JP6325194B2 - Transformer winding quality confirmation test method - Google Patents

Transformer winding quality confirmation test method Download PDF

Info

Publication number
JP6325194B2
JP6325194B2 JP2013036532A JP2013036532A JP6325194B2 JP 6325194 B2 JP6325194 B2 JP 6325194B2 JP 2013036532 A JP2013036532 A JP 2013036532A JP 2013036532 A JP2013036532 A JP 2013036532A JP 6325194 B2 JP6325194 B2 JP 6325194B2
Authority
JP
Japan
Prior art keywords
winding
test
short
voltage
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013036532A
Other languages
Japanese (ja)
Other versions
JP2014165406A (en
Inventor
孝則 西岡
孝則 西岡
学 菊地
学 菊地
高橋 一嘉
一嘉 高橋
和晃 伊串
和晃 伊串
高橋 誠
誠 高橋
佐藤 一彦
一彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Aichi Electric Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Aichi Electric Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2013036532A priority Critical patent/JP6325194B2/en
Publication of JP2014165406A publication Critical patent/JP2014165406A/en
Application granted granted Critical
Publication of JP6325194B2 publication Critical patent/JP6325194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、空心の状態で更新巻線の品質確認を行える変圧器巻線の品質確認試験方法に関する。   The present invention relates to a transformer winding quality confirmation test method capable of confirming the quality of an updated winding in an air-core state.

変圧器を構成する巻線の絶縁紙は熱により経年劣化し絶縁耐力や機械耐力が低下する。この状態で、外部短絡事故等の発生により過大な電流が巻線に流入すると、巻線に発生する機械力によって絶縁故障する場合がある。故障した巻線は新品と交換する必要がある。  The insulation paper of the windings that make up the transformer deteriorates over time due to heat, and the dielectric strength and mechanical strength decrease. In this state, if an excessive current flows into the winding due to an external short circuit accident or the like, an insulation failure may occur due to mechanical force generated in the winding. The broken winding must be replaced with a new one.

従来、変電所(以下、現地という)で稼働している大型変圧器の巻線が故障した場合、当該変圧器を現地から工場へ鉄道などを利用して輸送し、変圧器を工場で改修した後、再度、工場から現地へ輸送し施設していた。   Conventionally, when a winding of a large transformer operating at a substation (hereinafter referred to as the local site) breaks down, the transformer is transported from the site to the factory using a railway or the like, and the transformer is repaired at the factory. Later, it was transported from the factory to the site again and installed.

しかし、近年、変圧器の鉄道輸送は、鉄道ダイヤの過密化や貨車及び側線の減少によって、輸送の許可がなされるまでの期間が長期化し、変圧器復旧が遅延する傾向にある。   However, in recent years, transformer transportation in railroads tends to delay the restoration of transformers due to overcrowding of railway schedules and the decrease in freight cars and side lines, resulting in a longer period until transportation is granted.

これを解消する方法として、新品の巻線のみを現地に輸送して、現地で故障した巻線と交換する方法が提案されている(特許文献1参照)。   As a method for solving this problem, a method has been proposed in which only a new winding is transported to the site and replaced with a faulty winding (see Patent Document 1).

特開2003−224016JP2003-224016A

上記特許文献1記載の方法によれば、現地に施設されている変圧器は、タンクや鉄心が分解可能に構成されており、分解した鉄心の一部はブロック化されているので、タンクを分解した後、最小限の鉄心を分解するだけで巻線の交換が可能となる。つまり、新品の巻線(以下、更新巻線という)のみを現地に輸送し、巻線を交換することによって変圧器の改修が可能となるので、大型変圧器を鉄道の貨車を利用して工場との間を往復する必要はなく、変圧器復旧を迅速に行うことができる利点を有する。   According to the method described in Patent Document 1, the transformer installed in the field is configured such that the tank and the iron core can be disassembled, and a part of the disassembled iron core is blocked. After that, it is possible to replace the winding by disassembling the minimum iron core. In other words, it is possible to refurbish transformers by transporting only new windings (hereinafter referred to as renewal windings) to the site and exchanging the windings. There is no need to reciprocate between and the transformer, and the transformer can be restored quickly.

上記方法により更新巻線を既設の巻線と交換するためには、更新巻線の品質を確認するために種々の試験を実施する必要がある。然るに、更新巻線単体で試験を行う場合、巻線を変圧器に組み込んだ状態、つまり、変圧器の完成状態と同等の条件を担保する必要がある。   In order to replace the updated winding with the existing winding by the above method, it is necessary to carry out various tests in order to confirm the quality of the updated winding. However, when the test is performed with the renewed winding alone, it is necessary to ensure a condition equivalent to the state in which the winding is incorporated in the transformer, that is, the completed state of the transformer.

この点、上記特許文献1には、模擬鉄心と更新巻線とを組み合わせることにより変圧器の完成状態と同等の条件を担保して、更新巻線の品質確認をする方法が開示されている。然るに、模擬鉄心を新規に製作するには、時間とコストがかかるといった問題がある。   In this regard, Patent Document 1 discloses a method for confirming the quality of the updated winding while assuring a condition equivalent to the completed state of the transformer by combining the simulated iron core and the updated winding. However, there is a problem that it takes time and cost to newly manufacture a simulated iron core.

また、上記特許文献1には、商用周波数電圧を印加する誘導試験の代替の試験として、模擬鉄心を新規に製作することなく、鉄心のない状態、すなわち空心の状態で開閉衝撃電圧を更新する巻線に印加し、絶縁面での品質確認を行うことも開示されている。   Further, in Patent Document 1 described above, as an alternative to the induction test for applying the commercial frequency voltage, a winding for updating the switching impact voltage in a state without an iron core, that is, in an empty state, without newly manufacturing a simulated iron core. It is also disclosed that the quality is confirmed on the insulating surface by applying to the wire.

しかし、開閉衝撃電圧のみでは、雷インパルス電圧に対する絶縁面での品質確認ができない。すなわち、商用周波数電圧及び、開閉衝撃電圧を巻線に印加した場合は、巻線には巻数比に比例した電圧が生じるが、雷インパルス電圧を巻線に印加した場合は、巻線の電位振動のため巻線には巻数比に比例しない電圧が生じるので、上記の開閉衝撃電圧を巻線に印加する試験では、雷インパルス電圧に対する品質確認ができないことになる。   However, the quality on the insulating surface against the lightning impulse voltage cannot be confirmed only with the switching shock voltage. That is, when a commercial frequency voltage and a switching shock voltage are applied to the winding, a voltage proportional to the turns ratio is generated in the winding, but when a lightning impulse voltage is applied to the winding, the potential oscillation of the winding Therefore, since a voltage that is not proportional to the turns ratio is generated in the winding, the quality check for the lightning impulse voltage cannot be performed in the test in which the switching shock voltage is applied to the winding.

本発明は、前述した問題を解決するものであり、模擬鉄心を用いることなく変圧器の完成状態を担保して、短絡インピーダンスの評価試験、および加圧試験、更には、雷インパルス試験によって更新巻線の品質確認を行い得る試験方法を提供するものである。   The present invention solves the above-described problems, guarantees the completed state of the transformer without using a simulated iron core, and updates the winding by an evaluation test of a short-circuit impedance, a pressurization test, and a lightning impulse test. A test method capable of confirming the quality of the wire is provided.

請求項1記載の発明は、更新巻線の高圧側と低圧側を隣接配置した密な結合状態において、電磁的な結合が両巻線間の漏れインダクタンスで決定され、鉄心の影響をほぼなくなることを利用し、両巻線のうち試験電圧を印加しない一方を短絡し、かつ、短絡していない他方の巻線に試験電圧を印加することで、短絡インピーダンスを測定し、この測定値と空心インダクタンス法による計算値とを比較することで、再組立て後すなわち鉄心入りでの巻線の短絡インピーダンスの評価を可能としたことを特徴とする。 According to the first aspect of the present invention, in the tight coupling state in which the high voltage side and the low voltage side of the renewal winding are adjacently arranged, the electromagnetic coupling is determined by the leakage inductance between both windings, and the influence of the iron core is almost eliminated. Is used to measure the short-circuit impedance by short-circuiting one of the windings to which the test voltage is not applied and applying the test voltage to the other winding that is not short-circuited. By comparing with the calculated value by the method, it is possible to evaluate the short-circuit impedance of the winding after reassembly, that is, with the iron core.

請求項記載の発明は、更新巻線の高圧側と低圧側を隣接配置した密な結合状態において、両巻線のうち試験電圧を印加しない一方を短絡して、電磁的な結合が両巻線間の漏れインダクタンスで決定され、鉄心の有無が電位振動に影響されなくなることを利用し、両巻線と鉄心との間で形成されるキャパシタンスを模擬するための接地筒を取り付けて絶縁油を充填した試験用タンク内に配置し、短絡していない他方の巻線に試験電圧を印加することで、空心状態の更新巻線において雷インパルス耐電圧試験の実施を可能としたことを特徴とする。 According to the second aspect of the present invention, in a tightly coupled state in which the high voltage side and the low voltage side of the renewal winding are adjacently arranged, one of the two windings to which the test voltage is not applied is short-circuited so that the electromagnetic coupling is Using the fact that the presence or absence of the iron core is not affected by the potential vibration, which is determined by the leakage inductance between the wires, install a grounding cylinder to simulate the capacitance formed between both windings and the iron core, and install insulating oil The lightning impulse withstand voltage test can be performed in the renewed winding in the air core state by applying the test voltage to the other winding that is not short-circuited and placed in the filled test tank. .

請求項1記載の発明によれば、空心の更新巻線で再組立て後の短絡インピーダンスの評価が可能となる。   According to the first aspect of the present invention, it is possible to evaluate the short-circuit impedance after reassembly with the air-core renewal winding.

請求項記載の発明によれば、空心の更新巻線で再組立て後の雷インパルス耐電圧試験の実施が可能となる。 According to the second aspect of the present invention, it is possible to perform a lightning impulse withstand voltage test after reassembly with the air-core renewal winding.

巻線の更新方法を示す工程図である。It is process drawing which shows the update method of a coil | winding. 本発明の短絡インピーダンスの評価フロー図である。It is an evaluation flow figure of short circuit impedance of the present invention. 空心の自己・相互インダクタンスを計算する式と概要図である。It is the type | formula and outline figure which calculate the self and mutual inductance of an air core. 本発明の試験方法による計算結果と公知の試験方法による計算結果、及び、鉄心入りの測定結果を比較した表である。It is the table | surface which compared the calculation result by the test method of this invention, the calculation result by a well-known test method, and the measurement result containing an iron core. 本発明の試験回路図である。It is a test circuit diagram of the present invention. 本発明の試験装置の概要図である。It is a schematic diagram of the test device of the present invention.

以下、本発明の実施の形態について図1乃至図6を用いて説明する。図1は本発明の品質確認試験方法を適用する更新巻線と既設巻線との交換工程を示す概要図である。図1に示すように、現地にある変圧器Aの巻線(既設巻線)1を新品(更新巻線)2と交換する場合、工場で更新巻線2の試験を行い、合格後、車両3で現地まで輸送する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a replacement process between an updated winding and an existing winding to which the quality confirmation test method of the present invention is applied. As shown in FIG. 1, when replacing the winding (existing winding) 1 of the transformer A in the field with a new (updated winding) 2, the updated winding 2 is tested at the factory, and after passing the vehicle 3 to the site.

現地では、変圧器Aの上部カバー4を外した後、鉄心5から上部継鉄部(図示せず)を外して故障した巻線1を取り外す。続いて、輸送した更新巻線2を鉄心5に取り付けて既設巻線1と交換し、先に外した鉄心5の上部継鉄部(図示せず)を取り付ける。   At the site, after removing the upper cover 4 of the transformer A, the upper yoke portion (not shown) is removed from the iron core 5 and the failed winding 1 is removed. Subsequently, the transported renewal winding 2 is attached to the iron core 5 and replaced with the existing winding 1, and the upper yoke portion (not shown) of the iron core 5 previously removed is attached.

最後に、上部カバー4を取り付けることにより、故障した既設巻線1を新品の更新巻線2に交換する作業を終了する。   Finally, by attaching the upper cover 4, the work of replacing the failed existing winding 1 with a new updated winding 2 is completed.

続いて、本発明に係る変圧器巻線の品質確認試験方法について説明する。本発明の品質確認試験方法は、図1に示す工場における試験に該当し、短絡インピーダンスの評価試験と、加圧試験、及び、雷インパルス耐電圧試験に関するものである。   Next, a quality confirmation test method for transformer windings according to the present invention will be described. The quality confirmation test method of the present invention corresponds to the test in the factory shown in FIG. 1, and relates to a short-circuit impedance evaluation test, a pressurization test, and a lightning impulse withstand voltage test.

まず、短絡インピーダンスの評価試験について説明する。短絡インピーダンスの評価試験は、通常は、巻線を鉄心に取り付けた状態、つまり、変圧器が完成した状態で行なわれる。   First, a short-circuit impedance evaluation test will be described. The short-circuit impedance evaluation test is usually performed with the windings attached to the iron core, that is, with the transformer completed.

具体的な試験内容としては、変圧器巻線の一方(通常、低圧側)を短絡し、他方の巻線から定格周波数の電圧を印加し、各巻線に定格電流を通じたときの損失(負荷損)及び電圧(インピーダンス電圧)を測定するものである。   The specific test content is the loss (load loss) when one of the transformer windings (usually the low voltage side) is short-circuited, the voltage of the rated frequency is applied from the other winding, and the rated current is passed through each winding. ) And voltage (impedance voltage).

本発明では、巻線の高圧側と低圧側が密な結合である場合、漏れ磁束が少なく鉄心の影響がほとんどなくなることに着目し、空心の自己・相互インダクタンスから短絡インピーダンスのインダクタンス分を算出することとした。低圧巻線を短絡し高圧巻線側から見たインダクタンスを計算し、さらに測定することにより、再組立て後すなわち鉄心入りでの巻線の短絡インピーダンスの評価を可能としたことを特徴とする。   In the present invention, when the high-voltage side and the low-voltage side of the winding are tightly coupled, the leakage flux is small and the influence of the iron core is almost eliminated, and the inductance component of the short-circuit impedance is calculated from the self-mutual inductance of the air core. It was. By short-circuiting the low-voltage winding and calculating and measuring the inductance viewed from the high-voltage winding side, it is possible to evaluate the short-circuit impedance of the winding after reassembly, that is, with an iron core.

図2に、新品の巻線のみを現地に輸送して、現地で故障した巻線と交換する場合の短絡インピーダンスの評価方法を示す。短絡インピーダンスの評価は、設計時に行う短絡インピーダンス計算値と、工場で行う品質確認すなわち空心での短絡インピーダンス測定結果を比較して行う。   FIG. 2 shows a method for evaluating a short-circuit impedance when only a new winding is transported to the site and replaced with a faulty winding. The short-circuit impedance is evaluated by comparing the short-circuit impedance calculation value performed at the time of design with the quality check performed at the factory, that is, the short-circuit impedance measurement result at the air core.

その後、現地での組立時に鉄心入りの短絡インピーダンスを測定して性能を評価する。短絡インピーダンスの計算は、鉄心入りにおいては既に知られているReactive kVA method(高・低圧巻線を2本の導体にモデル化した計算方法)で行い、空心においては、本発明に係る図3に示す自己・相互インダクタンスの計算式(以下、空心インダクタンス法という)を用いて行う。また鉄心入り、空心の短絡インピーダンスの計算は、有限要素法による磁界解析により行ってもよい。   After that, the performance is evaluated by measuring the short-circuit impedance with iron core during assembly at the site. The calculation of the short-circuit impedance is performed by a reactive kVA method (calculation method in which high and low voltage windings are modeled as two conductors) that is already known in the case of iron core. This is performed using the self-mutual inductance calculation formula shown below (hereinafter referred to as the air-core inductance method). The short-circuit impedance of the iron core and the air core may be calculated by magnetic field analysis by the finite element method.

図4に、154/77kV、200MVA変圧器における短絡インピーダンスの計算値(上記Reactive kVA method)と、空心インダクタンス法による短絡インピーダンスの計算値、および鉄心入りの短絡インピーダンスの測定値を比較して示す。   FIG. 4 shows a comparison between the calculated value of the short-circuit impedance in the 154/77 kV, 200 MVA transformer (reactive kVA method), the calculated value of the short-circuit impedance by the air-core inductance method, and the measured value of the short-circuit impedance with the iron core.

図4から明らかなように、本発明の空心インダクタンス法による計算結果は、既知のReactive kVA methodによる計算結果や鉄心入りの測定結果と近似した値となり、その差異は図2に示すJEC―2200−1995に規定された裕度内である。また、空心インダクタンス法によるインダクタンスの計算は、測定と一致することも確認している。   As is clear from FIG. 4, the calculation result by the air-core inductance method of the present invention is a value approximate to the calculation result by the known Reactive kVA method and the measurement result with the iron core, and the difference is JEC-2200- shown in FIG. It is within the tolerance specified in 1995. It has also been confirmed that the calculation of inductance by the air-core inductance method is consistent with the measurement.

この結果から、本発明に係る空心インダクタンス法によるインダクタンスの計算と測定によって、再組立て後、つまり鉄心入りの短絡インピーダンスを評価できることがわかる。すなわち、更新巻線の短絡インピーダンスは、図2に示す方法により評価可能であることが判明した。   From this result, it can be seen that the short-circuit impedance after the reassembly, that is, the iron core can be evaluated by the calculation and measurement of the inductance by the air-core inductance method according to the present invention. That is, it has been found that the short-circuit impedance of the update winding can be evaluated by the method shown in FIG.

次に、交流耐電圧試験のうち加圧試験について説明する。加圧試験も通常は巻線を鉄心に取り付けた状態(変圧器の完成状)で行なわれる。これは、空心状態の巻線で加圧試験を行い、その後、鉄心に組み込んで変圧器を完成させるのは不経済であることに起因するものであり、試験自体は空心の巻線で行い得るものである。   Next, the pressurization test in the AC withstanding voltage test will be described. The pressurization test is usually performed with the windings attached to the iron core (complete state of the transformer). This is due to the fact that it is uneconomical to perform a pressure test with an air core winding and then complete the transformer by incorporating it into the iron core, and the test itself can be performed with the air core winding. Is.

そこで本発明では、更新巻線2の加圧試験を空心で行うこととし、巻線の絶縁状態が良好であることを確認することとした。具体的な試験内容としては、正弦波に近い商用周波数の交流試験電圧を更新巻線の絶縁強度に応じた電圧値で印加する。   Therefore, in the present invention, the pressurization test of the renewal winding 2 is performed at the air core, and it is confirmed that the insulation state of the winding is good. As a specific test content, an AC test voltage having a commercial frequency close to a sine wave is applied at a voltage value corresponding to the insulation strength of the update winding.

最後に、雷インパルス耐電圧試験について説明する。雷インパルス耐電圧試験も前述した各種試験同様、通常は鉄心入りの巻線で実施され、巻線の電位振動により発生する電圧に対する絶縁性能を検証することを目的とする。   Finally, the lightning impulse withstand voltage test will be described. Similar to the various tests described above, the lightning impulse withstand voltage test is usually carried out with a winding containing an iron core, and the purpose is to verify the insulation performance against the voltage generated by the potential oscillation of the winding.

本発明においては、図5に示すように、電圧を印加しない巻線を短絡させることにより、電位振動から鉄心の影響を排除して耐電圧試験を実施することとした。つまり、鉄心の影響を無くすことにより、空心での雷インパルス耐電圧試験を可能としたのである。   In the present invention, as shown in FIG. 5, the withstand voltage test is performed by eliminating the influence of the iron core from the potential vibration by short-circuiting the winding to which no voltage is applied. In other words, the lightning impulse withstand voltage test in the air core was made possible by eliminating the influence of the iron core.

上記引用文献1で開示されている開閉衝撃電圧を巻線に印加する試験との違いは品質確認の対象にある。開閉衝撃電圧は、交流電圧に対する品質確認のため行うものであり、開閉衝撃電圧を交流電圧の代替試験とすることは、JEC―2210−2003 リアクトルに記載されている。   The difference from the test in which the open / close impact voltage disclosed in the above cited reference 1 is applied to the winding is an object of quality confirmation. The switching shock voltage is used for quality confirmation with respect to the AC voltage, and it is described in the JEC-2210-2003 reactor that the switching shock voltage is used as an alternative test for the AC voltage.

一方、雷インパルス電圧を巻線に印加する試験は、変圧器を変電所に設置した後、電力系統から変圧器に侵入する雷サージ電圧に対する品質確認のため行う。すなわち開閉衝撃電圧では、巻数比に比例した電圧による試験、雷インパルス電圧では、巻線の電位振動を考慮した巻数比に比例しない電圧により品質が確認される。   On the other hand, the test to apply the lightning impulse voltage to the winding is performed to confirm the quality against the lightning surge voltage entering the transformer from the power system after installing the transformer in the substation. That is, the quality is confirmed by the test using a voltage proportional to the turn ratio for the switching shock voltage and the voltage not proportional to the turn ratio considering the potential vibration of the winding for the lightning impulse voltage.

図6に空心での試験装置の概略図を示す。絶縁油6を充填した試験用タンク7内に空心の巻線2に巻線と鉄心との間で形成されるキャパシタンスを模擬するための接地筒8を取り付けて配置し、巻線2の一方を短絡線10により短絡させている。そして、接続線9を介して外部の試験装置11に接続し、当該試験装置11から他方の巻線に試験電圧を印加する構成となっている。   FIG. 6 shows a schematic diagram of a test apparatus at the air core. In a test tank 7 filled with insulating oil 6, a grounding cylinder 8 for simulating the capacitance formed between the winding and the iron core is attached to the air winding 2, and one end of the winding 2 is arranged. The short circuit 10 is short-circuited. And it connects to the external test apparatus 11 via the connection line 9, and becomes a structure which applies a test voltage from the said test apparatus 11 to the other coil | winding.

以上説明したように、本発明の変圧器巻線の品質確認試験方法によれば、空心の巻線で完成した変圧器で行うのと同等の試験結果を得ることができるので、現地で故障した巻線を交換する際、新品の更新巻線を工場で鉄心なしの状態で試験することができ、試験に合格した更新巻線を工場から現地に車両等で輸送し、故障した既設巻線と交換するだけで、変圧器の品質を確実に保証することが可能となる。   As described above, according to the method for confirming the quality of a transformer winding of the present invention, since a test result equivalent to that performed with a transformer completed with an air-core winding can be obtained, a failure occurred on site. When replacing the windings, new updated windings can be tested in the factory without an iron core, and the updated windings that have passed the test are transported from the factory to the site by vehicle, etc. It is possible to ensure the quality of the transformer by simply replacing it.

なお、上記実施例では変圧器を例示して説明したが、本発明の品質確認試験方法はこれに限定するものではなく、巻線及び鉄心を有する静止誘導電気機器であれば如何なる機器にも適用可能であることは当然である。   In the above embodiment, the transformer has been described as an example. However, the quality confirmation test method of the present invention is not limited to this, and can be applied to any device as long as it is a static induction electric device having a winding and an iron core. Of course it is possible.

本発明は、巻線(空心)の品質確認に利用可能である。   The present invention can be used for quality confirmation of a winding (air core).

1 既設巻線(故障巻線)
2 新品巻線(更新巻線)
3 車両
4 上部ケース
5 鉄心
6 絶縁油
7 試験用タンク
8 接地筒
9 接続線
10 短絡線
11 試験装置
A 変圧器
1 Existing winding (failed winding)
2 New winding (renewed winding)
3 Vehicle 4 Upper Case 5 Iron Core 6 Insulating Oil 7 Test Tank 8 Grounding Tube 9 Connection Line 10 Short Circuit 11 Test Equipment A Transformer

Claims (2)

更新巻線の高圧側と低圧側を隣接配置した密な結合状態において、電磁的な結合が両巻線間の漏れインダクタンスで決定され、鉄心の影響ほぼなくなることを利用し、両巻線のうち試験電圧を印加しない一方を短絡し、かつ、短絡していない他方の巻線に試験電圧を印加することで、短絡インピーダンスを測定し、この測定値と空心インダクタンス法による計算値とを比較することで、鉄心入りでの巻線の短絡インピーダンスの評価を可能としたことを特徴とする変圧器巻線の品質確認試験方法。 In the tight coupling state where the high voltage side and low voltage side of the renewal winding are arranged adjacent to each other, the electromagnetic coupling is determined by the leakage inductance between the two windings, and the influence of the iron core is almost eliminated. The short-circuit impedance is measured by short-circuiting one that does not apply the test voltage and applying the test voltage to the other winding that is not short-circuited, and compare this measured value with the value calculated by the air-core inductance method. Therefore, it is possible to evaluate the short-circuit impedance of the winding with the iron core, which is a method for checking the quality of the transformer winding. 更新巻線の高圧側と低圧側を隣接配置した密な結合状態において、両巻線のうち試験電圧を印加しない一方を短絡して、電磁的な結合が両巻線間の漏れインダクタンスで決定され、鉄心の有無が電位振動に影響されなくなることを利用し、両巻線と鉄心との間で形成されるキャパシタンスを模擬するための接地筒を取り付けて絶縁油を充填した試験用タンク内に配置し、短絡していない他方の巻線に試験電圧を印加することで、空心状態の更新巻線において雷インパルス耐電圧試験の実施を可能としたことを特徴とする変圧器巻線の品質確認試験方法。In a tightly coupled state in which the high and low voltage sides of the renewal winding are placed adjacent to each other, one of the windings that is not applied with the test voltage is short-circuited, and the electromagnetic coupling is determined by the leakage inductance between the windings. Using the fact that the presence or absence of an iron core is not affected by potential vibration, a grounding cylinder is installed to simulate the capacitance formed between both windings and the iron core, and placed in a test tank filled with insulating oil In addition, by applying a test voltage to the other winding that is not short-circuited, it is possible to carry out a lightning impulse withstand voltage test on the renewed winding in the air-core state. Method.
JP2013036532A 2013-02-27 2013-02-27 Transformer winding quality confirmation test method Active JP6325194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036532A JP6325194B2 (en) 2013-02-27 2013-02-27 Transformer winding quality confirmation test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036532A JP6325194B2 (en) 2013-02-27 2013-02-27 Transformer winding quality confirmation test method

Publications (2)

Publication Number Publication Date
JP2014165406A JP2014165406A (en) 2014-09-08
JP6325194B2 true JP6325194B2 (en) 2018-05-16

Family

ID=51615730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036532A Active JP6325194B2 (en) 2013-02-27 2013-02-27 Transformer winding quality confirmation test method

Country Status (1)

Country Link
JP (1) JP6325194B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160142B1 (en) * 2019-03-26 2020-09-25 엘에스일렉트릭(주) test device for insulation characteristic for transformer
CN112421571B (en) * 2020-11-27 2023-04-21 云南电网有限责任公司电力科学研究院 Transformer protection method with short circuit resistance checking function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224016A (en) * 2002-01-31 2003-08-08 Toshiba Corp Stationary inductive electric apparatus and method of updating the same
JP5726488B2 (en) * 2010-11-22 2015-06-03 株式会社東芝 Simulated iron core and quality confirmation method for renewed windings using the same
JP2016063151A (en) * 2014-09-19 2016-04-25 株式会社東芝 Verification test device and verification test method

Also Published As

Publication number Publication date
JP2014165406A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
Sofian et al. Interpretation of transformer FRA responses—Part II: Influence of transformer structure
Bagheri et al. Advanced transformer winding deformation diagnosis: moving from off-line to on-line
CN107807282B (en) Method for testing dielectric loss factor and capacitance of transformer without disassembling high-voltage lead
Behjat et al. Characterization of power transformer electromagnetic forces affected by winding faults
CN105526835A (en) Simulated test platform for radial winding deformation of transformer
JP6325194B2 (en) Transformer winding quality confirmation test method
CN102156242A (en) Method for testing transformer insulation combination
JP2005241297A (en) Withstand voltage test method of power equipment
CN101806851B (en) Electromagnetic type voltage transformer induced over voltage withstand test system and method
CN105717381A (en) Identification method of extra-high voltage converter transformer field modular assembly
Ang et al. FRA low frequency characteristic study using duality transformer core modeling
KR101104839B1 (en) System and method for testing winding conditions of pad-mounted transformers
Zhao et al. Understanding online frequency response signatures for transformer winding deformation: Axial displacement simulation
Cheng et al. Interpretation of FRA results through low frequency transformer modelling
JP5726488B2 (en) Simulated iron core and quality confirmation method for renewed windings using the same
Cabanas et al. Detection of insulation faults on disc-type winding transformers by means of leakage flux analysis
Freiburg Testing and diagnostics of medium-and high-voltage instrument transformers
Di Pasquale et al. Frequency characterization of cast-resin transformers
Dupuis An introduction to electrical diagnostic testing of power transformers
Liu et al. Design and Development of Combined SF6 Enclosed Gas Insulated Series Resonance Testing Equipment
Hajiaghasi et al. Transformer leakage flux frequencies analysis under internal windings faults
Aravinda et al. Application of SFRA techniques to discriminate short circuit faults of transformer winding
Soloot et al. Internal resonant overvoltage in wind turbine transformers-sensitivity analysis of measurement techniques
Youssef et al. Voltage Sensing and Measurement using OHMIC Voltage Sensors: An Improved Approach to Applications Traditionally Requiring 2.4 to 38 KV Voltage Transformers
Mahvi et al. Power Auto-transformer Mechanical Faults Diagnosis‎ Using Finite Element based FRA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180412

R150 Certificate of patent or registration of utility model

Ref document number: 6325194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250