JP6361957B2 - Laminated wiring film for electronic parts and sputtering target material for coating layer formation - Google Patents

Laminated wiring film for electronic parts and sputtering target material for coating layer formation Download PDF

Info

Publication number
JP6361957B2
JP6361957B2 JP2014050030A JP2014050030A JP6361957B2 JP 6361957 B2 JP6361957 B2 JP 6361957B2 JP 2014050030 A JP2014050030 A JP 2014050030A JP 2014050030 A JP2014050030 A JP 2014050030A JP 6361957 B2 JP6361957 B2 JP 6361957B2
Authority
JP
Japan
Prior art keywords
coating layer
wiring film
layer
film
main conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014050030A
Other languages
Japanese (ja)
Other versions
JP2014208887A (en
Inventor
村田 英夫
英夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014050030A priority Critical patent/JP6361957B2/en
Publication of JP2014208887A publication Critical patent/JP2014208887A/en
Application granted granted Critical
Publication of JP6361957B2 publication Critical patent/JP6361957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、耐湿性、耐酸化性が要求される電子部品用積層配線膜およびこの電子部品用積層配線膜の主導電層を覆う被覆層を形成するための被覆層形成用スパッタリングターゲット材に関するものである。   The present invention relates to a multilayer wiring film for electronic parts that requires moisture resistance and oxidation resistance, and a sputtering target material for forming a coating layer for forming a coating layer that covers a main conductive layer of the multilayer wiring film for electronic parts. It is.

液晶ディスプレイ(以下「LCD」という。)、プラズマディスプレイパネル(以下「PDP」という)、電子ペーパー等に利用される電気泳動型ディスプレイ等の平面表示装置(フラットパネルディスプレイ、以下「FPD」という)に加え、各種半導体デバイス、薄膜センサー、磁気ヘッド等の薄膜電子部品においては、低抵抗な配線膜の形成が必要である。例えば、ガラス基板上に薄膜デバイスを作製するLCD、PDP、有機ELディスプレイ等のFPDは、大画面、高精細、高速応答化に伴い、その配線膜に低抵抗化が要求されている。さらに近年、FPDに操作性を加えるタッチパネルや樹脂基板を用いたフレキシブルなFPD等の新たな製品が開発されている。   For flat display devices (flat panel display, hereinafter referred to as “FPD”) such as liquid crystal displays (hereinafter referred to as “LCD”), plasma display panels (hereinafter referred to as “PDP”), electrophoretic displays used for electronic paper, etc. In addition, in thin film electronic components such as various semiconductor devices, thin film sensors, and magnetic heads, it is necessary to form a low resistance wiring film. For example, FPDs such as LCDs, PDPs, and organic EL displays that produce thin film devices on a glass substrate are required to have low resistance in their wiring films as the large screen, high definition, and high speed response. In recent years, new products such as a touch panel that adds operability to the FPD and a flexible FPD using a resin substrate have been developed.

近年、FPDの駆動素子として用いられている薄膜トランジスタ(以下「TFT」という)は、Si半導体膜が主流であり、低抵抗な配線膜のAlは、Siと直接触れると、TFT製造における加熱工程により拡散してしまい、TFTの特性を劣化させる場合がある。このため、AlとSiの間には耐熱性に優れた純MoやMo合金をバリア膜とした積層配線膜が用いられている。
また、TFTからつながる画素電極や携帯型端末やタブレットPC等に用いられているタッチパネルの位置検出電極には、一般的に透明導電膜であるインジウム−スズ酸化物(以下「ITO」という)が用いられている。この場合にも、配線膜であるAlがITOと接触すると、その界面に酸化物が生成してしまい、電気的コンタクト性が劣化する場合がある。このため、AlとITOとの間にコンタクト膜として純MoやMo合金を形成してITOとのコンタクト性を確保している。
以上のように、Alの低抵抗な特性を生かした配線膜を得るには、純MoやMo合金膜が不可欠であり、Alを純MoやMo合金で被覆した積層配線膜とする必要がある。
さらに、近年、非晶質Si半導体より高速駆動に適すると考えられている酸化物を用いた透明な半導体膜の検討が盛んに進んでおり、これら酸化物半導体とAlとの積層膜のコンタクト膜やバリア膜として用いられる被覆層にも、純Moの適用が検討されている。
In recent years, thin film transistors (hereinafter referred to as “TFTs”) used as FPD driving elements are mainly Si semiconductor films. When the Al of the low resistance wiring film is in direct contact with Si, it is caused by a heating process in TFT manufacturing. It may diffuse and deteriorate the characteristics of the TFT. For this reason, a laminated wiring film using pure Mo or Mo alloy having excellent heat resistance as a barrier film is used between Al and Si.
In addition, indium-tin oxide (hereinafter referred to as “ITO”), which is a transparent conductive film, is generally used for pixel electrodes connected to TFTs and position detection electrodes of touch panels used in portable terminals, tablet PCs, and the like. It has been. Also in this case, when Al as a wiring film comes into contact with ITO, an oxide is generated at the interface, and the electrical contact property may be deteriorated. For this reason, pure Mo or Mo alloy is formed as a contact film between Al and ITO to ensure contact with ITO.
As described above, pure Mo or Mo alloy film is indispensable to obtain a wiring film utilizing the low resistance characteristics of Al, and it is necessary to form a laminated wiring film in which Al is covered with pure Mo or Mo alloy. .
Further, in recent years, a transparent semiconductor film using an oxide that is considered to be suitable for high-speed driving than an amorphous Si semiconductor has been actively studied, and a contact film of a laminated film of these oxide semiconductor and Al. Application of pure Mo is also being studied for coating layers used as barrier films.

そこで、本出願人は、純Moの特性を改善する手段として、耐食性、耐熱性や基板との密着性に優れ、低抵抗な、Moに3〜50原子%のVやNbを添加したMo合金膜を提案している(例えば、特許文献1参照)。   Therefore, the present applicant, as a means for improving the characteristics of pure Mo, is a Mo alloy that is excellent in corrosion resistance, heat resistance and adhesion to the substrate, has low resistance, and contains 3 to 50 atomic% of V or Nb added to Mo. A film has been proposed (see, for example, Patent Document 1).

特開2002−190212号公報JP 2002-190212 A

上述の特許文献1で提案したMo−V、Mo−Nb合金等は、Moより耐食性、耐熱性や基板との密着性に優れるため、ガラス基板上に形成するFPD用途では広く使用されている。
しかし、FPDを製造する場合において、基板上に積層配線膜を形成した後に、次工程に移動する際に、大気中に長時間放置される場合がある。また、利便性を向上させるために、樹脂フィルムを用いた軽量でフレキシブルなFPD等においては、樹脂フィルムがこれまでのガラス基板等に比較して透湿性があるため、積層配線膜にはより高い耐湿性が求められている。
The Mo—V, Mo—Nb alloy and the like proposed in the above-mentioned Patent Document 1 are widely used in FPD applications formed on a glass substrate because they have better corrosion resistance, heat resistance, and adhesion to the substrate than Mo.
However, when an FPD is manufactured, there is a case where it is left in the atmosphere for a long time when moving to the next process after forming a laminated wiring film on the substrate. In addition, in a lightweight and flexible FPD using a resin film in order to improve convenience, the resin film is more permeable than conventional glass substrates, so the laminated wiring film is higher. Moisture resistance is required.

さらに、FPDの端子部等に信号線ケーブルを取り付ける際に、大気中で加熱される場合があるため、積層配線膜には耐酸化性の向上も要求されている。加えて、酸化物を用いた半導体膜においては、特性向上や安定化のために、酸素を含有した雰囲気や、酸素を含む保護膜を形成した後に350℃以上の高温での加熱処理を行う場合がある。このため、積層配線膜には、これらの加熱処理を経た後にも安定した特性を維持できるように、耐酸化性向上の要求が高まっている。   Furthermore, since the signal line cable may be heated in the air when the signal line cable is attached to the terminal portion or the like of the FPD, the laminated wiring film is also required to have improved oxidation resistance. In addition, in the case of a semiconductor film using an oxide, heat treatment at a high temperature of 350 ° C. or higher is performed after an oxygen-containing atmosphere or a protective film containing oxygen is formed in order to improve or stabilize the characteristics. There is. For this reason, there is an increasing demand for improving the oxidation resistance of the laminated wiring film so that stable characteristics can be maintained even after these heat treatments.

本発明者の検討によると、上述したMo−V、Mo−Nb合金や純Moでは、上述した環境での耐湿性や耐酸化性が十分でなく、FPDの製造工程中で積層配線膜の被覆層とした際に、表面が酸化して変色してしまう問題が発生する場合があることを確認した。耐酸化性が不十分だと、電気的コンタクト性を劣化させ、電子部品の信頼性低下に繋がる。
また、高速駆動のためにTFT製造工程中の加熱温度は上昇する傾向にあり、より高い温度での加熱工程を経ると、積層配線膜に含まれる合金元素がAlに拡散して電気抵抗値が増加する問題があることを確認した。
According to the study of the present inventor, the above-described Mo-V, Mo-Nb alloy and pure Mo have insufficient moisture resistance and oxidation resistance in the above-described environment, and the multilayer wiring film is covered during the FPD manufacturing process. When forming a layer, it was confirmed that the surface might oxidize and discolor. Insufficient oxidation resistance degrades electrical contact and leads to reduced reliability of electronic components.
In addition, the heating temperature during the TFT manufacturing process tends to increase due to high-speed driving, and when the heating process is performed at a higher temperature, the alloy element contained in the laminated wiring film diffuses into Al and the electric resistance value is increased. Confirmed that there was an increasing problem.

本発明の目的は、耐湿性や耐酸化性を改善し、さらに、低抵抗な主導電層であるAlと積層した際に、加熱工程を経ても低い電気抵抗値を維持できる、Mo合金からなる被覆層を用いた電子部品用積層配線膜および前記被覆層を形成するためのスパッタリングターゲット材を提供することにある。   It is an object of the present invention to improve moisture resistance and oxidation resistance, and further, when laminated with Al, which is a low-resistance main conductive layer, is made of a Mo alloy that can maintain a low electrical resistance value even after a heating process. An object of the present invention is to provide a laminated wiring film for electronic parts using a coating layer and a sputtering target material for forming the coating layer.

本発明者は、上記課題に鑑み、新たにMoに添加する元素の最適化に取り組んだ。その結果、Moに特定量のNiとNbとを複合で添加することで、耐湿性と耐酸化性を向上させるとともに、主導電層であるAlの被覆層とした際に加熱工程を経ても低い電気抵抗値を維持できることを見出し、本発明に到達した。   In view of the above problems, the present inventor has worked on optimization of elements newly added to Mo. As a result, by adding a specific amount of Ni and Nb to Mo in combination, the moisture resistance and oxidation resistance are improved, and the Al coating layer as the main conductive layer is low even after a heating step. The inventors have found that the electrical resistance value can be maintained, and have reached the present invention.

すなわち、本発明は、基板上に金属膜を形成した電子部品用積層配線膜において、Alを主成分とする主導電層と該主導電層の少なくとも一方の面を覆う被覆層からなり、該被覆層は原子比における組成式がMo100−x−y−Ni−Nb、10≦x≦30、3≦y≦15で表され、残部が不可避的不純物からなる電子部品用積層配線膜の発明である。
本発明では、前記組成式のx、yを、それぞれ10≦x≦20、5≦y≦10、かつx/yが1以上とすることが好ましい。
前記被覆層は、下地層であることが好ましい。
また、前記被覆層は、キャップ層であることが好ましい。本発明において「キャップ層」とは、主導電層をはさんで基板の反対側に設けられた被覆層をいう。
また、前記被覆層は、下地層およびキャップ層であることがより好ましい。本発明において「下地層」とは、主導電層と基板の間に設けられた被覆層をいう。
That is, the present invention provides a multilayer wiring film for electronic components in which a metal film is formed on a substrate, comprising a main conductive layer mainly composed of Al and a coating layer covering at least one surface of the main conductive layer. layer type composition in atomic ratio represented by Mo 100-x-y -Ni x -Nb y, 10 ≦ x ≦ 30,3 ≦ y ≦ 15, the balance of the electronic component laminated wiring film unavoidable impurities It is an invention.
In the present invention, it is preferable that x and y in the composition formula are 10 ≦ x ≦ 20, 5 ≦ y ≦ 10, and x / y is 1 or more, respectively.
The coating layer is preferably a base layer.
Moreover, it is preferable that the said coating layer is a cap layer. In the present invention, the “cap layer” refers to a coating layer provided on the opposite side of the substrate across the main conductive layer.
The covering layer is more preferably an underlayer and a cap layer. In the present invention, the “underlying layer” refers to a coating layer provided between the main conductive layer and the substrate.

また、本発明は、前記被覆層を形成するための被覆層形成用スパッタリングターゲット材であって、原子比における組成式がMo100−x−y−Ni−Ti、10≦x≦30、3≦y≦15で表され、残部が不可避的不純物からなる被覆層形成用スパッタリングターゲット材の発明である。
本発明では、前記組成式のx、yが、それぞれ10≦x≦20、5≦y≦10かつx/yが1以上であることが好ましい。
Further, the present invention, the a coating layer forming sputtering target material for forming the coating layer, the composition formula in the atomic ratio Mo 100-x-y -Ni x -Ti y, 10 ≦ x ≦ 30, This is an invention of a sputtering target material for forming a coating layer, represented by 3 ≦ y ≦ 15, and the balance being inevitable impurities.
In the present invention, it is preferable that x and y in the composition formula are 10 ≦ x ≦ 20, 5 ≦ y ≦ 10, and x / y is 1 or more, respectively.

本発明の電子部品用積層配線膜は、耐湿性、耐酸化性を向上させることができる。また、主導電層のAlと積層した際の加熱工程おいても、電気抵抗値の増加を抑制し、低い電気抵抗値を維持できる。これにより、種々の電子部品、例えば樹脂基板上に形成するFPD等の配線膜に用いることで、電子部品の安定製造や信頼性向上に大きく貢献できる利点を有するものであり、電子部品の製造に有用な技術となる。特に、タッチパネルや樹脂基板を用いるフレキシブルなFPDに対して非常に有用な積層配線膜となる。   The multilayer wiring film for electronic parts of the present invention can improve moisture resistance and oxidation resistance. Further, even in the heating step when the main conductive layer is laminated with Al, an increase in the electric resistance value can be suppressed and a low electric resistance value can be maintained. As a result, it can be used for various electronic parts, for example, wiring films such as FPD formed on a resin substrate, and has the advantage that it can greatly contribute to the stable production and reliability improvement of electronic parts. It will be a useful technique. In particular, it becomes a very useful laminated wiring film for a flexible FPD using a touch panel or a resin substrate.

本発明の電子部品用積層配線膜の断面模式図の一例である。It is an example of the cross-sectional schematic diagram of the multilayer wiring film for electronic components of this invention.

本発明の電子部品用積層配線膜の断面模式図の一例を図1に示す。本発明の電子部品用積層配線膜は、Alを主成分とする主導電層3の少なくとも一方の面を覆う被覆層からなり、例えば基板1上に形成される。図1では主導電層3の両面に被覆層2、4を形成しているところ、下地層2またはキャップ層4のいずれか一方の面のみに形成してもよく、適宜選択できる。尚、主導電層の一方の面のみを本発明の被覆層で覆う場合には、主導電層の他方の面には電子部品の用途に応じて、本発明とは別の組成の被覆層で覆うことができる。
本発明の重要な特徴は、図1に示す電子部品用積層配線膜の被覆層において、Moに特定量のNiとNbとを複合添加することで、耐湿性、耐酸化性を向上させ、主導電層のAlと積層する際の加熱工程を経ても、低い電気抵抗値を維持できる新たなMo合金を見出した点にある。以下、本発明の電子部品用配線膜について詳細に説明する。
尚、以下の説明において「耐湿性」とは、高温高湿環境下における配線膜の電気抵抗値の変化のしにくさ、および電気的コンタクト性の劣化のしにくさをいい、配線膜の変色により確認でき、例えば反射率によって定量的に評価することができる。また、「耐酸化性」とは、高温環境下における電気的コンタクト性の劣化のしにくさをいい、配線膜の変色により確認でき、例えば反射率によって定量的に評価することができる。
An example of a schematic cross-sectional view of the multilayer wiring film for electronic parts of the present invention is shown in FIG. The multilayer wiring film for electronic parts of the present invention is formed of a coating layer covering at least one surface of the main conductive layer 3 mainly composed of Al, and is formed on the substrate 1, for example. In FIG. 1, the covering layers 2 and 4 are formed on both surfaces of the main conductive layer 3. However, the covering layers 2 and 4 may be formed on only one surface of the base layer 2 or the cap layer 4 and can be appropriately selected. When only one surface of the main conductive layer is covered with the coating layer of the present invention, the other surface of the main conductive layer is coated with a coating layer having a composition different from that of the present invention depending on the use of the electronic component. Can be covered.
An important feature of the present invention is that, by adding a specific amount of Ni and Nb to Mo in the coating layer of the multilayer wiring film for electronic components shown in FIG. 1, the moisture resistance and oxidation resistance are improved. It is in the point which discovered the new Mo alloy which can maintain a low electrical resistance value through the heating process at the time of laminating | stacking with Al of a conductive layer. Hereinafter, the wiring film for electronic components of the present invention will be described in detail.
In the following description, “moisture resistance” refers to the difficulty of changing the electrical resistance value of the wiring film in a high-temperature and high-humidity environment, and the resistance to deterioration of the electrical contact property. For example, it can be quantitatively evaluated by reflectivity. “Oxidation resistance” refers to resistance to deterioration of electrical contact under a high temperature environment, which can be confirmed by discoloration of the wiring film, and can be quantitatively evaluated by, for example, reflectance.

本発明の電子部品用積層配線膜の被覆層を形成するMo合金にNiを添加する理由は、主に被覆層の耐酸化性を向上するためである。純Moは、大気中で加熱すると酸化して膜表面が変色してしまい、電気的コンタクト性が劣化してしまう。本発明の電子部品用積層配線膜の被覆層は、Moに特定量のNiを添加することで、被覆層の変色を抑制する効果を有し、耐酸化性を向上できる。その効果は、Niの添加量が10原子%以上で顕著になる。
一方、NiはAlに対して拡散しやすい元素であり、Al中におけるNiの相互拡散係数はAl中におけるMoの相互拡散係数よりも大きい。MoへのNiの添加量が30原子%を越えると、FPD等の電子部品を製造する際の加熱工程において、被覆層に含まれるNiが主導電層のAlに拡散してしまい、低い電気抵抗値を維持しづらくなる。このため、Niの添加量は10〜30原子%とする。
また、主導電層の表面に被覆層を形成して、350℃より高温で加熱する場合には、被覆層のNiが主導電層のAlに拡散しやすくなり、電気抵抗値が上昇する場合がある。本発明で低い電気抵抗値を維持するためには、Niの添加量を20原子%以下とすることが好ましい。
The reason for adding Ni to the Mo alloy forming the coating layer of the multilayer wiring film for electronic parts of the present invention is mainly to improve the oxidation resistance of the coating layer. Pure Mo oxidizes when heated in the atmosphere and discolors the film surface, degrading electrical contact properties. The coating layer of the multilayer wiring film for electronic parts of the present invention has an effect of suppressing discoloration of the coating layer by adding a specific amount of Ni to Mo, and can improve oxidation resistance. The effect becomes remarkable when the addition amount of Ni is 10 atomic% or more.
On the other hand, Ni is an element that easily diffuses into Al, and the mutual diffusion coefficient of Ni in Al is larger than the mutual diffusion coefficient of Mo in Al. When the amount of Ni added to Mo exceeds 30 atomic%, Ni contained in the coating layer diffuses into Al of the main conductive layer in the heating process when manufacturing electronic parts such as FPD, resulting in low electrical resistance. It becomes difficult to maintain the value. For this reason, the addition amount of Ni shall be 10-30 atomic%.
In addition, when a coating layer is formed on the surface of the main conductive layer and heated at a temperature higher than 350 ° C., Ni in the coating layer tends to diffuse into Al of the main conductive layer, and the electrical resistance value may increase. is there. In order to maintain a low electric resistance value in the present invention, it is preferable that the amount of Ni added is 20 atomic% or less.

本発明の電子部品用積層配線膜の被覆層を形成するMo合金にNbを添加する理由は、主に被覆層の耐湿性を向上するためである。Nbは、酸素や窒素と結合しやすい性質を有する金属であり、高温高湿雰囲気では、表面に不動態膜を形成して配線膜の内部を保護する効果を持つ。そして、その効果は、Nbを単独で添加するよりも、上述したNiと組み合わせて複合添加することで、さらに高くなる。本発明の電子部品用積層配線膜の被覆層は、Moに特定量のNbを添加することで耐湿性を大幅に向上させることができる。この効果は、Nbの添加量が3原子%以上で明確になり、5原子%以上で顕著になる。
一方、Nbの添加量が15原子%を越えると、耐食性が向上し過ぎてしまい、Al用エッチャントでのエッチング速度が低下し、その結果、主導電層のAlとの積層膜のエッチング時に残渣が生じたり、エッチングができなくなったりする。このため、本発明では、Nbの添加量を3〜15原子%とする。
また、Alとの積層膜において、耐湿性、エッチング性を容易に達成するには、Nbの添加量を5〜10原子%にすることが好ましい。
また、被覆層を形成するMo合金に複合添加するNiとNbは、原子比(x/y)で1以上が好ましい。上述したように、Nbは耐湿性向上に関与する元素であるものの、添加し過ぎると耐酸化性が低下するため、Niの添加量よりNbの添加量が多い場合には、耐酸化性の向上効果を得にくくなる。このため、NiとNbとの原子比(x/y)が1以上となるようにそれぞれ添加することで、被覆層の耐湿性と耐酸化性をより安定的に得ることが可能となる。
The reason for adding Nb to the Mo alloy forming the coating layer of the multilayer wiring film for electronic parts of the present invention is mainly to improve the moisture resistance of the coating layer. Nb is a metal that has the property of being easily bonded to oxygen or nitrogen, and has an effect of protecting the inside of the wiring film by forming a passive film on the surface in a high temperature and high humidity atmosphere. And the effect becomes still higher by adding together in combination with Ni mentioned above rather than adding Nb independently. The coating layer of the multilayer wiring film for electronic parts of the present invention can greatly improve moisture resistance by adding a specific amount of Nb to Mo. This effect becomes clear when the amount of Nb added is 3 atomic% or more, and becomes prominent when it is 5 atomic% or more.
On the other hand, when the amount of Nb added exceeds 15 atomic%, the corrosion resistance is excessively improved, and the etching rate in the Al etchant is lowered. As a result, a residue is left during etching of the laminated film with Al of the main conductive layer. May occur or etching may not be possible. For this reason, in this invention, the addition amount of Nb shall be 3-15 atomic%.
Further, in order to easily achieve moisture resistance and etching property in a laminated film with Al, it is preferable that the amount of Nb added is 5 to 10 atomic%.
Further, Ni and Nb added in combination to the Mo alloy forming the coating layer are preferably 1 or more in terms of atomic ratio (x / y). As described above, although Nb is an element involved in improving moisture resistance, if it is added too much, the oxidation resistance decreases. Therefore, when the amount of Nb added is larger than the amount of Ni added, the oxidation resistance is improved. It becomes difficult to obtain the effect. For this reason, by adding each so that the atomic ratio (x / y) of Ni and Nb is 1 or more, it becomes possible to obtain moisture resistance and oxidation resistance of the coating layer more stably.

また、積層配線膜の製造工程における加熱温度が350℃以上の高温を経る場合は、被覆層を形成するMo合金に複合添加するNiとNbの総和を35原子%以下にすることがより好ましい。その理由は、NiだけでなくNbもAlに熱拡散する元素であり、NiとNbの総和が35原子%を越えると、被覆層のNiやNbが主導電層のAlに拡散し、低い電気抵抗値を維持しづらくなるためである。   Moreover, when the heating temperature in the manufacturing process of a laminated wiring film passes high temperature of 350 degreeC or more, it is more preferable that the sum total of Ni and Nb compound-added to Mo alloy which forms a coating layer shall be 35 atomic% or less. The reason is that not only Ni but also Nb is an element that thermally diffuses into Al. If the sum of Ni and Nb exceeds 35 atomic%, Ni and Nb in the coating layer diffuse into Al in the main conductive layer, resulting in low electrical properties. This is because it is difficult to maintain the resistance value.

本発明の電子部品用積層配線膜において、低い電気抵抗値と耐湿性や耐酸化性を安定的に得るには、主導電層の膜厚を100〜1000nmにすることが好ましい。主導電層の膜厚が100nmより薄くなると、薄膜特有の電子の散乱の影響で電気抵抗値が増加しやすくなる。一方、主導電層の膜厚が1000nmより厚くなると、膜を形成するために時間が掛かったり、膜応力により基板に反りが発生しやすくなったりする。主導電層の膜厚のより好ましい範囲は、200〜500nmである。
また、Alを主成分とする主導電層は、最も低い電気抵抗値を得ることができる純Alが好適である。耐熱性、耐食性等の信頼性を考慮して、Alに遷移金属や半金属等を添加したAl合金を用いてもよい。このとき、できる限り低い電気抵抗値が得られるように、Alへの添加元素の添加量は、5原子%以下が好ましい。
In the laminated wiring film for electronic parts of the present invention, in order to stably obtain a low electric resistance value, moisture resistance and oxidation resistance, it is preferable that the film thickness of the main conductive layer is 100 to 1000 nm. When the thickness of the main conductive layer is less than 100 nm, the electric resistance value tends to increase due to the scattering of electrons unique to the thin film. On the other hand, when the thickness of the main conductive layer is greater than 1000 nm, it takes time to form the film, and the substrate is likely to warp due to film stress. A more preferable range of the film thickness of the main conductive layer is 200 to 500 nm.
The main conductive layer mainly composed of Al is preferably pure Al that can obtain the lowest electric resistance value. In consideration of reliability such as heat resistance and corrosion resistance, an Al alloy obtained by adding a transition metal or a semimetal to Al may be used. At this time, the addition amount of the additive element to Al is preferably 5 atomic% or less so that the lowest possible electrical resistance value can be obtained.

また、本発明の電子部品用積層配線膜において、低い電気抵抗値と耐湿性や耐酸化性を安定的に得るには、被覆層の膜厚を20〜100nmにすることが好ましい。被覆層の膜厚が20nm未満では、Mo合金膜の連続性が低くなってしまい、耐湿性と耐酸化性を十分に得ることができない場合がある。
一方、被覆層の膜厚が100nmを越えると、被覆層の電気抵抗値が高くなってしまい、主導電層のAl膜と積層した際に、電子部品用積層配線膜として低い電気抵抗値が得にくくなる。また、本発明において加熱時の主導電層を形成するAlへの原子の拡散を抑制するためには、被覆層の膜厚を20〜70nmとすることがより好ましい。
In the multilayer wiring film for electronic parts of the present invention, it is preferable that the film thickness of the coating layer is 20 to 100 nm in order to stably obtain a low electric resistance value, moisture resistance and oxidation resistance. If the film thickness of the coating layer is less than 20 nm, the continuity of the Mo alloy film becomes low, and sufficient moisture resistance and oxidation resistance may not be obtained.
On the other hand, if the thickness of the coating layer exceeds 100 nm, the electrical resistance value of the coating layer becomes high, and a low electrical resistance value is obtained as a laminated wiring film for electronic parts when laminated with the Al film of the main conductive layer. It becomes difficult. In the present invention, in order to suppress the diffusion of atoms into Al that forms the main conductive layer during heating, the thickness of the coating layer is more preferably 20 to 70 nm.

本発明の電子部品用積層配線膜の各層を形成するには、スパッタリングターゲットを用いたスパッタリング法が最適である。被覆層を形成する際には、例えば被覆層の組成と同一組成のMo合金スパッタリングターゲットを使用して成膜する方法や、Mo−Ni合金スパッタリングターゲットとMo−Nbスパッタリングターゲットを使用してコスパッタリングによって成膜する方法等が適用できる。スパッタリングの条件設定の簡易さや、所望組成の被覆層を得やすいという点からは、被覆層の組成と同一組成のMo合金スパッタリングターゲットを使用してスパッタリング成膜することがより好ましい。
したがって、本発明の電子部品用積層配線膜の被覆層を形成するには、原子比における組成式がMo100−x−y−Ni−Nb、10≦x≦30、3≦y≦15で表され、残部が不可避的不純物からなるスパッタリングターゲットを用いることで、安定して被覆層を形成できる。
また、上述したように、350℃という高温の加熱工程を経る場合にも低い電気抵抗値の電子部品用積層配線膜を得るには、MoにNiを10〜20原子%、Nbを5〜10原子%含有させ、かつNiとNbとの原子比(x/y)が1以上であることが好ましい。
A sputtering method using a sputtering target is optimal for forming each layer of the multilayer wiring film for electronic parts of the present invention. When forming the coating layer, for example, a method of forming a film using a Mo alloy sputtering target having the same composition as the composition of the coating layer, or a co-sputtering using a Mo—Ni alloy sputtering target and a Mo—Nb sputtering target. A film forming method or the like can be applied. From the viewpoint of easy setting of sputtering conditions and easy obtaining of a coating layer having a desired composition, it is more preferable to perform sputtering film formation using a Mo alloy sputtering target having the same composition as the composition of the coating layer.
Therefore, to form a coating layer of an electronic component laminated wiring film of the present invention, composition formula Mo 100-x-y -Ni in atomic ratio x -Nb y, 10 ≦ x ≦ 30,3 ≦ y ≦ 15 The coating layer can be stably formed by using a sputtering target represented by
Further, as described above, in order to obtain a laminated wiring film for electronic parts having a low electric resistance value even when a high temperature heating process of 350 ° C. is performed, Ni in Mo is 10 to 20 atomic%, and Nb is 5 to 10 It is preferable to contain them in atomic percent and the atomic ratio (x / y) between Ni and Nb is 1 or more.

本発明の被覆層形成用スパッタリングターゲット材の製造方法としては、例えば粉末焼結法が適用可能である。粉末焼結法では、例えばガスアトマイズ法で合金粉末を製造して原料粉末とすることや、複数の合金粉末や純金属粉末を本発明の最終組成となるように混合した混合粉末を原料粉末とすることが可能である。原料粉末の焼結方法としては、熱間静水圧プレス、ホットプレス、放電プラズマ焼結、押し出しプレス焼結等の加圧焼結を用いることが可能である。   As a manufacturing method of the sputtering target material for forming a coating layer of the present invention, for example, a powder sintering method can be applied. In the powder sintering method, for example, an alloy powder is manufactured by a gas atomization method to be a raw material powder, or a mixed powder obtained by mixing a plurality of alloy powders and pure metal powders to have the final composition of the present invention is used as a raw material powder. It is possible. As a method for sintering the raw material powder, it is possible to use pressure sintering such as hot isostatic pressing, hot pressing, discharge plasma sintering, and extrusion press sintering.

本発明の電子部品用積層配線膜の被覆層を形成するMo合金において、耐酸化性、耐湿性を確保するために必須元素であるNi、Nb以外の残部を占めるMo以外の不可避的不純物含有量は少ないことが好ましく、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素や炭素、遷移金属であるFe、Cu、半金属のAl、Si等の不可避的不純物を含んでもよい。例えば、ガス成分の酸素、窒素は各々1000質量ppm以下、炭素は200質量ppm以下、Fe、Cuは200質量ppm以下、Al、Siは100質量ppm以下等であり、ガス成分を除いた純度として99.9質量%以上であることが好ましい。   In the Mo alloy for forming the coating layer of the multilayer wiring film for electronic parts of the present invention, inevitable impurity content other than Mo occupying the remainder other than Ni and Nb, which are essential elements, in order to ensure oxidation resistance and moisture resistance Is preferably contained, and may contain inevitable impurities such as oxygen, nitrogen and carbon as gas components, Fe, Cu as transition metals, Al and Si as semimetals, and the like within the range not impairing the action of the present invention. For example, oxygen and nitrogen of the gas components are each 1000 ppm by mass or less, carbon is 200 ppm by mass or less, Fe and Cu are 200 ppm by mass or less, Al and Si are 100 ppm by mass or less, and the purity excluding the gas components It is preferable that it is 99.9 mass% or more.

先ず、被覆層となるMo合金膜を形成するためのスパッタリングターゲット材を作製した。平均粒径が6μmのMo粉末と平均粒径100μmのNi粉末と平均粒径85μmのNb粉末を用い、表1の組成となるように混合し、軟鋼製の缶に充填した後、加熱しながら真空排気して缶内のガス分を除いた後に封止した。次に、封止した缶を熱間静水圧プレス装置に入れて、800℃、120MPa、5時間の条件で焼結させた後に、機械加工により、直径100mm、厚さ5mmのスパッタリングターゲット材を作製した。また、比較となる純Mo、Mo−Nb合金、Mo−Ni合金のスパッタリングターゲット材も同様に作製した。   First, the sputtering target material for forming Mo alloy film used as a coating layer was produced. Using an Mo powder having an average particle size of 6 μm, an Ni powder having an average particle size of 100 μm, and an Nb powder having an average particle size of 85 μm, mixing so as to have the composition shown in Table 1, filling a can made of mild steel, and then heating Sealed after evacuating to remove the gas in the can. Next, the sealed can is put into a hot isostatic press and sintered under conditions of 800 ° C. and 120 MPa for 5 hours, and then a sputtering target material having a diameter of 100 mm and a thickness of 5 mm is produced by machining. did. In addition, sputtering target materials of pure Mo, Mo—Nb alloy, and Mo—Ni alloy for comparison were also produced.

上記で得た各スパッタリングターゲット材を銅製のバッキングプレートにろう付けしてスパッタリング装置に取り付けた。スパッタ装置は、キヤノンアネルバ株式会社製のSPF−440Hを用いた。
25mm×50mmのガラス基板上に、それぞれ図1に示す下地層/主導電層/キャップ層の順に、表1に示す膜厚構成でスパッタリング法にて形成し、電子部品用積層配線膜を得た。また、比較のために、純Mo、Mo−Nb合金膜、Mo−Ni合金膜を、それぞれAl膜と積層し、積層配線膜も作製した。
Each sputtering target material obtained above was brazed to a copper backing plate and attached to a sputtering apparatus. As the sputtering apparatus, SPF-440H manufactured by Canon Anelva Inc. was used.
On a glass substrate of 25 mm × 50 mm, the underlying layer / main conductive layer / cap layer shown in FIG. 1 were formed in the order of film thickness shown in Table 1 by the sputtering method to obtain a multilayer wiring film for electronic parts. . For comparison, a pure Mo, Mo—Nb alloy film, and Mo—Ni alloy film were laminated with an Al film to produce a laminated wiring film.

耐酸化性の評価としては、大気中にて200℃、250℃、300℃、350℃で1時間加熱した後の反射率の変化を測定した。また、耐湿性の評価としては、85℃×85%の高温高湿雰囲気に100時間、200時間、300時間放置した際の反射率の変化を測定した。反射率の測定には、コニカミノルタ株式会社製の分光測色計CM−2500dを用いて、可視光域の反射特性を測定した。その結果を表1に示す。   As the evaluation of oxidation resistance, the change in reflectance after heating at 200 ° C., 250 ° C., 300 ° C., and 350 ° C. for 1 hour in the air was measured. In addition, as an evaluation of moisture resistance, a change in reflectance when left in a high temperature and high humidity atmosphere of 85 ° C. × 85% for 100 hours, 200 hours, and 300 hours was measured. For the measurement of the reflectance, the reflection characteristic in the visible light region was measured using a spectrocolorimeter CM-2500d manufactured by Konica Minolta Co., Ltd. The results are shown in Table 1.

表1に示すように、積層配線膜の反射率は、大気中で加熱すると低下し、高温高湿雰囲気に放置しても低下する傾向にある。比較例の被覆層に純Moを用いた積層配線膜の反射率は、大気中加熱では250℃より低下し350℃ではさらに大きく低下し、耐酸化性が低く、高温高湿雰囲気に100時間放置すると、反射率は大きく低下していることがわかる。
また、被覆層にMo−10原子%Nbを用いた比較例となる試料No.2の積層配線膜の反射率は、大気中で加熱すると300℃で著しく低下し、耐酸化性が低いことを確認したため、以後の評価を中止した。
また、被覆層にMo−Ni合金を用いた比較例となる試料No.3〜No.5の積層配線膜の反射率は、大気中での加熱時の反射率の低下は少ないが、高温高湿中での加熱時の反射率は、保持時間の増加に伴い低下することを確認した。また、被覆層に本発明から外れるNiとNbを添加したMo−Ni−Nb合金を用いた比較例となる試料No.12の積層配線膜の反射率は、大気中で加熱すると、温度上昇に伴い低下することを確認した。
また、被覆層に本発明から外れるNiとNbを添加したMo−Ni−Nb合金を用いた比較例となる試料No.13の積層配線膜の反射率は、高温高湿中における加熱保持時間の増加に伴い低下することを確認した。
これに対して、被覆層にMoにNiとNbを所定量添加したMo−Ni−Nb合金を被覆層に用いた本発明例の積層配線膜の反射率は、大気加熱雰囲気および高温高湿雰囲気に放置しても、その低下は少なく、耐酸化性を大きく改善できることが確認できた。
その改善効果は、Niを10原子%以上、Nbを5原子%以上添加することで顕著となり、電子部品に好適な積層配線膜であることが確認できた。
As shown in Table 1, the reflectance of the laminated wiring film tends to decrease when heated in the atmosphere and to decrease even when left in a high temperature and high humidity atmosphere. The reflectance of the laminated wiring film using pure Mo as the coating layer of the comparative example is lower than 250 ° C. when heated in the air and further reduced when heated at 350 ° C., has low oxidation resistance, and is left in a high temperature and high humidity atmosphere for 100 hours. Then, it can be seen that the reflectance is greatly reduced.
In addition, Sample No. as a comparative example using Mo-10 atomic% Nb for the coating layer was used. The reflectance of the laminated wiring film 2 was significantly reduced at 300 ° C. when heated in the atmosphere, and it was confirmed that the oxidation resistance was low.
In addition, Sample No. as a comparative example using a Mo—Ni alloy for the coating layer was used. 3-No. It was confirmed that the reflectance of the multilayer wiring film of No. 5 decreased little when heated in the atmosphere, but the reflectance when heated in high temperature and high humidity decreased as the holding time increased. . In addition, Sample No. as a comparative example using a Mo—Ni—Nb alloy in which Ni and Nb deviating from the present invention were added to the coating layer was used. It was confirmed that the reflectance of the laminated wiring film 12 decreased with increasing temperature when heated in the atmosphere.
In addition, Sample No. as a comparative example using a Mo—Ni—Nb alloy in which Ni and Nb deviating from the present invention were added to the coating layer was used. It was confirmed that the reflectance of the laminated wiring film 13 decreased as the heating and holding time increased in high temperature and high humidity.
On the other hand, the reflectance of the laminated wiring film of the present invention example using Mo—Ni—Nb alloy in which a predetermined amount of Ni and Nb is added to Mo for the coating layer is used as the coating layer. It was confirmed that the oxidation resistance could be greatly improved even if left alone.
The improvement effect becomes remarkable by adding 10 atomic% or more of Ni and 5 atomic% or more of Nb, and it was confirmed that the laminated wiring film was suitable for electronic parts.

次に、実施例1で作製した一部の積層配線膜を、真空中で加熱処理した際の電気抵抗値の変化について確認した。電気抵抗値は、株式会社ダイヤインスツルメンツ製の4端子薄膜抵抗率測定器MCP−T400を用いて測定した。加熱温度は、250℃、300℃、350℃、400℃、450℃で1時間加熱した。測定結果を表2に示す。   Next, the change of the electrical resistance value when a part of the laminated wiring films produced in Example 1 was heat-treated in vacuum was confirmed. The electrical resistance value was measured using a 4-terminal thin film resistivity meter MCP-T400 manufactured by Dia Instruments Co., Ltd. Heating temperatures were 250 ° C., 300 ° C., 350 ° C., 400 ° C., and 450 ° C. for 1 hour. The measurement results are shown in Table 2.

表2に示すように、被覆層のNi添加量が本発明の範囲から外れる30原子%超えると、450℃の温度で加熱した際の電気抵抗値が大幅に増加することを確認した。
これに対して、本発明例のMoに特定量のNiとNbを添加した被覆層を用いた積層配線膜は、450℃まで加熱しても電気抵抗値の増加が抑制されることが確認できた。
As shown in Table 2, it was confirmed that when the amount of Ni added to the coating layer exceeds 30 atomic%, which is outside the range of the present invention, the electrical resistance value when heated at a temperature of 450 ° C. is significantly increased.
On the other hand, it can be confirmed that the laminated wiring film using the coating layer obtained by adding specific amounts of Ni and Nb to Mo of the present invention example suppresses an increase in electrical resistance even when heated to 450 ° C. It was.

次に、エッチング性の評価を行った。実施例2で用いた積層配線膜を形成した基板の半分の面積にのみフォトレジスト塗布して乾燥させ、関東化学株式会社製のAl用エッチャント液に浸し、未塗布部分をエッチングした。その後、基板を純水で洗浄し、乾燥させ、溶解部分とレジストを塗布した未溶解部分の境目近傍を光学顕微鏡で観察した。その結果を表2に示す。
比較例の被覆層に純MoやMo−Ni合金膜を用いた積層配線膜では、境目近傍の膜が浮き、端部が剥がれていることを確認した。これは、Alとガラス基板との間の被覆層のMo合金膜がエッチングされていると考えられる。
また、Nbの添加量が15原子%を越える試料No.12は、エッチングを行うことができなかった。
これに対して、本発明例となるNbの添加量が15原子%の試料No.11は、基板上にわずかに残渣が確認されたが、エッチングは可能であった。これにより、エッチング性には、Nbの添加量が大きく影響することが確認された。
また、本発明の被覆層にMoにNiとNbを所定量添加したMo−Ni−Nb合金を用いた積層配線膜は、比較例で生じた膜剥がれもなく、エッチングが可能であり、エッチング性にも優れていることが確認できた。
以上のように、耐酸化性、耐湿性、加熱時の電気抵抗値の増加の抑制、エッチング性を同時に満たすには、被覆層に添加するNiの添加量を10〜30原子%、Nbの添加量を3〜15原子%にすることにより可能となることが確認できた。
Next, the etching property was evaluated. Photoresist was applied only to half the area of the substrate on which the multilayer wiring film used in Example 2 was formed, dried, immersed in an etchant for Al manufactured by Kanto Chemical Co., Ltd., and the uncoated portion was etched. Thereafter, the substrate was washed with pure water and dried, and the vicinity of the boundary between the dissolved portion and the undissolved portion where the resist was applied was observed with an optical microscope. The results are shown in Table 2.
In the laminated wiring film using a pure Mo or Mo—Ni alloy film as the coating layer of the comparative example, it was confirmed that the film in the vicinity of the boundary floated and the end portion was peeled off. This is considered that the Mo alloy film of the coating layer between Al and the glass substrate is etched.
In addition, Sample No. in which the amount of Nb added exceeds 15 atomic%. No. 12 could not be etched.
On the other hand, sample No. 1 having an Nb addition amount of 15 atomic%, which is an example of the present invention. In No. 11, a slight residue was confirmed on the substrate, but etching was possible. Thus, it was confirmed that the amount of Nb added greatly affects the etching property.
In addition, the laminated wiring film using the Mo—Ni—Nb alloy in which a predetermined amount of Ni and Nb is added to Mo in the coating layer of the present invention can be etched without being peeled off in the comparative example, and can be etched. It was confirmed that it was excellent.
As described above, in order to satisfy oxidation resistance, moisture resistance, suppression of increase in electric resistance value during heating, and etching property at the same time, the amount of Ni added to the coating layer is 10 to 30 atomic%, and Nb is added. It has been confirmed that it becomes possible by adjusting the amount to 3 to 15 atomic%.

実施例1と同様の方法で、25mm×50mmの大きさに切断した厚さ0.25mmのITO膜付きPET(ポリエチレンテレフタレート)フィルム上に、それぞれ表3に示す膜厚構成で、スパッタリング法にて積層配線膜を形成し、耐湿性の評価を行った。耐湿性の評価としては、85℃×85%の高温高湿雰囲気に50時間、150時間、300時間放置した際の反射率の変化を測定した。その結果を表3に示す。
本発明のMoに特定量のNiとNbを添加した被覆層を用いた積層配線膜は、最も反射率の低下が少なく、耐湿性に優れていることが確認された。
以上のように、耐酸化性、耐湿性、加熱時の電気抵抗値の増加の抑制、エッチング性を満たすには、Niの添加量を10〜30原子%、Nbの添加量を3〜15原子%にすることが好ましいことが確認できた。また、高温での電気抵抗値の増加を抑制し、高い耐湿性を確保するにはNiを10〜20原子%、Nbを5〜10原子%とすることがより好ましいことが確認できた。
In the same manner as in Example 1, on a PET (polyethylene terephthalate) film with an ITO film having a thickness of 0.25 mm, cut to a size of 25 mm × 50 mm, each with the film thickness configuration shown in Table 3, and by the sputtering method A laminated wiring film was formed and the moisture resistance was evaluated. As an evaluation of moisture resistance, a change in reflectance was measured when left in a high temperature and high humidity atmosphere of 85 ° C. × 85% for 50 hours, 150 hours, and 300 hours. The results are shown in Table 3.
It was confirmed that the laminated wiring film using the coating layer in which specific amounts of Ni and Nb are added to Mo of the present invention has the least decrease in reflectance and is excellent in moisture resistance.
As described above, in order to satisfy oxidation resistance, moisture resistance, suppression of increase in electric resistance value during heating, and etching property, the additive amount of Ni is 10 to 30 atomic%, and the additive amount of Nb is 3 to 15 atoms. % Can be confirmed to be preferable. In addition, it was confirmed that it is more preferable to set Ni to 10 to 20 atomic% and Nb to 5 to 10 atomic% in order to suppress an increase in electric resistance value at high temperature and ensure high moisture resistance.

1 基板
2 被覆層(下地層)
3 主導電層
4 被覆層(キャップ層)
1 substrate 2 coating layer (underlayer)
3 Main conductive layer 4 Cover layer (cap layer)

Claims (7)

基板上に金属膜を形成した電子部品用積層配線膜において、Alを主成分とする主導電層と該主導電層の少なくとも一方の面を覆う被覆層からなり、該被覆層は原子比における組成式がMo100−x−y−Ni−Nb、10≦x≦30、3≦y≦15、x/yが1以上で表され、残部が不可避的不純物からなることを特徴とする電子部品用積層配線膜。 A laminated wiring film for electronic parts in which a metal film is formed on a substrate, comprising a main conductive layer mainly composed of Al and a coating layer covering at least one surface of the main conductive layer, the coating layer having a composition in atomic ratio An electron whose formula is Mo 100-xy -Ni x -Nb y , 10 ≦ x ≦ 30, 3 ≦ y ≦ 15 , x / y is 1 or more , and the balance consists of inevitable impurities Laminated wiring film for parts. 前記組成式のx、yが、それぞれ10≦x≦20、5≦y≦10であり、かつx/yが1以上であることを特徴とする請求項1に記載の電子部品用積層配線膜。   2. The multilayer wiring film for an electronic component according to claim 1, wherein x and y in the composition formula are 10 ≦ x ≦ 20 and 5 ≦ y ≦ 10, respectively, and x / y is 1 or more. . 前記被覆層が、前記主導電層と前記基板の間に位置する下地層であることを特徴とする請求項1または請求項2に記載の電子部品用積層配線膜。   3. The multilayer wiring film for an electronic component according to claim 1, wherein the coating layer is a base layer positioned between the main conductive layer and the substrate. 前記被覆層が、前記主導電層の表面のうち前記基板と反対側に位置する面を覆うキャップ層であることを特徴とする請求項1または請求項2に記載の電子部品用積層配線膜。   3. The multilayer wiring film for an electronic component according to claim 1, wherein the coating layer is a cap layer that covers a surface of the main conductive layer that is located on a side opposite to the substrate. 前記被覆層が、前記主導電層と前記基板の間に位置する下地層と、前記主導電層の表面のうち前記基板と反対側に位置する面を覆うキャップ層と、を備え、前記主導電層が、前記下地層および前記キャップ層の両方で覆われていることを特徴とする請求項1または請求項2に記載の電子部品用積層配線膜。 The covering layer includes: a base layer positioned between the main conductive layer and the substrate; and a cap layer that covers a surface of the surface of the main conductive layer that is positioned on the opposite side of the substrate; The multilayer wiring film for an electronic component according to claim 1, wherein the layer is covered with both the base layer and the cap layer. 請求項1に記載の被覆層を形成するための被覆層形成用スパッタリングターゲット材であって、原子比における組成式がMo100−x−y−Ni−Nb、10≦x≦30、3≦y≦15、x/yが1以上で表され、残部が不可避的不純物からなることを特徴とする被覆層形成用スパッタリングターゲット材。 A coating layer forming sputtering target material for forming the coating layer according to claim 1, the composition formula in the atomic ratio Mo 100-x-y -Ni x -Nb y, 10 ≦ x ≦ 30,3 <= Y <= 15 , x / y is represented by 1 or more , and the remainder consists of unavoidable impurities, The sputtering target material for coating layer formation characterized by the above-mentioned. 前記組成式のx、yが、それぞれ10≦x≦20、5≦y≦10であり、かつx/yが1以上であることを特徴とする請求項6記載の被覆層形成用スパッタリングターゲット材。   7. The sputtering target material for forming a coating layer according to claim 6, wherein x and y in the composition formula are 10 ≦ x ≦ 20 and 5 ≦ y ≦ 10, respectively, and x / y is 1 or more. .
JP2014050030A 2013-03-22 2014-03-13 Laminated wiring film for electronic parts and sputtering target material for coating layer formation Active JP6361957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014050030A JP6361957B2 (en) 2013-03-22 2014-03-13 Laminated wiring film for electronic parts and sputtering target material for coating layer formation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013059489 2013-03-22
JP2013059489 2013-03-22
JP2014050030A JP6361957B2 (en) 2013-03-22 2014-03-13 Laminated wiring film for electronic parts and sputtering target material for coating layer formation

Publications (2)

Publication Number Publication Date
JP2014208887A JP2014208887A (en) 2014-11-06
JP6361957B2 true JP6361957B2 (en) 2018-07-25

Family

ID=51552193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050030A Active JP6361957B2 (en) 2013-03-22 2014-03-13 Laminated wiring film for electronic parts and sputtering target material for coating layer formation

Country Status (4)

Country Link
JP (1) JP6361957B2 (en)
KR (1) KR101553472B1 (en)
CN (1) CN104064549B (en)
TW (1) TWI498441B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455303B2 (en) * 2014-12-19 2019-01-23 住友金属鉱山株式会社 Coated solder wire and manufacturing method thereof
JP6823799B2 (en) * 2015-10-01 2021-02-03 日立金属株式会社 Laminated wiring film for electronic components and sputtering target material for coating layer formation
JP6997945B2 (en) * 2016-12-27 2022-01-18 日立金属株式会社 Laminated wiring film and its manufacturing method and Mo alloy sputtering target material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419037B2 (en) * 2000-11-27 2010-02-24 三菱マテリアル株式会社 Sputtering target for forming black matrix light-shielding film
JP3649238B2 (en) * 2002-10-17 2005-05-18 旭硝子株式会社 LAMINATE, SUBSTRATE WITH WIRING, ORGANIC EL DISPLAY ELEMENT, CONNECTION TERMINAL OF ORGANIC EL DISPLAY ELEMENT, AND METHOD FOR PRODUCING THEM
KR100938885B1 (en) * 2003-06-30 2010-01-27 엘지디스플레이 주식회사 Liquid Crystal Display and method for fabricating of the same
JP2005079130A (en) 2003-08-28 2005-03-24 Hitachi Metals Ltd Thin film wiring layer
JP4730662B2 (en) * 2005-03-02 2011-07-20 日立金属株式会社 Thin film wiring layer
KR20100135957A (en) * 2008-04-28 2010-12-27 에이치. 씨. 스타아크 아이앤씨 Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
JP6016083B2 (en) * 2011-08-19 2016-10-26 日立金属株式会社 Laminated wiring film for electronic parts and sputtering target material for coating layer formation

Also Published As

Publication number Publication date
CN104064549B (en) 2016-08-31
CN104064549A (en) 2014-09-24
TWI498441B (en) 2015-09-01
KR20140116002A (en) 2014-10-01
TW201437405A (en) 2014-10-01
KR101553472B1 (en) 2015-09-15
JP2014208887A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6016083B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
KR20180076316A (en) LAMINATED WIRING FILM, METHOD FOR MANUFACTURING THEREOF, AND Mo ALLOY SPUTTERING TARGET MATERIAL
JP6292471B2 (en) Metal thin film for electronic parts and Mo alloy sputtering target material for metal thin film formation
JP6361957B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP6292466B2 (en) Metal thin film and Mo alloy sputtering target material for metal thin film formation
JP6037208B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
KR101828085B1 (en) NiCu ALLOY TARGET MATERIAL FOR Cu ELECTRODE PROTECTIVE FILM AND LAMINATED FILM
TWI576443B (en) Copper alloy film, copper laminated film, wiring electrode, input device and touch panel sensor
KR101337141B1 (en) Layered interconnection for a electronic device
WO2016132847A1 (en) Cu ALLOY FILM AND Cu MULTILAYER FILM
JP2015178239A (en) laminated film
JP2005091543A (en) Thin film wiring layer
JP5805708B2 (en) Wiring film for touch panel sensor and touch panel sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180614

R150 Certificate of patent or registration of utility model

Ref document number: 6361957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350