JP6327141B2 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
JP6327141B2
JP6327141B2 JP2014260053A JP2014260053A JP6327141B2 JP 6327141 B2 JP6327141 B2 JP 6327141B2 JP 2014260053 A JP2014260053 A JP 2014260053A JP 2014260053 A JP2014260053 A JP 2014260053A JP 6327141 B2 JP6327141 B2 JP 6327141B2
Authority
JP
Japan
Prior art keywords
phase
short
switching element
current
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014260053A
Other languages
English (en)
Other versions
JP2016123145A (ja
Inventor
悦司 田口
悦司 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014260053A priority Critical patent/JP6327141B2/ja
Publication of JP2016123145A publication Critical patent/JP2016123145A/ja
Application granted granted Critical
Publication of JP6327141B2 publication Critical patent/JP6327141B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Description

本発明は、電動車両に関する。
電動車両は直流電力を交流電力に変換して走行用のモータに供給するインバータを備える。インバータは、複数のスイッチング素子を適宜にオンオフして直流電力を交流電力に変換する。特許文献1に、モータの逆起電力を利用してインバータのスイッチング素子の短絡チェックを行う技術が開示されている。その技術では、インバータの全てのスイッチング素子にオフ信号を供給したのち、逆起電力によってモータが生成する交流電流を電流センサによって計測し、その計測結果に基づいて短絡故障を検知する。具体的には、特許文献1の技術では、計測された交流電流をスムージングした後に絶対値をとった信号と、計測された交流電流の絶対値をとった後にスムージングした信号との差分を求める。そして、その差分と、予め定められている1相短絡、2相短絡、及び、3相短絡の各電流レベルとを比較して短絡故障を判定する。
特開2009−278791号公報
電動車両の中には、直流電源の電圧を昇圧してインバータに供給する電圧コンバータを備えるものがある。そのような電動車両では、インバータの入力側に、電圧コンバータの出力する電流の脈動を抑えるコンデンサが接続される。そのようなコンデンサを備える電動車両において上記した短絡チェックを行う際、モータの逆起電力の電圧がコンデンサの両端電圧よりも高くなると、コンデンサを介してインバータの正極線と負極線の間に電流が流れてしまい、短絡チェックができなくなる。例えば、モータが高回転で回転していると逆起電力も高電圧となり、コンデンサの両端電圧を超えてしまう可能性が高まる。本明細書は、入力側にコンデンサが並列に接続されたインバータを有する電動車両において、逆起電力の電圧が高い場合でも短絡チェックを適切に行うことのできる技術を提供する。
本明細書が開示する電動車両は、電圧コンバータ、インバータ、走行用のモータ、コンデンサ、及び、コントローラを備える。電圧コンバータは直流電源の電圧を昇圧してインバータに供給する。インバータは、電圧コンバータによって昇圧された直流電力を交流電力に変換する。インバータは、交流各相の上アームと下アームの夫々にスイッチング素子を備えている。走行用のモータはインバータの交流出力端に接続されている。コンデンサは、電圧コンバータとインバータの間に並列に接続されている。コントローラは、モータの逆起電力を利用してインバータのスイッチング素子の短絡チェックを行う。コントローラは、スイッチング素子の短絡チェックを行う際、コンデンサの両端電圧がモータの逆起電力の電圧よりも高くなるように電圧コンバータを制御する。
上記した構成により、短絡チェックの際にモータの逆起電力による電流がコンデンサを通じてインバータの正極線と負極線の間を流れることが防止される。よって、モータの逆起電力を利用したスイッチング素子の短絡チェックを適切に行うことができる。なお、コントローラは、電圧コンバータの出力電圧が電動車両の力行時の電圧コンバータの出力電圧の上限を規定する制限電圧を超えることを許容する。短絡チェックの具体例など、本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。
ハイブリッド車の電力系のブロック図である。 1相短絡の例を示すインバータのブロック図である。 1相短絡が生じているときの3相電流のグラフである。 2相短絡の例を示すインバータのブロック図である。 2相短絡が生じているときの3相電流のグラフである。 3相短絡が生じているときの3相電流のグラフである。 VH電圧調整処理のフローチャートである。 短絡チェック処理のフローチャートである。
図面を参照して実施例の電動車両を説明する。本実施例の電動車両は、走行用の駆動源としてエンジン6と、2個のモータ8、48を備えるハイブリッド車2である。図1に、ハイブリッド車2の駆動系のブロック図を示す。モータ8、48は、3相交流によって駆動される。モータ8、48の出力トルクとエンジン6の出力トルクは、動力分配機構7で適宜に分配/合成される。動力分配機構7は、例えばプラネタリギアである。動力分配機構7は、エンジン6、モータ8、48から夫々伝達される動力を、所定比率で合成して出力軸7aに出力する。動力分配機構7の出力は、デファレンシャルギア10を介して駆動輪10a、10bに伝達される。動力分配機構7は、また、エンジン6とモータ8から伝達される動力を、所定の比率でモータ48と出力軸7aに分配する。このとき、モータ48は、エンジン6とモータ8の駆動力により発電する。モータ48は、また、停止しているエンジン6を始動するセルモータとしても機能する。
モータ8、48を駆動するための電力はメインバッテリ3から供給される。メインバッテリ3の出力電圧は、例えば300ボルトである。メインバッテリ3は、システムメインリレー4を介してパワーコントロールユニット5に接続されている。パワーコントロールユニット5は、メインバッテリ3の電力を変換してモータ8、48に供給するパワーデバイスである。以下、説明の簡略化のため、パワーコントロールユニット5をPCU5と称する。
PCU5は、電圧コンバータ20、2個のインバータ30、47、及び、パワーコントローラ50を含む。電圧コンバータ20は、メインバッテリ3の電圧をモータ8、48の駆動に適した電圧(例えば600ボルト)まで昇圧する。インバータ30、47は、昇圧された直流電力を3相交流電力に変換する。インバータ30の交流出力端にモータ8が接続されている。インバータ47の交流出力端にモータ48が接続されている。パワーコントローラ50は、電圧コンバータ20とインバータ30、47を制御する。
ハイブリッド車2は、エンジン6の駆動力を利用してモータ8、48で発電することもできる。また、ハイブリッド車2は、車両の運動エネルギ(制動時の車両の減速エネルギ)を利用してモータ8、48で発電することもできる。このような発電は「回生」と呼ばれている。モータ8、48が発電する場合、インバータ30、47が交流を直流に変換し、さらに電圧コンバータ20がメインバッテリ3よりも僅かに高い電圧まで降圧し、メインバッテリ3へ供給する。即ち、電圧コンバータ20は、一方向で電圧を昇圧し、逆方向で電圧を降圧することのできる双方向コンバータである。
電圧コンバータ20は、リアクトル21とIGBT等のスイッチング素子22、23とコンデンサ24を主とする回路である。スイッチング素子22、23には、夫々、逆方向の電流をバイパスさせるためのダイオード(ダイオード28、29)が逆並列に接続されている。電圧コンバータ20の高電圧側(即ちインバータ30の側)には、インバータ30、47に入力される電流を平滑化するためのコンデンサ25が接続されている。図1に示した電圧コンバータ20の回路は良く知られているので詳しい説明は省略する。
電圧コンバータ20に2個のインバータ(インバータ30とインバータ47)が並列に接続されている。インバータ30とインバータ47は同じ構造を有している。図1では、インバータ47は内部回路の図示を省略している。以下、インバータ30について説明し、インバータ47については説明を省略する。以下の説明では、電圧コンバータ20、インバータ30、及び、パワーコントローラ50の関係についても説明する。その説明において「インバータ30」は、「インバータ30とインバータ47の夫々」と読み替えることができる。また、インバータ47の交流出力端には電流センサが備えられているが、その電流センサの図示は省略されている。
インバータ30は、スイッチング動作を行うスイッチング素子31、32、33、34、35、36を備える。以下、符号「31、32、33、34、35、36」を、「31−36」と称する場合がある。これらのスイッチング素子31−36のそれぞれにも、電流バイパス用のダイオード41、42、43、44、45、46が逆並列に接続されている。6個のスイッチング素子31−36は、2個ずつ直列に接続されており、3セットの直列回路が正極線Pと負極線Nの間に並列に接続されている。正極線Pと負極線Nは、インバータ30の直流電力入力端にも相当する。即ち、電圧コンバータ20の出力電力(直流電力)は、インバータ30の正極線Pと負極線Nに印加され、正極線Pと負極線Nの間に配置された6個のスイッチング素子31−36が適宜にオンオフすることで、モータ8を駆動するための3相交流が生成される。スイッチング素子31と32の直列接続の中点から第1相の交流が出力される。スイッチング素子33と34の直列接続の中点から第2相の交流が出力される。スイッチング素子35と36の直列接続の中点から第3相の交流が出力される。3相の交流は互いに位相が120度ずれており、それらの和は常に一定となる。3相交流の和が常に一定になるのは、インバータ30の正極線Pと負極線Nに入力される直流電力のエネルギが一定だからである。別言すれば、3相交流の電流の和は、入力された直流電力の電流に等しくなる。インバータ30は、入力される一定の大きさの電気エネルギを、3個のエネルギ正弦波に分割するデバイスである。6個のスイッチング素子31−36、及び、電圧コンバータ20のスイッチング素子22、23は、パワーコントローラ50から供給されるPWM信号により制御される。
なお、3相交流インバータの場合、3相は夫々、U相、V相、W相と呼ばれることがある。図1でも、スイッチング素子31と32の中点とモータ8を結ぶ線に「U」と表記してある。同様に、スイッチング素子33と34の中点とモータ8を結ぶ線に「V」と表記してあり、スイッチング素子35と36の中点とモータ8を結ぶ線に「W」と表記してある。本実施例では、第1相が「U相」に対応し、第2相が「V相」に対応し、第3相が「W」相に対応する。また、各相において、正極線Pからモータ8までの電流経路を「上アーム」と称し、モータ8から負極線Nまでの電流経路を「下アーム」と称する。さらに、上アームの電流経路に配置されているスイッチング素子は上アームスイッチング素子と呼ばれ、下アームの電流経路に配置されているスイッチング素子は下アームスイッチング素子と呼ばれる。これらの呼称はインバータの技術分野では一般に知られており、本明細書でも、以下、しばしば用いる。インバータ30は、3個の上アームスイッチング素子と3個の下アームスイッチング素子を備える。
PCU5は、インバータ30が出力する3相各相の電流を計測する3個の電流センサ9a、9b、9cを備えている。なお、3個の電流センサ9a、9b、9cを包括的に示す場合には「電流センサ9」と表記する。電流センサ9の計測電流は、パワーコントローラ50に送られる。
パワーコントローラ50は、CPU、メモリ、及び、入出力インタフェース等の電子部品で構成される情報処理装置である。パワーコントローラ50が電圧コンバータ20とインバータ30のスイッチング素子22、23、31−36を制御する。パワーコントローラ50によって生成されるPWM信号に応じて電圧コンバータ20のスイッチング素子22、23と、インバータ30のスイッチング素子31−36がスイッチング動作を行い、入力された電力を変換する。パワーコントローラ50には、また、HVコントローラ60が接続されている。HVコントローラ60には、運転者による操作情報として、例えば、アクセル開度情報やブレーキ踏力情報が入力される。パワーコントローラ50は、アクセル開度情報、ブレーキ踏力情報、及び、メインバッテリ3の電圧などに基づいて、モータ8と48の目標出力と目標回転数を決定する。パワーコントローラ50は、モータ8の目標出力から、電圧コンバータ20の目標出力電圧を定める。パワーコントローラ50は、目標出力電圧が実現されるように、電圧コンバータ20のスイッチング素子22、23を駆動するためのPWM信号を生成してそれらのスイッチング素子に供給する。また、パワーコントローラ50は、モータ8の目標出力と目標回転数から、インバータ30の3相交流の目標電流を決める。目標電流は、目標回転数から導出された周波数と、目標出力から導出された振幅を有する。パワーコントローラ50は、インバータ30の各出力電流が目標電流に追従するように、電流センサ9を用いてインバータ30をフィードバック制御する。パワーコントローラ50は、目標電流を実現させるPWM信号を生成し、スイッチング素子31−36に供給する。
以下、パワーコントローラ50によるインバータ30の短絡故障チェックについて説明する。パワーコントローラ50は、電流センサ9によって、インバータ30の3相交流出力をモニタしており、3相交流の出力が正常範囲を超えたときに異常が生じていると判断する。パワーコントローラ50は、異常の種類を特定し、もし特定できた場合には、予め定められたプログラムに従って、その異常に対する対策を講じる。異常の一つにスイッチング素子の短絡故障がある。これは、インバータ30の6個のスイッチング素子31−36のうち、1個あるいは複数のスイッチング素子がオンに固定されてしまい、オフに切り替えられなくなる故障である。
短絡故障を起こすと、もはやインバータは正常な直流−交流変換をできないので、パワーコントローラは、インバータ30の全てのスイッチング素子31−36にオフ信号を供給する。「オフ信号」とは、スイッチング素子のソース−ドレイン間(あるいはコレクタ−エミッタ間)を遮断させる信号である。なお、「オン信号」とは、スイッチング素子のソース−ドレイン間(あるいはコレクタ−エミッタ間)を導通させる信号である。
一方、ハイブリッド車2は、モータ8を使わずともエンジン6とモータ48で走行を続けることができる。また、ハイブリッド車2では、駆動輪10a、10bとモータ8が常時連結されている。それゆえ、インバータ30を停止し、エンジン6とモータ48を使って走行している間、モータ8は回転し続け、逆起電力を発生し続ける。インバータ30のスイッチング素子が短絡故障を起こしたままだと、短絡故障を生じたスイッチング素子を含む相に、逆起電力による電流が集中して流れ続ける。そのまま放置すると、短絡相(短絡したスイッチング素子を含む相)のバスバ(電流経路)や短絡したスイッチング素子に熱負荷が集中することになる。そこで、パワーコントローラ50は、短絡故障を起こしたスイッチング素子を特定する。そしてパワーコントローラ50は、上アームのいずれかのスイッチング素子が短絡故障を生じていれば上アームの他のスイッチング素子にオン信号を供給し、下アームのいずれかのスイッチング素子が短絡故障を生じていれば下アームの他のスイッチング素子にオン信号を供給する。上アームの全てのスイッチング素子がオンすると、あるいは、下アームの全てのスイッチング素子がオンすると、逆起電力による電流は3相に分散して流れる。それゆえ、短絡相の熱負荷を抑制することができる。
なお、上アームのスイッチング素子と下アームのスイッチング素子を導通させるとインバータ30の正極線Pと負極線Nが短絡する。そうすると、メインバッテリ3の出力端が短絡することになり、その場合、インバータ30と並列に接続されているインバータ47を動作させることができなくなる。インバータ30は、短絡故障したスイッチング素子と同じ側(上アーム側あるいは下アーム側)の他のスイッチング素子をオンさせ、他方の側のスイッチング素子をオフに保持することで、正極線Pと負極線Nの短絡を避けつつ、モータ8の逆起電力による電流を3相に分散させる。
スイッチング素子の短絡故障の可能性がある場合、パワーコントローラ50は、モータ8の逆起電力を利用して、どのスイッチング素子で短絡故障が生じているのかを特定する。短絡故障しているスイッチング素子を特定する処理が、短絡チェックである。短絡チェックの原理を説明する。なお、ここで想定している短絡故障のモードは、1相の上アームと下アームのいずれか一方が短絡している故障モード、2相の上アームのスイッチング素子、あるいは、2相の下アームのスイッチング素子が短絡している故障モード、3相の上アームの全てのスイッチング素子が短絡している故障モード、3相の下アームの全てのスイッチング素子が短絡している故障モードである。その他の故障モードは、本実施例の技術が着目するモードではないので、他の技術によって特定されればよい。
図2に、インバータ30の回路図を示す。図2の回路図は、図1におけるインバータ30の回路図と同じである。図2では、例として、第2相(V相)の上アームスイッチング素子(スイッチング素子33)が短絡故障を生じていると仮定する。図2では、スイッチング素子33を破線で描き、短絡故障を表現している。以下では、図2に合わせて、第1相、第2相、第3相との表現に代えて、U相、V相、W相との表現を用いる。また、短絡故障を生じているスイッチング素子を含む相を「短絡相」と称し、短絡相以外の相を非短絡相と称する。図2では、電圧コンバータ20とインバータ47の図示は省略している。
先に述べたように、パワーコントローラ50は、短絡チェックに先立って、全てのスイッチング素子にオフ信号を供給する。そうすると、短絡しているスイッチング素子を除き、電流は、ダイオード41−46が許容する一方向だけに流れることができる。短絡故障しているV相の上アームだけは、電流は双方向に流れることができる。このとき、インバータ30とモータ8で電流が流れることができるのは、図2の矢印線A1−A3が示すループだけである。このループは、モータ8のU相コイルとW相コイル、U相とW相の上アームのダイオード41、45、短絡故障したV相上アームのスイッチング素子33、V相コイルの順に流れる。ダイオード41、45により、電流は一方向にしか流れないこと、逆起電力の3相交流の和は常にゼロになることから、このとき、電流センサ9の計測電流は、図3に示すようになる。グラフG1がU相の電流を示し、グラフG2がV相の電流を示しており、G3がW相の電流を示している。縦軸は、電流であり、インバータ30からモータ8への向きが、グラフ上の正方向に対応する。図5と図6にも同様の電流グラフを示すが、それらのグラフにおける符号は図3のグラフと同じである。
U相とW相は、モータ8からインバータ30に受けて電流が流れる(図2の矢印線A1参照)。V相では、インバータ30からモータ8へ向けて電流が流れる(図2の矢印線A3参照)。モータ8で発生する逆起電力は交流であるが、電流が流れることができる方向は、図2の矢印線A1−A3の一方向だけであるので、逆起電力の電流は正負が反転しないように直流成分を有するようになる。即ち、電流はU相とW相では常に負値の正弦波となり、V相では常に正値の正弦波となる。モータ8の逆起電力は、そのエネルギにより、U相とW相の電流の平均値とV相の電流の平均値の間に電位差(直流成分)を生じさせ、インバータ30とモータ8で作る電流経路の閉ループに交流を流すことになる。
V相(短絡相)の電流は、U相の電流とW相の電流を加えて正負の符号を逆転させたものに相当する。以上の理由により、図3に示すように、逆起電力に起因して3相を流れる電流はいずれの相でもゼロクロスしない。ゼロクロスとは、電流波形が電流値ゼロの線を横切ることである。「ゼロクロスしない」とは、別言すれば、電流の符号が逆転しないことである。
パワーコントローラ50は、逆起電力に起因して生じる各相の電流がゼロクロスするか否かで短絡相を特定する。また、短絡相における電流の向きで、上アームのスイッチング素子が短絡故障しているのか、あるいは、下アームのスイッチング素子が短絡故障しているのかを識別する。図3から理解される通り、V相のスイッチング素子33が短絡故障している場合、いずれの相の電流もゼロクロスしない。また、V相の上アームスイッチング素子33が短絡故障しているので、V相の電流はインバータ30からモータ8へと流れる。すなわち、V相の電流の大きさは正値となる。1相が短絡故障を生じている場合、その短絡相の電流が正値の場合(インバータ30からモータ8に向けて電流が流れる場合)、上アームのスイッチング素子が短絡していると特定することができる。逆に、その短絡相の電流が負値の場合(モータ8からインバータ30に向けて電流が流れる場合)、下アームのスイッチング素子が短絡していると判定することができる。別のスイッチング素子が短絡故障を生じている場合も、上記と同様のアルゴリズムで短絡故障のスイッチング素子を特定することができる。
図2における矢印破線C1は、逆起電力による電圧がコンデンサ25の両端電圧VHを超えている場合の電流の流れを示している。矢印破線C1のように電流が流れてしまうと上記した短絡チェックのアルゴリズムは機能しない。なぜならば、逆起電力による電流が、コンデンサ25を介してインバータ30の正極線Pと負極線Nの間で流れてしまうからである。パワーコントローラ50は、逆起電力の電圧がコンデンサ25の両端電圧VHを超える場合は、電圧コンバータ20を駆動して両端電圧VHを高める。コンデンサ25の両端電圧調整については後に説明する。
次に、図4に、U相とV相の下アームのスイッチング素子32、34が短絡故障した場合の電流の流れを示す。図4において、スイッチング素子32、34を破線で描き、短絡故障を表現している。この場合、逆起電力に起因する電流が流れる経路は次の2つである。一つは、短絡故障したU相下アームのスイッチング素子32を通り、次いでV相下アームのダイオード44とW相下アームのダイオード46を通ってモータ8に戻る経路である(矢印線B1参照)。別の一つは、短絡故障したV相下アームのスイッチング素子34を通り、次いでU相下アームのダイオード42とW相下アームのダイオード46を通ってモータ8に戻る経路である(矢印線B2参照)。この場合は、矢印線B3が示すように、短絡相であるU相とV相には電流が双方向に流れ得る。一方、非短絡相であるW相は、インバータ30からモータ8へ、即ち正方向の一方向にしか流れることができない。図5に、スイッチング素子32、34が短絡故障した場合の逆起電力に起因する電流のグラフを示す。図5に示すように、モータ8が発生する逆起電力は、そのエネルギにより、一方向にしか電流が流れることのできないW相の電流平均値とU相とV相の電流平均値との間に電位差を生じさせ、W相にも交流が流れるようにする。
図5に示すように、U相とV相の下アームスイッチング素子32、34が短絡故障している場合、U相とV相の電流はゼロクロスするが、非短絡相であるW相はゼロクロスしない。また、非短絡相であるW相の電流は正値(インバータからモータへ電流が流れる)となり、短絡相であるU相とV相は、双方向に電流が流れる。2相短絡の場合、非短絡相の電流が正値の場合(インバータ30からモータ8に向けて電流が流れる場合)、短絡相の下アームのスイッチング素子が短絡していると判定することができる。逆に、非短絡相の電流が負値の場合(モータ8からインバータ30に向けて電流が流れる場合)、短絡相の上アームのスイッチング素子が短絡していると判定することができる。他の組み合わせの2相で短絡故障が生じている場合も、上記と同じアルゴリズムで短絡したスイッチング素子を特定することができる。
図6に、上アームの全てのスイッチング素子31、33、35が短絡故障した場合の電流グラフを示す。3相が短絡故障していると、いずれの相でも双方向に電流が流れることができる。それゆえ、3相各相の電流グラフは平均値ゼロの正弦波となる。このとき、3相全ての電流がゼロクロスすることになる。下アームの全てのスイッチング素子32、34、36が短絡故障した場合の電流グラフも図6と同じになる。
以上の例から、逆起電力に起因して流れる電流の状態と短絡相との間には、次の関係があることがわかる。(1)モータ8の逆起電力によって発生する3相交流電流の全てがゼロクロスする場合、3相の全ての上アームスイッチング素子、又は、3相の全ての下アームスイッチング素子が短絡故障を生じている。(2)3相交流電流のうち、2相がゼロクロスする場合は、3相のうちのいずれか2相の上アームスイッチング素子又は2相の下アームスイッチング素子が短絡故障を生じている。このとき、ゼロクロスしている相で短絡故障が生じている。(3)3相交流電流の全てがゼロクロスしない場合は、3相のうちの1相の上アームスイッチング素子と下アームスイッチング素子の一方が短絡故障を生じている。このとき、いずれか2相の電流は常に正値あるいは負値であり、残りの1相の電流は、先の2相の電流とは逆の符号を有する。他の2相と電流の向きが異なる相で短絡故障が生じている。
さらに、短絡相が判明すれば、電流の向きによって、上アームのスイッチング素子が短絡しているのか、下アームのスイッチング素子が短絡しているのか、次の通り判明する。(4)1相短絡の場合、短絡相の電流がインバータ30からモータ8へ向けて流れているのであれば上アームのスイッチング素子が短絡故障を生じており、短絡相の電流がモータ8からインバータ30へ向けて流れているのであれば下アームのスイッチング素子が短絡故障を生じている。(5)2相短絡の場合、非短絡相の電流がインバータ30からモータ8へ向けて流れているのであれば下アームのスイッチング素子が短絡故障を生じており、非短絡相の電流がモータ8からインバータ30へ向けて流れているのであれば上アームのスイッチング素子が短絡故障を生じている。
以上説明したように、逆起電力に起因する電流が流れる向きによって、上アームのスイッチング素子が短絡故障しているのか、下アームのスイッチング素子が短絡しているのかを判別することができる。なお、上アームの全てのスイッチング素子が短絡している場合、あるいは、下アームの全てのスイッチング素子が短絡している場合は、上アームと下アームのどちらが短絡故障しているかを判別する必要がない。逆起電力に起因する電流は3相に分散して流れるのでそのまま放置してよいからである。また、上アームのいずれかのスイッチング素子と下アームのいずれかのスイッチング素子が短絡している場合は、メインバッテリ3の出力端子が短絡してしまうので、システムメインリレー4を開くしかない。本実施例で想定しているのは、メインバッテリ3を接続したままで、モータ8の逆起電力に起因する電流を、上アームまたは下アームの3相に分散させることである。上アームのスイッチング素子と下アームのスイッチング素子が短絡している態様は、本実施例の対象外であり、別の技術を使って対策すればよい。インバータ47についても同様の短絡チェックを行うことができる。
逆起電力を利用した短絡チェックの処理を、図7と図8のフローチャートを参照して改めて説明する。図7は、短絡チェック前にパワーコントローラ50がコンデンサ25の両端電圧を調整する処理である。なお、厳密には、図7のフローチャートにおけるステップS12からS16までの処理が、両端電圧の調整処理である。ステップS17は短絡チェック処理であり、ステップS18は、上アームと下アームのいずれかの3相のスイッチング素子をオンさせて逆起電力による電流を3相に分散させる処理である。
先に述べたように、短絡チェックは、各相に流れる逆起電力の電流の大きさで短絡相を特定する処理である。逆起電力の電圧がコンデンサ25の両端電圧VHよりも高いと、コンデンサ25を通じて正極線Pと負極線Nの間に電流が流れてしまい、上記した短絡チェックが適切に行われない。それゆえ、パワーコントローラ50は、短絡チェックを実行するのに先立って、両端電圧VHが逆起電力の電圧を上回るように電圧コンバータ20を制御する。その処理のフローチャートが図7である。
図7の処理は、パワーコントローラ50がインバータ30で短絡故障が生じていることを検知したときに開始される。パワーコントローラ50は、例えば、インバータ30の3相交流出力が所定の異常を生じているときに短絡故障が生じていると判断する。本実施例では、短絡しているアームを特定する処理に着目しているので、短絡故障の検知のアルゴリズムの例については説明を割愛する。
パワーコントローラ50は、短絡故障を検知すると、まず、インバータ30の全スイッチング素子にオフ信号を供給する(S12)。次にパワーコントローラ50は、逆起電力の電圧を算出する(S13)。逆起電力の電圧は、モータ8の回転数に既知の定数(逆起定数)を乗じた値である。次にパワーコントローラ50は、算出された逆電力の電圧とコンデンサ25の両端電圧VHを比較する(S14)。PCU5はコンデンサ25の両端電圧VHを計測する電圧センサを備えており、パワーコントローラ50は、その電圧センサから両端電圧VHを得る。
パワーコントローラ50は、両端電圧VHが逆起電力の電圧よりも低い場合(S14:YES)、電圧制限を解除し(S15)、電圧コンバータ20を作動させる(S16)。ここで、制限電圧とは、力行時の電圧コンバータ20の出力電圧の上限値である。力行時は電圧コンバータ20とインバータ30のスイッチング素子に大電流が流れ続けるので、それらのスイッチング素子が過負荷とならないように、電圧コンバータ20に制限電圧が設けられている。短絡チェックの場合は短時間で済むので、仮に逆起電力の電圧がその制限電圧よりも高い場合には、その制限電圧を解除しても、スイッチング素子に加わる熱負荷は許容される。パワーコントローラ50は、両端電圧VHが逆起電力の電圧よりも高くなるように、電圧コンバータ20を制御する。このとき、パワーコントローラ50は、電圧コンバータ20の出力電圧が、ハイブリッド車2の力行時の電圧コンバータ20の出力電圧の上限を規定する制限電圧を超えることを許容する。その後、パワーコントローラ50は短絡チェックを開始する(S17)。一方、ステップS14において、両端電圧VHが逆起電力の電圧よりも高い場合には、パワーコントローラ50は、ステップS15、S16をスキップし、短絡チェックを開始する(S14:NO、S17)。
次に、図8を参照して、短絡チェックの処理を説明する。パワーコントローラ50は、インバータ30の3相各相の電流値を電流センサ9から取得する(S22)。パワーコントローラ50は、所定時間の間、電流センサ9の計測値を蓄積し、電流の時系列データを得る。そして、パワーコントローラ50は、得られた3相各相の電流の時系列データから、ゼロクロスする相の数を判定する(S23)。パワーコントローラ50は、ゼロクロスする相が無い場合には1相短絡状態であると判定する(S24)。パワーコントローラ50は、2相の電流がゼロクロスする場合、いずれか2相で短絡故障が生じていると判定する(S25)。パワーコントローラ50は、3相の全ての電流がゼロクロスしている場合は、3相の全てで短絡故障が生じていると判定する(S26)。
1相短絡の場合(S24)、パワーコントローラ50は、他の2相と電流の向きが異なる相が短絡相であると判定する。パワーコントローラ50は、その短絡相の電流の大きさが正値であれば、上アームのスイッチング素子が短絡していると判定し(S27、S29)、電流の大きさが負値であれば、下アームのスイッチング素子が短絡していると判定する(S27、S30)。
2相短絡の場合(S25)、パワーコントローラ50は、ゼロクロスしている2相が短絡相であると判定する。パワーコントローラ50は、非短絡相(ゼロクロスしていない相)の電流の大きさが負値であれば、上アームのスイッチング素子が短絡していると判定し(S28、S29)、電流の大きさが正値であれば、下アームのスイッチング素子が短絡していると判定する(S28、S30)。
こうして、パワーコントローラ50は、短絡相と、その短絡相が上アームで短絡が生じているのか、あるいは、下アームで短絡が生じているのかを特定する。即ち、パワーコントローラ50は、短絡しているスイッチング素子を特定する。3相短絡の場合(S26)は、パワーコントローラ50は、何もせずに短絡チェックを終える。
図7のフローチャートに戻る。パワーコントローラ50は、短絡チェック(S17)を終えると、電圧コンバータ20を停止する(S18)。そしてパワーコントローラ50は、次に3相オン制御に移行する(S19)。1相短絡あるいは2相短絡の場合、パワーコントローラ50は、短絡故障のスイッチング素子が上アームのスイッチング素子であれば、非短絡相の上アームのスイッチング素子をオンさせる。また、短絡故障のスイッチング素子が下アームのスイッチング素子であれば、パワーコントローラ50は、非短絡相の下アームのスイッチング素子をオンさせる。3相短絡の場合、パワーコントローラ50は、何もせず3相オン制御(S18)を通過する。
ステップS19の結果、インバータ30は、上アームと下アームのいずれか一方が3相オンの状態となり、他方が3相オフの状態となる。モータ8の逆起電力に起因する電流は、3相オンのアームを流れる。このとき、電流は3相に分散される。その結果、特定の相に熱負荷が集中することが回避される。また、上アームと下アームのいずれか一方が全てオフであるので、インバータ30の正極線Pと負極線Nが短絡しない。それゆえ、システムメインリレー4(図1参照)を閉じたままとすることができ、他方のインバータ(インバータ47)を利用し続けることができる。即ち、ハイブリッド車2は、インバータ30で短絡故障が生じた場合、モータ8の逆起電力による電流を分散させつつ、メインバッテリ3とインバータ47を使ってモータ48を駆動することができる。
実施例で説明した技術の留意点を述べる。実施例の技術は、次の故障モードを区別する。(1)インバータのいずれか1相のスイッチング素子が短絡している場合、(2)上アームのいずれか2相のスイッチング素子が短絡している場合、(3)下アームのいずれか2相のスイッチング素子が短絡している場合、(4)上アームと下アームのいずれか一方で3相全てのスイッチング素子が短絡している場合。他の故障モードは、本明細書が開示する技術とは別の技術で判定すればよい。
実施例の技術の一つの適用先が、上記実施例で説明したように、モータを含む2個以上の走行用駆動源を有する電動車両である。実施例の電動車両はハイブリッド車であり、2個の駆動源としてエンジンとモータを備える。2個の駆動源は2個のモータであってもよい。実施例のハイブリッド車は、車輪とモータが常時連結している構造を有する。2個の駆動源を有する電動車両の場合、1個のモータのインバータが短絡故障を生じても残りの駆動源で走行を継続することができる。その場合、モータは逆駆動状態となり逆起電力を発生する。逆起電力による電流が短絡故障した相に集中して流れると熱負荷が増大する。逆起電力による電流はインバータの3相に分散させることが望ましい。実施例の技術は、そのような電動車両において、インバータが短絡故障を生じた場合に、メインバッテリを切り離すことなく、モータの逆起電力による電流を故障したインバータの3相に分散させることができる。即ち、故障したインバータに接続されたモータの逆起電力による電流を分散させつつ、他の駆動源で走行を継続することができる。
実施例の技術は、駆動源として1個のモータを有する電動車両に対しても適用することができる。例えば、実施例の技術は、インバータが故障して電動車両がけん引される際、逆起電力による電流をインバータ内で分散させることができる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:ハイブリッド車
3:メインバッテリ
5:インバータ
6:エンジン
7:動力分配機構
8:走行用モータ
9、9a、9b、9c:電流センサ
20:電圧コンバータ回路
22、23:スイッチング素子
30:インバータ主回路
31−36:スイッチング素子
50:パワーコントローラ
51:目標値生成回路
52:差分器
53:信号生成部
54:異常検知部
60:HVコントローラ

Claims (4)

  1. 直流電源の電圧を昇圧する電圧コンバータと、
    各相の上アームと下アームの夫々にスイッチング素子を備えており、前記電圧コンバータによって昇圧された直流電力を交流電力に変換するインバータと、
    前記インバータの交流出力端に接続されている走行用のモータと、
    前記電圧コンバータと前記インバータの間に並列に接続されているコンデンサと、
    前記モータの逆起電力を利用して前記スイッチング素子の短絡チェックを行うコントローラと、
    を備えており、
    前記コントローラは、前記スイッチング素子の短絡チェックを行う際、前記コンデンサの両端電圧が前記逆起電力の電圧よりも高くなるように前記電圧コンバータを制御するとともに、前記電圧コンバータの出力電圧が電動車両の力行時の前記電圧コンバータの出力電圧の上限を規定する制限電圧を超えることを許容する、
    ことを特徴とする電動車両。
  2. 前記コントローラは、前記短絡チェックとして、
    全てのスイッチング素子にオフ信号を供給し、
    前記モータの逆起電力によって発生する3相交流電流の全てがゼロクロスする場合には、3相の全ての上アームのスイッチング素子、又は、3相の全ての下アームのスイッチング素子が短絡故障を生じていると判定し、
    前記3相交流電流のうち、2相がゼロクロスする場合は、3相のうちのいずれか2相の上アーム又は下アームのスイッチング素子が短絡故障を生じていると判定し、
    前記3相交流電流の全てがゼロクロスしない場合は、3相のうちの1相の上アームのスイッチング素子と下アームのスイッチング素子の一方が短絡故障を生じていると判定する、
    ことを特徴とする請求項1に記載の電動車両。
  3. 前記コントローラは、
    3相のうち2相のスイッチング素子が短絡故障を生じていると判定した場合、
    非短絡相の電流が前記インバータから前記モータへ向けて流れている場合には下アームのスイッチング素子が短絡故障を生じていると判定し、
    非短絡相の電流が前記モータから前記インバータへ向けて流れている場合には上アームのスイッチング素子が短絡故障を生じていると判定し、
    3相のうち1相のスイッチング素子が短絡故障を生じていると判定した場合、
    短絡相の電流が前記インバータから前記モータへ向けて流れている場合には上アームのスイッチング素子が短絡故障を生じていると判定し、
    短絡相の電流が前記モータから前記インバータへ向けて流れている場合には下アームのスイッチング素子が短絡故障を生じていると判定する、
    ことを特徴とする請求項に記載の電動車両。
  4. 前記コントローラは、前記短絡チェックを実行した後、
    前記電圧コンバータを停止し、
    短絡故障を生じている側のアームの非短絡相のスイッチング素子にオン信号を供給する、
    ことを特徴とする請求項に記載の電動車両。
JP2014260053A 2014-12-24 2014-12-24 電動車両 Active JP6327141B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014260053A JP6327141B2 (ja) 2014-12-24 2014-12-24 電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014260053A JP6327141B2 (ja) 2014-12-24 2014-12-24 電動車両

Publications (2)

Publication Number Publication Date
JP2016123145A JP2016123145A (ja) 2016-07-07
JP6327141B2 true JP6327141B2 (ja) 2018-05-23

Family

ID=56329264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014260053A Active JP6327141B2 (ja) 2014-12-24 2014-12-24 電動車両

Country Status (1)

Country Link
JP (1) JP6327141B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6618630B2 (ja) * 2016-10-19 2019-12-11 三菱電機株式会社 インバータ装置及びインバータ装置の停止方法
JP6725409B2 (ja) * 2016-12-22 2020-07-15 トヨタ自動車株式会社 ハイブリッド自動車
JP6809354B2 (ja) * 2017-04-18 2021-01-06 トヨタ自動車株式会社 ハイブリッド自動車
JP7006428B2 (ja) * 2018-03-23 2022-01-24 株式会社デンソー モータ制御装置
JP7338589B2 (ja) * 2020-08-20 2023-09-05 株式会社デンソー 電力変換器の制御回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179381B2 (ja) * 2007-01-25 2008-11-12 トヨタ自動車株式会社 電動車両
WO2009087775A1 (ja) * 2008-01-10 2009-07-16 Mitsubishi Electric Corporation 電力変換装置
JP5003589B2 (ja) * 2008-05-15 2012-08-15 トヨタ自動車株式会社 短絡相特定方法
JP4968698B2 (ja) * 2008-12-26 2012-07-04 本田技研工業株式会社 電動機の制御装置
WO2013021460A1 (ja) * 2011-08-09 2013-02-14 トヨタ自動車株式会社 車両および車両の制御方法
JP2014113003A (ja) * 2012-12-05 2014-06-19 Toyota Motor Corp 車両

Also Published As

Publication number Publication date
JP2016123145A (ja) 2016-07-07

Similar Documents

Publication Publication Date Title
JP4784478B2 (ja) 多相回転電機の制御装置
JP4749852B2 (ja) モータ駆動装置及びそれを用いた自動車
JP4538850B2 (ja) 電気自動車の制御装置
JP6327141B2 (ja) 電動車両
JP5472205B2 (ja) 多相回転電機の制御装置、多相電動機の制御装置
JP6630539B2 (ja) 電力変換装置及び電動パワーステアリング装置
WO2008001949A1 (fr) Dispositif d'entraînement de moteur
JP5505042B2 (ja) 中性点昇圧方式の直流−三相変換装置
JP2013090401A (ja) 回転電機制御システム
JP5839003B2 (ja) 車両用駆動装置
JP6827560B2 (ja) 回転電機制御装置及び電動車両
JP6503962B2 (ja) 電流センサ異常診断装置
JP6365054B2 (ja) 電動車両
JP2016123141A (ja) 電動機システム
JP4348929B2 (ja) モータ制御装置
JP2018148611A (ja) モータ制御装置
JP2021019423A (ja) 回転電動機システム
WO2022168868A1 (ja) 回転電機制御システム
JP5899787B2 (ja) 回転電機制御システム
Estima et al. Efficiency evaluation of fault-tolerant operating strategies applied to three-phase permanent magnet synchronous motor drives
JP2010220384A (ja) 回転電機制御装置
JP4143918B2 (ja) 二相変調制御式インバータ装置
JP2015006021A (ja) モータ駆動装置及びモータ
JP7415969B2 (ja) 回転電機制御システム
JP2013017324A (ja) 電源システムおよびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R151 Written notification of patent or utility model registration

Ref document number: 6327141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250