JP6355078B2 - Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound - Google Patents

Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound Download PDF

Info

Publication number
JP6355078B2
JP6355078B2 JP2014001428A JP2014001428A JP6355078B2 JP 6355078 B2 JP6355078 B2 JP 6355078B2 JP 2014001428 A JP2014001428 A JP 2014001428A JP 2014001428 A JP2014001428 A JP 2014001428A JP 6355078 B2 JP6355078 B2 JP 6355078B2
Authority
JP
Japan
Prior art keywords
group
atom
organosilane compound
iron
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014001428A
Other languages
Japanese (ja)
Other versions
JP2015129103A (en
Inventor
康嗣 大洞
康嗣 大洞
英也 川崎
英也 川崎
星也 中道
星也 中道
敬規 矢野
敬規 矢野
正安 五十嵐
正安 五十嵐
島田 茂
茂 島田
佐藤 一彦
一彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Kansai University
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Kansai University filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014001428A priority Critical patent/JP6355078B2/en
Publication of JP2015129103A publication Critical patent/JP2015129103A/en
Application granted granted Critical
Publication of JP6355078B2 publication Critical patent/JP6355078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、有機シラン化合物の製造方法及び有機シラン化合物合成用触媒組成物に関し、より詳しくはアルケン類及び/又はアルキン類とヒドロシラン類とを、表面に溶媒が配位した鉄元素含有ナノ粒子存在下で反応させる有機シラン化合物の製造方法に関する。   The present invention relates to a method for producing an organic silane compound and a catalyst composition for synthesizing an organic silane compound, and more specifically, the presence of iron element-containing nanoparticles in which a alkene and / or an alkyne and a hydrosilane are coordinated on a surface thereof The present invention relates to a method for producing an organosilane compound to be reacted below.

アルケン類やアルキン類等の不飽和炭化水素化合物にヒドロシラン類を付加させるヒドロシリル化反応は、炭素−ケイ素結合を形成することができる有用な反応の1つであり、幅広い分野に利用されている。このようなヒドロシリル化反応においては、従来白金族触媒が主に用いられてきたが、鉄錯体等の貴金属を使用しない合成法も提案されている(非特許文献1及び2参照)。   The hydrosilylation reaction in which hydrosilanes are added to unsaturated hydrocarbon compounds such as alkenes and alkynes is one of useful reactions capable of forming a carbon-silicon bond, and is used in a wide range of fields. In such hydrosilylation reactions, platinum group catalysts have been mainly used in the past, but synthesis methods that do not use noble metals such as iron complexes have also been proposed (see Non-Patent Documents 1 and 2).

一方、金属塩化物等をジメチルホルムアミド(DMF)中で還元することにより、粒子径が約2nm以下の金、白金、パラジウム等のナノ粒子を簡便かつ大量に合成することができることが報告されている。このようなナノ粒子は、分散剤等による表面処理を施すことなく各種媒体に均一に分散することができる優れた特性を有しており、これらのナノ粒子を有機合成反応の触媒として利用する検討が進められている。例えば、白金やパラジウムのナノ粒子を触媒として利用したクロスカップリング反応(特許文献1参照)、さらに鉄ナノ粒子を触媒として利用した酸化反応やアリール化反応が報告されている(特許文献2参照)。   On the other hand, it has been reported that nanoparticles such as gold, platinum and palladium having a particle diameter of about 2 nm or less can be synthesized easily and in large quantities by reducing metal chlorides or the like in dimethylformamide (DMF). . Such nanoparticles have excellent properties that can be uniformly dispersed in various media without being subjected to surface treatment with a dispersant or the like, and examination of using these nanoparticles as a catalyst for organic synthesis reactions. Is underway. For example, a cross-coupling reaction using platinum or palladium nanoparticles as a catalyst (see Patent Document 1), and an oxidation reaction or arylation reaction using iron nanoparticles as a catalyst have been reported (see Patent Document 2). .

特開2012−000593号公報JP 2012-000593 A 特開2013−081936号公報JP 2013-081936 A

C.Belger,B.Plietker,Chem.Commun.,2012,48,5419.C. Belger, B.M. Plietker, Chem. Commun. 2012, 48, 5419. S.C.Bart,E.Lobkovsky,P.J.Chirik,J.Am.Chem.Soc.,2004,126,13794.S. C. Bart, E .; Lobkovsky, P.M. J. et al. Chirik, J. et al. Am. Chem. Soc. 2004, 126, 13794.

前述のようにアルケン類やアルキン類のヒドロシリル化反応は、触媒として白金等の貴金属が用いられたり、特殊な配位子を含む錯体が用いられたりしていたため、コストの観点から改善の余地があった。優れた活性を示す触媒を簡便かつ安価に調製することができれば、ヒドロシリル化反応を利用した材料等の製造コスト低減に繋がる優れた技術となり得る。
即ち、本発明は、アルケン類やアルキン類のヒドロシリル化反応に使用する触媒を改良し、有機シラン化合物を効率良く、安価に製造することができる製造方法を提供することを課題とする。
As described above, in the hydrosilylation reaction of alkenes and alkynes, noble metals such as platinum are used as catalysts, or complexes containing special ligands are used, so there is room for improvement from the viewpoint of cost. there were. If a catalyst exhibiting excellent activity can be prepared easily and inexpensively, it can be an excellent technique that leads to a reduction in production cost of materials using hydrosilylation reaction.
That is, an object of the present invention is to provide a production method capable of improving the catalyst used for the hydrosilylation reaction of alkenes and alkynes and producing an organic silane compound efficiently and inexpensively.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる有機シラン化合物の製造方法において、表面に溶媒が配位した鉄含有ナノ粒子を触媒として用いることにより、有機シラ
ン化合物を効率良く、安価に製造することができることを見出し、本発明を完成させた。
As a result of intensive studies to solve the above problems, the inventors of the present invention have prepared a method for producing an organosilane compound in which an alkene and / or an alkyne and a hydrosilane are reacted in the presence of a catalyst. It has been found that by using coordinated iron-containing nanoparticles as a catalyst, an organosilane compound can be produced efficiently and inexpensively, and the present invention has been completed.

即ち、本発明は以下の通りである。
<1> アルケン類及び/又はアルキン類と、ヒドロシラン類とを触媒存在下で反応させる有機シラン化合物の製造方法であって、前記触媒が、表面に溶媒が配位した鉄元素含有ナノ粒子であることを特徴とする、有機シラン化合物の製造方法。
<2> 下記式(A)、(A’)、(B−1)、(B−2)、(B−3)、(B’−1)、(B’−2)、又は(B’−3)で表される化合物を製造する方法である、<1>に記載の有機シラン化合物の製造方法。
(式(A)、(A’)、(B−1)、(B−2)、(B−3)、(B’−1)、(B’−2)、及び(B’−3)中、R1〜R4はそれぞれ独立に水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を、R5はそれぞれ独立に水素原子、ハロゲン原子、シロキシ基、ケイ素数1〜50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。但し、R1〜R4の2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していて
もよい。)
<3> 前記溶媒が、トルエン、1,4−ジオキサン、テトラヒドロフラン(THF)、1,2−ジクロロエタン、ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、及びN−メチルピロリドン(NMP)からなる群より選択される少なくとも1種を含むものである、<1>又は<2>に記載の有機シラン化合物の製造方法。
<4> 前記鉄元素含有ナノ粒子の累積中位径(Median径)が0.5〜4nmである、<1>〜<3>の何れかに記載の有機シラン化合物の製造方法。
<5> 前記鉄元素含有ナノ粒子が酸化鉄である、<1>〜<4>の何れかに記載の有機シラン化合物の製造方法。
<6> アルケン類及び/又はアルキン類とヒドロシラン類から有機シラン化合物を合成するための有機シラン化合物の合成用触媒組成物であって、表面に溶媒が配位した鉄元素含有ナノ粒子を含むことを特徴とする、有機シラン化合物の合成用触媒組成物。
<7> 前記溶媒が、トルエン、1,4−ジオキサン、テトラヒドロフラン(THF)、1,2−ジクロロエタン、ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、及びN−メチルピロリドン(NMP)からなる群より選択される少なくとも1種を含むものである、<6>に記載の有機シラン化合物の合成用触媒組成物
That is, the present invention is as follows.
<1> A method for producing an organosilane compound in which an alkene and / or alkyne and hydrosilane are reacted in the presence of a catalyst, wherein the catalyst is an iron element-containing nanoparticle having a solvent coordinated on a surface thereof. A process for producing an organosilane compound, characterized in that
<2> The following formula (A), (A ′), (B-1), (B-2), (B-3), (B′-1), (B′-2), or (B ′) -3) The manufacturing method of the organosilane compound as described in <1> which is a method of manufacturing the compound represented.
(Formulas (A), (A '), (B-1), (B-2), (B-3), (B'-1), (B'-2), and (B'-3) R 1 to R 4 are each independently a hydrogen atom, a halogen atom, or a carbon atom that may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. In the hydrocarbon group having 1 to 20, R 5 is independently a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms, which may contain at least one selected from the group consisting of: When two or more of R 1 to R 4 are hydrocarbon groups, (The hydrogen group may be linked to form a cyclic structure.)
<3> The solvent is toluene, 1,4-dioxane, tetrahydrofuran (THF), 1,2-dichloroethane, dimethylacetamide (DMA), N, N-dimethylformamide (DMF), and N-methylpyrrolidone (NMP). The method for producing an organosilane compound according to <1> or <2>, comprising at least one selected from the group consisting of:
<4> The method for producing an organosilane compound according to any one of <1> to <3>, wherein a cumulative median diameter (Median diameter) of the iron element-containing nanoparticles is 0.5 to 4 nm.
<5> The method for producing an organosilane compound according to any one of <1> to <4>, wherein the iron element-containing nanoparticles are iron oxide.
<6> A catalyst composition for synthesizing organosilane compounds for synthesizing organosilane compounds from alkenes and / or alkynes and hydrosilanes, comprising iron-element-containing nanoparticles coordinated with a solvent on the surface A catalyst composition for the synthesis of an organosilane compound, characterized in that
<7> The solvent is toluene, 1,4-dioxane, tetrahydrofuran (THF), 1,2-dichloroethane, dimethylacetamide (DMA), N, N-dimethylformamide (DMF), and N-methylpyrrolidone (NMP). it is intended to include at least one selected from the group consisting of, a catalyst for synthesizing the compositions of the organosilane compound according to <6>.

本発明によれば、有機シラン化合物を効率良く、安価に製造することができる。   According to the present invention, an organosilane compound can be produced efficiently and inexpensively.

実施例1で得られた分散液1の写真である(図面代用写真)。2 is a photograph of dispersion 1 obtained in Example 1 (drawing substitute photograph). 実施例1で得られた分散液1にUV照射を行ったときの写真である(図面代用写真)。It is a photograph when UV irradiation is performed on the dispersion liquid 1 obtained in Example 1 (drawing substitute photograph). 実施例1で得られた分散液1の蛍光スペクトルである。2 is a fluorescence spectrum of the dispersion 1 obtained in Example 1. FIG. 実施例1で得られた固形物の分析結果である((a):高分解能透過型電子顕微鏡(HRTEM)の観察結果、(b):エネルギー分散型X線分析(EDS)結果、(c):制限視野電子回折(SAED)結果)。It is an analysis result of the solid substance obtained in Example 1 ((a): Observation result of a high-resolution transmission electron microscope (HRTEM), (b): Energy dispersive X-ray analysis (EDS) result, (c) : Restricted field electron diffraction (SAED) results). 実施例2で得られた分散液2の写真である(図面代用写真)。2 is a photograph of the dispersion 2 obtained in Example 2 (drawing substitute photograph). 実施例3で得られた分散液3にUV照射を行ったときの写真である(図面代用写真)。It is a photograph when UV irradiation is performed on the dispersion liquid 3 obtained in Example 3 (drawing substitute photograph). 実施例3で得られた分散液3の蛍光スペクトルである。4 is a fluorescence spectrum of the dispersion 3 obtained in Example 3. 実施例3で得られた固形物の高分解能透過型電子顕微鏡(HRTEM)の観察結果である(図面代用写真)。It is an observation result of the high-resolution transmission electron microscope (HRTEM) of the solid substance obtained in Example 3 (drawing substitute photograph).

本発明の有機シラン化合物の製造方法及び有機シラン化合物合成用触媒組成物の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。   In describing the details of the method for producing an organic silane compound and the catalyst composition for synthesizing an organic silane compound of the present invention, specific examples will be described. However, the present invention is limited to the following contents without departing from the spirit of the present invention. Instead, it can be implemented with appropriate modifications.

<有機シラン化合物の製造方法>
本発明の一態様である有機シラン化合物の製造方法(以下、「本発明の製造方法」と略す場合がある。)は、「アルケン類及び/又はアルキン類」と「ヒドロシラン類」とを触媒存在下で反応させる方法であるが、触媒が表面に溶媒が配位した鉄元素含有ナノ粒子であることを特徴とする。
前述のようにアルケン類やアルキン類のヒドロシリル化反応は、触媒として白金等の貴金属が用いられたり、特殊な配位子を含む錯体が用いられたりしていたため、コストの観点から改善の余地があった。本発明者らは、優れた活性を示し、簡便かつ安価に調製することができる触媒材料を求め鋭意検討を重ねた結果、表面に溶媒が配位した鉄元素含有ナノ粒子がヒドロシリル化反応の触媒として好適であり、これを用いることによって有機シラン化合物を効率良く、安価に製造することができることを見出したのである。
表面に溶媒が配位した鉄元素含有ナノ粒子は、有機シラン化合物の製造に使用した後、回収して触媒として再利用することができる利点がある。例えば、鉄錯体を触媒として用いた場合、高い触媒活性が得られるものの、一般的に錯体触媒は反応終了後に失活してしまったり、分解してしまうため、再利用が困難となる。特に鉄元素含有ナノ粒子は、表面が溶媒に保護されているため、劣化しにくく、触媒活性を維持し易いと考えられる。また
、鉄元素は、原子番号の比較的小さい遷移金属で、イオン半径が小さいため、触媒反応において反応基質が中心金属の近くで作用し、高い触媒活性が得られるものと考えられる。
なお、「鉄元素含有ナノ粒子」とは、粒子径(累積中位径(Median径))が0.5〜100nmの範囲にあり、鉄元素を構成元素として含む粒子を意味するものとする。従って、鉄元素を含むものであれば具体的な組成は特に限定されず、金属鉄粒子のほか、鉄とその他の金属との合金粒子、金属鉄粒子に酸素原子や炭素原子等のその他の原子がドープされている粒子、或いは酸化鉄、窒化鉄、炭化鉄等の鉄元素を含む無機化合物粒子等も含まれることを意味する。
また、「表面に溶媒が配位した」とは、鉄元素含有ナノ粒子の表面に溶媒分子が配位していることを意味する。なお、鉄元素含有ナノ粒子に配位する「溶媒」は、具体的な種類は限定されず、置換可能であるため、目的の反応に合わせて適宜選択することができる。また、「溶媒」が鉄元素含有ナノ粒子に配位しているか否かについては、分散剤等による表面処理を施すことなく、「溶媒」に安定的に分散するか否かで判断することができる。即ち、例えばN,N−ジメチルホルムアミド(DMF)を配位させた鉄元素含有ナノ粒子は、DMFと親和性のある「溶媒」に安定的に分散させることができる。
また、「アルケン類」とは炭素−炭素二重結合を少なくとも1つ有する有機化合物を、「アルキン類」とは炭素−炭素三重結合を少なくとも1つ有する有機化合物を、「ヒドロシラン類」とはケイ素−水素結合(Si−H)を少なくとも1つ有する化合物を、「有機シラン化合物」とは炭素−ケイ素結合(C−Si)を少なくとも1つ有する有機化合物を意味するものとする。従って、「アルケン類及び/又はアルキン類」と「ヒドロシラン類」の反応として、例えば下記の反応式で示されるような反応が挙げられる(「アルケン類」が「1−デセン」であり、「ヒドロシラン類」がフェニルシランである。)。
<Method for producing organosilane compound>
The method for producing an organic silane compound which is one embodiment of the present invention (hereinafter sometimes abbreviated as “the production method of the present invention”) includes “alkenes and / or alkynes” and “hydrosilanes” as catalysts. The catalyst is characterized in that the catalyst is iron element-containing nanoparticles with a solvent coordinated on the surface.
As described above, in the hydrosilylation reaction of alkenes and alkynes, noble metals such as platinum are used as catalysts, or complexes containing special ligands are used, so there is room for improvement from the viewpoint of cost. there were. The inventors of the present invention have intensively studied for a catalyst material that exhibits excellent activity and can be prepared easily and inexpensively. As a result, the iron element-containing nanoparticles having a coordinated solvent on the surface are catalysts for hydrosilylation reaction. It was found that the organosilane compound can be produced efficiently and inexpensively by using this.
The iron element-containing nanoparticles having a solvent coordinated on the surface have an advantage that they can be recovered and reused as a catalyst after being used for the production of an organosilane compound. For example, when an iron complex is used as a catalyst, although high catalytic activity is obtained, the complex catalyst is generally deactivated or decomposed after completion of the reaction, making it difficult to reuse. In particular, it is considered that the iron element-containing nanoparticles are hardly deteriorated because the surface is protected by a solvent, and the catalytic activity is easily maintained. In addition, iron element is a transition metal having a relatively small atomic number and has a small ionic radius. Therefore, it is considered that the reaction substrate acts near the central metal in the catalytic reaction and high catalytic activity can be obtained.
The “iron element-containing nanoparticle” means a particle having a particle diameter (cumulative median diameter (Median diameter)) in the range of 0.5 to 100 nm and containing an iron element as a constituent element. Therefore, the specific composition is not particularly limited as long as it contains an iron element, in addition to metallic iron particles, alloy particles of iron and other metals, and other atoms such as oxygen atoms and carbon atoms in the metallic iron particles. It is meant that inorganic particles containing iron elements such as iron oxide, iron nitride and iron carbide are also included.
Further, “the solvent is coordinated on the surface” means that solvent molecules are coordinated on the surface of the iron element-containing nanoparticles. The “solvent” coordinated to the iron element-containing nanoparticles is not limited to a specific type, and can be appropriately selected according to the target reaction because it can be substituted. Further, whether or not the “solvent” is coordinated to the iron element-containing nanoparticles can be determined by whether or not the “solvent” is stably dispersed without performing a surface treatment with a dispersant or the like. it can. That is, for example, iron element-containing nanoparticles coordinated with N, N-dimethylformamide (DMF) can be stably dispersed in a “solvent” having an affinity for DMF.
“Alkenes” means an organic compound having at least one carbon-carbon double bond, “alkynes” means an organic compound having at least one carbon-carbon triple bond, and “hydrosilanes” means silicon. -A compound having at least one hydrogen bond (Si-H) and an "organosilane compound" means an organic compound having at least one carbon-silicon bond (C-Si). Accordingly, examples of the reaction between “alkenes and / or alkynes” and “hydrosilanes” include reactions represented by the following reaction formulas (“alkenes” are “1-decene”, “hydrosilanes” Class "is phenylsilane).

(有機シラン化合物)
本発明の製造方法における有機シラン化合物は、前述のように炭素−ケイ素結合(C−Si)を少なくとも1つ有する有機化合物であれば、具体的な構造は特に限定されず、幅広い有機シラン化合物に適用することができる。
具体的には、下記式(A)、(A’)、(B−1)、(B−2)、(B−3)、(B’−1)、(B’−2)、又は(B’−3)で表される化合物が挙げられる。
(式(A)、(A’)、(B−1)、(B−2)、(B−3)、(B’−1)、(B’−2)、及び(B’−3)中、R1〜R4はそれぞれ独立に水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を、R5はそれぞれ独立
に水素原子、ハロゲン原子、シロキシ基、ケイ素数1〜50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。但し、R1〜R4の2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していてもよい。)
即ち、上記式(A)及び(A’)で表される化合物は、アルケン類とヒドロシラン類との反応によって得られる有機ケイ素化合物であり、上記式(B−1)〜(B−3)及び(B’−1)〜(B’〜3)で表される化合物は、アルキン類とヒドロシラン類との反応によって得られる有機ケイ素化合物である。また、SiR5 3基が付加する位置は特に限定されず、さらにアルキン類とヒドロシラン類との反応によって得られる有機ケイ素化合物は、Z体、E体、Z体とE体の混合物の何れであってもよいことを意味する。
(Organic silane compound)
As long as the organosilane compound in the production method of the present invention is an organic compound having at least one carbon-silicon bond (C—Si) as described above, the specific structure is not particularly limited, and a wide variety of organosilane compounds can be used. Can be applied.
Specifically, the following formulas (A), (A ′), (B-1), (B-2), (B-3), (B′-1), (B′-2), or ( And a compound represented by B′-3).
(Formulas (A), (A '), (B-1), (B-2), (B-3), (B'-1), (B'-2), and (B'-3) R 1 to R 4 are each independently a hydrogen atom, a halogen atom, or a carbon atom that may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. In the hydrocarbon group having 1 to 20, R 5 is independently a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms, which may contain at least one selected from the group consisting of: When two or more of R 1 to R 4 are hydrocarbon groups, (The hydrogen group may be linked to form a cyclic structure.)
That is, the compounds represented by the above formulas (A) and (A ′) are organosilicon compounds obtained by the reaction of alkenes and hydrosilanes, and the above formulas (B-1) to (B-3) and The compounds represented by (B′-1) to (B ′ to 3) are organosilicon compounds obtained by a reaction between alkynes and hydrosilanes. Further, the position to which the SiR 5 3 group is added is not particularly limited, and the organosilicon compound obtained by the reaction of alkynes and hydrosilanes is any of Z form, E form, and a mixture of Z form and E form. It means you may.

1〜R4はそれぞれ独立に水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表しているが、「窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい」とは、クロロ基(−Cl)、フルオロ基(−F)、アミノ基(−NH2)、ニト
ロ基(−NO2)、エポキシ基、ヒドロキシル基(−OH)、カルボニル基(−C(=O
)−)、tert−ブチルジメチルシリル基(−SiBuMe2)、アジ基(−N3)等の窒素原子、酸素原子、ケイ素原子、硫黄原子、又はハロゲン原子を含む官能基を含んでいてもよいことを意味するほか、エーテル基(−O−)、チオエーテル基(−S−)等の窒
素原子、酸素原子、ケイ素原子、硫黄原子、又はハロゲン原子を含む連結基を炭素骨格の内部又は末端に含んでいてもよいことを意味する。従って、「窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい」としては、例えば−CH2−CH2−OHのようなヒドロキシル基を含む炭素数2の炭化水素基、−CH2−O−CH3のようなエーテル基を炭素骨格の内部に含む炭素数2の炭化水素基、及び−O−CH2−CH3のようなエーテル基を炭素骨格の末端に含む炭素数2の炭化水素基等が含まれる。
1〜R4が炭化水素基である場合の炭素数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは19以下、より好ましくは17以下、さらに好ましくは15以下である。なお、R1〜R4の2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していてもよいが、例えばR1とR2が連結してシクロヘプタン構造、シクロヘプテン構造、シクロヘキサン構造、シクロヘキセン構造等を形成していることが挙げられる。
1〜R4が炭化水素基である場合の炭化水素基に含まれる官能基は、クロロ基(−Cl)、フルオロ基(−F)、アミノ基(−NH2)、ニトロ基(−NO2)、エポキシ基、ヒドロキシル基(−OH)、カルボニル基(−C(=O)−)、tert−ブチルジメチルシリル基(−SiBuMe2)、アジ基(−N3)等が挙げられる。
また、R1〜R4が炭化水素基である場合、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、炭素−炭素不飽和結合のそれぞれを有していてもよい(分岐構造、環状構造、及び炭素−炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
具体的なR1〜R4としては、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、n−へキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、メチルプロピル基、メチルブチル基、メチルペンチル基、メチルへキシル基、メチルヘプチル基、ジメチルプロピル基、ジメチルブチル基、ジメチルペンチル基、ジメチルへキシル基、ジメチルヘプチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルへキシル基、フェニルヘプチル基等が挙げられる。
R 1 to R 4 may each independently contain at least one selected from the group consisting of a hydrogen atom, a halogen atom, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group of ˜20, but “may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom” means a chloro group (—Cl), fluoro group (—F), amino group (—NH 2 ), nitro group (—NO 2 ), epoxy group, hydroxyl group (—OH), carbonyl group (—C (═O
)-), A tert-butyldimethylsilyl group (—SiBuMe 2 ), an azido group (—N 3 ) and the like, and may contain a functional group containing a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, or a halogen atom. In addition, a linking group containing a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, or a halogen atom such as an ether group (—O—) or a thioether group (—S—) is formed inside or at the end of the carbon skeleton. It means that it may contain. Accordingly, “may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom” includes, for example, —CH 2 —CH 2 —OH. A hydrocarbon group having 2 carbon atoms including a hydroxyl group, a hydrocarbon group having 2 carbon atoms having an ether group such as —CH 2 —O—CH 3 inside the carbon skeleton, and —O—CH 2 —CH 3 A hydrocarbon group having 2 carbon atoms containing such an ether group at the end of the carbon skeleton is included.
The carbon number in the case where R 1 to R 4 are hydrocarbon groups is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, preferably 19 or less, more preferably 17 or less, and still more preferably 15 or less. In addition, when two or more of R 1 to R 4 are hydrocarbon groups, two or more hydrocarbon groups may be linked to form a cyclic structure. For example, R 1 and R 2 are linked to form a cyclo Examples include formation of a heptane structure, a cycloheptene structure, a cyclohexane structure, a cyclohexene structure, and the like.
The functional group contained in the hydrocarbon group when R 1 to R 4 are hydrocarbon groups is a chloro group (—Cl), a fluoro group (—F), an amino group (—NH 2 ), a nitro group (—NO 2 ), an epoxy group, a hydroxyl group (—OH), a carbonyl group (—C (═O) —), a tert-butyldimethylsilyl group (—SiBuMe 2 ), an azide group (—N 3 ) and the like.
Moreover, when R < 1 > -R < 4 > is a hydrocarbon group, it is not restricted to a linear saturated hydrocarbon group, You may have each of a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond (branching) It may have at least one selected from the group consisting of a structure, a cyclic structure, and a carbon-carbon unsaturated bond.
Specific examples of R 1 to R 4 include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, and a methylpropyl group. , Methylbutyl group, methylpentyl group, methylhexyl group, methylheptyl group, dimethylpropyl group, dimethylbutyl group, dimethylpentyl group, dimethylhexyl group, dimethylheptyl group, phenylethyl group, phenylpropyl group, phenylbutyl group, Examples thereof include a phenylpentyl group, a phenylhexyl group, and a phenylheptyl group.

5はそれぞれ独立に水素原子、ハロゲン原子、シロキシ基、ケイ素数1〜50のポリ
シロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表しているが、「窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい」については、R1〜R4と同義である。
5が炭化水素基である場合の炭素数は、好ましくは2以上、より好ましくは3以上、
さらに好ましくは4以上であり、好ましくは19以下、より好ましくは17以下、さらに好ましくは15以下である。
5がポリシロキシ基である場合のケイ素数は、好ましくは2以上、より好ましくは3
以上、さらに好ましくは4以上であり、好ましくは48以下、より好ましくは46以下、さらに好ましくは45以下である。
また、R5が炭化水素基である場合、直鎖状の飽和炭化水素基に限られず、分岐構造、
環状構造、炭素−炭素不飽和結合のそれぞれを有していてもよい(分岐構造、環状構造、及び炭素−炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
具体的なR5としては、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メ
チル基、エチル基、n−プロピル基、イソプロピル基、フェニル基、メトキシ基、エトキシ基、ポリメチルシロキシ基等が挙げられる。この中でも、水素原子が好ましい。
5はそれぞれ独立に水素原子等を表しているが、2つのR3が水素原子であることが特に好ましい。水素原子が2つ以上であると、より収率良く有機ケイ素化合物を製造することができる。
R 5 is independently at least one selected from the group consisting of a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms, which may contain “at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. The term “may be present” has the same meaning as R 1 to R 4 .
The number of carbons in the case where R 5 is a hydrocarbon group is preferably 2 or more, more preferably 3 or more,
More preferably, it is 4 or more, preferably 19 or less, more preferably 17 or less, and further preferably 15 or less.
When R 5 is a polysiloxy group, the number of silicon is preferably 2 or more, more preferably 3
More preferably, it is 4 or more, preferably 48 or less, more preferably 46 or less, and still more preferably 45 or less.
In addition, when R 5 is a hydrocarbon group, it is not limited to a linear saturated hydrocarbon group, but a branched structure,
Each may have a cyclic structure and a carbon-carbon unsaturated bond (may have at least one selected from the group consisting of a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond). ).
Specific examples of R 5 include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group, a methoxy group, an ethoxy group, and a polymethylsiloxy group. Etc. Among these, a hydrogen atom is preferable.
R 5 independently represents a hydrogen atom or the like, but it is particularly preferable that two R 3 are hydrogen atoms. When the number of hydrogen atoms is 2 or more, the organosilicon compound can be produced with higher yield.

(アルケン類・アルキン類)
本発明の製造方法は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる方法であるが、アルケン類及び/又はアルキン類の種類は特に限定されず、製造目的である有機シラン化合物に基づいて適宜選択されるべきである。
基本的に製造目的である有機シラン化合物と共通する構造を有するアルケン類やアルキン類を選択すべきであり、例えば式(A)、(A’)、(B−1)、(B−2)、(B−3)、(B’−1)、(B’−2)、又は(B’−3)で表される化合物を製造目的とする場合、アルケン類としては下記式(a)で表される化合物が、アルキン類としては(b)で表される化合物が挙げられる。
(式(a)及び(b)中、R1〜R4はそれぞれ独立に水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。但し、R1〜R4の2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していてもよい。)
具体的なアルケン類としては、1−デセン、4−フェニル−1−ブテン、6,6−ジメチル−1−ヘプテン、4,4−ジメチル−1−ヘキセン、1−オクテン、スチレン、シクロヘキセン等が挙げられる。
また、具体的なアルキン類としては、ジフェニルアセチレン、1−フェニル−1−プロピン、4−オクチン、フェニルアセチレン等が挙げられる。
(Alkenes and alkynes)
The production method of the present invention is a method in which alkenes and / or alkynes and hydrosilanes are reacted in the presence of a catalyst, but the type of alkenes and / or alkynes is not particularly limited, and is an organic target for production. It should be appropriately selected based on the silane compound.
Alkenes and alkynes having a structure in common with the organic silane compound that is basically the production purpose should be selected. For example, the formulas (A), (A ′), (B-1), (B-2) , (B-3), (B′-1), (B′-2), or (B′-3), the production of the compound represented by the following formula (a) Examples of the alkynes represented by the compound represented by (b) include compounds represented by (b).
(In formulas (a) and (b), R 1 to R 4 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms which may contain one kind, provided that when two or more of R 1 to R 4 are hydrocarbon groups, the two or more hydrocarbon groups are linked to form a cyclic structure; May be formed.)
Specific alkenes include 1-decene, 4-phenyl-1-butene, 6,6-dimethyl-1-heptene, 4,4-dimethyl-1-hexene, 1-octene, styrene, cyclohexene and the like. It is done.
Specific alkynes include diphenylacetylene, 1-phenyl-1-propyne, 4-octyne, phenylacetylene and the like.

(ヒドロシラン類)
本発明の製造方法は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる方法であるが、ヒドロシラン類の種類は特に限定されず、製造目的である有機シラン化合物に基づいて適宜選択されるべきである。
基本的に製造目的である有機シラン化合物と共通する構造を有するヒドロシラン類を選択すべきであり、例えば式(A)、(A’)、(B−1)、(B−2)、(B−3)、(B’−1)、(B’−2)、又は(B’−3)で表される化合物を製造目的とする場合、ヒドロシラン類としては下記式(X)で表される化合物が挙げられる。
(式(X)中、R5はそれぞれ独立に水素原子、ハロゲン原子、シロキシ基、ケイ素数1
〜50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。)
具体的なヒドロシラン類としては、フェニルシラン、ジフェニルシラン、メチルフェニルシラン、ジメチルフェニルシラン、トリエトキシシラン、トリエチルシラン、ジエトキシメチルシラン等が挙げられる。
(Hydrosilanes)
The production method of the present invention is a method in which alkenes and / or alkynes and hydrosilanes are reacted in the presence of a catalyst, but the type of hydrosilanes is not particularly limited, and is based on the organosilane compound that is the production object. It should be selected as appropriate.
Basically, hydrosilanes having a structure in common with the organosilane compound that is the object of production should be selected. For example, the formulas (A), (A ′), (B-1), (B-2), (B -3) When the compound represented by (B′-1), (B′-2), or (B′-3) is intended for production, the hydrosilanes are represented by the following formula (X): Compounds.
(In formula (X), each R 5 is independently a hydrogen atom, a halogen atom, a siloxy group, or 1 silicon.
Represents a polysiloxy group having ˜50 or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. )
Specific hydrosilanes include phenylsilane, diphenylsilane, methylphenylsilane, dimethylphenylsilane, triethoxysilane, triethylsilane, diethoxymethylsilane, and the like.

本発明の製造方法におけるアルケン類及び/又はアルキン類とヒドロシラン類の使用量は、目的に応じて適宜することができるが、ヒドロシラン類の使用量は、アルケン類及び/又はアルキン類の使用量に対して、物質量([mol])で通常1倍以上、好ましくは2倍以上、より好ましくは3倍以上であり、通常50倍以下、好ましくは20倍以下、より好ましくは10倍以下である。上記範囲内であると、有機シラン化合物をより収率良く製造することができる。   The amount of alkenes and / or alkynes and hydrosilanes used in the production method of the present invention can be appropriately determined according to the purpose, but the amount of hydrosilanes used is the amount of alkenes and / or alkynes used. In contrast, the amount ([mol]) of the substance is usually 1 or more, preferably 2 or more, more preferably 3 or more, and usually 50 or less, preferably 20 or less, more preferably 10 or less. . Within the above range, the organosilane compound can be produced with higher yield.

(触媒)
本発明の製造方法は、触媒が表面に溶媒が配位した鉄元素含有ナノ粒子であることを特徴とする方法であるが、表面に溶媒が配位した鉄元素含有ナノ粒子は、前述した鉄元素含有ナノ粒子に該当するものであれば、溶媒の具体的な種類、鉄元素含有ナノ粒子の組成、物性等は特に限定されない。
鉄元素含有ナノ粒子に配位する溶媒は、前述のように目的の反応に合わせて適宜選択することができるが、具体的にはヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、1,4−ジオキサン、テトラヒドロフラン(THF)等のエーテル系溶媒、1,2−ジクロロエタン、クロロホルム等のハロゲン系溶媒、エタノール、エチレングリコール、グリセリン等のプロトン性極性溶媒、アセトン、ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒等が挙げられる。
なお、鉄元素含有ナノ粒子に配位する溶媒は、適宜置換することができる。例えばDMFが配位した金属鉄ナノ粒子のDMF分散液からロータリーエバポレーター等を用いてDMFを留去し、金属鉄ナノ粒子を固形物として得る。そして、固形物をTHF等のその他の溶媒に接触させ、撹拌等を行ってなじませることにより、THFが配位した金属鉄ナノ粒子を得ることができる。また、接触させる溶媒は、1種類に限られず、2種類以上を混合した混合溶媒であってもよい。具体的な組み合わせとしては、N,N−ジメチルホルムアミド(DMF)と1,4−ジオキサン、N,N−ジメチルホルムアミド(DMF)とジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)とN−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)とトルエン等が挙げられるが、N,N−ジメチルホルムアミド(DMF)と1,4−ジオキサンの混合溶媒であることが特に好ましい。
鉄元素含有ナノ粒子は、前述のように鉄元素を構成元素として含むものであれば具体的な組成は特に限定されないが、鉄元素のほかに酸素元素を含むことが好ましく、酸素原子がドープされている金属鉄粒子若しくは鉄合金粒子、又は酸化鉄粒子がより好ましく、α−Fe23粒子であることが特に好ましい。
鉄元素含有ナノ粒子の粒子径(累積中位径(Median径))は、前述のように1〜100nmの範囲であれば特に限定されないが、好ましくは1.5nm以上、より好ましくは2.0nm以上、さらに好ましくは3.0nm以上であり、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは20nm以下である。なお、累積中位径(Median径)は、透過型電子顕微鏡(TEM)で測定することができる。
(catalyst)
The production method of the present invention is a method characterized in that the catalyst is an iron element-containing nanoparticle with a solvent coordinated on the surface, and the iron element-containing nanoparticle with a solvent coordinated on the surface is the above-mentioned iron If it corresponds to an element containing nanoparticle, the specific kind of solvent, the composition of an iron element containing nanoparticle, a physical property, etc. will not be specifically limited.
The solvent coordinated to the iron element-containing nanoparticles can be appropriately selected according to the target reaction as described above. Specifically, hydrocarbon solvents such as hexane, benzene and toluene, diethyl ether, 1 Ether solvents such as 1,4-dioxane and tetrahydrofuran (THF), halogen solvents such as 1,2-dichloroethane and chloroform, protic polar solvents such as ethanol, ethylene glycol and glycerol, acetone, dimethylacetamide (DMA), N , N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO) and the like aprotic polar solvents.
In addition, the solvent coordinated to the iron element-containing nanoparticles can be appropriately substituted. For example, DMF is distilled off from a DMF dispersion of metallic iron nanoparticles coordinated with DMF using a rotary evaporator or the like to obtain metallic iron nanoparticles as a solid. Then, the solid matter is brought into contact with another solvent such as THF, and the mixture is mixed by stirring, whereby metallic iron nanoparticles coordinated with THF can be obtained. Moreover, the solvent made to contact is not restricted to 1 type, The mixed solvent which mixed 2 or more types may be sufficient. Specific combinations include N, N-dimethylformamide (DMF) and 1,4-dioxane, N, N-dimethylformamide (DMF) and dimethylacetamide (DMA), N, N-dimethylformamide (DMF) and N -Methylpyrrolidone (NMP), N, N-dimethylformamide (DMF) and toluene are exemplified, and a mixed solvent of N, N-dimethylformamide (DMF) and 1,4-dioxane is particularly preferable.
The iron element-containing nanoparticle is not particularly limited as long as it contains an iron element as a constituent element as described above, but preferably contains an oxygen element in addition to the iron element, and is doped with oxygen atoms. More preferred are metallic iron particles, iron alloy particles, or iron oxide particles, and α-Fe 2 O 3 particles are particularly preferred.
The particle size (cumulative median diameter (Median diameter)) of the iron element-containing nanoparticles is not particularly limited as long as it is in the range of 1 to 100 nm as described above, but is preferably 1.5 nm or more, more preferably 2.0 nm. More preferably, the thickness is 3.0 nm or more, preferably 100 nm or less, more preferably 50 nm or less, and still more preferably 20 nm or less. The cumulative median diameter (Median diameter) can be measured with a transmission electron microscope (TEM).

表面に溶媒が配位した鉄元素含有ナノ粒子の調製方法は、特に限定されないが、鉄元素を含んだ前駆体を極性溶媒中で加熱還流する方法が挙げられる。
以下、鉄元素を含んだ前駆体を極性溶媒中で加熱還流する方法における条件等の詳細を説明する。
鉄元素を含んだ前駆体の種類は、特に限定されないが、塩化鉄(III)(FeCl3
)、臭化鉄(III)(FeBr3)、酢酸鉄(II)(Fe(CH3CO22)、クエン酸鉄(III)(FeC657)、硫酸アンモニウム鉄(III)(FeNH4(SO4
2)、鉄(III)アセチルアセトナート(Fe(CH3COCHCOCH33)等が挙げられる。この中でも、鉄(III)アセチルアセトナートが特に好ましい。鉄(III
)アセチルアセトナートを使用することによって、触媒活性に優れる鉄元素含有ナノ粒子を調製し易くなる。
極性溶媒の種類は、特に限定されないが、エチレングリコール、ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等が挙げられる。この中でも、N,N−ジメチルホルムアミドが特に好ましい。N,N−ジメチルホルムアミドを使用することによって、触媒活性に優れる鉄元素含有ナノ粒子を調製し易くなる。
設定する温度条件は、使用する極性溶媒によって選択されるべきであり、特に限定されない。
還流は、撹拌子等を使用して撹拌しながら行うことが好ましい。撹拌子の回転数は、通常500rpm以上、好ましくは800rpm以上、より好ましくは1000rpm以上であり、通常2000rpm以下、好ましくは1800rpm以下、より好ましくは1700rpm以下である。上記範囲内であると触媒活性に優れる鉄元素含有ナノ粒子を調製し易くなる。
還流時間は、通常1時間以上、好ましくは3時間以上、より好ましくは6時間以上であり、通常24時間以下、好ましくは12時間以下、より好ましくは10時間以下である。上記範囲内であると触媒活性に優れる鉄元素含有ナノ粒子を調製し易くなる。
還流は、窒素、アルゴン等の不活性雰囲気下で行っても、或いは空気雰囲気下で行ってもよい。酸素原子がドープされている金属鉄粒子又は鉄合金粒子、酸化鉄粒子等を調製する観点から、空気雰囲気下で行うことが好ましい。
Although the preparation method of the iron element containing nanoparticle which the solvent coordinated on the surface is not specifically limited, The method of heating and refluxing the precursor containing an iron element in a polar solvent is mentioned.
Hereinafter, details such as conditions in a method of heating and refluxing a precursor containing an iron element in a polar solvent will be described.
The type of the precursor containing iron element is not particularly limited, but iron (III) chloride (FeCl 3
), Iron (III) bromide (FeBr 3 ), iron (II) acetate (Fe (CH 3 CO 2 ) 2 ), iron (III) citrate (FeC 6 H 5 O 7 ), iron iron (III) sulfate (III) ( FeNH 4 (SO 4
2 ), iron (III) acetylacetonate (Fe (CH 3 COCHCOCH 3 ) 3 ) and the like. Among these, iron (III) acetylacetonate is particularly preferable. Iron (III
) By using acetylacetonate, it becomes easy to prepare iron element-containing nanoparticles having excellent catalytic activity.
Although the kind of polar solvent is not specifically limited, Ethylene glycol, dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO), etc. are mentioned. Among these, N, N-dimethylformamide is particularly preferable. By using N, N-dimethylformamide, it becomes easy to prepare iron element-containing nanoparticles having excellent catalytic activity.
The temperature conditions to be set should be selected according to the polar solvent to be used, and are not particularly limited.
The refluxing is preferably performed while stirring using a stirrer or the like. The rotation speed of the stirrer is usually 500 rpm or more, preferably 800 rpm or more, more preferably 1000 rpm or more, and usually 2000 rpm or less, preferably 1800 rpm or less, more preferably 1700 rpm or less. Within the above range, it becomes easy to prepare iron element-containing nanoparticles having excellent catalytic activity.
The reflux time is usually 1 hour or longer, preferably 3 hours or longer, more preferably 6 hours or longer, and usually 24 hours or shorter, preferably 12 hours or shorter, more preferably 10 hours or shorter. Within the above range, it becomes easy to prepare iron element-containing nanoparticles having excellent catalytic activity.
The reflux may be performed under an inert atmosphere such as nitrogen or argon, or may be performed under an air atmosphere. From the viewpoint of preparing metal iron particles, iron alloy particles, iron oxide particles and the like doped with oxygen atoms, it is preferable to carry out in an air atmosphere.

本発明の製造方法における触媒(表面に溶媒が配位した鉄元素含有ナノ粒子)の使用量は、目的に応じて適宜選択することができるが、アルケン類及び/又はアルキン類の使用量に対して、物質量([mol])で通常0.5倍以下、好ましくは0.1倍以下、より好ましくは0.01倍以下であり、通常0.0001倍以上、好ましくは0.005倍以上、より好ましくは0.001倍以上である。上記範囲内であると、有機シラン化合物をより収率良く製造することができる。
なお、触媒は固形物として反応容器に投入してもよいが、溶媒に分散させた分散液として反応容器に投入してもよい。分散液として保存、使用することによって、触媒の劣化を抑制したり、操作を簡略化したりすることができる。
The amount of the catalyst (iron element-containing nanoparticles with a solvent coordinated on the surface) in the production method of the present invention can be appropriately selected according to the purpose, but the amount of alkene and / or alkyne used The amount of the substance ([mol]) is usually 0.5 times or less, preferably 0.1 times or less, more preferably 0.01 times or less, usually 0.0001 times or more, preferably 0.005 times or more. More preferably, it is 0.001 times or more. Within the above range, the organosilane compound can be produced with higher yield.
The catalyst may be charged into the reaction vessel as a solid substance, but may be charged into the reaction vessel as a dispersion liquid dispersed in a solvent. By storing and using it as a dispersion, it is possible to suppress the deterioration of the catalyst or to simplify the operation.

本発明の製造方法における溶媒の種類は特に限定されず、目的に応じて適宜することができるが、具体的にはヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、1,4−ジオキサン、テトラヒドロフラン(THF)等のエーテル系溶媒、1,2−ジクロロエタン、クロロホルム等のハロゲン系溶媒、エタノール、エチレングリコール、グリセリン等のプロトン性極性溶媒、アセトン、ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒等が挙げられる。また、溶媒は、1種類に限られず、2種類以上を混合した混合溶媒であってもよい。具体的な組み合わせとしては、N,N−ジメチルホルムアミド(DMF)と1,4−ジオキサン、N,N−ジメチルホルムアミド(DMF)とジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)とN−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)とトルエン等が挙げられるが、N,N−ジメチルホルムアミド(DMF)と1,4−ジオキサンの混合溶媒であることが特に好ましい。   The kind of the solvent in the production method of the present invention is not particularly limited and may be appropriately selected according to the purpose. Specifically, hydrocarbon solvents such as hexane, benzene and toluene, diethyl ether, and 1,4-dioxane. , Ether solvents such as tetrahydrofuran (THF), halogen solvents such as 1,2-dichloroethane and chloroform, protic polar solvents such as ethanol, ethylene glycol and glycerin, acetone, dimethylacetamide (DMA), N, N-dimethyl Examples include aprotic polar solvents such as formamide (DMF), N-methylpyrrolidone (NMP), and dimethyl sulfoxide (DMSO). Moreover, the solvent is not limited to one type, and may be a mixed solvent in which two or more types are mixed. Specific combinations include N, N-dimethylformamide (DMF) and 1,4-dioxane, N, N-dimethylformamide (DMF) and dimethylacetamide (DMA), N, N-dimethylformamide (DMF) and N -Methylpyrrolidone (NMP), N, N-dimethylformamide (DMF) and toluene are exemplified, and a mixed solvent of N, N-dimethylformamide (DMF) and 1,4-dioxane is particularly preferable.

(反応条件)
本発明の製造方法は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる方法であるが、反応温度、反応時間等の反応条件は特に限定されない。
反応温度は、通常25℃以上、好ましくは70℃以上、より好ましくは110℃以上であり、通常200℃以下、好ましくは150℃以下、より好ましくは130℃以下である
。上記範囲内であれば、有機シラン化合物をより収率良く製造することができる。
反応時間は、通常1時間以上、好ましくは2時間以上、より好ましくは10時間以上であり、通常60時間以下、好ましくは48時間以下、より好ましくは24時間以下である。
反応は、通常窒素、アルゴン等の不活性雰囲気下で行う。
(Reaction conditions)
The production method of the present invention is a method of reacting alkenes and / or alkynes with hydrosilanes in the presence of a catalyst, but the reaction conditions such as reaction temperature and reaction time are not particularly limited.
The reaction temperature is usually 25 ° C. or higher, preferably 70 ° C. or higher, more preferably 110 ° C. or higher, and is usually 200 ° C. or lower, preferably 150 ° C. or lower, more preferably 130 ° C. or lower. If it is in the said range, an organosilane compound can be manufactured with a sufficient yield.
The reaction time is usually 1 hour or longer, preferably 2 hours or longer, more preferably 10 hours or longer, and usually 60 hours or shorter, preferably 48 hours or shorter, more preferably 24 hours or shorter.
The reaction is usually carried out under an inert atmosphere such as nitrogen or argon.

<有機シラン化合物の合成用触媒組成物>
表面に溶媒が配位した鉄元素含有ナノ粒子を触媒として利用することにより、アルケン類及び/又はアルキン類とヒドロシラン類の反応によって、有機シラン化合物を製造することができることを前述したが、表面に溶媒が配位した鉄元素含有ナノ粒子を含み、有機シラン化合物を合成する触媒組成物も本発明の一態様である(以下、「本発明の触媒組成物」と略す場合がある。)。なお、本発明の触媒組成物は、有機シラン化合物を合成するためのものであれば、原料や反応条件等は特に限定されないが、アルケン類及び/又はアルキン類とヒドロシラン類から有機シラン化合物を合成するためのものであることが好ましい。
<Catalyst composition for synthesis of organosilane compound>
As described above, an organic silane compound can be produced by the reaction of alkenes and / or alkynes and hydrosilanes by using iron element-containing nanoparticles coordinated with a solvent on the surface as a catalyst. A catalyst composition that includes iron element-containing nanoparticles coordinated with a solvent and synthesizes an organosilane compound is also an embodiment of the present invention (hereinafter may be abbreviated as “the catalyst composition of the present invention”). The catalyst composition of the present invention is not particularly limited as long as it is for synthesizing an organosilane compound, but the organosilane compound is synthesized from alkenes and / or alkynes and hydrosilanes. It is preferable that

本発明の触媒組成物は、前述の表面に溶媒が配位した鉄元素含有ナノ粒子を含むものであればその他には特に限定されないが、溶媒を含むものであることが好ましく、溶媒に分散した分散液の状態にあるものが好ましい。具体的な溶媒としては、ヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、1,4−ジオキサン、テトラヒドロフラン(THF)等のエーテル系溶媒、1,2−ジクロロエタン、クロロホルム等のハロゲン系溶媒、エタノール、エチレングリコール、グリセリン等のプロトン性極性溶媒、アセトン、ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒等が挙げられる。   The catalyst composition of the present invention is not particularly limited as long as it contains iron element-containing nanoparticles in which a solvent is coordinated on the surface described above, but preferably contains a solvent, and a dispersion liquid dispersed in a solvent Those in the state are preferred. Specific solvents include hydrocarbon solvents such as hexane, benzene and toluene, ether solvents such as diethyl ether, 1,4-dioxane and tetrahydrofuran (THF), and halogen solvents such as 1,2-dichloroethane and chloroform. , Aprotic polar solvents such as ethanol, ethylene glycol and glycerin, aprotic such as acetone, dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO) Examples include polar solvents.

以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but can be appropriately changed without departing from the gist of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.

[表面に溶媒が配位した酸化鉄ナノ粒子の調製]
(実施例1:DMF配位酸化鉄ナノ粒子分散液1の調製)
ジムロート冷却器を連結した100mLの三口フラスコに、空気雰囲気下で15mLの脱水N,N−ジメチルホルムアミド(DMF)を入れ、140℃に加熱したオイルバスに浸漬して、空気雰囲気下、撹拌子を1300rpmで回転させながら還流条件で10分程度予備加熱を行った。その後、空気雰囲気下で0.1モル濃度(0.1M)の鉄(III)アセチルアセトナート(Fe(CH3COCHCOCH33)水溶液150μlをマイ
クロシリンジを使って加え、撹拌しながら140℃で8時間加熱還流を行った。なお、反応溶液は時間が経つごとに淡黄色が濃くなった。8時間後、室温まで冷却して、分散液1を得た。得られた分散液1の写真を図1に示す。
[Preparation of iron oxide nanoparticles with solvent coordinated on the surface]
(Example 1: Preparation of DMF coordination iron oxide nanoparticle dispersion 1)
A 100 mL three-necked flask connected with a Dimroth condenser is charged with 15 mL of dehydrated N, N-dimethylformamide (DMF) in an air atmosphere, immersed in an oil bath heated to 140 ° C., and a stirrer is placed in an air atmosphere. Preheating was performed for about 10 minutes under reflux conditions while rotating at 1300 rpm. Thereafter, 150 μl of a 0.1 molar (0.1 M) iron (III) acetylacetonate (Fe (CH 3 COCHCOCH 3 ) 3 ) aqueous solution was added using a microsyringe in an air atmosphere, and the mixture was stirred at 140 ° C. The mixture was heated to reflux for 8 hours. The reaction solution became light yellow with time. After 8 hours, the mixture was cooled to room temperature to obtain dispersion 1. A photograph of the resulting dispersion 1 is shown in FIG.

分散液1に波長350nmのUV照射を行ったところ、図2に示すように発光(蛍光)することが確認できた。また、分散液1を専用容器に充填して、日本分光社製蛍光分光光度計にて蛍光スペクトル(励起波長:350nm、0.1mM)を測定したところ、図3に示すスペクトル結果が得られた。   When the dispersion 1 was irradiated with UV light having a wavelength of 350 nm, it was confirmed that the dispersion 1 emitted light (fluorescence) as shown in FIG. Moreover, when the dispersion liquid 1 was filled in the exclusive container and the fluorescence spectrum (excitation wavelength: 350 nm, 0.1 mM) was measured with the fluorescence spectrophotometer by JASCO Corporation, the spectrum result shown in FIG. 3 was obtained. .

さらに、分散液1からロータリーエバポレーターを用いてDMFを留去し(条件:10hPa、40℃)、十分に乾燥させた後、固形物を高分解能透過型電子顕微鏡(HRTEM)によって観察した(エネルギー分散型X線分析(EDS)による粒子の元素分析、制
限視野電子回折(SAED)による結晶構造解析(電子線の入射方向:[0001]方向)も行った。)。結果を図4(a)、(b)、(c)に示す。
これらの結果から、粒子径が数nmでDMFが配位したコランダム型のα−Fe23粒子が形成していることが確認できる(格子定数:a=b≒5.04[Å]、c≒13.77[Å])。なお、このDMF配位酸化鉄ナノ粒子の溶媒への可溶性を確認したところ、DMFとN−メチルピロリドン(NMP)には容易に溶解(分散)する一方、テトラヒドロフラン(THF)には難溶であることを確認した。
Furthermore, DMF was distilled off from the dispersion 1 using a rotary evaporator (conditions: 10 hPa, 40 ° C.), and after sufficient drying, the solid was observed with a high-resolution transmission electron microscope (HRTEM) (energy dispersion) Particle X-ray analysis (EDS) was used for elemental analysis of the particles, and crystal structure analysis was performed by limited-field electron diffraction (SAED) (electron beam incident direction: [0001] direction). The results are shown in FIGS. 4 (a), (b) and (c).
From these results, it can be confirmed that corundum type α-Fe 2 O 3 particles having a particle diameter of several nm and coordinated with DMF are formed (lattice constant: a = b≈5.04 [4], c≈13.77 [Å]). The solubility of the DMF-coordinated iron oxide nanoparticles in a solvent was confirmed. As a result, it was easily dissolved (dispersed) in DMF and N-methylpyrrolidone (NMP), but hardly soluble in tetrahydrofuran (THF). It was confirmed.

(実施例2:THF配位酸化鉄ナノ粒子分散液2の調製)
実施例1で得られたDMFを留去したDMF配位酸化鉄ナノ粒子と、分散液1と同量のTHF(超脱水)をナス型フラスコに入れ、超音波洗浄機を用いて、壁面に付着した粒子を十分に落とし、分散液2を調製した。得られた分散液2の写真を図5に示す。THFに容易に溶解(分散)することから、DMFがTHFに置換された、THF配位酸化鉄ナノ粒子が形成しているものと考えられる。
(Example 2: Preparation of THF-coordinated iron oxide nanoparticle dispersion 2)
DMF coordinated iron oxide nanoparticles obtained by distilling off DMF obtained in Example 1 and the same amount of THF (ultra-dehydration) as dispersion 1 are placed in an eggplant-shaped flask, and are placed on the wall surface using an ultrasonic cleaner. The adhered particles were sufficiently dropped to prepare dispersion 2. A photograph of the resulting dispersion 2 is shown in FIG. Since it is easily dissolved (dispersed) in THF, it is considered that THF coordinated iron oxide nanoparticles in which DMF is substituted with THF are formed.

(実施例3:DMF配位鉄ナノ粒子分散液3の調製)
ジムロート冷却器を連結した100mLの三口フラスコに、空気雰囲気下で15mLの脱水DMFを入れ、140℃に加熱したオイルバスに浸漬して、空気雰囲気下、撹拌子を1300rpmで回転させながら還流条件で10分程度予備加熱を行った。その後、空気雰囲気下で0.1モル濃度(0.1M)の塩化鉄(III)(FeCl3)水溶液15μ
lをマイクロシリンジを使って加え、撹拌しながら140℃で8時間加熱還流を行った。その後、室温まで冷却して、DMF配位鉄ナノ粒子分散液3を調製した。なお、反応溶液は、時間が経つごとに淡黄色が濃くなった。8時間後、室温まで冷却して、分散液3を得た。
(Example 3: Preparation of DMF coordinated iron nanoparticle dispersion 3)
In a 100 mL three-necked flask connected with a Dimroth cooler, 15 mL of dehydrated DMF was placed in an air atmosphere, immersed in an oil bath heated to 140 ° C., and under a reflux condition while rotating the stir bar at 1300 rpm in an air atmosphere. Preheating was performed for about 10 minutes. Thereafter, a 0.1 molar (0.1 M) iron (III) chloride (FeCl 3 ) aqueous solution 15 μm in an air atmosphere.
1 was added using a microsyringe, and the mixture was refluxed with heating at 140 ° C. for 8 hours while stirring. Then, it cooled to room temperature and prepared DMF coordination iron nanoparticle dispersion liquid 3. The reaction solution became light yellow with time. After 8 hours, the mixture was cooled to room temperature to obtain dispersion 3.

実施例1と同様に、分散液2は発光(蛍光)の確認(図6参照)、蛍光スペクトル測定(図7参照)を行い、さらに乾燥させた固形物を高分解能透過型電子顕微鏡(HRTEM)によって観察した(図8参照)。これらの結果から、実施例1と同様に、DMF配位酸化鉄ナノ粒子が形成していることが確認できる。   As in Example 1, the dispersion 2 was subjected to confirmation of luminescence (fluorescence) (see FIG. 6), measurement of the fluorescence spectrum (see FIG. 7), and the dried solid was further analyzed with a high-resolution transmission electron microscope (HRTEM). (See FIG. 8). From these results, it can be confirmed that DMF coordinated iron oxide nanoparticles are formed as in Example 1.

[有機シラン化合物の製造1(アルケン類とヒドロシラン類の反応)]
<溶媒の検討>
(実施例4)
撹拌子を入れ、セプタムを取り付けて密閉したシュレンク管の管内をアルゴンで置換し、シリンジを使って1−デセン(112.2mg、1.0mmol)、フェニルシラン(108.2mg、1.0mmol)、及び実施例2で調製した分散液2(THF配位酸化鉄ナノ粒子が分散したTHF溶液(酸化鉄ナノ粒子濃度:10-1mol%、THFの量:1.0mL))をシュレンク管に投入した。次にアルゴンを入れた風船が取り付けられた二方コックを、アルゴンを流しながらシュレンク管に接続した。
シュレンク管を温度60℃に設定したオイルバスに浸し、撹拌しながら24時間反応させた。
反応終了後、二方コックを閉じ、シュレンク管をオイルバスから引き揚げた。次にパスツールピペットを用いて、内部基準物質であるトリデカンを入れ、酢酸エチル(10mL)で希釈し、ガスクロマトグラフィーを用いた内部基準法によって、原料、生成物等を定量した。結果を表1に示す。
[Production of organosilane compound 1 (reaction of alkenes and hydrosilanes)]
<Study of solvent>
Example 4
A stir bar was inserted, and the inside of a Schlenk tube sealed with a septum was replaced with argon, and 1-decene (112.2 mg, 1.0 mmol), phenylsilane (108.2 mg, 1.0 mmol), And dispersion 2 prepared in Example 2 (THF solution in which THF-coordinated iron oxide nanoparticles are dispersed (iron oxide nanoparticle concentration: 10 −1 mol%, amount of THF: 1.0 mL)) is charged into a Schlenk tube. did. Next, a two-way cock equipped with a balloon containing argon was connected to a Schlenk tube while flowing argon.
The Schlenk tube was immersed in an oil bath set at a temperature of 60 ° C. and reacted for 24 hours with stirring.
After completion of the reaction, the two-way cock was closed and the Schlenk tube was lifted from the oil bath. Next, using a Pasteur pipette, tridecane as an internal standard substance was added, diluted with ethyl acetate (10 mL), and raw materials, products, and the like were quantified by an internal standard method using gas chromatography. The results are shown in Table 1.

(実施例5)
THFを1,4−ジオキサン(1,4−Dioxane、試薬特級)に置き換えた以外は、実施例2と同様の操作によって、分散液4(1,4−ジオキサン配位酸化鉄ナノ粒子が分散した1,4−ジオキサン溶液)を調製した。
次に分散液2を分散液4に置き換え、オイルバスの温度を80℃(反応温度)に設定した以外は、実施例4と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表1に示す。
(Example 5)
Dispersion 4 (1,4-dioxane-coordinated iron oxide nanoparticles) was dispersed by the same operation as in Example 2 except that THF was replaced with 1,4-dioxane (1,4-Dioxane, reagent grade). 1,4-dioxane solution) was prepared.
Next, the dispersion 2 was replaced with the dispersion 4, and the raw materials were reacted by the same operation as in Example 4 except that the temperature of the oil bath was set to 80 ° C. (reaction temperature). Table 1 shows quantitative results of raw materials, products, and the like.

(実施例6)
オイルバスの温度を100℃(反応温度)に設定した以外は、実施例5と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表1に示す。
(Example 6)
The raw materials were reacted by the same operation as in Example 5 except that the temperature of the oil bath was set to 100 ° C. (reaction temperature). Table 1 shows quantitative results of raw materials, products, and the like.

(実施例7)
THFを1,2−ジクロロエタン(1,2−Dichloroethane)に置き換えた以外は、実施例2と同様の操作によって、分散液5(1,2−ジクロロエタン配位酸化鉄ナノ粒子が分散した1,2−ジクロロエタン溶液)を調製した。
次に分散液2を分散液5に置き換え、オイルバスの温度を80℃(反応温度)に設定した以外は、実施例4と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表1に示す。
(Example 7)
The dispersion 5 (1,2-dichloroethane-coordinated iron oxide nanoparticles were dispersed in the same manner as in Example 2 except that THF was replaced with 1,2-dichloroethane (1,2-Dichloroethane). -Dichloroethane solution) was prepared.
Next, the dispersion liquid 2 was replaced with the dispersion liquid 5, and the raw materials were reacted by the same operation as in Example 4 except that the temperature of the oil bath was set to 80 ° C. (reaction temperature). Table 1 shows quantitative results of raw materials, products, and the like.

(実施例8)
THFをトルエン(Toluene)に置き換えた以外は、実施例2と同様の操作によって、分散液6(トルエン配位酸化鉄ナノ粒子が分散したトルエン溶液)を調製した。
次に分散液2を分散液6に置き換え、オイルバスの温度を110℃(反応温度)に設定した以外は、実施例4と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表1に示す。
(Example 8)
A dispersion 6 (a toluene solution in which toluene-coordinated iron oxide nanoparticles are dispersed) was prepared in the same manner as in Example 2 except that THF was replaced with toluene (Toluene).
Next, the dispersion liquid 2 was replaced with the dispersion liquid 6, and the raw materials were reacted by the same operation as in Example 4 except that the oil bath temperature was set to 110 ° C. (reaction temperature). Table 1 shows quantitative results of raw materials, products, and the like.

<ヒドロシラン類の使用量の検討>
(実施例9)
投入するフェニルシランの量を162.3mg(1.5mmol)とした以外は、実施例4と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表2に示す。
<Examination of usage of hydrosilanes>
Example 9
The raw material was reacted by the same operation as in Example 4 except that the amount of phenylsilane to be added was 162.3 mg (1.5 mmol). Table 2 shows quantitative results of raw materials, products, and the like.

(実施例10)
投入するフェニルシランの量を216.4mg(2.0mmol)とした以外は、実施例4と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表2に示す。
(Example 10)
The raw materials were reacted in the same manner as in Example 4 except that the amount of phenylsilane to be added was 216.4 mg (2.0 mmol). Table 2 shows quantitative results of raw materials, products, and the like.

(実施例11)
投入するフェニルシランの量を270.5mg(2.5mmol)とした以外は、実施例4と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表2に示す。
(Example 11)
The raw materials were reacted in the same manner as in Example 4 except that the amount of phenylsilane to be added was 270.5 mg (2.5 mmol). Table 2 shows quantitative results of raw materials, products, and the like.

(実施例12)
投入するフェニルシランの量を324.6mg(3.0mmol)とした以外は、実施例4と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表2に示す。
(Example 12)
The raw material was reacted by the same operation as in Example 4 except that the amount of phenylsilane to be added was 324.6 mg (3.0 mmol). Table 2 shows quantitative results of raw materials, products, and the like.

(実施例13)
投入するフェニルシランの量を378.7mg(3.5mmol)とした以外は、実施例4と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表2に示す。
(Example 13)
The raw materials were reacted in the same manner as in Example 4 except that the amount of phenylsilane to be added was 378.7 mg (3.5 mmol). Table 2 shows quantitative results of raw materials, products, and the like.

(実施例14)
投入するフェニルシランの量を432.8mg(4.0mmol)とした以外は、実施例4と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表2に示す。
(Example 14)
The raw materials were reacted in the same manner as in Example 4 except that the amount of phenylsilane to be added was changed to 432.8 mg (4.0 mmol). Table 2 shows quantitative results of raw materials, products, and the like.

<アルカン類の種類の検討>
(実施例15)
1−デセンを1−オクテン336.6mg(3.0mmol)に置き換えた以外は、実施例12と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表3に示す。
<Examination of types of alkanes>
(Example 15)
The raw materials were reacted in the same manner as in Example 12, except that 1-decene was replaced with 336.6 mg (3.0 mmol) of 1-octene. Table 3 shows quantitative results of raw materials, products and the like.

(実施例16)
1−デセンを4−フェニル−1−ブテン396.6mg(3.0mmol)に置き換えた以外は、実施例12と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表3に示す。
(Example 16)
The raw materials were reacted in the same manner as in Example 12 except that 1-decene was replaced with 396.6 mg (3.0 mmol) of 4-phenyl-1-butene. Table 3 shows quantitative results of raw materials, products and the like.

(実施例17)
1−デセンを6,6−ジメチル−1−ヘプテン378.3mg(3.0mmol)に置き換えた以外は、実施例12と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表3に示す。
(Example 17)
The raw materials were reacted in the same manner as in Example 12 except that 1-decene was replaced with 378.3 mg (3.0 mmol) of 6,6-dimethyl-1-heptene. Table 3 shows quantitative results of raw materials, products and the like.

(実施例18)
1−デセンを4,4−ジメチル−1−ヘキセン336.6mg(3.0mmol)に置き換えた以外は、実施例12と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表3に示す。
(Example 18)
The raw materials were reacted in the same manner as in Example 12 except that 1-decene was replaced with 336.6 mg (3.0 mmol) of 4,4-dimethyl-1-hexene. Table 3 shows quantitative results of raw materials, products and the like.

<ヒドロシラン類の種類の検討>
(実施例19)
フェニルシランをジフェニルシラン552.9mg(3.0mmol)に置き換えた以外は、実施例12と同様の操作によって原料を反応させた。原料、生成物等の定量結果を
表4に示す。
<Examination of types of hydrosilanes>
(Example 19)
The raw materials were reacted in the same manner as in Example 12 except that phenylsilane was replaced with 552.9 mg (3.0 mmol) of diphenylsilane. Table 4 shows the results of quantification of the raw materials and products.

(実施例20)
フェニルシランをジフェニルシラン552.9mg(3.0mmol)に置き換え、オイルバスの温度を100℃(反応温度)に設定した以外は、実施例5と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表5に示す。
(Example 20)
The raw material was reacted in the same manner as in Example 5 except that phenylsilane was replaced with 552.9 mg (3.0 mmol) of diphenylsilane and the temperature of the oil bath was set to 100 ° C. (reaction temperature). Table 5 shows quantitative results of raw materials, products, and the like.

(実施例21)
ジフェニルシランをメチルフェニルシラン366.7mg(3.0mmol)に置き換えた以外は、実施例20と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表5に示す。
(Example 21)
The raw material was reacted by the same operation as in Example 20 except that 366.7 mg (3.0 mmol) of methylphenylsilane was replaced with diphenylsilane. Table 5 shows quantitative results of raw materials, products, and the like.

(実施例22)
ジフェニルシランをジメチルフェニルシラン408.8mg(3.0mmol)に置き換えた以外は、実施例20と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表5に示す。
(Example 22)
The raw materials were reacted in the same manner as in Example 20 except that diphenylsilane was replaced with 408.8 mg (3.0 mmol) of dimethylphenylsilane. Table 5 shows quantitative results of raw materials, products, and the like.

(実施例23)
ジフェニルシランをトリエトキシシラン492.9mg(3.0mmol)に置き換えた以外は、実施例20と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表5に示す。
(Example 23)
The raw materials were reacted in the same manner as in Example 20 except that diphenylsilane was replaced with 492.9 mg (3.0 mmol) of triethoxysilane. Table 5 shows quantitative results of raw materials, products, and the like.

(実施例24)
ジフェニルシランをトリエチルシラン348.9mg(3.0mmol)に置き換えた以外は、実施例20と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表5に示す。
(Example 24)
The raw materials were reacted in the same manner as in Example 20 except that diphenylsilane was replaced with 348.9 mg (3.0 mmol) of triethylsilane. Table 5 shows quantitative results of raw materials, products, and the like.

(実施例25)
ジフェニルシランをジエトキシメチルシラン402.8mg(3.0mmol)に置き換えた以外は、実施例20と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表5に示す。
(Example 25)
The raw materials were reacted in the same manner as in Example 20 except that diphenylsilane was replaced with 402.8 mg (3.0 mmol) of diethoxymethylsilane. Table 5 shows quantitative results of raw materials, products, and the like.

[有機シラン化合物の製造2(アルキン類とヒドロシラン類の反応)]
<溶媒の検討>
(実施例26)
THFを1,4−ジオキサン(1,4−Dioxane、試薬特級)に置き換えた以外は、実施例2と同様の操作によって、分散液7(1,4−ジオキサン配位酸化鉄ナノ粒子が分散した1,4−ジオキサン溶液)を調製した。
次に撹拌子を入れ、セプタムを取り付けて密閉したシュレンク管の管内をアルゴンで置換し、シリンジを使ってジフェニルアセチレン(178.2mg、1.0mmol)、フェニルシラン(108.2mg、1.0mmol)、及び分散液7(1,4−ジオキサン配位酸化鉄ナノ粒子が分散した1,4−ジオキサン溶液(酸化鉄ナノ粒子濃度:10-1mol%、THFの量:1.0mL))をシュレンク管に投入した。次にアルゴンを入れた風船が取り付けられた二方コックを、アルゴンを流しながらシュレンク管に接続した。
シュレンク管を温度100℃に設定したオイルバスに浸し、撹拌しながら24時間反応させた。
反応終了後、二方コックを閉じ、シュレンク管をオイルバスから引き揚げた。次にパスツールピペットを用いて、内部基準物質であるトリデカンを入れ、酢酸エチル(10mL)で希釈し、ガスクロマトグラフィーを用いた内部基準法によって、原料、生成物等を定量した。結果を表6に示す。
[Production of organosilane compound 2 (reaction of alkynes and hydrosilanes)]
<Study of solvent>
(Example 26)
Dispersion 7 (1,4-dioxane-coordinated iron oxide nanoparticles) was dispersed in the same manner as in Example 2 except that THF was replaced with 1,4-dioxane (1,4-Dioxane, reagent grade). 1,4-dioxane solution) was prepared.
Next, a stir bar was inserted, the inside of the Schlenk tube sealed with a septum was replaced with argon, and diphenylacetylene (178.2 mg, 1.0 mmol) and phenylsilane (108.2 mg, 1.0 mmol) were used using a syringe. And dispersion 7 (1,4-dioxane solution in which 1,4-dioxane-coordinated iron oxide nanoparticles are dispersed (iron oxide nanoparticle concentration: 10 −1 mol%, amount of THF: 1.0 mL)) I put it in the tube. Next, a two-way cock equipped with a balloon containing argon was connected to a Schlenk tube while flowing argon.
The Schlenk tube was immersed in an oil bath set at a temperature of 100 ° C. and reacted for 24 hours while stirring.
After completion of the reaction, the two-way cock was closed and the Schlenk tube was lifted from the oil bath. Next, using a Pasteur pipette, tridecane as an internal standard substance was added, diluted with ethyl acetate (10 mL), and raw materials, products, and the like were quantified by an internal standard method using gas chromatography. The results are shown in Table 6.

(実施例27)
1,4−ジオキサンをジグライム(Diglyme、一級)に置き換えた以外は、実施例25と同様の操作によって、分散液8(ジグライム配位酸化鉄ナノ粒子が分散したジグライム溶液)を調製した。
次に分散液7を分散液8に置き換え、オイルバスの温度を120℃(反応温度)に設定した以外は、実施例26と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表6に示す。
(Example 27)
Dispersion 8 (diglyme solution in which diglyme-coordinated iron oxide nanoparticles were dispersed) was prepared in the same manner as in Example 25 except that 1,4-dioxane was replaced with diglyme (primary).
Next, the raw material was reacted by the same operation as in Example 26 except that the dispersion 7 was replaced with the dispersion 8 and the temperature of the oil bath was set to 120 ° C. (reaction temperature). Table 6 shows quantitative results of raw materials, products and the like.

<シラン類の種類の検討>
(実施例28)
1,4−ジオキサンをDMF/1,4−Dioxaneの混合溶媒(0.5/2.0mL)に置き換えた以外は、実施例2と同様の操作によって、分散液9(溶媒配位酸化鉄ナノ粒子が分散した溶液)を調製した。
次に分散液7を分散液9に置き換え、投入するジフェニルアセチレンの量を89.1mg、フェニルシランの量を54.1mgとし、オイルバスの温度を120℃(反応温度)に設定して、16時間反応させた以外は、実施例26と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表7に示す。
<Examination of types of silanes>
(Example 28)
Dispersion 9 (solvent-coordinated iron oxide nanoparticle) was obtained in the same manner as in Example 2, except that 1,4-dioxane was replaced with a mixed solvent of DMF / 1,4-Dioxane (0.5 / 2.0 mL). A solution in which particles were dispersed was prepared.
Next, the dispersion 7 was replaced with the dispersion 9, the amount of diphenylacetylene charged was 89.1 mg, the amount of phenylsilane was 54.1 mg, and the oil bath temperature was set to 120 ° C. (reaction temperature). The raw materials were reacted by the same operation as in Example 26 except that the reaction was performed for a period of time. Table 7 shows quantitative results of raw materials, products, and the like.

(実施例29)
フェニルシランをトリエトキシシラン164.3mg(1.0mmol)に置き換えた以外は、実施例28と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表7に示す。
(Example 29)
The raw materials were reacted in the same manner as in Example 28 except that phenylsilane was replaced with 164.3 mg (1.0 mmol) of triethoxysilane. Table 7 shows quantitative results of raw materials, products, and the like.

(実施例30)
フェニルシランをポリ(メチルヒドリドシラン)(PMHS)1.9g(1.0mmol,Mn=1900)に置き換えた以外は、実施例28と同様の操作によって原料を反応
させた。原料、生成物等の定量結果を表7に示す。
(Example 30)
The raw materials were reacted in the same manner as in Example 28, except that phenylsilane was replaced with 1.9 g (1.0 mmol, Mn = 1900) of poly (methylhydridosilane) (PMHS). Table 7 shows quantitative results of raw materials, products, and the like.

(実施例31)
フェニルシランをジフェニルシラン184.3g(1.0mmol)に置き換えた以外は、実施例28と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表7に示す。
(Example 31)
The raw materials were reacted in the same manner as in Example 28, except that phenylsilane was replaced with 184.3 g (1.0 mmol) of diphenylsilane. Table 7 shows quantitative results of raw materials, products, and the like.

(実施例32)
フェニルシランをフェニルジメチルシラン136.3g(1.0mmol)に置き換えた以外は、実施例28と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表7に示す。
(Example 32)
The raw materials were reacted in the same manner as in Example 28 except that phenylsilane was replaced with 136.3 g (1.0 mmol) of phenyldimethylsilane. Table 7 shows quantitative results of raw materials, products, and the like.

(実施例33)
フェニルシランをトリエチルシラン116.3g(1.0mmol)に置き換えた以外は、実施例28と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表7に示す。
(Example 33)
The raw materials were reacted in the same manner as in Example 28 except that 116.3 g (1.0 mmol) of triethylsilane was replaced with phenylsilane. Table 7 shows quantitative results of raw materials, products, and the like.

<混合溶媒の検討>
(実施例34)
投入するフェニルシランの量を108.2mg(2.0mmol)とした以外は、実施例28と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表8に示す。
<Examination of mixed solvent>
(Example 34)
The raw material was reacted by the same operation as in Example 28 except that the amount of phenylsilane to be added was 108.2 mg (2.0 mmol). Table 8 shows quantitative results of raw materials, products and the like.

(実施例35)
THFをDMF/1,4−Dioxaneの混合溶媒(1.0/1.0mL)に置き換えた以外は、実施例2と同様の操作によって、分散液10(溶媒配位酸化鉄ナノ粒子が分散した溶液)を調製した。
次に分散液9を分散液10に置き換えた以外は、実施例34と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表8に示す。
(Example 35)
Dispersion 10 (solvent-coordinated iron oxide nanoparticles) was dispersed by the same operation as in Example 2 except that THF was replaced with a mixed solvent of DMF / 1,4-Dioxane (1.0 / 1.0 mL). Solution) was prepared.
Next, the raw materials were reacted in the same manner as in Example 34 except that the dispersion 9 was replaced with the dispersion 10. Table 8 shows quantitative results of raw materials, products and the like.

(実施例36)
THFをDMFに置き換えた以外は、実施例2と同様の操作によって、分散液11(DMF配位酸化鉄ナノ粒子が分散したDMF溶液)を調製した。
次に分散液9を分散液11に置き換えた以外は、実施例34と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表8に示す。
(Example 36)
A dispersion 11 (DMF solution in which DMF-coordinated iron oxide nanoparticles were dispersed) was prepared in the same manner as in Example 2 except that THF was replaced with DMF.
Next, the raw materials were reacted in the same manner as in Example 34 except that the dispersion 9 was replaced with the dispersion 11. Table 8 shows quantitative results of raw materials, products and the like.

(実施例37)
THFをDMF/ジメチルアセトアミド(DMA)の混合溶媒(1.0/1.0mL)に置き換えた以外は、実施例2と同様の操作によって、分散液12(溶媒配位酸化鉄ナノ粒子が分散した溶液)を調製した。
次に分散液9を分散液12に置き換えた以外は、実施例34と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表8に示す。
(Example 37)
Dispersion 12 (solvent-coordinated iron oxide nanoparticles) was dispersed in the same manner as in Example 2 except that THF was replaced with a mixed solvent (1.0 / 1.0 mL) of DMF / dimethylacetamide (DMA). Solution) was prepared.
Next, the raw materials were reacted in the same manner as in Example 34 except that the dispersion 9 was replaced with the dispersion 12. Table 8 shows quantitative results of raw materials, products and the like.

(実施例38)
THFをDMF/NMPの混合溶媒(1.0/1.0mL)に置き換えた以外は、実施例2と同様の操作によって、分散液13(溶媒配位酸化鉄ナノ粒子が分散した溶液)を調製した。
次に分散液9を分散液13に置き換えた以外は、実施例34と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表8に示す。
(Example 38)
A dispersion 13 (solution in which solvent-coordinated iron oxide nanoparticles are dispersed) is prepared in the same manner as in Example 2 except that THF is replaced with a mixed solvent of DMF / NMP (1.0 / 1.0 mL). did.
Next, the raw materials were reacted in the same manner as in Example 34 except that the dispersion 9 was replaced with the dispersion 13. Table 8 shows quantitative results of raw materials, products and the like.

(実施例39)
THFをDMF/Tolueneの混合溶媒(1.0/1.0mL)に置き換えた以外は、実施例2と同様の操作によって、分散液14(溶媒配位酸化鉄ナノ粒子が分散した溶液)を調製した。
次に分散液9を分散液14に置き換えた以外は、実施例34と同様の操作によって原料を反応させた。原料、生成物等の定量結果を表8に示す。
(Example 39)
A dispersion 14 (a solution in which solvent-coordinated iron oxide nanoparticles are dispersed) is prepared in the same manner as in Example 2, except that THF is replaced with a mixed solvent of DMF / Toluene (1.0 / 1.0 mL). did.
Next, the raw materials were reacted in the same manner as in Example 34 except that the dispersion 9 was replaced with the dispersion 14. Table 8 shows quantitative results of raw materials, products and the like.

本発明の製造方法によって製造される有機シラン化合物は、例えば有機ケイ素化学工業における様々な原料として使用することができる。   The organosilane compound produced by the production method of the present invention can be used, for example, as various raw materials in the organosilicon chemical industry.

Claims (5)

アルケン類及び/又はアルキン類と、ヒドロシラン類とを触媒存在下で反応させる有機シラン化合物の製造方法であって、
前記触媒が、表面に溶媒が配位した鉄元素含有ナノ粒子であることを特徴とする、有機シラン化合物の製造方法。
A method for producing an organosilane compound, comprising reacting alkenes and / or alkynes with hydrosilanes in the presence of a catalyst,
The method for producing an organosilane compound, wherein the catalyst is iron element-containing nanoparticles having a solvent coordinated on a surface thereof.
下記式(A)、(A’)、(B−1)、(B−2)、(B−3)、(B’−1)、(B’−2)、又は(B’−3)で表される化合物を製造する方法である、請求項1に記載の有機シラン化合物の製造方法。
(式(A)、(A’)、(B−1)、(B−2)、(B−3)、(B’−1)、(B’−2)、及び(B’−3)中、R1〜R4はそれぞれ独立に水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を、R5はそれぞれ独立に水素原子、ハロゲン原子、シロキシ基、ケイ素数1〜50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。但し、R1〜R4の2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していてもよい。)
The following formula (A), (A '), (B-1), (B-2), (B-3), (B'-1), (B'-2), or (B'-3) The manufacturing method of the organosilane compound of Claim 1 which is a method of manufacturing the compound represented by these.
(Formulas (A), (A '), (B-1), (B-2), (B-3), (B'-1), (B'-2), and (B'-3) R 1 to R 4 are each independently a hydrogen atom, a halogen atom, or a carbon atom that may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. In the hydrocarbon group having 1 to 20, R 5 is independently a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms, which may contain at least one selected from the group consisting of: When two or more of R 1 to R 4 are hydrocarbon groups, (The hydrogen group may be linked to form a cyclic structure.)
前記溶媒が、トルエン、1,4−ジオキサン、テトラヒドロフラン(THF)、1,2−ジクロロエタン、ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、及びN−メチルピロリドン(NMP)からなる群より選択される少なくとも1種を含むものである、請求項1又は2に記載の有機シラン化合物の製造方法。   The solvent is made of toluene, 1,4-dioxane, tetrahydrofuran (THF), 1,2-dichloroethane, dimethylacetamide (DMA), N, N-dimethylformamide (DMF), and N-methylpyrrolidone (NMP). The manufacturing method of the organosilane compound of Claim 1 or 2 containing at least 1 sort (s) selected more. 前記鉄元素含有ナノ粒子の累積中位径(Median径)が0.5〜4nmである、請求項1〜3の何れか1項に記載の有機シラン化合物の製造方法。   The manufacturing method of the organosilane compound of any one of Claims 1-3 whose cumulative median diameter (Median diameter) of the said iron element containing nanoparticle is 0.5-4 nm. 前記鉄元素含有ナノ粒子が酸化鉄である、請求項1〜4の何れか1項に記載の有機シラン化合物の製造方法。   The manufacturing method of the organosilane compound of any one of Claims 1-4 whose said iron element containing nanoparticle is iron oxide.
JP2014001428A 2014-01-08 2014-01-08 Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound Active JP6355078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001428A JP6355078B2 (en) 2014-01-08 2014-01-08 Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014001428A JP6355078B2 (en) 2014-01-08 2014-01-08 Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound

Publications (2)

Publication Number Publication Date
JP2015129103A JP2015129103A (en) 2015-07-16
JP6355078B2 true JP6355078B2 (en) 2018-07-11

Family

ID=53760177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001428A Active JP6355078B2 (en) 2014-01-08 2014-01-08 Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound

Country Status (1)

Country Link
JP (1) JP6355078B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6984825B2 (en) 2017-01-13 2021-12-22 学校法人 関西大学 Method for producing an organosilicon compound by hydrosilylation using nanoparticles containing a metal element
JP7430311B2 (en) * 2019-02-18 2024-02-13 学校法人 関西大学 Hydrosilylation reaction catalyzed by cobalt nanoparticles
JP7392927B2 (en) * 2020-01-23 2023-12-06 学校法人 関西大学 Method for producing silicon-containing iron-platinum nanoparticle catalyst
JP7424563B2 (en) 2020-02-03 2024-01-30 学校法人 関西大学 Method for producing organosilicon compounds using ruthenium nanoparticle catalysts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081936A (en) * 2011-09-29 2013-05-09 Kansai Univ Catalyst for organic synthesis reaction, method for oxidizing alcohols and method for manufacturing diaryl ethers, both methods using this catalyst

Also Published As

Publication number Publication date
JP2015129103A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
Young et al. One-step synthesis and XPS investigations of chiral NHC–Au (0)/Au (I) nanoparticles
Mortazavi-Derazkola et al. New sodium dodecyl sulfate-assisted preparation of Nd 2 O 3 nanostructures via a simple route
JP4840584B2 (en) Polysilane-supported transition metal catalysts for organic synthesis reactions
US11203605B2 (en) Method for producing organosilicon compound by hydrosilylation with metallic-element-containing nanoparticles
JP6355078B2 (en) Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound
Li et al. Hybrid luminescence materials assembled by [Ln (DPA) 3] 3− and mesoporous host through ion-pairing interactions with high quantum efficiencies and long lifetimes
Zhang et al. Recent Advances in Rochow‐Müller Process Research: Driving to Molecular Catalysis and to A More Sustainable Silicone Industry
Akhbari et al. Effect of two sonochemical procedures on achieving to different morphologies of lead (II) coordination polymer nano-structures
Sadeghzadeh et al. Sonochemical synthesis of nano-scale mixed-ligands lead (II) coordination polymers as precursors for preparation of PbO and PbBr (OH) nano-structures; thermal, structural and X-ray powder diffraction studies
Liu et al. Facile synthesis of surface-clean monodispersed CuOx nanoparticles and their catalytic properties for oxidative coupling of alkynes
Khanjani et al. Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nanostructured supramolecular compound
Feinle et al. Novel Sol–Gel Precursors for Thin Mesoporous Eu3+-Doped Silica Coatings as Efficient Luminescent Materials.
Ghosh et al. Solvent assisted and solvent free orientation of growth of nanoscaled lanthanide sulfides: tuning of morphology and manifestation of photocatalytic behavior
Zhong et al. A Universal Synthesis Strategy for Lanthanide Sulfide Nanocrystals with Efficient Photocatalytic Hydrogen Production
JP6459126B2 (en) Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound
JP6080614B2 (en) Method for producing metal complex-supported mesoporous material
Skoda et al. Non-aqueous synthesis of homogeneous molybdenum silicate microspheres and their application as heterogeneous catalysts in olefin epoxidation and selective aniline oxidation
Hosseinian et al. Synthesis, structural characterization and thermal properties of a new Cd (II) complex: As bithiazole precursor for preparation of CdS nanoparticles
JP6699003B2 (en) Method for producing allylsilane compound
Chen et al. Controlled Preparation of Hydrangea‐like 0.3 Zn‐0.15 Sn/CuO Catalysts for the Rochow‐Müller Reaction by Microwave‐Assisted Liquid‐Phase Synergistic Impregnation
Shiba et al. Designed synthesis of well-defined titania/iron (III) acetylacetonate nanohybrids with magnetic/luminescent properties
JP2005289885A (en) Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these
Hashemi et al. Synthesis of a New Lead (II) Coordination Polymers with N-donor Ligand as Precursor for Preparation of PbO Nano-structure; Spectroscopic, Thermal, Fluorescence and Structural Studies
JP6799339B2 (en) Synthesis of metal salt compound aggregate of phenylazomethine type dendrimer and production method of sub-nanoparticles
JP6269940B2 (en) Nickel complex compound, catalyst composition, and method for producing organosilicon compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6355078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250