and 4B, the volume V of the water reservoir region K is calculated as follows using the intersection angle θ of the protrusion 31, the height L of the protrusion 31, and the gradient angle α: It can be formulated.

まず、水溜め領域Kの高さHは、以下の式(2)で表される。
H=Lcosα・・・(2)
First, the height H of the water reservoir region K is expressed by the following formula (2).
H = Lcos α (2)

また、水溜め領域Kの三角錐底面の2つの辺の距離X、Yはそれぞれ、以下の式(3)、(4)で表される。
X=L/sinα・・・(3)
Y=X/tanθ・・・(4)
The distances X and Y between the two sides of the bottom surface of the triangular pyramid in the water reservoir region K are expressed by the following equations (3) and (4), respectively.
X = L / sin α (3)
Y = X / tan θ (4)

ここで、水溜め領域Kの三角錐底面の面積は、1/2・X・Yとなるので、水溜め領域Kの体積Vは、以下の式(5)の如く定式化できる。
V=1/3・(1/2・X・Y)・H
=1/6・(L/(tanα・tanθ・sinα))・・・(5)
Here, since the area of the bottom surface of the triangular pyramid of the water reservoir region K is 1/2 · X · Y, the volume V of the water reservoir region K can be formulated as the following equation (5).
V = 1/3 · (1/2 · X · Y) · H
= 1/6 · (L 3 / (tan α · tan θ · sin α)) (5)

<突起部31の高さL及び交差角度θの導出>
突起部31の高さL及び交差角度θは、トンネル部10が、ロタンダ12に対して傾倒した場合(勾配角度:α)において、上記の水溜め領域の体積Vと、上記の降雨量の予測値Qと、に基づいて、以下の如く導出し得る。
<Derivation of the height L of the protrusion 31 and the crossing angle θ>
The height L of the protrusion 31 and the intersection angle θ are predicted when the tunnel portion 10 is tilted with respect to the rotander 12 (gradient angle: α). Based on the value Q, it can be derived as follows.

まず、突起部31の高さL及び交差角度θに、適宜の具体的な数値L、θを割り当てる。すると、降雨量の予測値Q及び勾配角度αは既知の数値なので、水溜め領域Kの体積Vを、降雨量の予測値Qで割ることにより、最大の降雨強度Nの場合における、水溜め領域Kの雨水が突起部31から溢れ出す予測時間T予測を計算できる。 First, appropriate specific numerical values L 1 and θ 1 are assigned to the height L and the intersection angle θ of the protrusion 31. Then, since the predicted value Q and the slope angle α of the rainfall amount are known values, the sump region in the case of the maximum rainfall intensity N is obtained by dividing the volume V of the sump region K by the predicted value Q of the rainfall amount. The prediction time T prediction that K rainwater overflows from the protrusion 31 can be calculated.

次に、突起部31の高さ及び交差角度がそれぞれ、上記の数値L、θであるトンネル部の模型を製作し、トンネル部の側壁部に堰止め部材を設ける。 Next, a model of the tunnel part in which the height and the crossing angle of the protrusion part 31 are the above-described numerical values L 1 and θ 1 is manufactured, and a dam member is provided on the side wall part of the tunnel part.

そして、トンネル部を勾配角度αで傾け、水溜め領域Kに水を満杯まで溜める。   Then, the tunnel portion is tilted at an inclination angle α, and water is accumulated in the water reservoir region K until it is full.

その後、堰止め部材を外した時点から、水溜め領域Kに溜まった水が排水されるまでの実測時間T実測を計測する。 Thereafter, the actual measurement time T is measured from when the dam member is removed until the water accumulated in the water reservoir region K is drained.

ここで、実測時間T実測が、上記の予測時間T予測よりも下回れば(T実測<T予測)、トンネル部10の側壁部からの雨水の排水が、突起部31からの雨水の溢れ出しよりも早くなるので、突起部31の高さL及び交差角度θは、好ましい設計値であると判断できる。 Here, if the actual measurement time T actual measurement is less than the above-mentioned predicted time T prediction (T actual measurement <T prediction ), the drainage of rainwater from the side wall portion of the tunnel portion 10 is caused by the overflow of rainwater from the protrusion 31. Therefore, it can be determined that the height L 1 and the intersection angle θ 1 of the protrusion 31 are preferable design values.

逆に、実測時間T実測が、上記の予測時間T予測以上であれば(T実測≧T予測)、トンネル部10の側壁部からの雨水の排水が、突起部31からの雨水の溢れ出しとほぼ同時又は遅くなるので、突起部31の高さL又は交差角度θは、好ましい設計値ではないと判断できる。この場合、突起部31の高さ及び交差角度の少なくとも一方について、他の適宜の数値を割り当て、上記と同様の計算及び実験を行う。 On the contrary, if the actual measurement time T measurement is equal to or greater than the above-mentioned prediction time T prediction (T actual measurement ≧ T prediction ), the drainage of rainwater from the side wall portion of the tunnel portion 10 is caused by the overflow of rainwater from the projection portion 31. Since it becomes substantially simultaneous or slow, it can be determined that the height L 1 or the intersection angle θ 1 of the protrusion 31 is not a preferable design value. In this case, other appropriate numerical values are assigned to at least one of the height of the protrusion 31 and the intersection angle, and calculations and experiments similar to the above are performed.

(変形例1)
上記の実施形態の雨水誘導部50では、隣り合う突起部31間に平行四辺形領域Sが形成される例を示したが、これに限らない。例えば、図5(a)に示す如く、平板部材130上に、トンネル部10の左右方向と所定の交差角度で交わるように、直線状に延びる突起部131を、本左右方向に対して対称に設けても構わない。この場合、隣り合う突起部131間に台形領域が形成される。また、図5(b)に示す如く、平板部材230上に、V字状の突起部231を、前後方向に対して対称に設けても構わない。
(Modification 1)
In the rainwater guidance | induction part 50 of said embodiment, although the parallelogram area | region S was formed between the adjacent projection parts 31, the example was not restricted. For example, as shown in FIG. 5 (a), the protrusion 131 that extends linearly on the flat plate member 130 so as to intersect the left-right direction of the tunnel portion 10 at a predetermined crossing angle is symmetrical with respect to the left-right direction. It may be provided. In this case, a trapezoidal region is formed between adjacent protrusions 131. Further, as shown in FIG. 5B, V-shaped protrusions 231 may be provided symmetrically with respect to the front-rear direction on the flat plate member 230.

(変形例2)
上記の実施形態では、雨水誘導部50が、平板部材30の外表面上に突起部31を備える例を示したが、これに限らない。例えば、雨水誘導部は、このような突起部に代えて、平板部材の外表面上に形成された溝部を備える構成であっても構わない。
(Modification 2)
In said embodiment, although the rainwater guidance | induction part 50 showed the example provided with the projection part 31 on the outer surface of the flat plate member 30, it does not restrict to this. For example, the rainwater guiding portion may be configured to include a groove portion formed on the outer surface of the flat plate member in place of such a protruding portion.

(変形例3)
上記の実施形態では、内側トンネル10Aの平板部材30の外表面上に突起部31を設ける例を示したが、これに限らない。例えば、本明細書に記載の技術は、外側トンネル10Bの平板部材に突起部を設けることで、キャブ20の歩行通路への雨水浸入を適切に防止できるので有益である。
(Modification 3)
In the above embodiment, the example in which the protrusion 31 is provided on the outer surface of the flat plate member 30 of the inner tunnel 10 </ b> A is shown, but the present invention is not limited to this. For example, the technique described in this specification is beneficial because it can appropriately prevent rainwater from entering the walking path of the cab 20 by providing a protrusion on the flat plate member of the outer tunnel 10B.

(変形例4)
上記の実施形態では、トンネル部10が、ロタンダ12に対して下方に傾倒した場合の例を述べたが、これに限らない。例えば、本明細書に記載の技術は、トンネル部10が、ロタンダ12に対して上方に傾倒した場合、ロタンダ12の歩行通路への雨水浸入を適切に防止できるので有益である。
(Modification 4)
In the above embodiment, an example in which the tunnel portion 10 is tilted downward with respect to the rotander 12 has been described, but the present invention is not limited to this. For example, the technique described in this specification is beneficial because the rainwater intrusion into the walking path of the rotander 12 can be appropriately prevented when the tunnel portion 10 is tilted upward with respect to the rotander 12.

本発明の一態様は、トンネル部のフラットな屋根における雨水の排水を従来よりも適切に行い得る。よって、本発明の一態様は、例えば、旅客搭乗橋として利用できる。   According to one embodiment of the present invention, drainage of rainwater on a flat roof of a tunnel portion can be performed more appropriately than in the past. Thus, one embodiment of the present invention can be used as, for example, a passenger boarding bridge.

10 トンネル部
12 ロタンダ
15 ドライブコラム
16 補助階段
18 地面(エプロン)
20 キャブ
30 平板部材
31 突起部
50 雨水誘導部
100 旅客搭乗橋
200 航空機
10 Tunnel part 12 Rotunda 15 Drive column 16 Auxiliary stairs 18 Ground (apron)
20 Cab 30 Flat plate member 31 Projection part 50 Rainwater guidance part 100 Passenger boarding bridge 200 Aircraft

Claims (2)

隣り合うトンネルが入れ子状に嵌合されて、キャブとロタンダとの間において前後方向に相対移動することで伸縮するトンネル部と、
前記トンネル部の屋根を構成する平板部材と、
前記平板部材の外表面に設けられている雨水誘導部と、を備え、
前記雨水誘導部は、前記トンネル部が、前記ロタンダに対して傾倒した場合、前記平板部材に降り注いだ雨水を、前記トンネル部の側壁部にまで誘導するように構成されている旅客搭乗橋であって、
前記雨水誘導部は、前記平板部材の外表面上に設けられた複数の突起部を備え、
前記突起部は、前記トンネル部の幅方向に対して所定の交差角度で交わるように、前記トンネル部の幅方向の両端部にまで延在している旅客搭乗橋
A tunnel part that is adjacently fitted in a nested manner, and expands and contracts by moving in the front-rear direction between the cab and the rotander,
A flat plate member constituting the roof of the tunnel part;
A rainwater guiding portion provided on the outer surface of the flat plate member,
The rainwater induction unit, said tunnel portion, when tilted with respect to the rotunda, the rainwater poured down on the flat plate member, met passenger boarding bridge is configured to direct to a side wall portion of the tunnel portion And
The rainwater guiding portion includes a plurality of protrusions provided on the outer surface of the flat plate member,
The passenger boarding bridge that extends to both end portions in the width direction of the tunnel portion so that the projection portion intersects the width direction of the tunnel portion at a predetermined crossing angle .
前記突起部の高さ及び交差角度は、前記トンネル部が、前記ロタンダに対して傾倒した場合、雨水がトンネル部の側壁部から排水されないと仮定することで前記突起部により雨水を支え得る水溜め領域の体積と、隣り合う突起部間における降雨量の予測値と、に基づいて設定される、請求項に記載の旅客搭乗橋。 The height and the crossing angle of the protrusions are such that when the tunnel part is tilted with respect to the rotander, it is assumed that rainwater is not drained from the side wall part of the tunnel part, so that the rainwater can be supported by the protrusions. The passenger boarding bridge according to claim 1 , wherein the passenger boarding bridge is set based on a volume of the area and a predicted value of rainfall between adjacent protrusions.
JP2014064033A 2014-03-26 2014-03-26 Passenger boarding bridge Active JP6368113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014064033A JP6368113B2 (en) 2014-03-26 2014-03-26 Passenger boarding bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014064033A JP6368113B2 (en) 2014-03-26 2014-03-26 Passenger boarding bridge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018091638A Division JP2018150044A (en) 2018-05-10 2018-05-10 Passenger loading bridge

Publications (2)

Publication Number Publication Date
JP2015182746A JP2015182746A (en) 2015-10-22
JP6368113B2 true JP6368113B2 (en) 2018-08-01

Family

ID=54349739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064033A Active JP6368113B2 (en) 2014-03-26 2014-03-26 Passenger boarding bridge

Country Status (1)

Country Link
JP (1) JP6368113B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040088805A1 (en) * 2002-11-12 2004-05-13 Hansen Christian M. Actuator-free resilient passenger boarding bridge canopy
JP2005193830A (en) * 2004-01-09 2005-07-21 Zennikku Motor Service Kk Boarding bridge
CN202295300U (en) * 2011-09-12 2012-07-04 镇江浩博航空铁道设备研发有限公司 Top rainwater diversion structure of boarding bridge passage

Also Published As

Publication number Publication date
JP2015182746A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6444226B2 (en) Floor slab erection device
EP3018255B1 (en) Cart for building a bridge board forward progressive
JP6193528B2 (en) Mobile boarding gutter
JP6368113B2 (en) Passenger boarding bridge
JP2018150044A (en) Passenger loading bridge
US10100472B2 (en) Moveable boarding bridge
JP2017178541A (en) Passenger conveyor
JP3828242B2 (en) Joint cover device
KR101753245B1 (en) A Joint Form Structure for Footbridge and Constructing Method
JP2005193830A (en) Boarding bridge
KR101415337B1 (en) A expansion joint for supporting load
JP6005679B2 (en) Aisle waterproofing equipment
JP6024605B2 (en) Elevator installation work floor equipment
KR102240961B1 (en) Boarding bridge
JP5769191B2 (en) Construction work device
KR101804885B1 (en) Boundary Stone
JP2020084407A (en) building
JP6694330B2 (en) Passenger boarding bridge
JP6546472B2 (en) Parking system
JP5736510B2 (en) Aircraft boarding / exiting connection device
JP2017132373A (en) Boarding bridge
JP5538962B2 (en) Boarding bridge
JP6704381B2 (en) Rainwater guide stairs, precast concrete blocks and blocks for rainwater guide stairs
JP6169425B2 (en) Passenger conveyor
JP5513878B2 (en) Boarding bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180706

R150 Certificate of patent or registration of utility model

Ref document number: 6368113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250