JP6332681B2 - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
JP6332681B2
JP6332681B2 JP2014136148A JP2014136148A JP6332681B2 JP 6332681 B2 JP6332681 B2 JP 6332681B2 JP 2014136148 A JP2014136148 A JP 2014136148A JP 2014136148 A JP2014136148 A JP 2014136148A JP 6332681 B2 JP6332681 B2 JP 6332681B2
Authority
JP
Japan
Prior art keywords
carbon nanotubes
carbon nanotube
ferric chloride
chloride
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014136148A
Other languages
Japanese (ja)
Other versions
JP2016013944A (en
Inventor
淑英 文
淑英 文
小笠原 俊夫
俊夫 小笠原
翼 井上
翼 井上
太宇人 中西
太宇人 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
JNC Corp
Original Assignee
Shizuoka University NUC
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, JNC Corp filed Critical Shizuoka University NUC
Priority to JP2014136148A priority Critical patent/JP6332681B2/en
Priority to PCT/JP2015/068682 priority patent/WO2016002716A1/en
Publication of JP2016013944A publication Critical patent/JP2016013944A/en
Application granted granted Critical
Publication of JP6332681B2 publication Critical patent/JP6332681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Description

本発明は、カーボンナノチューブの製造方法に係り、特に、基板上に垂直配向した多数のカーボンナノチューブを生成するカーボンナノチューブの製造方法に関する。   The present invention relates to a method of manufacturing a carbon nanotube, and more particularly to a method of manufacturing a carbon nanotube that generates a large number of carbon nanotubes vertically aligned on a substrate.

カーボンナノチューブは、機械的強度が高い、軽い、電気伝導特性が良い、熱特性が良い、電界電子放出特性が良い等の特性を有することから、走査プローブ顕微鏡(SPM)の探針、電界放出ディスプレイ(FED)、の冷陰極、導電性樹脂、高強度樹脂、耐腐食性樹脂、耐摩耗性樹脂、高度潤滑性樹脂、二次電池や燃料電池の電極、LSIの層間配線材料、バイオセンサーなど、様々な技術への応用が注目されている。
特に、超軽量性高性能カーボンナノチューブ・樹脂複合材(CNTRP)は将来の輸送システムを始めとする構造材料全てにおいて炭素繊維強化複合材(CFRP)に代わる次世代構造用材料として期待されている。
Since carbon nanotubes have characteristics such as high mechanical strength, lightness, good electrical conductivity, good thermal characteristics, and good field electron emission characteristics, scanning probe microscope (SPM) probes and field emission displays (FED), cold cathode, conductive resin, high-strength resin, corrosion-resistant resin, wear-resistant resin, highly lubricating resin, secondary battery and fuel cell electrodes, LSI interlayer wiring materials, biosensors, etc. Applications to various technologies are attracting attention.
In particular, ultra-lightweight high-performance carbon nanotube / resin composite (CNTRP) is expected as a next-generation structural material to replace carbon fiber reinforced composite (CFRP) in all structural materials including future transportation systems.

従来のカーボンナノチューブ・樹脂複合材料は粉末状のカーボンナノチューブを樹脂内に分散する方法で作られてきたが、この方法ではカーボンナノチューブの配向性が一様ではなく、炭素繊維強化複合材に匹敵するような力学特性の大幅向上はない。
カーボンナノチューブの優れた特性を生かすためには一方向配向性のカーボンナノチューブシートを製造して複合材を制作する必要がある。
しかしながら、一方向配向カーボンナノチューブシートの製造技術はまだ世界でも低い達成率を示す技術であり、カーボンナノチューブ合成条件とシート状に成形するためのカーボンナノチューブの紡績性との相関関係等はまだ明確化していない。
Conventional carbon nanotube / resin composite materials have been made by a method in which powdered carbon nanotubes are dispersed in the resin, but this method does not provide uniform orientation of the carbon nanotubes, which is comparable to carbon fiber reinforced composite materials. There is no significant improvement in mechanical properties.
In order to take advantage of the excellent properties of carbon nanotubes, it is necessary to produce a unidirectionally oriented carbon nanotube sheet to produce a composite material.
However, the technology for producing unidirectionally oriented carbon nanotube sheets is still a technology that has a low achievement rate in the world, and the correlation between the synthesis conditions of carbon nanotubes and the spinnability of carbon nanotubes for forming into sheets is still clarified. Not.

特開2009−196873号公報JP 2009-196873 A

特許文献1に示すように、塩化第1鉄を触媒として利用して垂直配向した多数のカーボンナノチューブを生成する方法が知られている。
このような垂直配向した多数のカーボンナノチューブから一方向配向カーボンナノチューブシートの製造をすることが考えられる。
その際には、カーボンナノチューブの直径、長さ、結晶性、密度、形態等が一方向配向カーボンナノチューブシートに加工するための紡績性に影響するが、その紡績性を制御し、向上する技術は知られていない。
As shown in Patent Document 1, there is known a method of generating a large number of vertically aligned carbon nanotubes using ferrous chloride as a catalyst.
It is conceivable to produce a unidirectionally oriented carbon nanotube sheet from such a number of vertically aligned carbon nanotubes.
In that case, the diameter, length, crystallinity, density, shape, etc. of the carbon nanotubes affect the spinnability for processing into a unidirectionally oriented carbon nanotube sheet, but the technology to control and improve the spinnability is unknown.

そこで、本発明は、製造条件を容易に変更可能であり、様々な用途に最適な直径、長さ、結晶性、密度、形態のカーボンナノチューブを容易に得ることができるとともに、一方向配向カーボンナノチューブシートに加工するための紡績性を向上可能なカーボンナノチューブの製造方法を提供することを目的とする。   Therefore, the present invention can easily change the manufacturing conditions, and can easily obtain carbon nanotubes having the optimum diameter, length, crystallinity, density, and shape for various applications, and unidirectionally oriented carbon nanotubes. It aims at providing the manufacturing method of the carbon nanotube which can improve the spinnability for processing into a sheet | seat.

本発明に係るカーボンナノチューブの製造方法は、塩化鉄を触媒として化学気相成長法により基板上に垂直配向した多数のカーボンナノチューブを生成するカーボンナノチューブの製造方法であって、前記触媒が、塩化第1鉄及び塩化第2鉄の混合物であり、前記塩化第1鉄及び塩化第2鉄の混合比率を制御することにより、基板上に蒸着される触媒のサイズや密度を制御することにより、前記課題を解決するものである。   A carbon nanotube production method according to the present invention is a carbon nanotube production method for producing a large number of carbon nanotubes vertically aligned on a substrate by chemical vapor deposition using iron chloride as a catalyst, wherein the catalyst comprises a chloride chloride. By controlling the size and density of the catalyst deposited on the substrate by controlling the mixing ratio of the ferrous chloride and ferric chloride, which is a mixture of ferrous chloride and ferric chloride Is a solution.

また、本発明に係るカーボンナノチューブシートの製造方法は、カーボンナノチューブが一方向に配向されたカーボンナノチューブシートの製造方法であって、塩化第1鉄及び塩化第2鉄の混合物を触媒として化学気相成長法により基板上に垂直配向した多数のカーボンナノチューブを生成し、前記生成された多数のカーボンナノチューブを、端部から一方向に引いてシート状に成形することにより、前記課題を解決するものである。   The method of manufacturing a carbon nanotube sheet according to the present invention is a method of manufacturing a carbon nanotube sheet in which carbon nanotubes are oriented in one direction, and a chemical vapor phase using a mixture of ferrous chloride and ferric chloride as a catalyst. A large number of carbon nanotubes vertically aligned on a substrate are generated by a growth method, and the generated many carbon nanotubes are drawn in one direction from an end to be formed into a sheet shape, thereby solving the above-mentioned problem. is there.

本請求項1に係るカーボンナノチューブの製造方法によれば、塩化第1鉄及び塩化第2鉄の混合比率を重量で塩化第2鉄が30%乃至80%の範囲で制御することにより、基板上に蒸着される触媒のサイズや密度を制御することにより、基板上に垂直配向して生成される多数のカーボンナノチューブの直径、長さ、結晶性、密度、形態等を制御することができるため、塩化第1鉄及び塩化第2鉄の混合比率を変更するという簡単な制御で、様々な用途に最適なカーボンナノチューブを生成することが可能となる。 According to the carbon nanotube manufacturing method of the first aspect of the present invention, the mixing ratio of ferrous chloride and ferric chloride is controlled in the range of 30% to 80% by weight of ferric chloride. By controlling the size and density of the catalyst deposited on the substrate, it is possible to control the diameter, length, crystallinity, density, morphology, etc. of a large number of carbon nanotubes that are vertically aligned on the substrate. With simple control of changing the mixing ratio of ferrous chloride and ferric chloride, it becomes possible to generate carbon nanotubes that are optimal for various applications.

化第2鉄が30%未満の場合は、結晶性が低く多数のカーボンナノチューブが波打ち状となり絡まって生成されてしまい、また、塩化第2鉄が80%を超える場合は、多数のカーボンナノチューブの直径が大きくなり、密度が高くかつ不均一に生成されてしまい、いずれも利用性、加工性の低いものとなる。
本請求項2に記載の構成によれば、混合比率の制御によって、カーボンナノチューブの直径あるいは長さを制御することによって、本請求項3に記載の構成によれば、混合比率の制御によって、カーボンナノチューブの結晶性を制御することによって、また、本請求項4に記載の構成によれば、混合比率の制御によって、カーボンナノチューブの密度あるいは形態を制御することによって、それぞれ、様々な用途に応じた最適なカーボンナノチューブを生成することが可能となる。
If salts of ferric is less than 30% crystallinity will be generated tangled becomes like waving a large number of carbon nanotubes low, and if ferric chloride is more than 80%, a large number of carbon nanotubes As a result, the diameter becomes large, the density is high, and it is generated non-uniformly.
According to the configuration described in claim 2, the control of the mixing ratio, by controlling the diameter or length of carbon nanotubes, according to the configuration described in claim 3, the control of the mixing ratio, the carbon By controlling the crystallinity of the nanotubes, and according to the configuration of the present invention, the density or the shape of the carbon nanotubes can be controlled by controlling the mixing ratio, and according to various applications. It becomes possible to produce an optimal carbon nanotube.

本請求項5に係るカーボンナノチューブシートの製造方法によれば、重量で塩化第2鉄を30%乃至80%の範囲とした塩化第1鉄及び塩化第2鉄の混合物を触媒として化学気相成長法により基板上に垂直配向した多数のカーボンナノチューブを生成することにより、紡績性に優れたカーボンナノチューブを得ることができ、生成された多数のカーボンナノチューブを、端部から一方向に引いてシート状に成形することにより、カーボンナノチューブ・樹脂複合材料とした際に極めて高い強度を有する一方向配向性のカーボンナノチューブシートを得ることが可能となる According to the method of manufacturing a carbon nanotube sheet according to claim 5 , chemical vapor deposition is performed using a mixture of ferrous chloride and ferric chloride with a ferric chloride content in the range of 30% to 80% by weight as a catalyst. By producing a large number of carbon nanotubes that are vertically aligned on the substrate by the method, it is possible to obtain carbon nanotubes that are excellent in spinnability. By forming into a carbon nanotube / resin composite material, a unidirectionally oriented carbon nanotube sheet having extremely high strength can be obtained .

塩化第1鉄及び塩化第2鉄の混合比率(重量比)とカーボンナノチューブの結晶化率の関係のグラフ。The graph of the relationship between the mixing ratio (weight ratio) of ferrous chloride and ferric chloride, and the crystallization rate of a carbon nanotube. 塩化第1鉄及び塩化第2鉄の混合比率(重量比)とカーボンナノチューブの長さ及び直径の関係のグラフ。The graph of the relationship between the mixing ratio (weight ratio) of ferrous chloride and ferric chloride and the length and diameter of carbon nanotubes. 塩化第1鉄及び塩化第2鉄の混合比率(重量比)と生成されたカーボンナノチューブの参考写真。A reference photograph of the mixing ratio (weight ratio) of ferrous chloride and ferric chloride and the generated carbon nanotubes. カーボンナノチューブの真直性と生成されるカーボンナノチューブシートの関係の参考図。The reference figure of the relationship between the straightness of a carbon nanotube and the carbon nanotube sheet produced | generated. カーボンナノチューブの密度と生成されるカーボンナノチューブシートの関係の参考図。The reference figure of the relationship between the density of a carbon nanotube, and the carbon nanotube sheet produced | generated.

まず、本発明の原理について説明する。
前述した公知のカーボンナノチューブの製造方法では、具体的には触媒として塩化第1鉄(FeCl)が使用されているもののみ開示されており、塩化第2鉄(FeCl)を使用してもよい旨が明細書中にのみ示唆されている。
また、塩化第1鉄と塩化第2鉄を混合して使用することについては記載も示唆も一切ない。
発明者は、塩化第1鉄と塩化第2鉄を所定の比率で混合した場合に生成されるカーボンナノチューブについて、直径、長さ、結晶性、密度、形態等が変化する可能性について着想し、所定の条件を設定して検証した。
First, the principle of the present invention will be described.
In the known carbon nanotube production method described above, only those using ferrous chloride (FeCl 2 ) as a catalyst are disclosed, and even if ferric chloride (FeCl 3 ) is used. Goodness is only suggested in the description.
Further, there is no description or suggestion about using a mixture of ferrous chloride and ferric chloride.
The inventor has conceived the possibility that the diameter, length, crystallinity, density, form, etc. of the carbon nanotubes produced when ferrous chloride and ferric chloride are mixed at a predetermined ratio, A predetermined condition was set and verified.

生成されるカーボンナノチューブの真直性に影響する結晶性については、ラマン分光法測定により評価することができる。
より具体的には、カーボンナノチューブのラマンスペクトルにおいて、1350cm−1付近に現れるピークをD−band、1600cm−1付近に現れるピークをG−bandと呼び、D−bandに対するG−bandのピーク強度比(G/D比)を用いて、結晶性の評価ができる。すなわち、G/D比が高いものほど、結晶性が良いことを意味する。
図1に示すように、塩化第2鉄が増加すると、生成されるカーボンナノチューブ結晶性も向上する傾向にあることがわかった。
生成されるカーボンナノチューブの長さ及び直径については、図2に示すように、塩化第2鉄が0%すなわち塩化第1鉄のみの場合に最大値となり、塩化第2鉄が30%の時に最小値となる傾向があることがわかった。
また、生成されるカーボンナノチューブの長さについては、塩化第2鉄が50%の時に極大となり、70%、100%と漸減し、生成されるカーボンナノチューブの直径については、塩化第2鉄が増加するに従って漸増する傾向にあることがわかった。
The crystallinity that affects the straightness of the produced carbon nanotubes can be evaluated by Raman spectroscopy measurement.
More specifically, in the Raman spectrum of the carbon nanotube, 1350 cm -1 peak appearing in the vicinity of D-band, referred to as G-band peak appearing in the vicinity of 1600 cm -1, the peak intensity ratio of G-band for D-band Crystallinity can be evaluated using (G / D ratio). That is, the higher the G / D ratio, the better the crystallinity.
As shown in FIG. 1, it was found that as ferric chloride increases, the crystallinity of the produced carbon nanotubes tends to improve.
As shown in FIG. 2, the length and diameter of the produced carbon nanotubes are maximum when ferric chloride is 0%, that is, only ferrous chloride, and are minimum when ferric chloride is 30%. It turns out that there is a tendency to become a value.
In addition, the length of the produced carbon nanotubes is maximized when ferric chloride is 50%, and gradually decreases to 70% and 100%. The diameter of the produced carbon nanotubes is increased by ferric chloride. It turned out that there was a tendency to increase gradually as it did.

生成されたカーボンナノチューブの走査型電子顕微鏡による写真を、図3に示す。
塩化第2鉄が0%の場合、真直性が極めて低く、多数のカーボンナノチューブが絡み合ったような状態で生成されている。
塩化第2鉄が30%の場合、真直性はやや増している。
塩化第2鉄が50%及び70%の場合、真直性は充分であり、また、多数のカーボンナノチューブの直径も適度に細く、均等な密度で生成している。
塩化第2鉄が100%の場合、真直性は充分であるものの、多数のカーボンナノチューブの直径が太く、それぞれが干渉しあって密度が非常にばらついている。
A photograph taken by a scanning electron microscope of the produced carbon nanotube is shown in FIG.
When ferric chloride is 0%, the straightness is extremely low, and it is generated in a state where many carbon nanotubes are intertwined.
When ferric chloride is 30%, straightness is slightly increased.
When ferric chloride is 50% and 70%, the straightness is sufficient, and the diameters of a large number of carbon nanotubes are also reasonably thin, and are produced with a uniform density.
When ferric chloride is 100%, the straightness is sufficient, but the diameter of many carbon nanotubes is large, and the density of the carbon nanotubes varies greatly due to interference.

これらの結果は、塩化鉄を触媒として化学気相成長法により基板上に垂直配向した多数のカーボンナノチューブを生成する際に、塩化第1鉄及び塩化第2鉄の混合比率に応じて、基板上に蒸着される触媒のサイズや密度が変化することにより、カーボンナノチューブの生成過程が変化して生じるものである。
すなわち、基板の後側に塩化第1鉄及び塩化第2鉄を混合して熱化学蒸着(CVD)装置に入れ、減圧でカーボンナノチューブの生成を行うに際し、熱処理中に触媒が蒸発し基板上に蒸着するが、その際に制御した比率で混合された二つの触媒が化学反応により、基板上に相違な状態で蒸着される。
その結果、塩化第1鉄及び塩化第2鉄の混合比率に応じて、生成されるカーボンナノチューブの、直径、長さ、結晶性、密度、形態等を変化させることができる。
These results show that when a large number of carbon nanotubes vertically aligned on a substrate are produced by chemical vapor deposition using iron chloride as a catalyst, the carbon dioxide is deposited on the substrate according to the mixing ratio of ferrous chloride and ferric chloride. As a result of changes in the size and density of the catalyst deposited on the substrate, the carbon nanotube production process changes.
That is, ferrous chloride and ferric chloride are mixed on the back side of the substrate and placed in a thermal chemical vapor deposition (CVD) apparatus. When carbon nanotubes are generated under reduced pressure, the catalyst evaporates during the heat treatment and is deposited on the substrate. The two catalysts mixed at a controlled ratio are deposited in different states on the substrate by chemical reaction.
As a result, the diameter, length, crystallinity, density, form, etc. of the produced carbon nanotubes can be changed according to the mixing ratio of ferrous chloride and ferric chloride.

そこで本発明は、塩化第1鉄及び塩化第2鉄の混合比率を重量で塩化第2鉄が30%乃至80%の範囲で制御することにより、基板上に蒸着される触媒のサイズや密度を制御し、基板上に垂直配向して生成される多数のカーボンナノチューブの直径、長さ、結晶性、密度、形態等を制御することによって、塩化第1鉄及び塩化第2鉄の混合比率を変更するという簡単な制御で、様々な用途に最適なカーボンナノチューブを生成することを可能とするものである。
具体的には、前述した公知例の化学気相成長法によるカーボンナノチューブの製造方法等と同様のステップを採用し、必要とする形態のカーボンナノチューブに応じ、所定の混合比率の塩化第1鉄及び塩化第2鉄の混合物を、反応管内に触媒として載置するものである。
Therefore, the present invention controls the size and density of the catalyst deposited on the substrate by controlling the mixing ratio of ferrous chloride and ferric chloride in the range of 30% to 80% of ferric chloride by weight. Change the mixing ratio of ferrous chloride and ferric chloride by controlling the diameter, length, crystallinity, density, morphology, etc. of many carbon nanotubes that are controlled and vertically aligned on the substrate With this simple control, it is possible to generate carbon nanotubes that are optimal for various applications.
Specifically, the same steps as the carbon nanotube production method by the chemical vapor deposition method of the known example described above are adopted, and ferrous chloride having a predetermined mixing ratio according to the required form of carbon nanotubes and A mixture of ferric chloride is placed in the reaction tube as a catalyst.

カーボンナノチューブ・樹脂複合材料に用いるカーボンナノチューブシートは、前述のように垂直配向した多数のカーボンナノチューブを生成した基板(以下、「カーボンナノチューブアレイ」という。)の端部からカーボンナノチューブを引くことによりシート状に成形される。
すなわち、個々のカーボンナノチューブが連続的に引き出されて繊維状に連なり、引き出された方向に配向し、カーボンナノチューブアレイの幅に相当するカーボンナノチューブシートが得られる。
The carbon nanotube sheet used for the carbon nanotube / resin composite material is a sheet formed by pulling carbon nanotubes from the end of a substrate (hereinafter referred to as “carbon nanotube array”) on which a large number of vertically aligned carbon nanotubes are generated as described above. It is formed into a shape.
That is, individual carbon nanotubes are continuously drawn out and connected in a fiber shape, and oriented in the drawn direction, thereby obtaining a carbon nanotube sheet corresponding to the width of the carbon nanotube array.

この時、カーボンナノチューブの直径、長さ、結晶性、密度、形態等が、シート状とするための加工性(紡績性)に大きく影響する。
例えば、図4aに示すように、カーボンナノチューブアレイに個々のカーボンナノチューブが均等に最適な形状で生成している場合、端部のカーボンナノチューブを引き出すことで、順次隣のカーボンナノチューブが連続的に引き出されて均一な繊維状に連なり、一方向に配向したカーボンナノチューブシートが得られる。
At this time, the diameter, length, crystallinity, density, form, and the like of the carbon nanotube greatly affect the workability (spinnability) for forming a sheet.
For example, as shown in FIG. 4a, when individual carbon nanotubes are uniformly formed in the carbon nanotube array in an optimal shape, the adjacent carbon nanotubes are successively drawn out by sequentially pulling out the carbon nanotubes at the ends. Thus, a carbon nanotube sheet is obtained which is continuous in a uniform fiber shape and oriented in one direction.

一方、図4bに示すように、生成したカーボンナノチューブが波打ちし、絡まっているような場合、端部のカーボンナノチューブを引き出した際に、隣のカーボンナノチューブが同時に引き出されたり、全く引き出されなかったりする。
このことで、非常に不均一なカーボンナノチューブシートしか得られず、カーボンナノチューブ・樹脂複合材料に用いた際に、その強度や均一性を充分に得ることが困難である。
この、カーボンナノチューブの波打ちに関しては、カーボンナノチューブアレイを製造する際に、触媒の塩化第2鉄の混合比率を30%以上とすることで、実用的なカーボンナノチューブシートを得るのに支障がないものとすることができる。
On the other hand, as shown in FIG. 4b, when the generated carbon nanotubes are wavy and entangled, when the end carbon nanotubes are pulled out, the adjacent carbon nanotubes are pulled out at the same time, or not pulled out at all. To do.
Thus, only a very non-uniform carbon nanotube sheet can be obtained, and it is difficult to obtain sufficient strength and uniformity when used in a carbon nanotube / resin composite material.
Regarding the waving of the carbon nanotubes, there is no problem in obtaining a practical carbon nanotube sheet by making the mixing ratio of ferric chloride of the catalyst 30% or more when the carbon nanotube array is manufactured. It can be.

また、カーボンナノチューブシートに加工する上で、カーボンナノチューブアレイ上の多数のカーボンナノチューブの密度や均一性も重要な要素となる。
例えば、カーボンナノチューブアレイ上の多数のカーボンナノチューブの密度が高い場合、図5aに示すように、端部のカーボンナノチューブを引き出すことで、順次隣のカーボンナノチューブが連続的に引き出されるが、複数のカーボンナノチューブが同時に引き出されたり、カーボンナノチューブアレイの幅方向でも隣接するカーボンナノチューブが束になったりし、密度が均一でないカーボンナノチューブシートとなる。
In addition, when processing into a carbon nanotube sheet, the density and uniformity of a large number of carbon nanotubes on the carbon nanotube array are also important factors.
For example, when the density of a large number of carbon nanotubes on the carbon nanotube array is high, as shown in FIG. 5a, by pulling out the carbon nanotubes at the ends, the adjacent carbon nanotubes are successively pulled out. The nanotubes are pulled out at the same time, or adjacent carbon nanotubes are bundled even in the width direction of the carbon nanotube array, resulting in a carbon nanotube sheet having a non-uniform density.

カーボンナノチューブアレイに個々のカーボンナノチューブが均等に最適な密度で生成している場合、図5bに示すように、端部のカーボンナノチューブを引き出すことで、順次隣のカーボンナノチューブが連続的に引き出されて繊維状に連なり、カーボンナノチューブアレイの幅方向にも均等で、一方向に配向した均一な密度のカーボンナノチューブシートが得られる。
また、カーボンナノチューブアレイ上の多数のカーボンナノチューブの密度が低い場合、図5cに示すように、隣接するカーボンナノチューブが連なることができず途中で分断し、カーボンナノチューブシートを得ることが困難となる。
この、カーボンナノチューブの密度や均一性に関しては、カーボンナノチューブアレイを製造する際に、触媒の塩化第2鉄の混合比率を80%以下とすることで、実用的なカーボンナノチューブシートを得るのに支障がない密度とすることができる。
When individual carbon nanotubes are uniformly formed in the carbon nanotube array at an optimum density, as shown in FIG. 5b, by pulling out the carbon nanotubes at the ends, the adjacent carbon nanotubes are successively drawn out sequentially. A carbon nanotube sheet having a uniform density which is continuous in a fiber shape and is uniform in the width direction of the carbon nanotube array and oriented in one direction can be obtained.
In addition, when the density of a large number of carbon nanotubes on the carbon nanotube array is low, as shown in FIG. 5c, adjacent carbon nanotubes cannot be connected and are divided in the middle, making it difficult to obtain a carbon nanotube sheet.
Regarding the density and uniformity of the carbon nanotubes, it is difficult to obtain a practical carbon nanotube sheet by making the mixing ratio of ferric chloride of the catalyst 80% or less when manufacturing the carbon nanotube array. There can be no density.

以上のように、本発明によれば、塩化第1鉄及び塩化第2鉄の混合比率を変更するという簡単な制御で、様々な用途に最適なカーボンナノチューブを生成することが可能となるとともに、カーボンナノチューブ・樹脂複合材料とした際に極めて高い強度を有する一方向配向性のカーボンナノチューブシートを得ることが可能となる。
なお、生成されたカーボンナノチューブは、カーボンナノチューブ・樹脂複合材料以外の用途に応用するものであってもよく、その際には、塩化第1鉄及び塩化第2鉄の混合比率を制御することによって、用途に応じた最適な直径、長さ、結晶性、密度、形態等のカーボンナノチューブを生成することができる。
また、化学気相成長法は公知のものでよく、塩化第1鉄及び塩化第2鉄の混合物を触媒として用いれば、他の条件等は適宜設定すればよい。
As described above, according to the present invention, it is possible to generate carbon nanotubes that are optimal for various applications by simple control of changing the mixing ratio of ferrous chloride and ferric chloride, When the carbon nanotube / resin composite material is used, a unidirectionally oriented carbon nanotube sheet having extremely high strength can be obtained.
The produced carbon nanotubes may be applied to uses other than the carbon nanotube / resin composite material. In that case, by controlling the mixing ratio of ferrous chloride and ferric chloride. Carbon nanotubes having the optimum diameter, length, crystallinity, density, shape, etc. according to the application can be produced.
The chemical vapor deposition method may be a known one, and other conditions may be set as appropriate if a mixture of ferrous chloride and ferric chloride is used as a catalyst.

Claims (5)

塩化鉄を触媒として化学気相成長法により基板上に垂直配向した多数のカーボンナノチューブを生成するカーボンナノチューブの製造方法であって、
前記触媒が、塩化第1鉄及び塩化第2鉄の混合物であり、
前記混合物の混合比率を、重量で塩化第2鉄が30%乃至80%の範囲とし、
前記塩化第1鉄及び塩化第2鉄の混合比率を制御することにより、基板上に蒸着される触媒のサイズや密度を制御することを特徴とするカーボンナノチューブの製造方法。
A method for producing carbon nanotubes, which generates a large number of carbon nanotubes vertically aligned on a substrate by chemical vapor deposition using iron chloride as a catalyst,
The catalyst is a mixture of ferrous chloride and ferric chloride;
The mixing ratio of the mixture is 30% to 80% ferric chloride by weight,
A method for producing a carbon nanotube, comprising controlling a size and density of a catalyst deposited on a substrate by controlling a mixing ratio of ferrous chloride and ferric chloride.
前記混合比率の制御によって、カーボンナノチューブの直径あるいは長さを制御することを特徴とする請求項1に記載のカーボンナノチューブの製造方法。 The method of manufacturing a carbon nanotube according to claim 1 , wherein the diameter or length of the carbon nanotube is controlled by controlling the mixing ratio. 前記混合比率の制御によって、カーボンナノチューブの結晶性を制御することを特徴とする請求項1に記載のカーボンナノチューブの製造方法。 The method for producing carbon nanotubes according to claim 1 , wherein the crystallinity of the carbon nanotubes is controlled by controlling the mixing ratio. 前記混合比率の制御によって、カーボンナノチューブの密度あるいは形態を制御することを特徴とする請求項1に記載のカーボンナノチューブの製造方法。 The method for producing carbon nanotubes according to claim 1 , wherein the density or form of the carbon nanotubes is controlled by controlling the mixing ratio. カーボンナノチューブが一方向に配向されたカーボンナノチューブ繊維の製造方法であって、
塩化第1鉄及び塩化第2鉄の混合物を触媒として化学気相成長法により基板上に垂直配向した多数のカーボンナノチューブを生成し、
前記塩化第1鉄及び塩化第2鉄の混合物の混合比率を、重量で塩化第2鉄を30%乃至80%の範囲とし、
前記生成された多数のカーボンナノチューブを、端部から一方向に引いてシート状に成形することを特徴とするカーボンナノチューブシートの製造方法。
A method for producing a carbon nanotube fiber in which carbon nanotubes are oriented in one direction,
Using a mixture of ferrous chloride and ferric chloride as a catalyst, a large number of carbon nanotubes vertically aligned on the substrate are produced by chemical vapor deposition,
The mixing ratio of the ferrous chloride and ferric chloride mixture is 30% to 80% ferric chloride by weight,
A method for producing a carbon nanotube sheet, wherein the generated many carbon nanotubes are drawn from one end in one direction to be formed into a sheet shape.
JP2014136148A 2014-07-01 2014-07-01 Method for producing carbon nanotube Expired - Fee Related JP6332681B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014136148A JP6332681B2 (en) 2014-07-01 2014-07-01 Method for producing carbon nanotube
PCT/JP2015/068682 WO2016002716A1 (en) 2014-07-01 2015-06-29 Method for manufacturing carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014136148A JP6332681B2 (en) 2014-07-01 2014-07-01 Method for producing carbon nanotube

Publications (2)

Publication Number Publication Date
JP2016013944A JP2016013944A (en) 2016-01-28
JP6332681B2 true JP6332681B2 (en) 2018-05-30

Family

ID=55019248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014136148A Expired - Fee Related JP6332681B2 (en) 2014-07-01 2014-07-01 Method for producing carbon nanotube

Country Status (2)

Country Link
JP (1) JP6332681B2 (en)
WO (1) WO2016002716A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050207964A1 (en) * 2004-03-22 2005-09-22 Dojin Kim Method for synthesizing carbon nanotubes
JP2008296338A (en) * 2007-05-31 2008-12-11 National Univ Corp Shizuoka Univ Covered structure
CN101372614B (en) * 2007-08-24 2011-06-08 清华大学 Carbon nano-tube array composite heat-conducting fin and manufacturing method thereof
EP2708506A4 (en) * 2011-05-10 2014-11-26 Univ Shizuoka Nat Univ Corp Method and apparatus for producing carbon nanotubes

Also Published As

Publication number Publication date
JP2016013944A (en) 2016-01-28
WO2016002716A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
US7097906B2 (en) Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon
Kuznetsov et al. In situ and ex situ time resolved study of multi‐component Fe Co oxide catalyst activation during MWNT synthesis
Zheng et al. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst
Lee et al. Synthesis of high-quality carbon nanotube fibers by controlling the effects of sulfur on the catalyst agglomeration during the direct spinning process
JP6153274B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
KR101638947B1 (en) Method for producing carbon nanotube array, spinning source member, and structure provided with carbon nanotubes
JP2008296338A (en) Covered structure
Manukyan et al. Nickel nanoparticles in carbon structures prepared by solid-phase pyrolysis of nickel-phthalocyanine
Ghaemi et al. Few-and multi-layer graphene on carbon fibers: synthesis and application
WO2015030145A1 (en) Production device for carbon nanotubes and supply unit to become one part of said production device, and production method for carbon nanotubes
Jiao et al. Efficient Fabrication of High-Quality Single-Walled Carbon Nanotubes and Their Macroscopic Conductive Fibers
Das et al. Carbon nanotubes synthesis
Li et al. Enhancement of conductivity in nano carbon balls by the addition of carbon tetrachloride via room temperature solution plasma process
JP6332681B2 (en) Method for producing carbon nanotube
Severino et al. Progression of alignment in stretched CNT sheets determined by wide angle X-ray scattering
Cantoro et al. Wet catalyst assisted growth of carbon nanofibers on complex three-dimensional substrates
JP6600891B2 (en) Method for producing spinning source member comprising carbon nanotube forest
JP6675610B2 (en) Open substrate
JP6699517B2 (en) Spinning source member, web-shaped structure, method for manufacturing spinning source member, and method for manufacturing web-shaped structure
Eum et al. Effect of gas phase composition cycling on/off modulation numbers of C2H2/SF6 flows on the formation of geometrically controlled carbon coils
Lugod et al. Effect of magnetic field on the synthesis of carbon nanotubes using MPECVD
JPWO2016117197A1 (en) CNT forest, method for producing CNT forest, spinning source member, structure, and method for producing structure
Sengupta et al. Carbon nanotube synthesis from propane decomposition on a pre-treated Ni overlayer
Cardoso et al. Control of the length and density of carbon nanotubes grown on carbon fiber for composites reinforcement
JP2005281110A (en) Method and apparatus for producing functional nanocarbon

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180418

R150 Certificate of patent or registration of utility model

Ref document number: 6332681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees