JP6340895B2 - Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time - Google Patents

Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time Download PDF

Info

Publication number
JP6340895B2
JP6340895B2 JP2014090589A JP2014090589A JP6340895B2 JP 6340895 B2 JP6340895 B2 JP 6340895B2 JP 2014090589 A JP2014090589 A JP 2014090589A JP 2014090589 A JP2014090589 A JP 2014090589A JP 6340895 B2 JP6340895 B2 JP 6340895B2
Authority
JP
Japan
Prior art keywords
catalyst
change
activation energy
amount
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014090589A
Other languages
Japanese (ja)
Other versions
JP2015208702A (en
Inventor
森 嘉彦
嘉彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014090589A priority Critical patent/JP6340895B2/en
Publication of JP2015208702A publication Critical patent/JP2015208702A/en
Application granted granted Critical
Publication of JP6340895B2 publication Critical patent/JP6340895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、触媒を用いた化学反応プロセスにおける、触媒使用期間内の目的とする生成物の総量を基に触媒性能の変化を活性化エネルギーの変化量を算出し、触媒性能の経時変化を解析することができる触媒性能の経時変化解析方法および触媒性能の経時変化解析装置に関する。   In the present invention, in a chemical reaction process using a catalyst, the change in the activation energy is calculated based on the total amount of the target product during the catalyst use period, and the change in the catalyst performance with time is analyzed. The present invention relates to a catalyst performance aging analysis method and a catalyst performance aging analysis apparatus that can be used.

塩化ビニルモノマー(VCM)の製造法のうち、バランスド・オキシクロリネーション・プロセスと呼ばれる方法、即ち、(1)エチレンの直接塩素化反応による1,2−ジクロロエタン(EDC)の製造、(2)EDCの熱分解反応によるVCMの製造、および(3)エチレンのオキシ塩素化反応によるEDCの製造、からなるプロセスが石油化学工業で広く採用されている。   Among the methods for producing vinyl chloride monomer (VCM), a method called a balanced oxychlorination process, that is, (1) production of 1,2-dichloroethane (EDC) by direct chlorination of ethylene, (2) A process comprising VCM production by EDC thermal decomposition reaction and (3) EDC production by ethylene oxychlorination reaction is widely adopted in the petrochemical industry.

このうち、エチレンのオキシ塩素化反応によるEDCの製造法は触媒を用いた触媒を用いた化学反応プロセスであり、反応に使用する酸素原料として空気を用いる空気法、空気に少量の分子状酸素を用いる酸素富化法、および酸素原料として分子状酸素を用いる酸素法が知られている。   Among these, the EDC production method by the oxychlorination reaction of ethylene is a chemical reaction process using a catalyst. The air method uses air as the oxygen raw material used for the reaction, and a small amount of molecular oxygen is added to the air. An oxygen enrichment method to be used and an oxygen method using molecular oxygen as an oxygen source are known.

一般的に触媒は時間経過に伴いその性能(活性)が低下する。従って、固定床流通式反応塔からなる触媒を用いた化学反応プロセスでは、触媒の活性が必要最低限のレベルにまで低下した段階で触媒を全て交換する必要がある。   In general, the performance (activity) of a catalyst decreases with time. Therefore, in a chemical reaction process using a catalyst composed of a fixed bed flow type reaction tower, it is necessary to replace all of the catalyst at a stage where the activity of the catalyst has been reduced to a necessary minimum level.

通常、触媒交換時期は予め決められており、計画した生産期間中は触媒交換を行うことなく、性能低下した触媒によって生産を継続する。これは計画外で触媒交換することは交換作業に要する経費および労力、装置停止中の減産による損金が非常に大きいためである。従って、予め計画した交換時期に達するまで触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮するように生産計画を立てることが重要な技術課題となっている。   Usually, the catalyst replacement time is determined in advance, and the production is continued with the catalyst whose performance has deteriorated without performing the catalyst replacement during the planned production period. This is because unplanned catalyst replacement is very costly and labor-intensive for replacement work, and the loss due to production cuts while the equipment is stopped. Therefore, it is an important technical problem to make a production plan so that the catalyst activity does not decrease to the minimum necessary level until the planned replacement time is reached and the maximum catalyst performance is exhibited.

この課題に対してシミュレーション技術を利用することが開示されている。   It is disclosed that a simulation technique is used for this problem.

たとえば水素化脱硫反応に対してシミュレーションによる方法が開示されている(特許文献1参照。)。しかし、この方法では、触媒の劣化については実験的にファクターを決めているため、運転条件が変化するような場合に触媒寿命を高い精度で予測できない。   For example, a simulation method for hydrodesulfurization reaction is disclosed (see Patent Document 1). However, in this method, since a factor is experimentally determined for the deterioration of the catalyst, the life of the catalyst cannot be predicted with high accuracy when the operating conditions change.

また、改質装置のシミュレーターが開示されている(特許文献2参照。)。この方法は触媒の寿命劣化を考慮したシミュレーターとなっているが、このシミュレーターは運転員のトレーニングのためのものであり、実際の装置の運転状態を予測するものではない。   Also, a reformer simulator is disclosed (see Patent Document 2). This method is a simulator that takes into account the deterioration of the life of the catalyst, but this simulator is for training the operator and does not predict the actual operating state of the apparatus.

精製処理に対してシミュレーションによる方法が開示されている(特許文献3〜4。)。この方法は水素化精製反応における触媒細孔中の炭素質および金属の堆積による触媒の劣化現象に着目して精製条件を最適化する方法である。しかし、炭素質および金属の体積が触媒の劣化の原因ではない反応については全く有効ではない。   A method by simulation is disclosed for the purification process (Patent Documents 3 to 4). This method is a method for optimizing the purification conditions by paying attention to the deterioration phenomenon of the catalyst due to the deposition of carbon and metal in the catalyst pores in the hydrorefining reaction. However, it is not effective at all for reactions where the volume of carbonaceous and metal is not responsible for catalyst degradation.

オキシ塩素化触媒反応は発熱反応であるため、発熱に伴い触媒層の温度が上昇し、特に温度が上昇したホットスポットでは急速な触媒性能の低下が起きる。   Since the oxychlorination catalyst reaction is an exothermic reaction, the temperature of the catalyst layer increases with the generation of heat, and a rapid decrease in catalyst performance occurs particularly at hot spots where the temperature has increased.

熱劣化を解析する方法としては、自動車の排気ガス浄化触媒に対してシミュレーションによる方法が開示されている(特許文献5〜6。)。これらは触媒の熱劣化を解析するため、触媒が高温に曝された時間と劣化の度合いを予め関連づけ、触媒の劣化速度として解析する方法である。この方法で得られる劣化速度は入口から出口までの全体の触媒性能の低下を一括解析した平均値である。   As a method of analyzing thermal degradation, a method by simulation is disclosed for an exhaust gas purification catalyst of an automobile (Patent Documents 5 to 6). In order to analyze the thermal deterioration of the catalyst, these are methods in which the time during which the catalyst is exposed to a high temperature and the degree of deterioration are correlated in advance and analyzed as the deterioration rate of the catalyst. The deterioration rate obtained by this method is an average value obtained by collectively analyzing the decrease in the overall catalyst performance from the inlet to the outlet.

オキシ塩素化触媒を用いた化学反応プロセスのような固定床流通反応塔では、反応床入口から出口まで発熱によって触媒層に温度分布が発生するため一様ではない。従って、触媒の性能低下も入口から出口まで一様でない。そのような触媒層の位置によって性能低下が異なる触媒を用いて、シミュレーション技術により運転条件の最適化を行い生産調整することは、触媒性能の平均値の情報では全くその要求に応えることはできない。   In a fixed bed flow reaction tower such as a chemical reaction process using an oxychlorination catalyst, temperature distribution is generated in the catalyst layer due to heat generation from the reaction bed inlet to the outlet, which is not uniform. Therefore, the performance degradation of the catalyst is not uniform from the inlet to the outlet. Using such a catalyst whose performance deterioration varies depending on the position of the catalyst layer and optimizing the production by performing simulation technology to optimize the operating conditions cannot meet the requirement at all with the information on the average value of the catalyst performance.

このような固定床流通式反応塔からなる触媒を用いた化学反応プロセスのように、触媒の性能低下が触媒層の位置で異なった場合でも、精度良く各位置にある触媒の性能を解析でき、運転条件の最適化を行い、生産調整を可能にする経時変化解析方法および触媒性能の経時変化解析装置が望まれている。   Like the chemical reaction process using a catalyst consisting of such a fixed bed flow type reaction tower, even if the catalyst performance drop is different at the position of the catalyst layer, the performance of the catalyst at each position can be analyzed accurately. There is a need for a time-change analysis method and a catalyst performance time-change analysis apparatus that optimizes operating conditions and enables production adjustment.

米国特許第5,341,313号US Pat. No. 5,341,313 特公平7−108372号公報Japanese Examined Patent Publication No. 7-108372 特許第3,931,083号公報Japanese Patent No. 3,931,083 特許第4,612,006号公報Japanese Patent No. 4,612,006 特許第3,135,499号公報Japanese Patent No. 3,135,499 特許第4,747,984号公報Japanese Patent No. 4,747,984

固定床流通式反応塔からなる触媒を用いた化学反応プロセスのように、触媒の性能低下が触媒層の位置で一様でなく、位置毎に異なった場合でも、各位置の触媒性能を解析して予め計画した交換時期に達するまで触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮するように運転条件の最適化を行い、生産調整を可能にする経時変化解析方法および触媒性能の経時変化解析装置を提供するものである。   Even if the performance degradation of the catalyst is not uniform at the position of the catalyst layer as in the chemical reaction process using a catalyst consisting of a fixed bed flow type reaction tower, the catalyst performance at each position is analyzed Until the planned replacement time is reached, the catalyst activity will not decrease to the minimum required level, and the operating conditions will be optimized so that the maximum catalyst performance will be exhibited, allowing the production to be adjusted over time. It is an object of the present invention to provide an analysis method and a catalyst performance aging analysis apparatus.

本発明者らは、上記の課題を解決するため鋭意検討を行った結果、触媒を用いた化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量を基に活性化エネルギーの変化量として算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析することができる触媒性能の経時変化解析方法および触媒性能の経時変化解析装置を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the amount of change in activation energy based on the total amount of the target product within the catalyst use period in the chemical reaction process using the catalyst. As a result, the inventors have found a catalyst performance aging analysis method and a catalyst performance aging analysis apparatus that can analyze the catalyst performance aging from the activation energy change amount, and have completed the present invention.

即ち、本発明は触媒を用いた化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量を基に活性化エネルギーの変化量を算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析することができる触媒性能の経時変化解析方法および触媒性能の経時変化解析装置に関するものである。   That is, according to the present invention, in a chemical reaction process using a catalyst, the amount of change in activation energy is calculated based on the total amount of the target product within the period of use of the catalyst, and the catalyst performance is calculated from the amount of change in activation energy. The present invention relates to a catalyst performance aging analysis method and a catalyst performance aging analysis apparatus capable of analyzing a aging change.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の触媒性能の経時変化解析方法および触媒性能の経時変化解析装置は固定床流通式反応塔からなる触媒を用いた化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量を基に活性化エネルギーの変化量を算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析する触媒性能の経時変化解析方法および触媒性能の経時変化解析装置であることを特徴とする。   The catalyst performance aging analysis method and the catalyst performance aging analysis apparatus of the present invention are based on the total amount of target products in the catalyst use period in a chemical reaction process using a catalyst comprising a fixed bed flow type reaction tower. The present invention is characterized in that a catalyst performance aging analysis method and a catalyst performance aging analysis apparatus for calculating a change in activation energy and analyzing a change in the catalyst performance with time from the change in the activation energy.

本発明者は触媒の性能低下現象を反応速度論に基づいて整理し、性能低下は活性化エネルギーの変化に起因するものであることを見出した。すなわち、使用期間が異なる触媒の活性化エネルギーを反応管の位置毎に区別して測定したところ、図1のような変化を確認した。これは触媒の経時変化に基づく変化であり、その変化をモデル化した。このモデルに基づいて触媒使用期間内の目的とする生成物の総量を基に活性化エネルギーの変化量を算出し、該活性化エネルギーの変化量を反応速度論に基づいて整理することで、触媒性能の経時変化を解析することができる。得られた活性化エネルギーの変化量は触媒層の位置で一様でなく、位置毎に異なった値で算出できるため、位置毎の触媒性能の経時変化を解析できる。   The present inventor has organized the catalyst performance degradation phenomenon based on the reaction kinetics, and found that the performance degradation is caused by a change in activation energy. That is, when the activation energy of the catalyst having different use periods was measured separately for each position of the reaction tube, a change as shown in FIG. 1 was confirmed. This is a change based on the change over time of the catalyst, and the change was modeled. Based on this model, the amount of change in activation energy is calculated based on the total amount of the target product within the catalyst use period, and the amount of change in activation energy is arranged based on the reaction kinetics, thereby obtaining a catalyst. Changes in performance over time can be analyzed. Since the amount of change in the obtained activation energy is not uniform at the position of the catalyst layer and can be calculated with a different value for each position, it is possible to analyze the change in the catalyst performance with time for each position.

前記活性化エネルギーの変化量ΔEaは触媒の使用期間内の目的とする生成物の総量をW、反応塔内で触媒が充填された反応管の入口から出口までの長さをL、反応管の入口からの位置をL、触媒の劣化度合を示す定数をKとすると、L、Wの関数として式(1);
ΔEa(L,W)=KW(1−L/L) (1)
で表される。
The change amount ΔEa of the activation energy is W as the total amount of the target product within the period of use of the catalyst, L 0 is the length from the inlet to the outlet of the reaction tube filled with the catalyst in the reaction tower, and the reaction tube Where L is the position from the inlet of the catalyst and K is a constant indicating the degree of deterioration of the catalyst. Equation (1) as a function of L and W;
ΔEa (L, W) = KW (1−L / L 0 ) (1)
It is represented by

触媒の劣化度合を示す定数Kの求め方に制限はないが、例えば、過去の全使用期間の目的とする生成物の総量が既知である触媒の活性化エネルギーと使用前に予め測定した活性化エネルギーの差から求めることができる。   There is no limitation on how to obtain the constant K indicating the degree of deterioration of the catalyst. For example, the activation energy of the catalyst for which the total amount of the target product in the entire past use period is known and the activation measured in advance before use It can be obtained from the difference in energy.

該活性化エネルギーの変化量を用いて触媒性能の経時変化を解析する場合には一般にアレニウス式による反応速度定数を用いることができる。使用期間経過後の反応速度定数をkとして、頻度因子をA、初期の活性化エネルギーをEa、気体定数をR、触媒層温度をT(L,W)とすると、L、Wの関数として式(2);
k(L,W)=Aexp(−(Ea+ΔEa(L,W))/RT(L,W)) (2)
で表される。
When analyzing the change in catalyst performance with time using the change amount of the activation energy, a reaction rate constant according to the Arrhenius equation can be generally used. Assuming that the reaction rate constant after the period of use is k, the frequency factor is A, the initial activation energy is Ea 0 , the gas constant is R, and the catalyst layer temperature is T (L, W), it is a function of L and W. Formula (2);
k (L, W) = Aexp (− (Ea 0 + ΔEa (L, W)) / RT (L, W)) (2)
It is represented by

前記反応速度定数kと初期の反応速度定数kと比較することによって触媒性能の経時変化を解析できる。 It can be analyzed the time course of catalyst performance by comparing with the reaction rate constant k and the initial reaction rate constant k 0.

前記のような活性化エネルギーの変化量から触媒性能の経時変化を解析する触媒性能の経時変化解析方法を利用した触媒性能の経時変化解析装置は、触媒の使用期間内の目的とする生成物の総量を積算する手段、触媒使用時の触媒層温度を検出する触媒層温度検出手段、前記触媒使用期間内の目的とする生成物の総量を基に活性化エネルギーの変化量を算出する演算手段を備える。 以下、固定床流通式反応塔からなる触媒を用いた化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量と使用期間経過後の触媒層温度を基に触媒性能の変化量を活性化エネルギーの変化量を算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析する触媒性能の経時変化解析方法を用いた触媒性能の経時変化解析装置を構成する前記手段および前記演算部について説明する。   The catalyst performance aging analysis apparatus using the catalyst performance aging analysis method for analyzing the aging change of the catalyst performance from the activation energy change amount as described above is used for the target product within the period of use of the catalyst. Means for integrating the total amount, catalyst layer temperature detecting means for detecting the catalyst layer temperature when the catalyst is used, and calculating means for calculating the change amount of the activation energy based on the total amount of the target product within the catalyst use period. Prepare. Hereinafter, in a chemical reaction process using a catalyst consisting of a fixed bed flow-type reaction tower, the amount of change in catalyst performance is activated based on the total amount of the target product within the catalyst use period and the catalyst layer temperature after the use period. The means for calculating a catalyst performance change-over-time analysis apparatus using a catalyst performance change-over-time analysis method for calculating a change in activation energy and analyzing a change in catalyst performance over time from the change in activation energy The part will be described.

触媒の使用時の触媒層温度を検出する触媒層温度検出手段は、固定床流通式反応塔に設置した触媒層の温度を測定するための装置である。測定された触媒層の温度は触媒層の位置毎および経過時間毎に記録される。   The catalyst layer temperature detection means for detecting the catalyst layer temperature when the catalyst is used is an apparatus for measuring the temperature of the catalyst layer installed in the fixed bed flow type reaction tower. The measured temperature of the catalyst layer is recorded for each position of the catalyst layer and every elapsed time.

触媒の使用期間内の目的とする生成物の総量を測定する手段は、固定床流通式反応塔の出口から流出する生成物量を分析することによって求めるための装置である。測定された生成物量を単位時間毎に記録し、使用期間内の生成物量を積算することで、使用期間内の目的とする生成物の総量を求めることができる。   The means for measuring the total amount of the target product within the period of use of the catalyst is an apparatus for determining by analyzing the amount of product flowing out from the outlet of the fixed bed flow type reaction tower. By recording the measured product amount every unit time and integrating the product amount within the use period, the total amount of the target product within the use period can be obtained.

触媒使用期間内の目的とする生成物の総量を基に活性化エネルギーの変化量を算出する演算手段は前記使用期間内の目的とする生成物の総量を測定する手段で測定された生成物の総量を基に活性化エネルギーの変化量を算出する演算部、活性化エネルギーの変化量から触媒性能の経時変化を解析する演算部から構成される。更に、経時変化の解析に当たって必要な情報を入力する手段、経時変化の解析結果を出力する手段および解析結果を記録する手段を備えていても良い。   The calculation means for calculating the change amount of the activation energy based on the total amount of the target product within the catalyst use period is the product measured by the means for measuring the total amount of the target product within the use period. The calculation unit includes a calculation unit that calculates the change amount of the activation energy based on the total amount and the calculation unit that analyzes the change in the catalyst performance with time from the change amount of the activation energy. Furthermore, a means for inputting information necessary for analyzing the change with time, a means for outputting the analysis result of the change with time, and a means for recording the analysis result may be provided.

触媒性能の経時変化を解析するために必要な情報を入力する手段は、活性化エネルギーの変化量を算出する演算手段へ、算出する際に使用する固定床流通式反応塔を制御する運転条件、運転中の触媒層温度、使用期間内の目的とする生成物の総量、触媒の物性や性状の情報を入力するための装置である。   The means for inputting information necessary for analyzing the change in the catalyst performance with time is an operating condition for controlling the fixed-bed flow reaction tower used for the calculation to the calculation means for calculating the change amount of the activation energy, It is an apparatus for inputting information on the temperature of the catalyst layer during operation, the total amount of the target product within the period of use, and the physical properties and properties of the catalyst.

前記使用期間内の目的とする生成物の総量を測定する装置で測定された生成物の総量を基に活性化エネルギーの変化量を算出する演算部によって活性化エネルギーの変化量を、式(1)を用いて触媒層の位置毎に算出する。活性化エネルギーの変化量から触媒性能の経時変化を解析する演算部によって算出した触媒層の各位置における活性化エネルギーの変化量から触媒層の各位置における触媒性能の経時変化をアレニウス式による反応速度定数の式(2)を用いて解析する。   The change amount of the activation energy is calculated by the calculation unit that calculates the change amount of the activation energy based on the total amount of the product measured by the apparatus that measures the total amount of the target product within the period of use. ) For each position of the catalyst layer. The time-dependent change in the catalyst performance at each position of the catalyst layer calculated from the change in the activation energy at each position of the catalyst layer calculated by the calculation unit that analyzes the change in the catalyst performance with time from the amount of change in activation energy. Analysis is performed using the constant equation (2).

反応管入口にある触媒層において、算出される反応速度によって反応原料が反応生成物を生成する際、その反応量に従って反応熱が生じる。この反応熱は反応管外へ除熱され、あるいは次の触媒層に流通ガスとともに移動する。この熱収支および物質収支によって次の触媒層の温度が決定し、反応速度を計算することができる。従ってこの計算を繰り返すことによって反応管入口から出口までの触媒層温度分布として触媒性能の経時変化を表示することもできる。   In the catalyst layer at the inlet of the reaction tube, when the reaction raw material generates a reaction product at the calculated reaction rate, reaction heat is generated according to the reaction amount. This reaction heat is removed from the reaction tube, or moves to the next catalyst layer together with the flowing gas. The temperature of the next catalyst layer is determined by this heat balance and mass balance, and the reaction rate can be calculated. Therefore, by repeating this calculation, it is possible to display the change in the catalyst performance with time as the catalyst layer temperature distribution from the inlet to the outlet of the reaction tube.

算出した触媒層温度分布と触媒の使用時の触媒層温度を検出する触媒層温度検出手段によって測定された実測温度を比較することで、この触媒性能の経時変化解析方法およびこの解析方法を用いた触媒性能の経時変化解析装置の精度を知ることができる。 解析結果を出力する手段は、前記解析によって得られた触媒層の各位置における触媒性能の経時変化および触媒性能の経時変化から予測される触媒層温度を出力するための装置である。   By comparing the calculated catalyst layer temperature distribution with the measured temperature measured by the catalyst layer temperature detecting means for detecting the catalyst layer temperature when the catalyst is used, this time-dependent analysis method of the catalyst performance and this analysis method were used. It is possible to know the accuracy of the catalyst performance change analyzer over time. The means for outputting the analysis result is an apparatus for outputting the catalyst layer temperature predicted from the time-dependent change of the catalyst performance and the time-dependent change of the catalyst performance at each position of the catalyst layer obtained by the analysis.

解析結果を記録する手段は、前記解析に必要な情報および前記解析によって得られた触媒層の各位置における触媒性能の経時変化および触媒性能の経時変化から予測される触媒層温度を経時変化解析プログラムを格納したコンピューター読み取り可能な記録媒体に記録するための装置である。   The means for recording the analysis result includes the time-dependent analysis program for the information necessary for the analysis, the catalyst performance at each position of the catalyst layer obtained by the analysis, and the catalyst layer temperature predicted from the catalyst performance with time. Is a device for recording on a computer-readable recording medium storing the.

ここでいう「記録媒体」とはプログラムを記録することができるコンピューターで読み取り可能な媒体を意味する。例えば、半導体メモリ、ICカード、光ディスク、磁気ディスク、光磁気ディスク、磁気テープ、デジタルビデオディスクなどを含む。   As used herein, “recording medium” means a computer-readable medium capable of recording a program. For example, a semiconductor memory, an IC card, an optical disk, a magnetic disk, a magneto-optical disk, a magnetic tape, a digital video disk, and the like are included.

本発明による経時変化解析方法および触媒性能の経時変化解析装置を用いることで、触媒を用いた化学反応プロセスのように、触媒の性能低下が触媒層の位置で一様でなく、位置毎に異なった場合でも、各位置の触媒性能を解析して予め計画した交換時期に達するまで触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮するように運転条件の最適化を行うことができる。   By using the temporal change analysis method and the catalyst performance temporal change analysis apparatus according to the present invention, the catalyst performance deterioration is not uniform at the position of the catalyst layer as in the chemical reaction process using the catalyst, and differs depending on the position. Even in such a case, the catalyst performance at each position is analyzed and the operating conditions are optimized so that the catalyst activity does not decrease to the minimum necessary level until the planned replacement time is reached and the maximum catalyst performance is exhibited. Can be made.

図1は使用期間が異なる触媒の反応管の位置毎に区別して測定した活性化エネルギーの変化を示した図である。FIG. 1 is a diagram showing a change in activation energy measured separately for each position of a reaction tube of a catalyst having a different use period. 図2は本発明に従うオキシ塩素化反応装置の経時変化解析装置から出力される反応管内温度分布と反応管内の実測温度とを比較した図である。FIG. 2 is a diagram comparing the temperature distribution in the reaction tube output from the time-dependent change analysis apparatus of the oxychlorination reactor according to the present invention and the actually measured temperature in the reaction tube. 図3は図1の運転条件を1年間継続した後の本発明に従うオキシ塩素化反応装置の経時変化解析装置から出力される反応管内温度分布と反応管内の実測温度とを比較した図である。FIG. 3 is a diagram comparing the temperature distribution in the reaction tube output from the time-dependent change analysis apparatus of the oxychlorination reactor according to the present invention after continuing the operation conditions of FIG. 1 for one year with the actually measured temperature in the reaction tube.

本発明に従うオキシ塩素化反応装置により触媒性能の経時変化解析装置について実際の使用例を基に説明する。   A time-dependent change analysis apparatus for catalyst performance using the oxychlorination reaction apparatus according to the present invention will be described based on an actual use example.

オキシ塩素化反応装置は固定床流通式反応塔を装備し、その反応塔内に触媒が充填されている。この触媒を解析するため反応管の入口から出口までを100分割して表示する。   The oxychlorination reactor is equipped with a fixed bed flow type reaction tower, and the catalyst is packed in the reaction tower. In order to analyze this catalyst, the area from the inlet to the outlet of the reaction tube is divided into 100 and displayed.

エチレン、塩化水素および酸素原料として空気を含む原料ガスは反応管入口より全量供給し、原料ガスが触媒層を通過する際に反応によって原料転化量に見合う反応熱が発生し、触媒層および流通ガス温度を変化させながら、出口から未反応原料および生成物が流出する方法で反応させる。式(1)および式(2)を用いて100分割した各区間の反応速度を求め、その区間の反応量から反応熱を計算し、触媒層の温度を算出する。このようにして予測した100区間の触媒層の温度分布は図2に示したようになる。図2に示した実測温度はシミュレーションによって得られた温度分布曲線と良く一致していることがわかる。その後、継続運転し一年経過後の実測温度とシミュレーションによって得られた温度分布曲線を図3に示す。図3のように一年経過後も実測温度はシミュレーションによって得られた温度分布曲線と良く一致していることが分かる。このように実測値とシミュレーションの結果がよい一致を示していることは式(1)と式(2)のモデルが適切であることを示している。このような温度解析情報を積極的に活用することにより予め計画した交換時期に達するまで触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮するように運転条件の最適化を行うことで、触媒を有効活用することができる。また、反応塔には上限の温度制限があるために、触媒活性と反応塔の温度制限を勘案して触媒劣化に伴う好適な温度分布曲線を予め設定することが可能となる。   The raw material gas containing air as ethylene, hydrogen chloride, and oxygen raw material is supplied in its entirety from the inlet of the reaction tube, and when the raw material gas passes through the catalyst layer, reaction heat corresponding to the raw material conversion amount is generated by the reaction. The reaction is carried out in such a way that unreacted raw materials and products flow out from the outlet while changing the temperature. The reaction rate of each section divided by 100 using the formula (1) and the formula (2) is obtained, the reaction heat is calculated from the reaction amount in the section, and the temperature of the catalyst layer is calculated. The temperature distribution of the 100 catalyst layers predicted in this way is as shown in FIG. It can be seen that the measured temperature shown in FIG. 2 is in good agreement with the temperature distribution curve obtained by simulation. Thereafter, the measured temperature after one year has elapsed and the temperature distribution curve obtained by simulation are shown in FIG. As shown in FIG. 3, it can be seen that the measured temperature is in good agreement with the temperature distribution curve obtained by simulation even after one year. Thus, the fact that the actual measurement value and the result of the simulation are in good agreement indicates that the models of the equations (1) and (2) are appropriate. By actively utilizing such temperature analysis information, the operating conditions of the catalyst are not reduced until the planned replacement time is reached, so that the catalyst activity does not decrease to the minimum necessary level and the maximum catalyst performance is exhibited. By optimizing, the catalyst can be used effectively. In addition, since the reaction tower has an upper limit temperature limit, it is possible to set in advance a suitable temperature distribution curve accompanying catalyst deterioration in consideration of the catalyst activity and the temperature limit of the reaction tower.

Claims (4)

エチレン、塩化水素および酸素を反応させて1,2−ジクロロエタンを製造する触媒を用いる化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量を基にL,Wの関数として下記(1)式に従い活性化エネルギーの変化量を算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析することを特徴とする触媒性能の経時変化解析方法。
ΔEa(L,W)=KW(1−L/L ) (1)
(ここで、ΔEa(L,W)は活性化エネルギーの変化量、Wは生成物の総量、L は反応管の長さ、Lは反応管入口からの位置、Kは触媒の劣化度合を示す定数、のそれぞれを示す。)
In a chemical reaction process using a catalyst for producing 1,2-dichloroethane by reacting ethylene, hydrogen chloride and oxygen, the following (1) as a function of L and W based on the total amount of the desired product within the catalyst use period: ) Calculating a change in activation energy according to the equation, and analyzing a change in the catalyst performance with time from the change in the activation energy.
ΔEa (L, W) = KW (1−L / L 0 ) (1)
(Where ΔEa (L, W) is the amount of change in activation energy, W is the total amount of product, L 0 is the length of the reaction tube, L is the position from the reaction tube inlet, and K is the degree of deterioration of the catalyst. Each of the constants shown.)
前記活性化エネルギーの変化量からL,Wの関数として下記(2)式に従い使用期間経過後の反応速度定数を算出し、初期の反応速度定数(k )と比較することにより触媒性能の経時変化を解析することを特徴とする請求項1に記載の触媒性能の経時変化解析方法。
k(L,W)=Aexp(−(Ea +ΔEa(L,W))/RT(L,W)) (2)
(ここで、k(L,W)は使用期間経過後の反応速度定数、Aは頻度因子、Ea は初期の活性化エネルギー、ΔEa(L,W)は活性化エネルギーの変化量、Rは気体定数、T(L,W)は触媒層温度を示す。)
The reaction rate constant after the period of use is calculated according to the following equation (2) as a function of L and W from the change amount of the activation energy, and compared with the initial reaction rate constant (k 0 ), the catalyst performance over time. 2. The change analysis method for catalyst performance with time according to claim 1, wherein the change is analyzed.
k (L, W) = Aexp (− (Ea 0 + ΔEa (L, W)) / RT (L, W)) (2)
(Where k (L, W) is the reaction rate constant after the period of use, A is the frequency factor, Ea 0 is the initial activation energy, ΔEa (L, W) is the amount of change in activation energy, and R is (The gas constant, T (L, W) indicates the catalyst layer temperature.)
エチレン、塩化水素および酸素を反応させて1,2−ジクロロエタンを製造する触媒を用いた化学反応プロセス用触媒性能の経時変化解析装置であって、目的とする生成物の総量を積算する手段、触媒使用時の触媒層温度を検出する手段、および触媒使用期間内の目的とする生成物の総量を基にL,Wの関数として下記(1)式に従い活性化エネルギーの変化量を算出する手段を備えることを特徴とする触媒を用いた化学反応プロセス用触媒性能の経時変化解析装置。A time-dependent change analysis device for the catalytic performance of a chemical reaction process using a catalyst for producing 1,2-dichloroethane by reacting ethylene, hydrogen chloride and oxygen, and means for integrating the total amount of the target product, catalyst Means for detecting the temperature of the catalyst layer at the time of use, and means for calculating the amount of change in activation energy according to the following equation (1) as a function of L and W based on the total amount of the target product within the catalyst use period A time-dependent change analysis device for catalyst performance for a chemical reaction process using a catalyst characterized by comprising:
ΔEa(L,W)=KW(1−L/LΔEa (L, W) = KW (1−L / L 0 ) (1)(1)
(ここで、ΔEa(L,W)は活性化エネルギーの変化量、Wは生成物の総量、L(Where ΔEa (L, W) is the amount of change in activation energy, W is the total amount of product, L 0 は反応管の長さ、Lは反応管入口からの位置、Kは触媒の劣化度合を示す定数、のそれぞれを示す。)Represents the length of the reaction tube, L represents the position from the reaction tube inlet, and K represents a constant indicating the degree of deterioration of the catalyst. )
さらに、前記活性化エネルギーの変化量からL,Wの関数として下記(2)式に従い使用期間経過後の反応速度定数を算出する手段をも備えることを特徴とする請求項3に記載の触媒性能の経時変化解析装置。The catalyst performance according to claim 3, further comprising means for calculating a reaction rate constant after elapse of a use period according to the following equation (2) as a function of L and W from a change amount of the activation energy. Time-lapse analysis device.
k(L,W)=Aexp(−(Eak (L, W) = Aexp (− (Ea 0 +ΔEa(L,W))/RT(L,W)) (2)+ ΔEa (L, W)) / RT (L, W)) (2)
(ここで、k(L,W)は使用期間経過後の反応速度定数、Aは頻度因子、Ea(Where k (L, W) is the reaction rate constant after the period of use, A is the frequency factor, Ea 0 は初期の活性化エネルギー、ΔEa(L,W)は活性化エネルギーの変化量、Rは気体定数、T(L,W)は触媒層温度を示す。)Is the initial activation energy, ΔEa (L, W) is the amount of change in activation energy, R is the gas constant, and T (L, W) is the catalyst layer temperature. )
JP2014090589A 2014-04-24 2014-04-24 Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time Active JP6340895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014090589A JP6340895B2 (en) 2014-04-24 2014-04-24 Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014090589A JP6340895B2 (en) 2014-04-24 2014-04-24 Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time

Publications (2)

Publication Number Publication Date
JP2015208702A JP2015208702A (en) 2015-11-24
JP6340895B2 true JP6340895B2 (en) 2018-06-13

Family

ID=54611376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014090589A Active JP6340895B2 (en) 2014-04-24 2014-04-24 Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time

Country Status (1)

Country Link
JP (1) JP6340895B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110941A (en) * 1979-02-20 1980-08-27 Showa Electric Wire & Cable Co Ltd Method of monitoring deterioration of catalist in baking machine
JPH0784606A (en) * 1993-09-09 1995-03-31 Idemitsu Kosan Co Ltd Method and device for optimizing control of multistage adiabatic reactor
JP3669573B2 (en) * 2001-06-14 2005-07-06 住友化学株式会社 Life prediction method and life prediction program for fixed bed catalyst
JP2003058206A (en) * 2001-08-10 2003-02-28 Kanegafuchi Chem Ind Co Ltd Catalyst utilization supporting method and system therefor
JP2007023000A (en) * 2005-07-21 2007-02-01 Mitsubishi Chemicals Corp Method of controlling acetylene hydrogenator
JP4816164B2 (en) * 2006-03-13 2011-11-16 トヨタ自動車株式会社 Exhaust gas estimation device
CN102414187B (en) * 2009-04-21 2016-06-01 陶氏技术投资有限公司 The method adopting catalyst aging with it and to prepare alkylene oxide

Also Published As

Publication number Publication date
JP2015208702A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
US9746434B2 (en) Method and system for determining flow distribution through a component
JP6572570B2 (en) Catalyst life prediction method and catalyst life analyzer
TWI391676B (en) Method and apparatus of dynamic cut-off frequency varying filter
JP2011099666A5 (en)
US20110166367A1 (en) Reactor temperature control using probability distribution
JP6565237B2 (en) Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time
JP6340895B2 (en) Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time
JP2008309498A5 (en)
JP6492814B2 (en) Catalytic reaction production system with catalyst life analyzer
JP6421442B2 (en) Catalyst life prediction method and catalyst life analysis apparatus
JP6421443B2 (en) Catalytic reaction production system with catalyst life analyzer
US20110120301A1 (en) Method of measuring information for adsorption isostere creation, adsorption isostere creation method, adsorption heat calculation method, computer program, and measurement system
JP3669573B2 (en) Life prediction method and life prediction program for fixed bed catalyst
JP5223154B2 (en) Temperature control method, temperature control device, and temperature control program
CN1846205A (en) Method and device for a thermoanalytical material analysis
JP4932668B2 (en) Parameter calculation apparatus, parameter calculation method, and parameter calculation program
TWI810634B (en) Corrosion monitoring apparatus, method, and computer program product thereof
Birtill et al. Application of Parallel Difference Tests to Resolve the Axial Activation–Deactivation Profile of Copper–Zinc Oxide Catalyst During Hydrogenation of Methyl Acetate
JP2014142334A (en) Fluid analysis method and fluid analysis device
Padilla et al. Evaluating the Potential of an In Situ Combustion Process Using the Isoconversional Principle
US20240210917A1 (en) Method and system for optimizing an alkane dehydrogenation operation
JP2024514571A (en) Modifier and catalyst performance optimization for ethylene epoxidation.
JP2018162410A (en) Intrinsic viscosity estimation apparatus, intrinsic viscosity estimation method and intrinsic viscosity estimation program in polymerization step of ultrahigh molecular weight ethylene polymer, polymer system of ultrahigh molecular weight ethylene polymer using intrinsic viscosity estimation apparatus, and polymerization method using the same
TW202309499A (en) Corrosion rate prediction apparatus, method, and computer program product thereof
JP2023152114A (en) Control method for methane synthesis equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R151 Written notification of patent or utility model registration

Ref document number: 6340895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151