JP6342119B2 - Decomposing material, decomposing material manufacturing method, and processing system - Google Patents

Decomposing material, decomposing material manufacturing method, and processing system Download PDF

Info

Publication number
JP6342119B2
JP6342119B2 JP2013034100A JP2013034100A JP6342119B2 JP 6342119 B2 JP6342119 B2 JP 6342119B2 JP 2013034100 A JP2013034100 A JP 2013034100A JP 2013034100 A JP2013034100 A JP 2013034100A JP 6342119 B2 JP6342119 B2 JP 6342119B2
Authority
JP
Japan
Prior art keywords
decomposition
molded
sintered layer
powder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013034100A
Other languages
Japanese (ja)
Other versions
JP2014161780A (en
Inventor
作治 藏田
作治 藏田
優 新留
優 新留
中村 弘一
弘一 中村
Original Assignee
作治 藏田
作治 藏田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 作治 藏田, 作治 藏田 filed Critical 作治 藏田
Priority to JP2013034100A priority Critical patent/JP6342119B2/en
Publication of JP2014161780A publication Critical patent/JP2014161780A/en
Application granted granted Critical
Publication of JP6342119B2 publication Critical patent/JP6342119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、硫黄酸化物、窒素酸化物、アセトアルデヒド、アンモニア、又は硫化水素ガスの分解を行う分解材、当該分解材の製造方法、および、この分解材を備えた処理システムに関する。 The present invention relates to a decomposition material that decomposes sulfur oxide, nitrogen oxide, acetaldehyde, ammonia, or hydrogen sulfide gas, a method for producing the decomposition material, and a treatment system that includes the decomposition material.

従来、水施設で使用する殺菌装置に関し、入水口2と、出水口3と、入水口2と出水口3とに連通するフィルタ収容部(殺菌室)4と、このフィルタ収容部4内に収容されるセラミックフィルタ5と、フィルタ収容部4の外部に設けられる磁化発生器6とを備えたものが開示される(特許文献1参照)。セラミックフィルタの骨格基体は、上記素材の粒子(数ミクロン〜数百ミクロン)を焼結させたもので、粒子と粒子間に多数個の穴が形成されたもの、とされる。またセラミックフィルタの骨格基体としては、他に従来より知られている炭化珪素質のセラミックフェルトに電気伝導性を持たせたものも使用可能である、とされる。   Conventionally, regarding a sterilization apparatus used in a water facility, a water inlet 2, a water outlet 3, a filter housing part (sterilization chamber) 4 communicating with the water inlet 2 and the water outlet 3, and the filter housing part 4 What is provided with the ceramic filter 5 and the magnetization generator 6 provided in the exterior of the filter accommodating part 4 is disclosed (refer patent document 1). The skeletal substrate of the ceramic filter is obtained by sintering particles (several microns to several hundred microns) of the above-mentioned material and having a large number of holes formed between the particles. As the skeleton substrate of the ceramic filter, other conventionally known silicon carbide ceramic felts having electrical conductivity can be used.

また従来、カーボンナノチューブナノホーン結合体の製造方法および用途として、カーボンナノチューブと、カーボンナノホーンとを含み、前記カーボンナノチューブは、チューブ状のグラファイト層から形成され、前記カーボンナノホーンは、少なくとも一方の端が閉じたチューブ状のグラファイト層から形成されたカーボンナノチューブナノホーン結合体が開示される(特許文献2参照)。このカーボンナノチューブナノホーン結合体は、カーボンナノホーンにおける前記傷の部分の炭素原子が、カーボンナノチューブの炭素原子と化学的に結合されているものとされ、導電性ペーストや導電性粒子として使用可能である、とされる。   Conventionally, as a manufacturing method and use of a carbon nanotube nanohorn combined body, carbon nanotubes and carbon nanohorns are included, and the carbon nanotubes are formed from a tubular graphite layer, and at least one end of the carbon nanohorn is closed. In addition, a carbon nanotube nanohorn combined body formed from a tubular graphite layer is disclosed (see Patent Document 2). In this carbon nanotube nanohorn conjugate, the carbon atom of the scratch portion in the carbon nanohorn is assumed to be chemically bonded to the carbon atom of the carbon nanotube, and can be used as a conductive paste or conductive particle. It is said.

特開2004−290759号公報JP 2004-290759 A 特開2012−214342公報JP2012-214342A

しかしながら、上記従来の殺菌装置は、一般的に精密ろ過に使用されるアルミナ、コージライト、ムライト、シリカ等で形成したセラミックフィルタを使用するものとされており、これら材質からなるセラミックフィルタは、電気伝導性を有するものの分解効果自体が不安定であり、NOxなどの酸性系ガス、ホウ素、シリカ、ゲルマニウム、ポリ塩化ビフェニル(PCB)といった気体分子や半金属元素を分解する万能的な分解装置としての実用性を有するものではなかった。 However, the above conventional sterilizers use ceramic filters formed of alumina, cordierite, mullite, silica, etc., which are generally used for microfiltration. Ceramic filters made of these materials are electrically Although it has conductivity, the decomposition effect itself is unstable, and it is a versatile decomposition device that decomposes acidic gases such as NOx, gas molecules such as boron, silica, germanium, and polychlorinated biphenyl (PCB) and metalloid elements. It was not practical.

また上記カーボンナノチューブナノホーン結合体は、特定のカーボンナノチューブナノホーン結合体を導電性ペースト、キャパシタ、電池としての使用例が開示されるものの、気体分子や半金属元素の分解材として必要な構成を開示するものではなかった。 In addition, the carbon nanotube nanohorn composite body discloses a configuration required as a decomposition material for gas molecules and metalloid elements, although examples of using the specific carbon nanotube nanohorn composite body as a conductive paste, capacitor, and battery are disclosed. It was not a thing.

そこで本発明は、比較的安定した分解効果を有し、硫黄酸化物、窒素酸化物、アセトアルデヒド、アンモニア、又は硫化水素ガスを分解する万能的な分解装置としての実用性を確保した分解材を提供し、また当該分解材の製造方法を提供し、またこのような分解材を備えた処理システムを提供することを課題とする。
Therefore, the present invention provides a decomposition material that has a relatively stable decomposition effect and ensures practicality as a universal decomposition apparatus for decomposing sulfur oxide, nitrogen oxide, acetaldehyde, ammonia, or hydrogen sulfide gas. In addition, it is an object of the present invention to provide a method for producing the decomposed material, and to provide a processing system including such a decomposed material.

上記課題を解決するため、本発明は以下(1)〜(6)の構成を採用している。
(1)本発明の分解材は、
カーボンナノチューブとハイドロキシアパタイトとの化学結合体を主剤とする粉体を加圧焼成してなることを特徴とする。
(2)あるいは、本発明の分解材は、
顔料を含んで所定の成形形状に成形された成形基材と、
成形基材の表面に所定範囲の層厚さで定着形成した焼結層と、から構成される分解材であって、
前記焼結層は、カーボンナノチューブとハイドロキシアパタイトとのイオン結合体を主剤とする粉体を、加圧焼成してなることを特徴とする。
In order to solve the above problems, the present invention adopts the following configurations (1) to (6).
(1) The decomposition material of the present invention is
It is characterized in that it is obtained by pressurizing and firing a powder mainly composed of a chemical combination of carbon nanotubes and hydroxyapatite.
(2) Alternatively, the decomposition material of the present invention is
A molding substrate formed into a predetermined molding shape containing a pigment;
A decomposed material composed of a sintered layer fixedly formed on a surface of a molding substrate with a layer thickness within a predetermined range,
The sintered layer is formed by pressure firing a powder mainly composed of an ionic conjugate of carbon nanotubes and hydroxyapatite.

(3)前記(2)の分解材において、
前記成形基材は、球塊状、柱状または筒状に圧縮成形されるとともに成形された表層部が前記焼結層と異なる色に着色された加圧集成材からなり、
前記焼結層は、成形基材の外表面、外周側面または筒内表面に沿って、焼成によって定着成型された前記イオン結合体粉末の集積材からなり、
焼結層はイオン結合体の分解反応によって減容することで、成形基材の前記着色された表層部が分解材外部に表出することが好ましい。
成形基材の表層部を顔料で着色し、またその上に定着させる焼結層の厚さをコントロールすることで、焼結層が分解反応によって減容した時に、焼結層と成形基材との境界線を目視で容易に識別できるものとなる。
(3) In the decomposition material of (2),
The molded base material is formed of a pressure-gathered material in which a surface layer portion formed by compression molding into a spherical block shape, a columnar shape, or a cylindrical shape is colored in a color different from the sintered layer,
The sintered layer is made of an integrated material of the ionic binder powder that is fixedly molded by firing along the outer surface, the outer peripheral side surface or the cylinder inner surface of the molded substrate,
It is preferable that the colored surface layer portion of the molded base material is exposed to the outside of the decomposition material by reducing the volume of the sintered layer by the decomposition reaction of the ionic conjugate.
By coloring the surface layer part of the molded substrate with pigment and controlling the thickness of the sintered layer to be fixed thereon, the sintered layer and the molded substrate The boundary line can be easily identified visually.

(4)前記いずれかの分解材において、
前記カーボンナノチューブは、多層カーボンナノチューブMWNTからなることが好ましい。
また、前記イオン結合体は、カーボンナノチューブ粉末CNTとハイドロキシアパタイト結晶粉末HAPとを、それぞれCNT(55〜65):HAP(45〜35)重量%比で混合し、600℃以下(好ましくは500℃±50℃程度)の環境下で加圧焼成して得られたものであることが好ましい。
(5)また、本発明の分解材の製造方法は、
カーボンナノチューブ粉末とハイドロキシアパタイト結晶粉末とを、所定の重量%比で混合し、600℃以下の環境下で加圧焼成して、カーボンナノチューブとハイドロキシアパタイトとのイオン結合体を得る工程と、
所定の成形形状に成形された成形基材の表面に、前記イオン結合体を主剤とする粉体を集成焼結することで、所定範囲の層厚さの焼結層を定着形成する工程と、を具備することを特徴とする。
ここで、前記カーボンナノチューブとハイドロキシアパタイトとのイオン結合体を得る工程において、前記所定の重量比が、カーボンナノチューブ粉末、ハイドロキシアパタイト結晶粉末それぞれ、(55〜65):(45〜35)重量%比となるように混合することが好ましい。
(6)また、本発明の処理システムは、
有毒ガス又は廃液中の難燃性物質を処理する処理システムであって、廃液を所定速度で流通させるポンプ、流通管からなる流通機構と、
前記流通機構の流通管の上流側または下流側に連通された貯留槽と、
前記流通機構の流通管途中または貯留槽内の少なくともいずれかに介設され、内部に請求項1ないしのいずれか記載の分解材を充填させた処理機と、から構成される廃液の酸化処理システムであって、
前記処理機は、内部に請求項1ないし5のいずれか記載の分解材を充填させ、処理液を通過させるフィルタと、フィルタの周囲を導電性ケースで囲うとともにフィルタ内に磁場を発生させる磁場発生器と、を備え、
流通機構のポンプによって廃液を所定範囲の一定速度で流通させると共に、分解材を充填させたフィルタ内に磁場を発生させることで、磁場中の分解材の各イオン結合体を廃液中の難燃性元素と酸化分解反応させることを特徴とする。
(4) In any one of the above decomposition materials,
The carbon nanotubes are preferably made of multi-walled carbon nanotubes MWNT.
In addition, the ionic conjugate is obtained by mixing carbon nanotube powder CNT and hydroxyapatite crystal powder HAP in a ratio of CNT (55 to 65): HAP (45 to 35) wt%, respectively, and 600 ° C. or less (preferably 500 ° C. It is preferably obtained by pressure firing in an environment of about ± 50 ° C.
(5) Moreover, the manufacturing method of the decomposition material of this invention is as follows.
Carbon nanotube powder and hydroxyapatite crystal powder are mixed at a predetermined weight% ratio and subjected to pressure firing in an environment of 600 ° C. or lower to obtain an ionic conjugate of carbon nanotubes and hydroxyapatite;
A step of fixing and forming a sintered layer having a layer thickness in a predetermined range on the surface of a molding substrate molded into a predetermined molding shape by collecting and sintering the powder mainly composed of the ionic binder; It is characterized by comprising.
Here, in the step of obtaining an ionic conjugate of the carbon nanotube and hydroxyapatite, the predetermined weight ratio is (55 to 65) :( 45 to 35)% by weight ratio, respectively, of the carbon nanotube powder and the hydroxyapatite crystal powder. It is preferable to mix so that it becomes.
(6) Moreover, the processing system of the present invention provides:
A processing system for processing a toxic gas or a flame retardant substance in a waste liquid, a pump for circulating the waste liquid at a predetermined speed, a flow mechanism comprising a flow pipe,
A storage tank connected to the upstream side or the downstream side of the flow pipe of the flow mechanism;
A waste liquid oxidation process comprising: a processing machine interposed in at least one of the distribution pipe of the distribution mechanism or in a storage tank and filled with the decomposition material according to any one of claims 1 to 3 ; A system,
The processor is filled with the decomposition material according to any one of claims 1 to 5, and a filter that allows the processing liquid to pass therethrough, and a magnetic field generation that surrounds the filter with a conductive case and generates a magnetic field in the filter. And equipped with
The waste fluid is circulated at a constant speed within a predetermined range by the pump of the flow mechanism, and a magnetic field is generated in the filter filled with the decomposition material, so that each ionic conjugate of the decomposition material in the magnetic field is flame retardant in the waste liquid. It is characterized by an oxidative decomposition reaction with an element.

上記構成によれば、無毒化が困難とされるPCB油やダイオキシン等の有毒物質に対し、本分解材のカーボンナノチューブの(C=O)官能基が(C−OH)=O又はCH−Oへの抗酸化反応を起こして反応し、同時にアパタイトが触媒として分解反応すると共にイオン交換反応を起こすことで、活性酸素の発生を抑えつつ、有毒物質元素のベンゼン環を破壊して別物質に変えることができる。   According to the above configuration, the (C═O) functional group of the carbon nanotube of the present decomposition material is (C—OH) ═O or CH—O with respect to toxic substances such as PCB oil and dioxin that are difficult to detoxify. It reacts by causing an antioxidant reaction, and at the same time, apatite decomposes as a catalyst and causes an ion exchange reaction, thereby destroying the benzene ring of the toxic substance element and changing it to another substance while suppressing the generation of active oxygen be able to.

これにより、NOxなどの酸性系ガス、ホウ素、シリカ、ゲルマニウム、ポリ塩化ビフェニル(PCB)といった気体分子や半金属元素を反応させ、安定的に無毒化することができる。ひいては、例えばPCB油の抽出段階からの分解や、抽出油の完全無毒化処理が可能となり、また、処理後の無毒化油を防虫剤やリサイクル燃料の元液として使用することが可能となる。
またCNT自体は200℃で燃焼し、700℃で蒸発するため、分解材自体の処理も容易である。
Thereby, gas molecules and metalloid elements such as acidic gas such as NOx, boron, silica, germanium, and polychlorinated biphenyl (PCB) can be reacted and stably detoxified. As a result, for example, the PCB oil can be decomposed from the extraction stage, or the extracted oil can be completely detoxified, and the detoxified oil after the treatment can be used as an insect repellent or an original solution of recycled fuel.
Further, since the CNT itself burns at 200 ° C. and evaporates at 700 ° C., the decomposition material itself can be easily treated.

本発明は上記手段を講じており、比較的安定した分解効果を有し、NOxなどの酸性系ガス、ホウ素、シリカ、ゲルマニウム、ポリ塩化ビフェニル(PCB)といった気体分子や半金属元素を分解する万能的な分解装置としての実用性を確保した分解材を提供し、またこのような分解材を備えた処理システムを提供することとなった。   The present invention employs the above-mentioned means, has a relatively stable decomposition effect, and is a versatile one that decomposes acidic gases such as NOx, gas molecules such as boron, silica, germanium, and polychlorinated biphenyl (PCB) and metalloid elements. It was decided to provide a disassembling material ensuring practicality as a practical disassembling apparatus, and to provide a treatment system equipped with such a disassembling material.

本発明の実施例1の分解材の部分破断図。The partial fracture | rupture figure of the decomposition material of Example 1 of this invention. 本発明の実施例2の分解材の斜視図。The perspective view of the decomposition material of Example 2 of this invention. 本発明の実施例3の処理システムにおける処理機の部分破断図。The partial fracture | rupture figure of the processing machine in the processing system of Example 3 of this invention. 本発明の実施例4の処理システムの断面構造図。The cross-section figure of the processing system of Example 4 of this invention.

本発明を実施するための最良の形態として、実施例1(図1)、実施例2(図2)、実施例3(図3)、実施例4(図4)として示す各図と共に説明する。いずれの実施例でも本発明の分解材は、カーボンナノチューブとハイドロキシアパタイトとの化学結合体を主剤とする粉体を加圧焼成してなる。またこの化学結合体は、カーボンナノチューブ粉末CNTとハイドロキシアパタイト結晶粉末HAPとを、それぞれCNT(55〜65):HAP(45〜35)重量%比で混合し、加圧焼成して得られたイオン結合体である。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described together with the drawings shown as Example 1 (FIG. 1), Example 2 (FIG. 2), Example 3 (FIG. 3), and Example 4 (FIG. 4). . In any of the examples, the decomposition material of the present invention is obtained by pressurizing and firing a powder mainly composed of a chemical conjugate of carbon nanotubes and hydroxyapatite. Further, this chemical conjugate is an ion obtained by mixing carbon nanotube powder CNT and hydroxyapatite crystal powder HAP in a ratio of CNT (55 to 65): HAP (45 to 35)% by weight, followed by pressure firing. It is a conjugate.

(イオン結合体)
具体的には、本発明のイオン結合体は、単層カーボンナノチューブ(SWNT),多層カーボンナノチューブ(MWNT) の少なくともいずれかからなるカーボンナノチューブと、塩基性リン酸カルシウムであるハイドロキシアパタイト:Ca10(Po4)6(OH)2とがイオン結合した粉体である。
(Ion conjugate)
Specifically, the ion-coupled body of the present invention includes a carbon nanotube composed of at least one of single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT), and hydroxyapatite: Ca10 (Po4) 6, which is basic calcium phosphate. (OH) 2 is an ion-bonded powder.

これは、CNT(カーボンナノチューブ)のナノチューブ末端やサイドウォール欠陥部のカルボキシル基に、HAP(ハイドロキシアパタイト)の塩基がイオン化結合したものであり、セラミックス成型されたハイドロキシアパタイトのいくつかの多孔部が、カーボンナノチューブによる抗酸化機能を維持しながら吸着・分解機能を果たすという特徴を有する。イオン結合体の粉末結晶は最大径10〜100μmであり、目視にて灰色のモノクロ色系粉末を呈している。 This is the one in which the base of HAP (hydroxyapatite) is ionically bonded to the carboxyl end of the CNT (carbon nanotube) and the side wall defect part, and several porous parts of the ceramic-molded hydroxyapatite are It has the feature of performing adsorption and decomposition functions while maintaining the antioxidant function of carbon nanotubes. The powder crystals of the ionic conjugate have a maximum diameter of 10 to 100 μm and visually present a gray monochrome powder.

(PCB油の二段階方式の分解)
本イオン結合体の分解材を使用して、例えばPCB油を二段階方式で分解することができる。
1段階処理::ポンプによって強制循環する循環流管内に、分解材を集積してなるフィルタを介設した処理循環装置を構成し、この処理循環装置によって、コンデンサー等から抽出された一次抽出段階のPCB油を、1時間〜数時間程度、常温流動循環させることで処理分解する。
2段階処理:磁力板及び電磁発生器を炉内に形成した電気炉内に、分解材を集積してなるフィルタを重ねて敷き詰めた処理電気炉を構成し、一段階処理を経たPCB油を、電界を形成した前記処理電気炉内で加熱電磁処理する。
3段階処理:磁力板及び電磁発生器を筒内に形成した筒状のケーシング内に、分解材を集積してなるフィルタを充填したガスフィルタを構成し、このガスフィルタを加熱炉の煙道内に介設して、二段階処理を経たPCB油の処理ガスを、このガスフィルタ内にワンパスで通すことで処理する・。
(Two-stage decomposition of PCB oil)
For example, PCB oil can be decomposed in a two-stage manner using the decomposition material of the present ion conjugate.
One-stage treatment: A treatment circulation device is provided in which a filter is formed by accumulating decomposition materials in a circulation flow tube that is forcedly circulated by a pump. PCB oil is processed and decomposed by circulating at normal temperature for about 1 hour to several hours.
Two-stage treatment: An electric furnace in which a magnetic plate and an electromagnetic generator are formed in the furnace constitutes a treatment electric furnace in which a filter made by accumulating decomposition materials is stacked and spread, and PCB oil that has undergone one-stage treatment is Heating electromagnetic processing is performed in the processing electric furnace in which an electric field is formed.
Three-stage process: A gas filter filled with a filter made by integrating decomposition materials is formed in a cylindrical casing in which a magnetic plate and an electromagnetic generator are formed, and this gas filter is placed in the flue of the heating furnace. Intervene and process by passing the processing gas of PCB oil that has undergone two-stage processing through this gas filter with one pass.

(カーボンナノチューブCNT)
カーボンナノチューブは、炭素原子の六員環を基本骨格とするグラファイト層(グラフェンシートなどと呼ばれる)から形成されたチューブ形状の物質である。カーボンナノチューブは、例えば、一つの円筒状シートからなる単層カーボンナノチューブ、二層の円筒状シートが入れ子になった二層カーボンナノチューブ、三層以上の円筒状シートが入れ子になった多層カーボンナノチューブ等に分類される。カーボンナノチューブの分子の長さは、例えば数μm程度である。分子の直径は、単層カーボンナノチューブにおいては、例えば0.4〜2nm程度であり、多層カーボンナノチューブにおいては、例えば数十nm程度である。
(Carbon nanotube CNT)
A carbon nanotube is a tube-shaped substance formed from a graphite layer (called graphene sheet or the like) having a six-membered ring of carbon atoms as a basic skeleton. Carbon nanotubes include, for example, single-walled carbon nanotubes made of one cylindrical sheet, double-walled carbon nanotubes in which two-layered cylindrical sheets are nested, multi-walled carbon nanotubes in which three or more cylindrical sheets are nested, etc. are categorized. The length of the carbon nanotube molecule is, for example, about several μm. The diameter of the molecule is, for example, about 0.4 to 2 nm for single-walled carbon nanotubes, and is about several tens of nm for multi-walled carbon nanotubes, for example.

CNTは例えば、基板(シリコンや石英)上に鉄を含んだ触媒を塗布ないしはフォトリソグラフィー法でパターニングして炉中で焼成し、900度の焼成温度にて炭素源となるアルコールを流すことで作製される。以下、各実施例の構成につき説明する。 For example, CNT is produced by applying a catalyst containing iron on a substrate (silicon or quartz) or patterning it by a photolithography method, firing it in a furnace, and flowing alcohol as a carbon source at a firing temperature of 900 degrees. Is done. The configuration of each embodiment will be described below.

図1に示す本発明の実施例1の分解材1は、
所定径の球型の成形形状に成形された成形基材11と、
成形基材11の表面に所定範囲の層厚さtで定着形成した焼結層12と、から構成される中実の球型分解材である。
The decomposition material 1 of Example 1 of the present invention shown in FIG.
A molding substrate 11 molded into a spherical molding shape of a predetermined diameter;
It is a solid spherical decomposition material composed of a sintered layer 12 fixedly formed on the surface of the molded substrate 11 with a layer thickness t in a predetermined range.

(成形基材11)
実施例1の成形基材11は、分解材1の形状保持及び焼結層の定着保持の役割を果たす。主剤としては、アルミナ
(Al2O3)、ジルコニア等の酸化物系材、ダイヤモンド、フェライト等の元素系材、ハイドロキシアパタイト等の水酸化物系材、炭化ケイ素
(SiC)等の炭化物系材、窒化ケイ素等の窒化物系材、蛍石等のハロゲン化物系材や、炭酸塩系材が用いられる。このうち例えば、リン酸塩系チタン酸バリウム、フェライト、窒化ホウ素、BI2Sr2Ca2Cu3O10(高温超伝導セラミックス)のいずれか1種以上を主材とするものが好ましい。この中でも特に、チタン酸バリウムやフェライトは誘電性を持ち、かつ粒界でPTC効果を持つため、チタン製バリウムを主剤をする成型基材11を有する分解材は、後述の実施例3や実施例4の電磁誘導フィルタと共に使用するのが好ましい。
(Molding substrate 11)
The molding substrate 11 of Example 1 plays a role of maintaining the shape of the decomposition material 1 and fixing the sintered layer. Main materials include alumina (Al2O3), oxide materials such as zirconia, element materials such as diamond and ferrite, hydroxide materials such as hydroxyapatite, carbide materials such as silicon carbide (SiC), silicon nitride, etc. Nitride-based materials, halide materials such as fluorite, and carbonate-based materials are used. Among these, for example, those containing at least one of phosphate-based barium titanate, ferrite, boron nitride, and BI2Sr2Ca2Cu3O10 (high-temperature superconducting ceramics) as a main material are preferable. Among them, in particular, since barium titanate and ferrite have dielectric properties and have a PTC effect at the grain boundary, the decomposed material having the molded base material 11 mainly composed of titanium barium is described in Examples 3 and 3 below. Preferably, it is used with four electromagnetic induction filters.

(焼結層12)
実施例1の焼結層12は、カーボンナノチューブとハイドロキシアパタイトとのイオン結合体を主剤とし、これに二酸化チタンを混合し、さらに、解膠剤(分散剤)、バインダー、滑剤を混成した粉体を乾式金型成型してなる。このうち二酸化チタンは白色の無機顔料であって、NOxガスに曝露したときに分解・酸化機能を発揮する。
(Sintered layer 12)
The sintered layer 12 of Example 1 is a powder in which an ion-bonded body of carbon nanotubes and hydroxyapatite is used as a main ingredient, titanium dioxide is mixed therein, and a peptizer (dispersant), a binder, and a lubricant are mixed. Is formed by dry-type molding. Of these, titanium dioxide is a white inorganic pigment that exhibits a decomposition and oxidation function when exposed to NOx gas.

図2に示す本発明の実施例2の分解材1は、
所定厚さt0の筒型の成形形状に成形された成形基材11と、
成形基材11の筒内側面に所定範囲の層厚さt1で定着形成した焼結層121と、
成形基材11の筒外側面に所定範囲の層厚さt2で定着形成した焼結層122と、から構成される筒型分解材である。
The decomposition material 1 of Example 2 of the present invention shown in FIG.
A molding substrate 11 molded into a cylindrical molding shape having a predetermined thickness t0;
A sintered layer 121 fixedly formed at a layer thickness t1 within a predetermined range on the inner surface of the molded substrate 11;
It is a cylindrical decomposition material composed of a sintered layer 122 fixedly formed on a cylinder outer surface of the molded substrate 11 with a layer thickness t2 within a predetermined range.

成形基材11は筒孔を有しており、この筒孔内を被分解ガスが通ることで、筒外側面に接触する焼結層121が被分解ガスを分解処理する。
実施例2の筒外側面の焼結層122は円形の凸湾曲表面を有しており、この表面に被分解ガスが接触することで分解処理される。例えば後述の実施例3のような充填構造を取る場合は、実施例2の分解材1の筒孔の開口を同方向に並べて面内にハニカム状に敷き詰めてなる。
焼結層12の内層厚さt1及び外層厚さt2は、いずれも成形基材11の筒厚さt0の1/4〜1/3程度であり、さらに焼結層12の内層厚さt1は外層厚さt2よりも1割〜2割小さい。
The forming base material 11 has a cylindrical hole, and when the gas to be decomposed passes through the cylindrical hole, the sintered layer 121 in contact with the outer surface of the cylinder decomposes the gas to be decomposed.
The sintered layer 122 on the outer surface of the cylinder of Example 2 has a circular convex curved surface, and is decomposed by contacting the surface with a gas to be decomposed. For example, when a filling structure as in Example 3 described later is adopted, the openings of the cylindrical holes of the decomposition material 1 of Example 2 are arranged in the same direction and spread in a honeycomb shape in the surface.
The inner layer thickness t1 and the outer layer thickness t2 of the sintered layer 12 are both about ¼ to 3 of the cylinder thickness t0 of the molded substrate 11, and the inner layer thickness t1 of the sintered layer 12 is 10-20% smaller than outer layer thickness t2.

(焼結層12)
実施例1の焼結層12は、カーボンナノチューブとハイドロキシアパタイトとのイオン結合体を主剤とし、さらに二酸化チタンと鉛丹を混合した原料粉体を集成し、加圧焼結してなる。
二酸化チタンは白色の無機顔料であって、SOx(硫黄酸化物)、NOx(窒素酸化物)、CHCHO(アセトアルデヒド)、 NH(アンモニア)、HS(硫化水素)ガスに曝露したときにこれらを分解することで、触媒作用を発揮する。
鉛丹は四酸化三鉛 (Pb3O4) を主成分とする赤色の無機顔料であり、焼結層12の原料紛体への混合によって着色剤としての機能を有すると共に、所定割合の混合によって原料粉体の触媒反応速度をコントロールすることができる。
(Sintered layer 12)
The sintered layer 12 of Example 1 is formed by assembling raw material powders, which are mainly composed of an ion-bonded body of carbon nanotubes and hydroxyapatite, and further mixed with titanium dioxide and red lead, followed by pressure sintering.
Titanium dioxide is a white inorganic pigment and when exposed to SOx (sulfur oxide), NOx (nitrogen oxide), CH 3 CHO (acetaldehyde), NH 3 (ammonia), H 2 S (hydrogen sulfide) gas By decomposing them, the catalytic action is exhibited.
Red lead is a red inorganic pigment whose main component is trilead tetroxide (Pb3O4), and has a function as a colorant by mixing the sintered layer 12 with the raw material powder, and the raw material powder by mixing at a predetermined ratio The catalytic reaction rate can be controlled.

(本発明の一次処理システム)
本発明の一次処理システムは、
有毒ガス又は廃液中の難燃性物質を処理する処理システムであって、廃液を所定速度で流通させるポンプ、流通管からなる流通機構と、
前記流通機構の流通管の上流側または下流側に連通された貯留槽と、
前記流通機構の流通管途中または貯留槽内の少なくともいずれかに介設され、内部に多数の粒状又は筒状の分解材を充填させた処理機と、から構成される廃液の酸化処理システムであって、
前記処理機は、内部に前記いずれか記載の分解材を充填させ、処理液を通過させるフィルタ材と、フィルタの周囲を導電性ケースで囲うとともにフィルタ内に磁場を発生させる磁場発生器と、を備える。
(Primary processing system of the present invention)
The primary processing system of the present invention is:
A processing system for processing a toxic gas or a flame retardant substance in a waste liquid, a pump for circulating the waste liquid at a predetermined speed, a flow mechanism comprising a flow pipe,
A storage tank connected to the upstream side or the downstream side of the flow pipe of the flow mechanism;
A waste liquid oxidation treatment system comprising: a treatment machine interposed in the middle of a circulation pipe of the circulation mechanism or in a storage tank, and filled with a large number of granular or cylindrical decomposition materials. And
The processing machine includes: a filter material that fills the decomposition material as described above and allows a processing liquid to pass; and a magnetic field generator that surrounds the filter with a conductive case and generates a magnetic field in the filter. Prepare.

(処理装置)
処理装置の構成例のうちのガスフィルタを図3に示す。フランジ21Fを両端に有した処理管21の内部に、実施例2の筒型の分解材1を、各筒口が管方向を向くようにハニカム配置で敷き詰めた管フィルタを構成している。また、この管フィルタの周囲左右から、電磁発生器22Mを複数個備え、型側面に凹部を形成した2分割のケーシングそれぞれを当接させ、導電性材22Cで左右の2分割ケーシング同士を連結することで、ケーシングの凹部から管フィルタ内に電磁処理を施すものである。
(Processing equipment)
FIG. 3 shows a gas filter in the configuration example of the processing apparatus. Inside the processing tube 21 having the flanges 21F at both ends, a tube filter is configured in which the tubular decomposition material 1 of Example 2 is spread in a honeycomb arrangement so that each tube port faces the tube direction. Further, from the left and right sides of the tube filter, a plurality of electromagnetic generators 22M are provided, and the two divided casings each having a recess formed on the side surface of the mold are brought into contact with each other, and the left and right divided casings are connected by the conductive material 22C. Thus, the electromagnetic treatment is performed in the tube filter from the concave portion of the casing.

(低速流通処理の場合)
流通機構のポンプによって廃液を所定範囲の一定速度で流通させると共に、分解材を充填させたフィルタ内に磁場を発生させることで、磁場中の分解材の各イオン結合体を廃液中の難燃性元素と酸化分解反応させる。
(For low-speed distribution processing)
The waste fluid is circulated at a constant speed within a predetermined range by the pump of the flow mechanism, and a magnetic field is generated in the filter filled with the decomposition material, so that each ionic conjugate of the decomposition material in the magnetic field is flame retardant in the waste liquid. Oxidative decomposition reaction with elements.

本実施例の流通管は、流出口と流入口とを備えた1の貯留槽にループ連結される1本の循環式管による繰り返し処理構造となっているが、他に、管途中で複数本に分岐した並行循環式管による繰り返し処理構造としてもよい。 The circulation pipe of the present embodiment has a repeated processing structure with one circulation pipe that is loop-connected to one storage tank having an outlet and an inlet. It is good also as a repeated processing structure by the parallel circulation type | formula pipe | tube branched into.

(滞留処理の場合)
本実施例の貯留槽では対流処理を行っていないが、他に滞留処理を行う場合には、貯留槽または貯留槽の付属部として滞留槽を介設してこの滞留槽でも分解処理を行う。
(For retention processing)
Although the convection process is not performed in the storage tank of this embodiment, when the retention process is performed elsewhere, the retention tank is provided as an attachment part of the storage tank or the storage tank, and the decomposition process is also performed in this retention tank.

図4の実施例4の処理装置は、炭化炉による二次処理と煙道部での三次処理とを行う。
この処理装置は、有毒ガス又は廃液中の難燃性物質を処理する処理システムであって、対象物を滞留させるとともに加熱処理する炉室と、炉室から連通されたガスフィルタ付きの煙道とから構成される。
炉室底には電気発熱器3Hが埋め込まれ、この上に対象物が貯留される。また炉室下部の側壁及び背壁には、永久磁石からなる磁性版3Mが炉内に露出する形で埋め込まれる。さらにこの磁性板3Mの下半部までを埋めるように、前記実施例1の粒状の処理材1が多層、ランダムに敷き詰められる。尚、炉室前部の上下部分にはそれぞれ、開閉可能扉からなる下部の取り出し口31D、開閉可能扉からなる上部の取り出し口32Dが形成される。
炉室内の上部側面にはブリーズ板からなる電磁発生板3Eが形成される。電磁発生板3Eは炉外の電磁発生器に接続されており、炉内両側部から電磁波を発生する。
炉の上部には煙道管41が連通形成されており、この煙道管41に箱筒型のフィルタケース42が介設される。フィルタケース内には実施例2の処理材2が充填され、充填部分の四方側周囲に磁性板4Mが埋め込まれる。また充填部分よりも上部のフィルタケース内側面には、荷電によって電磁波を発生する第二電磁板4Eが埋め込まれる。
The processing apparatus of Example 4 of FIG. 4 performs the secondary process by a carbonization furnace, and the tertiary process in a flue part.
This processing apparatus is a processing system for processing a flame-retardant substance in a toxic gas or a waste liquid, a furnace chamber for retaining an object and heat-treating, and a flue with a gas filter communicated from the furnace chamber. Consists of
An electric heater 3H is embedded in the bottom of the furnace chamber, and an object is stored thereon. A magnetic plate 3M made of a permanent magnet is embedded in the side wall and the back wall at the bottom of the furnace chamber so as to be exposed in the furnace. Further, the granular treatment material 1 of the first embodiment is spread in multiple layers at random so as to fill up the lower half of the magnetic plate 3M. Note that a lower take-out port 31D made of an openable / closable door and an upper take-out port 32D made of an openable / closable door are formed in the upper and lower parts of the front part of the furnace chamber, respectively.
An electromagnetic generation plate 3E made of a breathe plate is formed on the upper side surface in the furnace chamber. The electromagnetic generation plate 3E is connected to an electromagnetic generator outside the furnace, and generates electromagnetic waves from both sides in the furnace.
A flue pipe 41 is formed in communication with the upper part of the furnace, and a box-type filter case 42 is interposed in the flue pipe 41. The filter case is filled with the treatment material 2 of Example 2, and a magnetic plate 4M is embedded around the four sides of the filled portion. A second electromagnetic plate 4E that generates electromagnetic waves by charging is embedded in the inner surface of the filter case above the filling portion.

Claims (6)

所定の成形形状に成形された成形基材と、
成形基材の表面に所定範囲の層厚さで定着形成した焼結層と、から構成され、硫黄酸化物、窒素酸化物、アセトアルデヒド、アンモニア、又は硫化水素ガスを分解する分解材であって、
前記焼結層は、カーボンナノチューブとハイドロキシアパタイトとのイオン結合体を主剤とし、さらに二酸化チタンと丹鉛とを混合した粉体を集成焼結してなり、
前記焼結層は、表面が前記二酸化チタンと丹鉛との混合によって着色されてなることを特徴とする分解材。
A molding substrate molded into a predetermined molding shape;
A decomposition layer that decomposes sulfur oxide, nitrogen oxide, acetaldehyde, ammonia, or hydrogen sulfide gas, and is composed of a sintered layer fixedly formed on the surface of the molding substrate with a layer thickness within a predetermined range,
The sintered layer is formed by assembling and sintering a powder in which a main component is an ion-bonded body of carbon nanotubes and hydroxyapatite, and further, titanium dioxide and red lead are mixed.
The dissociation material, wherein the sintered layer is colored by mixing the titanium dioxide and the gallium.
前記成形基材は、球塊状、柱状または筒状に圧縮成形されるとともに成形された表層部が前記焼結層と異なる色に着色された加圧集成材からなり、
前記焼結層は、成形基材の外表面、外周側面または筒内表面に沿って、焼成によって定着成型された前記イオン結合体粉末の集積材からなり、
焼結層はイオン結合体の分解反応によって減容することで、成形基材の前記着色された表層部が分解材外部に表出する請求項1記載の分解材。
The molded base material is formed of a pressure-gathered material in which a surface layer portion formed by compression molding into a spherical block shape, a columnar shape, or a cylindrical shape is colored in a color different from the sintered layer,
The sintered layer is made of an integrated material of the ionic binder powder that is fixedly molded by firing along the outer surface, the outer peripheral side surface or the cylinder inner surface of the molded substrate,
The decomposition material according to claim 1, wherein the sintered layer is reduced in volume by a decomposition reaction of the ionic binder, so that the colored surface layer portion of the molded substrate is exposed to the outside of the decomposition material.
前記カーボンナノチューブは、多層カーボンナノチューブからなる請求項1又は2に記載の分解材。 The decomposition material according to claim 1, wherein the carbon nanotube is a multi-walled carbon nanotube. カーボンナノチューブ粉末とハイドロキシアパタイト結晶粉末とを、所定の重量%比で混合し、600℃以下の環境下で加圧焼成して、カーボンナノチューブとハイドロキシアパタイトとのイオン結合体を得る加圧焼成工程と、
所定の成形形状に成形された成形基材の表面に、前記イオン結合体を主剤とする粉体を集成焼結することで、所定範囲の層厚さの焼結層を定着形成する焼結層定着工程と、を具備する、分解材の製造方法。
A pressure firing process in which carbon nanotube powder and hydroxyapatite crystal powder are mixed at a predetermined weight% ratio and subjected to pressure firing in an environment of 600 ° C. or less to obtain an ion-bonded body of carbon nanotubes and hydroxyapatite; ,
A sintered layer that fixes and forms a sintered layer having a layer thickness within a predetermined range on the surface of a molded substrate molded into a predetermined molded shape by collecting and sintering the powder mainly composed of the ionic binder. And a fixing step.
前記加圧焼成工程において、前記所定の重量比が、カーボンナノチューブ粉末、ハイドロキシアパタイト結晶粉末それぞれ、(55〜65):(45〜35)重量%比となるように混合する、請求項4記載の分解材の製造方法。 The said pressurization baking process WHEREIN: The said predetermined weight ratio mixes so that it may become a carbon nanotube powder and a hydroxyapatite crystal powder respectively (55-65) :( 45-35) weight% ratio. A method for producing a decomposition material. 有毒ガス又は廃液中の難燃性物質を処理する処理システムであって、廃液を所定速度で流通させるポンプ、流通管からなる流通機構と、
前記流通機構の流通管の上流側または下流側に連通された貯留槽と、
前記流通機構の流通管途中または貯留槽内の少なくともいずれかに介設され、内部に請求項1ないし3のいずれか記載の分解材を充填させた処理機と、から構成される廃液の酸化処理システムであって、
前記処理機は、内部に請求項1ないし3のいずれか記載の分解材を充填させ、処理液を通過させるフィルタと、フィルタの周囲を導電性ケースで囲うとともにフィルタ内に磁場を発生させる磁場発生器と、を備え、
流通機構のポンプによって廃液を所定範囲の一定速度で流通させると共に、分解材を充填させたフィルタ内に磁場を発生させることで、磁場中の分解材の各イオン結合体を廃液中の難燃性元素と酸化分解反応させる処理システム。
A processing system for processing a toxic gas or a flame retardant substance in a waste liquid, a pump for circulating the waste liquid at a predetermined speed, a flow mechanism comprising a flow pipe,
A storage tank connected to the upstream side or the downstream side of the flow pipe of the flow mechanism;
A waste liquid oxidation process comprising: a processing machine interposed in at least one of the distribution pipe of the distribution mechanism or in a storage tank and filled with the decomposition material according to any one of claims 1 to 3 ; A system,
The processor is filled with the decomposition material according to any one of claims 1 to 3 to allow a processing liquid to pass therethrough, and a magnetic field is generated by surrounding the filter with a conductive case and generating a magnetic field in the filter. And equipped with
The waste fluid is circulated at a constant speed within a predetermined range by the pump of the flow mechanism, and a magnetic field is generated in the filter filled with the decomposition material, so that each ionic conjugate of the decomposition material in the magnetic field is flame retardant in the waste liquid. A processing system that oxidatively decomposes elements.
JP2013034100A 2013-02-25 2013-02-25 Decomposing material, decomposing material manufacturing method, and processing system Expired - Fee Related JP6342119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013034100A JP6342119B2 (en) 2013-02-25 2013-02-25 Decomposing material, decomposing material manufacturing method, and processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034100A JP6342119B2 (en) 2013-02-25 2013-02-25 Decomposing material, decomposing material manufacturing method, and processing system

Publications (2)

Publication Number Publication Date
JP2014161780A JP2014161780A (en) 2014-09-08
JP6342119B2 true JP6342119B2 (en) 2018-06-13

Family

ID=51612943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034100A Expired - Fee Related JP6342119B2 (en) 2013-02-25 2013-02-25 Decomposing material, decomposing material manufacturing method, and processing system

Country Status (1)

Country Link
JP (1) JP6342119B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219307A (en) * 2005-02-08 2006-08-24 Mitsubishi Rayon Co Ltd Porous calcium phosphate ceramic/carbon nanotube composition and method for producing the same
JP4238367B2 (en) * 2005-04-05 2009-03-18 国立大学法人東北大学 Composite material comprising carbon nanotube and hydroxyapatite and method for producing the same
JP4982734B2 (en) * 2005-07-08 2012-07-25 国立大学法人北海道大学 Carbon nanotube dispersion paste, carbon nanotube dispersion solution and method for producing the same
JP2011230995A (en) * 2010-04-05 2011-11-17 Inoac Gijutsu Kenkyusho:Kk Carbon material composite particle and method for producing the same
TWI485105B (en) * 2010-11-25 2015-05-21 Incubation Alliance Inc Novel carbon nanotube and rpoduction method of the same

Also Published As

Publication number Publication date
JP2014161780A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
Doustkhah et al. Hard-templated metal–organic frameworks for advanced applications
Huang et al. Adsorptive properties in toluene removal over hierarchical zeolites
CN110291612B (en) Seedless particles with carbon allotropes
Hasegawa et al. High-level doping of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances
Gan Activated carbon from biomass sustainable sources
JP5344489B2 (en) Visible light responsive type three-dimensional fine cell structure photocatalytic filter, manufacturing method thereof, and purification apparatus
JP4931168B2 (en) Method for producing high purity 2 to 5 carbon nanotubes
White et al. Functional hollow carbon nanospheres by latex templating
Saleh et al. Design and development of novel composites containing nickel ferrites supported on activated carbon derived from agricultural wastes and its application in water remediation
Palma et al. A review about the recent advances in selected nonthermal plasma assisted solid–gas phase chemical processes
Kim et al. Synthesis of nanoporous metal oxide particles by a new inorganic matrix spray pyrolysis method
Hu et al. Ceria hollow spheres as an adsorbent for efficient removal of acid dye
Wang et al. Surfactant-mediated synthesis of a novel nanoporous carbon− silica composite
JP5959383B2 (en) Combustion exhaust gas treatment unit and CO2 supply device
Rashad et al. Promising adsorption studies of bromophenol blue using copper oxide nanoparticles
Haghighat et al. Zeolitic imidazolate frameworks (ZIFs) of various morphologies against eriochrome black-T (EBT): optimizing the key physicochemical features by process modeling
Hussein et al. Porous Al2O3-CNT nanocomposite membrane produced by spark plasma sintering with tailored microstructure and properties for water treatment
JP6342119B2 (en) Decomposing material, decomposing material manufacturing method, and processing system
Abdelaal et al. Facile One‐Pot Fabrication of Hollow Porous Silica Nanoparticles
Lv et al. Synthesis of oxygen-rich TiO2/coal-based graphene aerogel for enhanced photocatalytic activities
Ghosh et al. Morphologically tuned aluminum hydrous oxides and their calcined products
Yang et al. An electrically renewable air filter with integrated 3D nanowire networks
Yan et al. Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition
CN108404666A (en) A kind of marine diesel tail gas denitrification apparatus
KR20080078900A (en) Methods of producing hydrogen using hanotubes and articles thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees