JP6344052B2 - Ammonia synthesis catalyst and ammonia synthesis method - Google Patents

Ammonia synthesis catalyst and ammonia synthesis method Download PDF

Info

Publication number
JP6344052B2
JP6344052B2 JP2014103977A JP2014103977A JP6344052B2 JP 6344052 B2 JP6344052 B2 JP 6344052B2 JP 2014103977 A JP2014103977 A JP 2014103977A JP 2014103977 A JP2014103977 A JP 2014103977A JP 6344052 B2 JP6344052 B2 JP 6344052B2
Authority
JP
Japan
Prior art keywords
ammonia synthesis
ammonia
catalyst
compound
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014103977A
Other languages
Japanese (ja)
Other versions
JP2015218091A (en
Inventor
江口 晴樹
晴樹 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014103977A priority Critical patent/JP6344052B2/en
Publication of JP2015218091A publication Critical patent/JP2015218091A/en
Application granted granted Critical
Publication of JP6344052B2 publication Critical patent/JP6344052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、アンモニア合成触媒およびアンモニア合成方法に関する。   The present invention relates to an ammonia synthesis catalyst and an ammonia synthesis method.

ハーバー・ボッシュ法は、二重促進鉄を触媒として、窒素と水素との混合気体からアンモニアを合成する合成方法であり、1910年代に工業的に完成されて以来、人類の生活を支える重要技術である。例えば穀物生産に不可欠な硫安や尿素肥料等の人工肥料の製造に用いられるアンモニアは、上記合成方法により製造される。   The Harbor Bosch method is a synthesis method that synthesizes ammonia from a mixed gas of nitrogen and hydrogen using double-promoted iron as a catalyst. Since it was industrially completed in the 1910s, it is an important technology that supports human life. is there. For example, ammonia used for the production of artificial fertilizers such as ammonium sulfate and urea fertilizer essential for grain production is produced by the above synthesis method.

二重促進鉄触媒は、Fe3O4を主成分とする。二重促進鉄触媒の組成例は、BASF社製の二重促進鉄触媒によれば、Fe3O4 94.3%、K2O 0.8%、Al2O3 2.3%、その他 2.6% (CaO、MgO、SiO2)である。アンモニア合成工程で上記のFe3O4が水素により還元されて生じた金属鉄Feが、触媒活性を発揮する。 Double promoting iron catalyst is mainly composed of Fe 3 O 4. An example of the composition of the double promoted iron catalyst is as follows: According to the double promoted iron catalyst manufactured by BASF, Fe 3 O 4 94.3%, K 2 O 0.8%, Al 2 O 3 2.3%, other 2.6% (CaO, MgO , SiO 2 ). Metallic iron Fe produced by reducing Fe 3 O 4 with hydrogen in the ammonia synthesis step exhibits catalytic activity.

ハーバー・ボッシュ法は、温度条件400〜600℃、圧力条件約20〜100MPaで反応効率が良好である。そのためハーバー・ボッシュ法は、通常20〜100MPa以上の圧力条件で水素と窒素との混合気体を反応させる。この圧力条件を満たす手段として、該合成方法は高圧反応容器を用いてバッチ式に実施される。そのため、連続的にアンモニアを製造することが困難である。また、触媒として用いられる金属鉄Feの触媒活性を上げるためには、温度条件を少なくとも400℃以上にする必要がある。   The Harbor Bosch method has good reaction efficiency under temperature conditions of 400 to 600 ° C. and pressure conditions of about 20 to 100 MPa. Therefore, the Harbor Bosch method usually reacts a mixed gas of hydrogen and nitrogen under a pressure condition of 20 to 100 MPa or more. As means for satisfying this pressure condition, the synthesis method is carried out batchwise using a high-pressure reaction vessel. Therefore, it is difficult to produce ammonia continuously. Moreover, in order to raise the catalytic activity of metallic iron Fe used as a catalyst, it is necessary to make temperature conditions at least 400 degreeC or more.

上記の温度・圧力条件下でアンモニア合成を行うためには、合成装置に高耐熱性の配管設備やコンプレッサーが必要になるため、合成装置が大型化しやすい。また該合成方法は高温条件で行われるため熱エネルギー損出が大きい。そのため、ハーバー・ボッシュ法より低温条件下や低圧条件下でアンモニアを合成できる方法が望まれる。   In order to synthesize ammonia under the above temperature and pressure conditions, the synthesizer requires highly heat-resistant piping equipment and a compressor, so the synthesizer tends to be large. In addition, since the synthesis method is performed under high temperature conditions, heat energy loss is large. Therefore, a method capable of synthesizing ammonia under a low temperature condition or a low pressure condition is desired rather than the Harbor Bosch method.

ハーバー・ボッシュ法より低温条件下で行えるアンモニア合成方法として、触媒成分にMo、W、Re、Fe、Co、Ru、Osのうちのいずれかの金属元素、またはFeとRu、RuとRe、FeとMoとの組み合わせのいずれか1つからなる遷移金属を実質的に金属状態で使用する方法が知られる(特許文献1)。上記の触媒成分を用いる方法では、200〜300℃でアンモニアを合成することができる。   As an ammonia synthesis method that can be performed under lower temperature conditions than the Harbor Bosch method, the catalyst component is any metal element of Mo, W, Re, Fe, Co, Ru, Os, or Fe and Ru, Ru and Re, Fe A method is known in which a transition metal composed of any one of a combination of Mo and Mo is used in a substantially metallic state (Patent Document 1). In the method using the above catalyst component, ammonia can be synthesized at 200 to 300 ° C.

低温条件下や低圧条件下で行うことができるアンモニア合成方法の提案には、上記の他、Fe、Ru、Os、Co等の8族または9族遷移金属を触媒成分とするアンモニア合成方法(特許文献2〜4)や、ルテニウムをアンモニア合成の触媒として用いる方法(特許文献5〜8)も提案される。   In addition to the above, the ammonia synthesis method using a group 8 or 9 transition metal such as Fe, Ru, Os, Co or the like as a catalyst component is proposed as a proposal for an ammonia synthesis method that can be performed under low temperature conditions or low pressure conditions (patented) Documents 2 to 4) and methods using ruthenium as a catalyst for ammonia synthesis (Patent Documents 5 to 8) are also proposed.

約300〜500℃の温度条件でのアンモニア合成方法としては、8族または6B族遷移金属の窒化物やCo-Mo複合窒化物を触媒とするアンモニア合成方法も提案されている(特許文献9、10)。Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Mn、Cuの群からの、少なくとも1つの遷移金属から選ばれる触媒活性成分を担体材料に含有させた触媒を用いて、窒素および水蒸気からアンモニアをプラズマ接触により製造する方法も提案されている(特許文献11)。   As an ammonia synthesis method under a temperature condition of about 300 to 500 ° C., an ammonia synthesis method using a group 8 or group 6B transition metal nitride or Co-Mo composite nitride as a catalyst has also been proposed (Patent Document 9, Ten). From at least one transition metal from the group of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Mn, Cu There has also been proposed a method for producing ammonia from nitrogen and water vapor by plasma contact using a catalyst containing a selected catalytically active component in a carrier material (Patent Document 11).

上記の触媒成分を用いる方法は高圧のプロセスを必要とせず、常圧でも原料成分の反応を進行させることができる。Ru等は、アンモニア合成触媒として注目される。しかし、Ru単体での触媒能は非常に小さく、その能力を発揮させるには担体や促進剤化合物を用いる必要がある。   The method using the above catalyst component does not require a high-pressure process, and the reaction of the raw material component can proceed even at normal pressure. Ru and the like are attracting attention as ammonia synthesis catalysts. However, the catalytic ability of Ru alone is very small, and it is necessary to use a carrier or a promoter compound in order to exert its ability.

RuやFe等の触媒能を促進させる担体として、酸化マグネシウム、酸化アルミニウム、グラファイト、セリウムおよびマグネシアなどが用いられる。通常、酸化アルミニウム等の酸化物を担体として用いる場合、高活性の触媒にするため促進剤化合物を多量に添加して触媒成分の電子供与能力を向上させなければならない。そのような促進剤化合物として、電気陰性度の大きなアルカリ金属、アルカリ金属化合物、アルカリ土類金属化合物などが用いられている。   Magnesium oxide, aluminum oxide, graphite, cerium, magnesia and the like are used as a carrier for promoting the catalytic ability of Ru, Fe, or the like. Usually, when an oxide such as aluminum oxide is used as a carrier, a promoter compound must be added in a large amount to improve the electron donating ability of the catalyst component in order to make a highly active catalyst. As such an accelerator compound, an alkali metal, an alkali metal compound, an alkaline earth metal compound or the like having a high electronegativity is used.

特公昭51-47674号公報Japanese Patent Publication No.51-47674 特公昭54-37592号公報Japanese Patent Publication No.54-37592 特公昭59-16816号公報Japanese Patent Publication No.59-16816 国際公開WO96/38222号International Publication No. WO96 / 38222 特開平2-258066号公報Japanese Patent Laid-Open No. 2-256666 特開平9-239272号公報Japanese Patent Laid-Open No. 9-239272 特開平2004-35399号公報Japanese Unexamined Patent Publication No. 2004-35399 特開平2006-231229号公報Japanese Unexamined Patent Publication No. 2006-231229 特開平2000-264625号公報Japanese Unexamined Patent Publication No. 2000-264625 特開2008-13435号公報JP 2008-13435 Gazette 特開2001-151507号公報JP 2001-151507 A

しかし、低温条件下や低圧条件下でのアンモニアの合成方法のさらなる改良が求められる。本発明の課題は、低温条件下や低圧条件下で高い触媒活性を発揮するアンモニア合成触媒を提供し、効率的なアンモニア合成反応を実現させることにある。   However, further improvement of the synthesis method of ammonia under low temperature conditions or low pressure conditions is required. An object of the present invention is to provide an ammonia synthesis catalyst that exhibits high catalytic activity under low temperature conditions or low pressure conditions, and to realize an efficient ammonia synthesis reaction.

本発明は、アルカリ金属を含有するアルミノ珪酸塩を基本構造とし、その格子間隙にモリブデンが内包される担体化合物に、アンモニア合成活性を有する遷移金属を担持させてなるアンモニア合成触媒である。担体化合物の仕事関数は、0.6〜1.2eVが好ましい。アルカリ金属は、カリウム及び/又はセシウムが好ましい。   The present invention is an ammonia synthesis catalyst comprising an aluminosilicate containing an alkali metal as a basic structure, and a transition compound having ammonia synthesis activity supported on a carrier compound in which molybdenum is encapsulated in the lattice gap. The work function of the carrier compound is preferably 0.6 to 1.2 eV. The alkali metal is preferably potassium and / or cesium.

本発明は、アルミノ珪酸塩の格子間隙にモリブデンが内包され、かつ仕事関数が0.6〜1.2eV である担体化合物に、アンモニア合成活性を有する遷移金属を担持させてなるアンモニア合成触媒を、窒素と水素とに接触させてアンモニアを合成するアンモニア合成方法を包含する。上記のアンモニア合成方法においては、少なくとも温度条件250〜350℃と、圧力条件0.1〜1MPaとのいずれか一つを満たす反応条件下でアンモニアを合成することが好ましい。   The present invention provides an ammonia synthesis catalyst in which a transition metal having ammonia synthesis activity is supported on a carrier compound having molybdenum contained in the lattice gap of aluminosilicate and having a work function of 0.6 to 1.2 eV. And an ammonia synthesis method of synthesizing ammonia by contacting with. In the above ammonia synthesis method, it is preferable to synthesize ammonia under reaction conditions satisfying at least one of a temperature condition of 250 to 350 ° C. and a pressure condition of 0.1 to 1 MPa.

低温条件下や低圧条件下で高い触媒活性を発揮するアンモニア合成触媒を提供し、効率的なアンモニア合成反応を実現できる。   An ammonia synthesis catalyst that exhibits high catalytic activity under low temperature conditions and low pressure conditions can be provided, and an efficient ammonia synthesis reaction can be realized.

本発明のアンモニア合成方法を行うアンモニア合成装置の一例を示す模式図である。It is a schematic diagram which shows an example of the ammonia synthesis apparatus which performs the ammonia synthesis method of this invention.

[アンモニア合成触媒]
本発明のアンモニア合成触媒は、所定の担体化合物にアンモニア合成活性を有する遷移金属を担持させてなる。上記の所定の担体化合物は、アルカリ金属を含有するアルミノ珪酸塩を基本構造とし、その格子間隙にモリブデン(Mo)を内包させる。その仕事関数は、好ましくは0.6〜1.2eVである。
[Ammonia synthesis catalyst]
The ammonia synthesis catalyst of the present invention comprises a transition metal having ammonia synthesis activity supported on a predetermined carrier compound. The predetermined carrier compound has an aluminosilicate containing an alkali metal as a basic structure, and molybdenum (Mo) is included in the lattice gap. The work function is preferably 0.6 to 1.2 eV.

上記の担体化合物を用いることにより本発明は、担持される遷移金属の触媒活性を十分に発揮できる。その結果、少なくとも温度条件250〜350℃と、圧力条件0.1〜1MPaとのいずれか一つを満たす反応条件下で、窒素と水素とを少なくとも反応速度400〜600μmolg-1h-1で反応させ、アンモニアを合成できる。 By using the above carrier compound, the present invention can sufficiently exhibit the catalytic activity of the supported transition metal. As a result, nitrogen and hydrogen are reacted at a reaction rate of at least 400 to 600 μmolg −1 h −1 under reaction conditions that satisfy at least one of temperature conditions 250 to 350 ° C. and pressure conditions 0.1 to 1 MPa, Ammonia can be synthesized.

[担体化合物]
本発明に用いられる担体化合物は、アルカリ金属を含有するアルミノ珪酸塩を基本構造とし、その格子間隙にモリブデン(Mo)が内包される構造である。アルミノ珪酸塩は、酸素原子が各頂点を占め、中央にケイ素(Si)またはアルミニウム(Al)が位置する四面体構造を基本単位として頂点の酸素原子を共有することにより該四面体構造が連結されてなる。Siの一部がAlに置換されることにより結晶格子全体として負に帯電しているため、カリウム(K)、セシウム(Cs)、ナトリウム(Na)等のアルカリ金属イオン等のカチオンを含有させることにより、電荷補償される。
[Carrier compound]
The carrier compound used in the present invention has a basic structure of an aluminosilicate containing an alkali metal and has a structure in which molybdenum (Mo) is included in the lattice gap. In the aluminosilicate, oxygen atoms occupy each apex, and the tetrahedral structure is linked by sharing the apex oxygen atom with a tetrahedral structure in which silicon (Si) or aluminum (Al) is located in the center as a basic unit. It becomes. Since part of Si is negatively charged as a whole of the crystal lattice by substituting Al, it must contain cations such as alkali metal ions such as potassium (K), cesium (Cs), and sodium (Na). Thus, charge compensation is performed.

本発明に用いられる担体化合物に含有されるモリブデン(Mo)は、該四面体構造に内包されると推察される。当該アルミノ珪酸塩に内包されるモリブデン(Mo)の含有量は、モル比の好ましい例として、K[AlSi2O6]:Mo=1:4や、Cs[AlSi2O6]:Mo=1:2である。そのような含有量でモリブデン(Mo)が内包される担体化合物は、通常のアルミノ珪酸塩と比較して、金属的性質が強く電気伝導性が高い。そのため、上記の構造を有する担体化合物の仕事関数は、0.6〜1.2eVであり、好ましくは0.88〜1.01eVであり、より好ましくは0.88〜0.9eVである。仕事関数は、触媒能の向上の観点からは小さいほど好ましい。上記の仕事関数の好ましい下限は、生産性の観点から導き出された値である。該仕事関数が1.2eVを超えると、電子放出能が小さくなり、触媒能に有意な向上が認められない。 It is presumed that molybdenum (Mo) contained in the carrier compound used in the present invention is included in the tetrahedral structure. As a preferable example of the molar ratio, the content of molybdenum (Mo) included in the aluminosilicate is K [AlSi 2 O 6 ]: Mo = 1: 4, Cs [AlSi 2 O 6 ]: Mo = 1 : 2. The carrier compound in which molybdenum (Mo) is included in such a content has a strong metallic property and high electrical conductivity as compared with a normal aluminosilicate. Therefore, the work function of the carrier compound having the above structure is 0.6 to 1.2 eV, preferably 0.88 to 1.01 eV, and more preferably 0.88 to 0.9 eV. The work function is preferably as small as possible from the viewpoint of improving the catalytic ability. A preferable lower limit of the work function is a value derived from the viewpoint of productivity. When the work function exceeds 1.2 eV, the electron emission ability decreases, and no significant improvement in catalytic ability is observed.

なお本発明に用いられる担体化合物の仕事関数は、光電子分光法により測定できる。その詳細は、Y. Toda, H. Yabnagi, E. Ikenaga, J. J. Kim, M. Kobata, S. Ueda, T. Kamiya, M. Hirano, M. Kobayashi, and H. Hosono, Adv. Mater 19 (2007) 3564を参照できる。また、光電子分光法による測定方法の詳細は、「吉武道子、“UPS、XPS、AESをもちいた仕事関数計測の原理と実践的ノウハウ”、表面科学、Vol.28、(2007)pp397−401」の記載を参照できる。   The work function of the carrier compound used in the present invention can be measured by photoelectron spectroscopy. For details, see Y. Toda, H. Yabnagi, E. Ikenaga, JJ Kim, M. Kobata, S. Ueda, T. Kamiya, M. Hirano, M. Kobayashi, and H. Hosono, Adv. Mater 19 (2007 ) See 3564. For details of the measurement method by photoelectron spectroscopy, see “Michiko Yoshibuchi,“ Principle and practical know-how of work function measurement using UPS, XPS, AES ”, Surface Science, Vol. 28, (2007) pp 397-401”. Can be referred to.

担体化合物の仕事関数は、含有されるアルカリ金属の種類により異なる。本発明に用いられる担体化合物としては、アルカリ金属としてKやCsを含有するものや、Na、Li、Rb等を含有するものが、上記の所定の仕事関数を得られるため好ましい。   The work function of the support compound varies depending on the type of alkali metal contained. As the carrier compound used in the present invention, one containing K or Cs as an alkali metal or one containing Na, Li, Rb or the like is preferable because the above-mentioned predetermined work function can be obtained.

上記の担体化合物は、従来公知の化合物と比較して仕事関数が極めて小さい。すなわち本発明に用いられる担体化合物は電子放出能が高い。そのため、該担体化合物に所定の遷移金属を担持させると、該遷移金属のd電子放出が促進される。放出されたd電子が原料窒素分子の反結合性軌道に2個以上入り込むと、窒素原子の結合距離が極めて大きくなり、窒素分子の活性化が促進される。   The above carrier compound has an extremely small work function as compared with a conventionally known compound. That is, the carrier compound used in the present invention has a high electron emission ability. Therefore, when a predetermined transition metal is supported on the carrier compound, d electron emission of the transition metal is promoted. When two or more of the emitted d electrons enter the antibonding orbital of the raw material nitrogen molecule, the bond distance of the nitrogen atom becomes extremely large, and the activation of the nitrogen molecule is promoted.

該担体化合物は、遷移金属が十分に合成促進能を発揮する担持量を担持できる比表面積を有することが好ましい。本発明に係るアンモニア合成触媒に担持される遷移金属は、特に、少なくとも温度条件250〜350℃と、圧力条件0.1〜1MPaとのいずれか一つを満たす反応条件下で良好な触媒活性を発揮するものが好ましく選択される。そのような遷移金属を上記の所定の電子放出能が高い担体化合物に担持させることにより、該遷移金属の触媒活性を良好に発揮させることができる。その結果、窒素と水素との反応が高効率で行われる。本発明に係るアンモニア合成触媒を用いたアンモニア合成の反応速度は、少なくとも、400〜600μmolg-1h-1である。 It is preferable that the carrier compound has a specific surface area that can carry a carrying amount sufficient for the transition metal to exhibit the ability to promote synthesis. The transition metal supported on the ammonia synthesis catalyst according to the present invention exhibits good catalytic activity, particularly under reaction conditions satisfying at least one of a temperature condition of 250 to 350 ° C. and a pressure condition of 0.1 to 1 MPa. Those are preferably selected. By supporting such a transition metal on the above carrier compound having a high electron emission ability, the catalytic activity of the transition metal can be exhibited well. As a result, the reaction between nitrogen and hydrogen is performed with high efficiency. The reaction rate of ammonia synthesis using the ammonia synthesis catalyst according to the present invention is at least 400 to 600 μmol g −1 h −1 .

本発明に係るアンモニア合成触媒を構成する担体化合物は、アルミノ珪酸骨格を基本構造とする。かかるアンモニア合成触媒を用いるアンモニア合成反応では、本発明のアンモニア合成触媒のアルミノ珪酸骨格の格子間隙に、原料の水素が一時的に入り込む。これによりアンモニア合成触媒に担持される遷移金属と水素との接触が抑制され、遷移金属の被毒が抑制される。従って、本発明のアンモニア合成触媒は失活しにくく、長期にわたり安定的に高い触媒活性を有する。   The carrier compound constituting the ammonia synthesis catalyst according to the present invention has an aluminosilicate skeleton as a basic structure. In the ammonia synthesis reaction using such an ammonia synthesis catalyst, the raw material hydrogen temporarily enters the lattice gap of the aluminosilicate skeleton of the ammonia synthesis catalyst of the present invention. As a result, contact between the transition metal supported on the ammonia synthesis catalyst and hydrogen is suppressed, and poisoning of the transition metal is suppressed. Therefore, the ammonia synthesis catalyst of the present invention is hardly deactivated and has a high catalytic activity stably over a long period of time.

[遷移金属]
本発明のアンモニア合成触媒に用いられる遷移金属は、特に少なくとも温度条件250〜350℃と、圧力条件0.1〜1MPaとのいずれか一つを満たす反応条件下で良好にアンモニア合成を促進させる遷移金属である。そのような遷移金属としては、8族遷移金属元素が挙げられる。中でもRu、Os、Fe等が入手容易性から好ましく用いられる。上記の遷移金属は、一種を担持させてもよく、二種以上を担持させてもよい。
[Transition metals]
The transition metal used in the ammonia synthesis catalyst of the present invention is a transition metal that promotes ammonia synthesis well under a reaction condition that satisfies at least one of a temperature condition of 250 to 350 ° C. and a pressure condition of 0.1 to 1 MPa. is there. Such transition metals include group 8 transition metal elements. Of these, Ru, Os, Fe and the like are preferably used because of their availability. One kind of the above transition metals may be supported, or two or more kinds thereof may be supported.

該遷移金属の粒径は、上記の担体化合物表面に担持されうる範囲内であれば特に限定されないが、好ましくは、5〜100nmであり、より好ましくは、5〜70nmである。なお本発明において遷移金属の粒径は、体積基準での該遷移金属微粒子群の累積分布におけるメディアン径D50の値である。 The particle size of the transition metal is not particularly limited as long as it is within the range that can be supported on the surface of the carrier compound, but is preferably 5 to 100 nm, and more preferably 5 to 70 nm. In the present invention, the particle diameter of the transition metal is a value of the median diameter D 50 in the cumulative distribution of the transition metal fine particle group on a volume basis.

上記遷移金属源となる遷移金属化合物としては、トリルテニウムドデカカルボニル(Ru3(CO)12)、ジクロロテトラスキス(トリフェニルホスフィン)ルテニウム(II)(RuCl2(PPh3)4)、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)RuCl2(PPh3)3)、トリス(アセチルアセトナト)ルテニウム(III)(Ru(acac)3)、ペンタカルボニル鉄ヨウ化物(Fe(CO)4I2)などの熱分解しやすい無機金属化合物または有機金属錯体が例示される。 Examples of the transition metal compound as the transition metal source include triruthenium dodecacarbonyl (Ru 3 (CO) 12 ), dichlorotetraskis (triphenylphosphine) ruthenium (II) (RuCl 2 (PPh 3 ) 4 ), dichlorotris ( Triphenylphosphine) ruthenium (II) RuCl 2 (PPh 3 ) 3 ), tris (acetylacetonato) ruthenium (III) (Ru (acac) 3 ), pentacarbonyliron iodide (Fe (CO) 4 I 2 ), etc. An inorganic metal compound or an organometallic complex that easily undergoes thermal decomposition is exemplified.

本発明における遷移金属の担持量は、選択される担体化合物の比表面積等により定まる。アンモニア合成反応を促進させる観点からは、遷移金属の担持量は多いほど好ましい。具体例としては、担体化合物全質量に対して、1〜10質量%が好ましく、3〜7質量%がより好ましい。なお、担体化合物の比表面積は、BET法等公知の方法により、流動式比表面積自動測定装置 FlowSorb III 2310等の機器を用いて測定できる。   The amount of transition metal supported in the present invention is determined by the specific surface area of the selected carrier compound. From the viewpoint of promoting the ammonia synthesis reaction, the larger the amount of transition metal supported, the better. As a specific example, 1-10 mass% is preferable with respect to the total mass of a carrier compound, and 3-7 mass% is more preferable. The specific surface area of the carrier compound can be measured by a known method such as the BET method using a device such as a flow type specific surface area automatic measuring device FlowSorb III 2310.

なお本発明のアンモニア合成触媒においては、上記に説明する遷移金属の他、本発明の作用効果を阻害しない限り、他の成分を含有させてもよい。   The ammonia synthesis catalyst of the present invention may contain other components in addition to the transition metal described above as long as the effects of the present invention are not impaired.

[アンモニア合成触媒の製造方法]
本発明のアンモニア合成触媒の製造方法は、限定されない。例えば、上記の仕事関数を有する所定の担体化合物に、従来公知の含浸法や蒸着法によりアンモニア合成活性を有する遷移金属を担持させる製造方法が挙げられる。
[Method for producing ammonia synthesis catalyst]
The method for producing the ammonia synthesis catalyst of the present invention is not limited. For example, a production method in which a transition metal having ammonia synthesis activity is supported on a predetermined carrier compound having the above work function by a conventionally known impregnation method or vapor deposition method.

本発明の担体化合物は市販のものを用いてもよく、以下に例示する方法で製造してもよい。珪酸源とアルミン酸源とアルカリ金属源とモリブデンとの微粉末を、アルミノ珪酸塩:モリブデン=1:2〜1:4となる化学量論比で混合させる。珪酸源としては、SiO2等が好ましい。アルミン酸源としては、Al2O3等が好ましい。アルカリ金属源としては、K2CO3、Cs2CO3が好ましい。 The carrier compound of the present invention may be commercially available, or may be produced by the method exemplified below. Fine powders of a silicic acid source, an aluminate source, an alkali metal source, and molybdenum are mixed in a stoichiometric ratio of aluminosilicate: molybdenum = 1: 2 to 1: 4. As the silicic acid source, SiO 2 or the like is preferable. As the aluminate source, Al 2 O 3 or the like is preferable. As the alkali metal source, K 2 CO 3 and Cs 2 CO 3 are preferable.

該混合物を加熱炉等を用いて大気中で熱処理する。熱処理温度は900〜1200℃が好ましい。熱処理時間は70〜100時間(約3〜4日間)が好ましい。上記の熱処理を行うことにより、本発明に用いられる担体化合物を得られる。   The mixture is heat-treated in the atmosphere using a heating furnace or the like. The heat treatment temperature is preferably 900 to 1200 ° C. The heat treatment time is preferably 70 to 100 hours (about 3 to 4 days). By carrying out the above heat treatment, the carrier compound used in the present invention can be obtained.

一方、遷移金属源となる遷移金属化合物を有機溶媒中に溶解させる。該遷移金属化合物溶液に、得られた担体化合物を添加し、均質に分散させた分散溶液を調製する。有機溶媒は、担体化合物と遷移金属化合物とを均一に分散させ得るものであれば特に限定されない。具体例としては、ヘキサン、ヘプタン等が好ましく用いられる。該分散溶液における担体化合物の添加量は、担体化合物を良好に分散させる観点から1〜10質量部が好ましい。遷移金属化合物の添加量は、遷移金属化合物を最大限担持させる観点から、担体化合物100質量部に対し0.1〜40質量部が好ましく、1〜30質量部がより好ましい。0.1質量部より少ない場合、担持量が不十分で良好な触媒能が得られない。   On the other hand, a transition metal compound serving as a transition metal source is dissolved in an organic solvent. The obtained carrier compound is added to the transition metal compound solution to prepare a dispersed solution in which it is uniformly dispersed. The organic solvent is not particularly limited as long as it can uniformly disperse the carrier compound and the transition metal compound. As specific examples, hexane, heptane and the like are preferably used. The addition amount of the carrier compound in the dispersion solution is preferably 1 to 10 parts by mass from the viewpoint of favorably dispersing the carrier compound. The addition amount of the transition metal compound is preferably 0.1 to 40 parts by mass and more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the carrier compound from the viewpoint of maximally supporting the transition metal compound. When the amount is less than 0.1 part by mass, the supported amount is insufficient and good catalytic ability cannot be obtained.

該分散溶液から溶媒を除去し、担体化合物に遷移金属化合物を含浸させたアンモニア合成触媒前駆体を得る。溶媒の除去方法としては、不活性ガス気流中あるいは真空下で熱処理して溶媒を蒸発させる方法が一般的であるが、本発明の作用効果を阻害しない限り、他の方法でもよい。熱処理による溶媒の除去を行う場合、熱処理条件は溶媒の種類により適宜調整されるが、好ましい熱処理温度は50〜200℃であり、熱処理時間は30分〜5時間である。   The solvent is removed from the dispersion solution to obtain an ammonia synthesis catalyst precursor in which the carrier compound is impregnated with the transition metal compound. As a method for removing the solvent, a method of evaporating the solvent by heat treatment in an inert gas stream or under vacuum is common, but other methods may be used as long as the effects of the present invention are not impaired. When removing the solvent by heat treatment, the heat treatment conditions are appropriately adjusted depending on the type of solvent, but the preferred heat treatment temperature is 50 to 200 ° C., and the heat treatment time is 30 minutes to 5 hours.

触媒前駆体を乾燥させた後、不活性ガス気流中、または真空中で加熱して還元処理する。好ましい加熱温度は、300〜900℃である。これにより担体化合物のアルミノ珪酸骨格に遷移金属が担持されてなる本発明のアンモニア合成触媒を得ることができる。得られたアンモニア合成触媒は、一般的には、粒状、球状、タブレット状等に成形され、ペレットとして用いられる。   After drying the catalyst precursor, it is reduced by heating in an inert gas stream or in vacuum. A preferable heating temperature is 300 to 900 ° C. Thereby, the ammonia synthesis catalyst of the present invention in which the transition metal is supported on the aluminosilicate skeleton of the support compound can be obtained. The obtained ammonia synthesis catalyst is generally shaped into granules, spheres, tablets or the like and used as pellets.

[アンモニア合成方法]
本発明のアンモニア合成触媒を用いたアンモニア合成方法について説明する。該アンモニア合成方法は、窒素と水素とを上記に説明したアンモニア合成触媒に接触させることにより、アンモニアを効率よく合成することができる。本発明で用いられるアンモニア合成触媒には、少なくとも温度条件250〜350℃と、圧力条件0.1〜1MPaとのいずれか一つを満たす反応条件下で良好な触媒活性を発揮する遷移金属が担持される。さらにかかる遷移金属の触媒活性を向上させる担体化合物を用いる。そのため、本発明のアンモニア合成方法は、少なくとも温度条件250〜350℃と、圧力条件0.1〜1MPaとのいずれか一つを満たす反応条件下で行われる場合に好適である。これにより合成装置について耐熱性や高圧化のための装備を低減でき、装置の大型化を回避できる。また熱エネルギー損出を抑制でき低コスト化に寄与する。
[Ammonia synthesis method]
An ammonia synthesis method using the ammonia synthesis catalyst of the present invention will be described. In the ammonia synthesis method, ammonia can be efficiently synthesized by bringing nitrogen and hydrogen into contact with the ammonia synthesis catalyst described above. The ammonia synthesis catalyst used in the present invention carries a transition metal that exhibits good catalytic activity under reaction conditions satisfying at least one of a temperature condition of 250 to 350 ° C. and a pressure condition of 0.1 to 1 MPa. . Further, a carrier compound that improves the catalytic activity of such a transition metal is used. Therefore, the ammonia synthesis method of the present invention is suitable when the reaction is performed under reaction conditions that satisfy at least one of temperature conditions of 250 to 350 ° C. and pressure conditions of 0.1 to 1 MPa. As a result, the equipment for the heat resistance and the high pressure can be reduced for the synthesis apparatus, and the apparatus can be prevented from being enlarged. In addition, heat energy loss can be suppressed, which contributes to cost reduction.

本発明は、触媒として所定のアンモニア合成触媒を用いる他は、公知のアンモニア合成方法を適用することができ、本発明の作用効果を阻害しない限り、以下に説明されない工程を含みうる。   In the present invention, a known ammonia synthesis method can be applied except that a predetermined ammonia synthesis catalyst is used as a catalyst, and steps not described below can be included unless the effects of the present invention are inhibited.

図1は、本発明のアンモニア合成方法が適用されるアンモニア合成装置の例である。図1のアンモニア合成装置1においては、リアクター2内の触媒層3にアンモニア合成触媒を充填させる。   FIG. 1 is an example of an ammonia synthesizer to which the ammonia synthesis method of the present invention is applied. In the ammonia synthesis device 1 of FIG. 1, the catalyst layer 3 in the reactor 2 is filled with an ammonia synthesis catalyst.

リアクター2に窒素と水素との混合ガスを通気させることにより、窒素と水素とを、触媒層3に充填されたアンモニア合成触媒と接触させる。混合ガスの窒素と水素とのモル比は、1:3が好ましい。混合ガスのリアクターの通気速度は、30〜180ml/minが好ましい。   By passing a mixed gas of nitrogen and hydrogen through the reactor 2, the nitrogen and hydrogen are brought into contact with the ammonia synthesis catalyst filled in the catalyst layer 3. The molar ratio of nitrogen and hydrogen in the mixed gas is preferably 1: 3. The aeration rate of the mixed gas reactor is preferably 30 to 180 ml / min.

リアクター内の温度条件は250〜350℃、圧力条件は0.1〜1MPaの範囲内で適宜調整される、より好ましい反応条件は、温度条件200〜300℃、圧力条件0.1〜1MPaである。上記の温度条件と圧力条件は、少なくともいずれか一つを満たせばよく、両方を満たすことがより好ましい。本発明のアンモニア合成触媒は、上記の反応条件でその触媒活性を好適に発揮し、アンモニア合成反応を効果的に進行させることができる。   Temperature conditions in the reactor are appropriately adjusted within a range of 250 to 350 ° C. and pressure conditions within a range of 0.1 to 1 MPa. More preferable reaction conditions are temperature conditions of 200 to 300 ° C. and pressure conditions of 0.1 to 1 MPa. The temperature condition and the pressure condition may satisfy at least any one, and more preferably satisfy both. The ammonia synthesis catalyst of the present invention suitably exhibits its catalytic activity under the above reaction conditions, and can effectively advance the ammonia synthesis reaction.

当該アンモニア合成方法による反応速度は、少なくとも600〜1200μmolg-1h-1である。本発明に所定のアンモニア合成触媒は劣化が少なく、長時間上記の反応速度を維持する為、本発明のアンモニア合成方法を用いることにより、少なくとも5〜48時間連続してアンモニア合成反応を行える。合成されたアンモニアは、従来公知の冷却工程または吸着工程を経て回収できる。 The reaction rate according to the ammonia synthesis method is at least 600 to 1200 μmol g −1 h −1 . Since the predetermined ammonia synthesis catalyst of the present invention is less deteriorated and maintains the above reaction rate for a long time, the ammonia synthesis reaction can be carried out continuously for at least 5 to 48 hours by using the ammonia synthesis method of the present invention. The synthesized ammonia can be recovered through a conventionally known cooling step or adsorption step.

該アンモニア合成方法は、少なくとも温度条件250〜350℃と、圧力条件0.1〜1MPaとのいずれか一つを満たす反応条件下でアンモニアを合成できる。したがってアンモニア合成装置に高温条件や高圧条件に対応するための設備を設ける必要がなく、メンテナンスの負担が軽減される。   In the ammonia synthesis method, ammonia can be synthesized under reaction conditions satisfying at least one of a temperature condition of 250 to 350 ° C. and a pressure condition of 0.1 to 1 MPa. Therefore, it is not necessary to provide the ammonia synthesizer with facilities for dealing with high temperature conditions and high pressure conditions, and the maintenance burden is reduced.

以下に実施例を挙げて本発明をさらに説明する。ただし本発明は下記の実施例に限定されない。   The following examples further illustrate the present invention. However, the present invention is not limited to the following examples.

[実施例1]
<担体化合物の製造>
K2CO3(Merck社製)と、Al2O3(Fluka社製、液相クロマトグラフィー使用級品)と、SiO2(Aldrich社製)と、Mo(Aldrich社製)とをボールミルを用いて混合し、原料混合物10質量gを得る。上記原料混合物を大気中、1000℃で3日間熱処理し、担体化合物A(K[AlSi2O6]:Mo)5質量gを得る。得られた担体化合物Aを、ボールミルを用いて平均直径10μmの微粉末にする。
[Example 1]
<Production of carrier compound>
Using a ball mill, K 2 CO 3 (Merck), Al 2 O 3 (Fluka, liquid phase chromatography grade), SiO 2 (Aldrich) and Mo (Aldrich) To obtain 10 mass g of the raw material mixture. The raw material mixture is heat-treated in the atmosphere at 1000 ° C. for 3 days to obtain 5 mass g of support compound A (K [AlSi 2 O 6 ]: Mo). The obtained carrier compound A is made into a fine powder having an average diameter of 10 μm using a ball mill.

Cs2CO3(Fluka社製、純度99%以上)と、Al2O3(Fluka社製、液相クロマトグラフィー使用級品)と、SiO2(Aldrich社製)と、Mo(Aldrich社製)とをボールミルを用いて混合し、原料混合物10質量gを得る。上記原料混合物を大気中、1000℃で3日間熱処理し、担体化合物B(Cs[AlSi2O6]:Mo)5質量gを得る。得られた担体化合物Bを、ボールミルを用いて平均直径10μmの微粉末にする。 Cs 2 CO 3 (Fluka, purity 99% or higher), Al 2 O 3 (Fluka, liquid phase chromatography grade), SiO 2 (Aldrich), Mo (Aldrich) Are mixed using a ball mill to obtain 10 mass g of a raw material mixture. The raw material mixture is heat-treated in the atmosphere at 1000 ° C. for 3 days to obtain 5 mass g of support compound B (Cs [AlSi 2 O 6 ]: Mo). The obtained carrier compound B is made into a fine powder having an average diameter of 10 μm using a ball mill.

担体化合物Aと担体化合物Bとの仕事関数は、Masaki Kitano et al., Nature Chem. 4, 934-940 (2012))や吉武道子、「UPS、XPS、AESを用いた仕事関数計測の原理と実践的ノウハウ」、表面科学、Vol.26, No.7, pp 397-401, 2007を参照して算出できる。担体化合物Aと担体化合物Bとの仕事関数を表1に示す。また、本発明のアンモニア合成触媒を用いたアンモニア合成方法によるアンモニア生成量を、Masaki Kitano et al., Nature Chem. 4, 934-940 (2012))に記載の仕事関数と反応速度の比例関係を参照して求め、表2に記載した。   The work function of carrier compound A and carrier compound B is described in Masaki Kitano et al., Nature Chem. 4, 934-940 (2012)) and Michiko Yoshimichi, `` The principle of work function measurement using UPS, XPS, AES It can be calculated by referring to "Practical know-how", Surface science, Vol.26, No.7, pp 397-401, 2007. Table 1 shows the work functions of the carrier compound A and the carrier compound B. In addition, the amount of ammonia produced by the ammonia synthesis method using the ammonia synthesis catalyst of the present invention is expressed as a proportional relationship between the work function and the reaction rate described in Masaki Kitano et al., Nature Chem. 4, 934-940 (2012)). Obtained by reference and listed in Table 2.

<遷移金属の担持>
担体化合物Aの微粉末を、濃度30質量%のトリルテニウムドデカカルボニル−ヘキサン溶液20mlに添加し、溶解するまで撹拌する。その後、該溶液を窒素気流中、処理温度70℃で1時間加熱して、溶媒を蒸発させ、さらに得られた触媒前駆体を乾燥する。
<Supporting transition metal>
The fine powder of carrier compound A is added to 20 ml of a triruthenium dodecacarbonyl-hexane solution having a concentration of 30% by mass and stirred until dissolved. Thereafter, the solution is heated in a nitrogen stream at a treatment temperature of 70 ° C. for 1 hour to evaporate the solvent, and the obtained catalyst precursor is dried.

担体化合物Aにトリルテニウムドデカカルボニルを含浸させた触媒前駆体を、300℃の温度条件で還元処理し、担体化合物Aにルテニウムを担持させた実施例1のアンモニア合成触媒を得る。   A catalyst precursor obtained by impregnating support compound A with triruthenium dodecacarbonyl is reduced under a temperature condition of 300 ° C. to obtain the ammonia synthesis catalyst of Example 1 in which support compound A supports ruthenium.

[実施例2〜4、比較例1、比較例2]
担体化合物の種類と遷移金属源とを、表2または表3に示す内容に異ならせる他は、実施例1と同様にして、実施例2〜4を得られる。また、γ-Al2O3を担体化合物とする比較例1と、活性炭を担体化合物とする比較例2のアンモニア合成触媒を製造できる。なお比較例1と比較例2としては下記の市販品が挙げられる。
比較例1:5%Ruアルミナ粉末 AA-4501、N.E.CHEMCAT製
比較例2:5%Ruカーボン粉末(含水品)Aタイプ、N.E.CHEMCAT製
[Examples 2 to 4, Comparative Example 1, Comparative Example 2]
Examples 2 to 4 are obtained in the same manner as in Example 1 except that the type of the carrier compound and the transition metal source are different from those shown in Table 2 or Table 3. Also, the ammonia synthesis catalyst of Comparative Example 1 using γ-Al 2 O 3 as a carrier compound and Comparative Example 2 using activated carbon as a carrier compound can be produced. As Comparative Example 1 and Comparative Example 2, the following commercially available products are listed.
Comparative example 1: 5% Ru alumina powder AA-4501, manufactured by NECCHEMCAT Comparative example 2: 5% Ru carbon powder (water-containing product) A type, manufactured by NECCHEMCAT

<アンモニア合成反応>
ペレット化した実施例1〜4および比較例1、比較例2のアンモニア合成触媒0.3gを、それぞれU字状のガラス管に詰め、該ガラス管を付けた内容積200mlガラス製閉鎖循環系に取り付ける。前処理として該閉鎖循環系にH2 200Torrを導入し400℃で3時間流通させた後、モル比1:3のN2/H2混合ガスを閉鎖循環系に流通させ、アンモニア合成反応を行う。反応条件は、温度条件400℃、圧力条件は1MPaである。反応開始から4時間、8時間、12時間経過後、反応速度を前出の計算方法で算出できる。実施例1〜4の反応速度を表2に、比較例1、比較例2の反応速度を表3に記載する。
<Ammonia synthesis reaction>
Pelletized ammonia synthesis catalysts of Examples 1 to 4 and Comparative Examples 1 and 2 were filled in U-shaped glass tubes, respectively, and attached to an internal volume 200 ml glass closed circulation system with the glass tubes attached. . As a pretreatment, H 2 200 Torr was introduced into the closed circulation system and allowed to flow at 400 ° C. for 3 hours, and then a N 2 / H 2 mixed gas having a molar ratio of 1: 3 was passed through the closed circulation system to perform an ammonia synthesis reaction. . The reaction conditions are a temperature condition of 400 ° C. and a pressure condition of 1 MPa. After 4 hours, 8 hours, and 12 hours from the start of the reaction, the reaction rate can be calculated by the above-described calculation method. The reaction rates of Examples 1 to 4 are shown in Table 2, and the reaction rates of Comparative Examples 1 and 2 are shown in Table 3.

1 アンモニア合成装置
2 リアクター
3 触媒層
1 Ammonia synthesizer
2 reactors
3 Catalyst layer

Claims (5)

アルカリ金属を含有するアルミノ珪酸塩を基本構造とし、その格子間隙にモリブデンが内包される担体化合物に、アンモニア合成活性を有する遷移金属を担持させてなるアンモニア合成触媒。   An ammonia synthesis catalyst comprising an aluminosilicate containing an alkali metal as a basic structure and a transition metal having ammonia synthesis activity supported on a carrier compound in which molybdenum is encapsulated in the lattice gap. 担体化合物の仕事関数が0.6〜1.2eVである請求項1に記載のアンモニア合成触媒。   2. The ammonia synthesis catalyst according to claim 1, wherein the work function of the support compound is 0.6 to 1.2 eV. アルカリ金属が、カリウム及び/又はセシウムである請求項1または請求項2に記載のアンモニア合成触媒。   3. The ammonia synthesis catalyst according to claim 1, wherein the alkali metal is potassium and / or cesium. アルカリ金属を含有するアルミノ珪酸塩の格子間隙にモリブデンが内包され、かつ仕事関数が0.6〜1.2eVである担体化合物に、アンモニア合成活性を有する遷移金属を担持させてなるアンモニア合成触媒を、窒素と水素とに接触させてアンモニアを合成するアンモニア合成方法。 An ammonia synthesis catalyst in which molybdenum is encapsulated in a lattice gap of an aluminosilicate containing an alkali metal and a transition compound having ammonia synthesis activity is supported on a support compound having a work function of 0.6 to 1.2 eV, is combined with nitrogen. An ammonia synthesis method in which ammonia is synthesized by contacting with hydrogen. 少なくとも温度条件250〜350℃と、圧力条件0.1〜1MPaとのいずれか一つを満たす反応条件下でアンモニアを合成する請求項4に記載のアンモニア合成方法。   5. The ammonia synthesis method according to claim 4, wherein ammonia is synthesized under a reaction condition that satisfies at least one of a temperature condition of 250 to 350 ° C. and a pressure condition of 0.1 to 1 MPa.
JP2014103977A 2014-05-20 2014-05-20 Ammonia synthesis catalyst and ammonia synthesis method Active JP6344052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103977A JP6344052B2 (en) 2014-05-20 2014-05-20 Ammonia synthesis catalyst and ammonia synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103977A JP6344052B2 (en) 2014-05-20 2014-05-20 Ammonia synthesis catalyst and ammonia synthesis method

Publications (2)

Publication Number Publication Date
JP2015218091A JP2015218091A (en) 2015-12-07
JP6344052B2 true JP6344052B2 (en) 2018-06-20

Family

ID=54777785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103977A Active JP6344052B2 (en) 2014-05-20 2014-05-20 Ammonia synthesis catalyst and ammonia synthesis method

Country Status (1)

Country Link
JP (1) JP6344052B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6650840B2 (en) * 2016-06-24 2020-02-19 国立大学法人 大分大学 Method for producing MgO-supported catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3368020D1 (en) * 1982-12-30 1987-01-15 Ozin Geoffrey A Metal zeolite catalyst preparation
EP0840646A1 (en) * 1995-05-31 1998-05-13 The University Of Virginia Patent Foundation Catalyst and process for preparing ammonia
EP0902725B1 (en) * 1996-06-06 2003-03-19 E.I. Du Pont De Nemours And Company Method of separating and selectively removing hydrogen contaminant from process streams
JP5820817B2 (en) * 2010-12-07 2015-11-24 国立大学法人東京工業大学 Ammonia synthesis catalyst and ammonia synthesis method
EP2768612A2 (en) * 2011-10-21 2014-08-27 IGTL Technology Ltd Methods of preparation and forming supported active metal catalysts and precursors
CN104583129B (en) * 2012-08-30 2016-09-07 国立大学法人东京工业大学 The manufacture method of conductive mayenite compound powder

Also Published As

Publication number Publication date
JP2015218091A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6680919B2 (en) Supported metal catalyst
JP5820817B2 (en) Ammonia synthesis catalyst and ammonia synthesis method
JP6670754B2 (en) Composite, method for producing composite, ammonia synthesis catalyst, and ammonia synthesis method
JP6675619B2 (en) Method for producing ammonia synthesis catalyst and method for producing ammonia
JP6143761B2 (en) Hydrogen production catalyst and method for producing hydrogen
JP6802544B2 (en) Metal support, supported metal catalyst and ammonia synthesis method using the catalyst
JP6890788B2 (en) Methods for Producing Transition Metal-Supported Intermetallic Compounds, Supported Metal Catalysts, and Ammonia
CA2881788C (en) Method for producing conductive mayenite compound powder
JP7352487B2 (en) Ammonia decomposition catalyst
JP5398082B2 (en) Method for preparing ruthenium catalyst for cycloolefin production, method for producing cycloolefin, and production apparatus
JP6280443B2 (en) Catalyst, catalyst production method, ammonia synthesis method, ammonia decomposition method
JP6344052B2 (en) Ammonia synthesis catalyst and ammonia synthesis method
JP6737455B2 (en) Laves phase intermetallic compound, catalyst using intermetallic compound, and ammonia production method
JP7090253B2 (en) Method for producing intermetallic compounds, hydrogen absorption / release materials, catalysts and ammonia
JP6458417B2 (en) Catalyst, ammonia synthesis method
JP7023457B2 (en) Ammonia synthesis catalyst and ammonia synthesis method using the catalyst
JPWO2020175558A1 (en) Acid Nitrogen Hydride, Metal Carriers Containing Acid Nitrogen Hydride, and Catalysts for Ammonia Synthesis
JP2017225955A (en) MANUFACTURING METHOD OF MgO CARRYING CATALYST
JP2006055752A (en) Ammonia synthesizing catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R151 Written notification of patent or utility model registration

Ref document number: 6344052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151