JP6313047B2 - Apparatus and method for measuring the level of pile pile - Google Patents

Apparatus and method for measuring the level of pile pile Download PDF

Info

Publication number
JP6313047B2
JP6313047B2 JP2014000762A JP2014000762A JP6313047B2 JP 6313047 B2 JP6313047 B2 JP 6313047B2 JP 2014000762 A JP2014000762 A JP 2014000762A JP 2014000762 A JP2014000762 A JP 2014000762A JP 6313047 B2 JP6313047 B2 JP 6313047B2
Authority
JP
Japan
Prior art keywords
pile
specific gravity
liquid level
containers
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014000762A
Other languages
Japanese (ja)
Other versions
JP2015129661A (en
Inventor
今村 一紀
一紀 今村
田中 孝行
孝行 田中
健次 岡山
健次 岡山
圭祐 立野
圭祐 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP2014000762A priority Critical patent/JP6313047B2/en
Publication of JP2015129661A publication Critical patent/JP2015129661A/en
Application granted granted Critical
Publication of JP6313047B2 publication Critical patent/JP6313047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

本発明は、打設杭を打設する工事の際に打設杭の傾きを測定する水平度測定装置およびその方法に関するものである。   The present invention relates to a horizontality measuring apparatus and method for measuring the inclination of a driving pile during construction for driving the driving pile.

海上桟橋や洋上風車の基礎として使用する鋼管杭等の打設杭に、バイブロハンマで振動を加えて海底に打設する工事が行われている。打設杭を海底に打ち込む際に打設杭の傾きを測定する必要があるが、打設杭には激しい振動が生じるので打設中には直接水準器を取り付けて測定することができない。   Construction work is being carried out on a pile such as a steel pipe pile used as the foundation of an offshore jetty or offshore wind turbine by applying vibration with a vibro hammer to the bottom of the sea. It is necessary to measure the inclination of the driven pile when driving the driven pile into the seabed. However, since the driven pile is vibrated vigorously, it cannot be measured directly by attaching a level.

打設杭の傾きを測定する方法として、陸上からレーザー距離計(トランシットなど)を利用して測定する方法がある(例えば特許文献1参照)。具体的には洋上に突出した打設杭の外周面の上下方向に離間した2地点を抽出し、この2地点までの距離から鉛直に対する打設杭の傾きを算出したり、この2地点を結ぶ直線の傾きから打設杭の傾きを測定する。トランシットを利用したこの方法では、打設作業が進み洋上に突出した打設杭の長さが短くなるほど、測定対象となる2地点間の距離が短くなるので傾きの測定誤差は大きくなってしまう。また陸上から打設杭までの距離が長くなるほど、2地点の位置を決める際の精度誤差が傾きの測定に多大な誤差を与えてしまう。さらに打設作業中には打設杭に激しい振動が生じているので、打設杭の振動の振幅がトランシットによる2地点を決定する際の誤差となり、打設作業中に高い精度で打設杭の傾きを測定するには不利である。この打設杭の傾きを測定する際の精度としては、一般的な杭打設工事の管理基準(誤差許容範囲)として1/100〜1/300程度が設定されている。精度としては例えば±0.1°の範囲にあることが望ましいが、上記の通りトランシットによる測定では条件によってはこの精度を得ることができない。   As a method of measuring the inclination of the driving pile, there is a method of measuring from a land using a laser distance meter (such as transit) (for example, refer to Patent Document 1). Specifically, two points separated in the vertical direction of the outer peripheral surface of the driving pile protruding on the ocean are extracted, and the inclination of the driving pile with respect to the vertical is calculated from the distance to these two points, or the two points are connected. Measure the inclination of the driven pile from the inclination of the straight line. In this method using the transit, the distance between the two points to be measured becomes shorter as the driving work progresses and the length of the driving pile protruding on the ocean becomes shorter, so the measurement error of the inclination becomes larger. In addition, as the distance from the land to the driving pile becomes longer, the accuracy error when determining the position of the two points gives a greater error to the measurement of the inclination. Furthermore, during the driving operation, the piles are vibrated vigorously, so the amplitude of the vibration of the driving piles becomes an error when determining the two locations by the transit, and the driving piles with high accuracy during the driving operation. It is disadvantageous to measure the slope of. As the accuracy in measuring the inclination of the pile pile, about 1/100 to 1/300 is set as a management standard (error allowable range) for general pile pile construction. The accuracy is preferably within a range of ± 0.1 °, for example, but as described above, this accuracy cannot be obtained depending on conditions in the measurement by transit.

さらには、陸上から水面下の打設杭を見通すことができないので、水中に完全に水没した打設杭の傾きをトランシットでは測定することができない。そこで水面下の打設杭の傾きを測定する方法として、水中の打設杭に下げ振りと呼ばれる振り子を潜水士が設置してこの傾きを測定する方法がある。この下げ振りを利用する方法も、打設杭の振動により振り子が揺動するので打設作業中は打設杭の傾きを測定することは困難となる。また潜水士の安全性を確保する観点から、下げ振りを利用する測定は打設作業を中断したときまたは打設作業完了後に行うことが望ましいので、打設作業中に打設杭の傾きを測定することはできない。潜水士による水中作業が必要となるので、この下げ振りを利用する測定のコストは大きくなる。   Furthermore, since it is not possible to see the underwater driven pile from the land, the inclination of the driven pile that has been completely submerged in water cannot be measured by transit. Therefore, as a method of measuring the inclination of the driving pile under the surface of the water, there is a method in which a diver installs a pendulum called a downward swing on the driving pile underwater and measures the inclination. Also in the method using this downward swing, it is difficult to measure the inclination of the driving pile during the driving operation because the pendulum swings due to the vibration of the driving pile. In addition, from the viewpoint of ensuring the safety of divers, it is desirable to perform the measurement using a downward swing when the driving operation is interrupted or after completion of the driving operation, so the inclination of the driving pile is measured during the driving operation. I can't do it. Since the underwater work by a diver is required, the cost of measurement using this downward swing increases.

特開2004−279190号公報JP 2004-279190 A

本発明は上記の問題を鑑みてなされたものであり、その目的は打設杭を打設する際に打設杭の傾きを、水上、水中に関わらずリアルタイムに高い精度で測定することができる水平度測定装置および方法を提供することである。   The present invention has been made in view of the above problems, and the purpose thereof is to measure the inclination of the driving pile with high accuracy in real time regardless of whether it is on water or underwater. An apparatus and method for measuring levelness is provided.

上記目的を達成するため本発明の打設杭の水平度測定装置は、地盤に打設される打設杭の傾きを測定する打設杭の水平度測定装置において、比重の異なる2種類の流体が収容されて気密性を有する密閉された複数の容器と、それぞれの容器を連結してこれら容器に収容された相対的に比重の大きい重比重流体を連通させる重比重流体管と、それぞれの容器を連結してこれら容器に収容された相対的に比重の小さい軽比重流体を連通させる軽比重流体管と、前記打設杭の打設作業中に、それぞれの容器に収容された前記重比重流体の液位を逐次検知する液位検知器と、この液位検知器による検知データが逐次入力される演算機と、それぞれの容器を前記打設杭の外周面に固定する固定具とを備え、前記液位検知器の検知データとそれぞれの容器の位置データとに基づいて前記演算機により打設作業中の前記打設杭の傾きを逐次算出する構成にしたことを特徴とする。 In order to achieve the above-mentioned object, the leveling measuring apparatus for driving piles according to the present invention comprises two types of fluids having different specific gravities in the leveling measuring apparatus for driving piles that measures the inclination of the driving piles placed on the ground. A plurality of sealed containers having airtightness, a specific gravity fluid pipe for connecting the specific containers and communicating a specific gravity fluid having a relatively high specific gravity stored in the containers, and the respective containers A light specific gravity fluid pipe for communicating a light specific gravity fluid having a relatively low specific gravity contained in the containers by connecting them, and the heavy specific gravity fluid accommodated in each container during the placing work of the placing piles A liquid level detector for sequentially detecting the liquid level, a calculator to which detection data by the liquid level detector is sequentially input, and a fixture for fixing each container to the outer peripheral surface of the placing pile, Detection data of the liquid level detector and respective containers Characterized in that a configuration of sequentially calculating an inclination of the punching設杭in pouring operations by the arithmetic unit on the basis of the position data.

本発明の打設杭の水平度測定方法では、地盤に打設される打設杭の傾きを測定する打設杭の水平度測定方法において、比重の異なる2種類の流体が収容されて気密性を有する密閉された複数の容器を、前記打設杭の外周面に固定するとともに、それぞれの容器を重比重流体管で連通してこれらの容器に収容された相対的に比重の大きい重比重流体を連通させ、かつ、それぞれの容器を軽比重流体管で連結してこれらの容器に収容された相対的に比重の小さい軽比重流体を連通させた状態にして、前記打設杭の打設作業中に、それぞれの容器に収容された重比重流体の液位を液位検知器により逐次検知し、この検知データを演算機に逐次入力し、この入力された検知データと予め入力されているそれぞれの容器の位置データとに基づいて前記演算機により打設作業中の前記打設杭の傾きを逐次算出することを特徴とする。 In the method for measuring the level of cast pile according to the present invention, in the method for measuring the level of cast pile that measures the inclination of the cast pile placed on the ground, two kinds of fluids having different specific gravities are accommodated and airtight. A plurality of sealed containers having a fixed specific gravity are fixed to the outer peripheral surface of the placing pile, and each container is connected by a heavy specific gravity fluid pipe, and a specific gravity fluid having a relatively large specific gravity is accommodated in these containers. And connecting the respective containers with light specific gravity fluid pipes so that the light specific gravity fluid with relatively small specific gravity accommodated in these containers is in communication with each other. Inside, the liquid level of the heavy specific gravity fluid stored in each container is sequentially detected by the liquid level detector, and this detection data is sequentially input to the computing unit, and the input detection data and the respective pre-input Based on the container position data of Characterized by sequentially calculating an inclination of the punching設杭in pouring operations by machine.

本発明によれば打設杭の外周面に設置される複数の容器の間で、打設杭の傾きに応じて重比重流体と軽比重流体が移動するので、重比重流体の液位の差からそれぞれの容器の高さの差を検出して、この高さの差とそれぞれの容器の位置データから打設杭の傾きを算出することができる。測定の際には重比重流体の液位を液位検知器で測定するので、作業者が目視により測定を行うトランシットや下げ振りと異なりその測定精度を向上することができる。   According to the present invention, the heavy specific gravity fluid and the light specific gravity fluid move between the plurality of containers installed on the outer peripheral surface of the driven pile according to the inclination of the driven pile. Thus, the difference in height of each container can be detected, and the inclination of the placing pile can be calculated from the difference in height and the position data of each container. At the time of measurement, since the liquid level of the heavy specific gravity fluid is measured by the liquid level detector, the measurement accuracy can be improved unlike a transit or a downward swing in which an operator visually measures.

またそれぞれの容器内の重比重流体の液位は打設作業の振動により変動するものの、それぞれの容器における液位変動の位相は同位相となるので、振動による液位変動は液位の差を求める際に相殺される。つまり液位の差は振動の影響をあまり受けず比較的安定した値となるので、打設作業中であっても打設杭の傾きをリアルタイムに高い精度で測定することができる。   In addition, although the liquid level of the specific gravity fluid in each container fluctuates due to the vibration of the placing operation, the phase of the liquid level fluctuation in each container becomes the same phase. Offset when seeking. That is, the difference in the liquid level is not affected by vibration so much and becomes a relatively stable value. Therefore, even during the driving operation, the inclination of the driving pile can be measured with high accuracy in real time.

さらに密閉されたそれぞれの容器を重比重流体管と軽比重流体管により連通させる構成により、この水平度測定装置が大気中にあっても水中にあっても、容器内の重比重流体と軽比重流体はその影響を受けることなく自由に移動することができるので、打設杭の全体が水中にある場合でも打設杭の傾きを測定することが可能となる。   Furthermore, each sealed container communicates with a heavy specific gravity fluid pipe and a light specific gravity fluid pipe, so that the specific gravity fluid and light specific gravity in the container can be measured regardless of whether the leveling measuring device is in the air or in water. Since the fluid can move freely without being affected by the fluid, it is possible to measure the inclination of the driving pile even when the entire driving pile is in water.

液位検知器が、例えばそれぞれの容器に収容された前記重比重流体に浮き前記軽比重流体に沈むフロートと、このフロートを上下に貫通してフロートを上下方向にガイドするガイドロッドと、このフロートの上下変位量を測定するセンサ部とを備える構成とすることもできる。この構成によれば、ガイドロッドが上下に貫通して重比重流体と軽比重流体の境界面に浮かぶフロートは、一種の緩衝材として機能し、フロートの上下変動は重比重流体の液位の上下変動よりも緩やかになる。また、フロートの位置から重比重流体の液位を推定することができるので、打設作業の振動等により重比重流体と軽比重流体の境界面が波立って場所により重比重流体の液位が異なる状態であっても、フロートが波立った境界面の平均値としての液位を示すので、液位検知器の測定精度を向上することができる。そのため打設杭の傾きの測定精度を一段と向上することができる。このセンサ部は例えば磁歪式センサで構成する。   The liquid level detector includes, for example, a float that floats on the heavy specific gravity fluid contained in each container and sinks in the light specific gravity fluid, a guide rod that vertically penetrates the float and guides the float in the vertical direction, and the float It is also possible to adopt a configuration including a sensor unit that measures the amount of vertical displacement of the. According to this configuration, the float that floats on the boundary surface between the heavy specific gravity fluid and the light specific gravity fluid with the guide rod penetrating up and down functions as a kind of cushioning material, and the vertical fluctuation of the float is the upper and lower levels of the liquid level of the heavy specific gravity fluid. It will be more gradual than fluctuations. Also, since the liquid level of heavy specific gravity fluid can be estimated from the position of the float, the boundary surface of heavy specific gravity fluid and light specific gravity fluid undulates due to the vibration of the placement work, etc. Even in a different state, the liquid level is shown as an average value of the boundary surface where the float is waved, so that the measurement accuracy of the liquid level detector can be improved. Therefore, the measurement accuracy of the inclination of the driving pile can be further improved. This sensor unit is composed of, for example, a magnetostrictive sensor.

比重の異なる2種類の流体は非圧縮性流体で構成することもできる。この構成によれば
、打設杭を大深度の海底に設置する場合であっても、容器や重比重流体管や軽比重流体管が水圧により変形する事故を防止できるので、打設杭の傾きを高い精度で測定することができる。
Two types of fluids having different specific gravities can also be constituted by incompressible fluids. According to this configuration, even when the driving pile is installed on the seabed at a deep depth, it is possible to prevent an accident in which the container, heavy specific gravity fluid pipe or light specific gravity fluid pipe is deformed by water pressure. Can be measured with high accuracy.

本発明の打設杭の水平度測定装置は、容器を2個備えてそれぞれの容器が平面視で前記打設杭の外周面に対向した位置に配置されるユニットを2組有し、それぞれのユニットを構成する容器が前記打設杭の軸心を中心にして平面視で周方向に90°ずれた位置に配置される。この構成によれば打設杭に対して容器が均等に設置されるので、単純な計算式を利用して演算機で打設杭の傾きを算出することができる。   The placing pile leveling measuring apparatus of the present invention has two sets of units each provided with two containers, each container being disposed at a position facing the outer peripheral surface of the placing pile in a plan view. The container which comprises a unit is arrange | positioned in the position which shifted | deviated 90 degrees in the circumferential direction by planar view centering on the axial center of the said placing pile. According to this configuration, since the containers are installed evenly with respect to the driving pile, the inclination of the driving pile can be calculated with a calculator using a simple calculation formula.

本発明の打設杭の水平度測定方法は、例えば液位検知器として、それぞれの容器に収容された前記重比重流体に浮き前記軽比重流体に沈むフロートと、このフロートを上下に貫通してフロートを上下方向にガイドするガイドロッドと、このフロートの上下変位量を測定するセンサ部とを有する液位検知器を使用し、前記センサ部により前記フロートの上下変位量を逐次検知することにより、このフロートが浮かぶ重比重流体の液位を逐次検知する構成とすることもできる。また、例えば液位検知器により逐次検知された検知データを、予め設定された所定時間で平均してそれぞれの容器に収容された重比重流体の液位の平均値を算出し、この平均値を、打設杭の傾きの算出に用いる構成とすることもできる。この構成によれば、打設作業の振動により重比重流体の液位に変動が生じる場合であっても、液位を一定時間計測してその平均をとった平均値を利用して打設杭の傾きを算出するので、傾きの値を安定した値として得ることができる。つまり液位を測定する際に、たとえば波がたまたま容器の1個に衝突して重比重流体の液位を変化させた場合であっても、このような外的要因によるノイズの影響を抑制して、打設杭の傾きを安定した値として得ることができる。そのためノイズの影響による誤った傾きの値をもとに、打設杭の傾きを修正する等の作業を行ってしまう事態を回避することができる。さらに比重の異なる2種類の流体として、非圧縮性流体を用いることもできる。   The leveling measurement method of the driving pile according to the present invention includes, for example, a liquid level detector, a float that floats on the heavy specific gravity fluid contained in each container and sinks in the light specific gravity fluid, and vertically penetrates the float. By using a liquid level detector having a guide rod that guides the float in the vertical direction and a sensor unit that measures the vertical displacement amount of the float, the sensor unit sequentially detects the vertical displacement amount of the float, The liquid level of the heavy fluid with which the float floats can be sequentially detected. In addition, for example, the detection data sequentially detected by the liquid level detector is averaged over a predetermined time set in advance to calculate an average value of the liquid level of the heavy specific gravity fluid stored in each container, and this average value is calculated. It can also be set as the structure used for calculation of the inclination of a placing pile. According to this configuration, even if the liquid level of heavy specific gravity fluid fluctuates due to the vibration of the driving operation, the driving pile is measured using the average value obtained by measuring the liquid level for a certain time and taking the average. Therefore, the slope value can be obtained as a stable value. In other words, when measuring the liquid level, for example, even when a wave happens to collide with one of the containers and the liquid level of the heavy fluid is changed, the influence of noise due to such external factors is suppressed. Thus, the inclination of the driving pile can be obtained as a stable value. Therefore, it is possible to avoid a situation in which work such as correcting the inclination of the driving pile is performed based on the erroneous inclination value due to the influence of noise. Furthermore, an incompressible fluid can also be used as two types of fluids having different specific gravities.

本発明の打設杭の水平度測定装置の概略を例示する図である。It is a figure which illustrates the outline of the horizontality measuring apparatus of the placing pile of this invention. 図1の平面図である。It is a top view of FIG. 固定具の変形例を例示する斜視図である。It is a perspective view which illustrates the modification of a fixture. 図3の水平度測定装置を打設杭に設置した状態を例示する平面図である。It is a top view which illustrates the state which installed the level measuring device of Drawing 3 in the placing pile. 図4の側面図である。FIG. 5 is a side view of FIG. 4. 図4よりも直径の小さい打設杭に水平度測定装置を設置した状態を例示する平面図である。It is a top view which illustrates the state which installed the levelness measuring apparatus in the placing pile smaller than a diameter in FIG. 図6の側面図である。FIG. 7 is a side view of FIG. 6.

以下、本発明の打設杭の水平度測定装置と水平度測定方法を図に示した実施形態に基づいて説明する。   Hereinafter, the leveling measuring device and leveling measuring method of a placing pile of the present invention are explained based on the embodiment shown in the figure.

図1と図2に例示すように本発明の打設杭11の水平度測定装置1は、たとえば水等の重比重流体wとこの重比重流体wよりも相対的に比重の小さいたとえば空気等の軽比重流体gとが収容されて気密性を有する密閉された複数の容器2と、それぞれの容器2を連結してこれら容器2に収容された相対的に比重の大きい重比重流体wを連通させる重比重流体管3と、それぞれの容器2を連結してこれら容器2に収容された相対的に比重の小さい軽比重流体gを連通させる軽比重流体管4と、それぞれの容器2に収容された重比重流体wの液位を検知する液位検知器5と、この液位検知器5による検知データが入力される演算機6と、それぞれの容器2を打設杭11の外周面に固定する固定具7とを備えている。なお、図1は発明の内容の説明を容易にするため一部の容器2を省略している。 1 and a horizontal measuring device 1 of the punching設杭11 of the invention as you illustrated in FIG. 2, for example, a small example air relatively specific gravity than the heavy specific gravity fluid w heavy specific gravity fluid w Toko such as water A plurality of hermetically sealed containers 2 that contain a light specific gravity fluid g and the like, and a heavy specific gravity fluid w having a relatively high specific gravity stored in the containers 2 by connecting the containers 2 to each other. The specific gravity fluid pipes 3 to be communicated, the light specific gravity fluid pipes 4 connected to the respective containers 2 to communicate the light specific gravity fluid g having a relatively small specific gravity, and the containers 2 are accommodated in the respective containers 2. The liquid level detector 5 for detecting the liquid level of the heavy specific gravity fluid w, the calculator 6 to which the detection data by the liquid level detector 5 is input, and the respective containers 2 on the outer peripheral surface of the placing pile 11 And a fixing tool 7 to be fixed. In FIG. 1, some containers 2 are omitted for easy explanation of the contents of the invention.

円筒状の容器2には、収容された重比重流体wの液位を検知する液位検知器5がそれぞれ設置されており、この液位検知器5により得られた検知データは無線通信または有線通信によって演算機6に入力される。容器2の形状は円筒状の他、角柱状など種々の形状を採用できる。この演算機6は容器2の近傍に設置してもよいが、容器2の近傍では演算機6に耐振性能や耐水性能が要求されるので、洋上の作業船やバイブロハンマを操作する作業者の近傍に配置する方が望ましい。ベルト等の固定具7によりこの容器2は打設杭11に締め付けられて固定される。   The cylindrical container 2 is provided with a liquid level detector 5 for detecting the liquid level of the contained heavy specific gravity fluid w, and the detection data obtained by the liquid level detector 5 is transmitted by wireless communication or wired. It is input to the calculator 6 by communication. The shape of the container 2 may be various shapes such as a prismatic shape in addition to a cylindrical shape. The calculator 6 may be installed in the vicinity of the container 2, but in the vicinity of the container 2, the calculator 6 is required to have vibration resistance and water resistance, so that it is in the vicinity of an operator operating an offshore work boat or a vibratory hammer. It is desirable to arrange in. The container 2 is fastened and fixed to the driving pile 11 by a fixing tool 7 such as a belt.

液位検知器5は、例えばそれぞれの容器2に収容された重比重流体wに浮かび軽比重流体gに沈む比重に調整されたフロート8と、このフロート8を上下に貫通してフロート8を上下方向にガイドするガイドロッド9と、このフロート8の上下変位量を測定するセンサ部10とを備えている。この実施形態では、円形断面のガイドロッド9に円柱状のフロート8がガイドされて円滑に上下移動できる構造になっている。フロート8の外周面と容器2の内周面とのすき間は、周方向で均一にすることが望ましいので、円柱状のフロート8の場合は円筒状の容器2を用いる。このセンサ部10は例えば磁歪式センサやレーザー距離計で構成することができる。また液位検知器5は、フロート8とガイドロッド9を設けずに、重比重流体wと軽比重流体gの境界面までの距離(重比重流体wの液位ともいう)を直接センサ部10で測定する構成としてもよい。   The liquid level detector 5 includes, for example, a float 8 that is adjusted to have a specific gravity that floats on the heavy specific gravity fluid w housed in each container 2 and sinks in the light specific gravity fluid g, and the float 8 moves up and down through the float 8. A guide rod 9 that guides in the direction and a sensor unit 10 that measures the vertical displacement of the float 8 are provided. In this embodiment, a cylindrical float 8 is guided by a guide rod 9 having a circular cross section so that it can smoothly move up and down. Since it is desirable that the clearance between the outer peripheral surface of the float 8 and the inner peripheral surface of the container 2 be uniform in the circumferential direction, the cylindrical container 2 is used in the case of the columnar float 8. The sensor unit 10 can be constituted by, for example, a magnetostrictive sensor or a laser distance meter. Further, the liquid level detector 5 does not include the float 8 and the guide rod 9, and directly determines the distance to the boundary surface between the heavy specific gravity fluid w and the light specific gravity fluid g (also referred to as the liquid level of the heavy specific gravity fluid w). It is good also as a structure measured by.

水平度測定装置1はたとえば4個の容器2を備えており、打設杭11の軸心を中心して平面視で周方向に90°の間隔で打設杭11の外周面に容器2は設置される。この実施形態では、打設杭11の軸心に対して対向する2個の容器2が、重比重流体管3と軽比重流体管4で連結されて1組のユニットを構成している。つまり打設杭11には2組のユニットが打設杭11の軸心を中心にして平面視で周方向に90°ずれた位置に配置されている。   The horizontality measuring device 1 includes, for example, four containers 2, and the containers 2 are installed on the outer peripheral surface of the driving pile 11 at intervals of 90 ° in the circumferential direction in plan view around the axis of the driving pile 11. Is done. In this embodiment, two containers 2 opposed to the axis of the placing pile 11 are connected by a heavy specific gravity fluid pipe 3 and a light specific gravity fluid pipe 4 to constitute a set of units. That is, two sets of units are arranged in the placing pile 11 at positions shifted by 90 ° in the circumferential direction in plan view with the axis of the placing pile 11 as the center.

重比重流体管3はそれぞれの容器2の底面または下端部に連結されており、一方の容器2から他方の容器2に重比重流体wを移動させることができる。軽比重流体管4はそれぞれの容器2の天面または上端部に連結されており、一方の容器2から他方の容器2に軽比重流体gを移動させることができる。重比重流体管3および軽比重流体管4は、円管を採用して打設杭11の外周面に合わせて容器2どうしを最短距離で連結するように延設することが好ましい。   The heavy gravity fluid pipe 3 is connected to the bottom surface or lower end of each container 2, and the heavy gravity fluid w can be moved from one container 2 to the other container 2. The light specific gravity fluid pipe 4 is connected to the top or upper end of each container 2, and the light specific gravity fluid g can be moved from one container 2 to the other container 2. It is preferable that the heavy specific gravity fluid pipe 3 and the light specific gravity fluid pipe 4 are circular pipes and are extended so as to connect the containers 2 at the shortest distance in accordance with the outer peripheral surface of the placing pile 11.

地盤に打設される打設杭11の傾きを測定する際には、まず打設杭11の外周面の予め定められた所定の位置に、固定具7により2組のユニットを構成する合計4個の容器2が固定される。打設杭11が垂直に配置された状態となるとき、それぞれ同じ高さとなるようにユニットを構成する2個の容器2が設置されることが望ましい。1組のユニットを構成する2個の容器2内の重比重流体wは、打設杭11に傾きが生じると高い位置の容器2から低い位置の容器2に向かって重比重流体管3を通じて移動し、同一の高さの液位を維持しようとする。この重比重流体wの移動に伴い軽比重流体gは、軽比重流体管4を通じて容器2内の圧力が均一となるように重比重流体wとは逆方向に移動する。つまり打設杭11の傾きに応じて各容器2の重比重流体wの液位は変動する。この容器2は気密性を有しており重比重流体管3と軽比重流体管4で連通されているので、容器2が水中にある場合でも水上にある場合でも、重比重流体wと軽比重流体gは2個の容器2の間を同じように移動することができる。   When measuring the inclination of the driving pile 11 to be placed on the ground, first, a total of four units comprising two sets of fixtures 7 at predetermined predetermined positions on the outer peripheral surface of the driving pile 11. The individual containers 2 are fixed. When the placing piles 11 are arranged vertically, it is desirable that the two containers 2 constituting the unit are installed so as to have the same height. The heavy specific gravity fluid w in the two containers 2 constituting one set moves through the heavy specific gravity fluid pipe 3 from the high position container 2 toward the low position container 2 when the placing pile 11 is inclined. And try to maintain the same liquid level. As the heavy specific gravity fluid w moves, the light specific gravity fluid g moves in the opposite direction to the heavy specific gravity fluid w so that the pressure in the container 2 becomes uniform through the light specific gravity fluid pipe 4. That is, the liquid level of the specific gravity fluid w in each container 2 varies according to the inclination of the placing pile 11. Since the container 2 is airtight and communicates with the heavy specific gravity fluid pipe 3 and the light specific gravity fluid pipe 4, the heavy specific gravity fluid w and the light specific gravity can be used regardless of whether the container 2 is in water or on the water. The fluid g can move between the two containers 2 in the same way.

このように容器2を打設杭11の外周面に固定した後に打設を開始する。この打設作業中に液位検知器5は各容器2内で変動する重比重流体wの液位を逐次検知する。具体的には、液位の変動に伴い上下方向に移動するフロート8からセンサ部10の所定の位置まで
の距離H1、H2を、センサ部10は逐次測定する。この距離H1、H2を検知データとして液位検知器5は演算機6に逐次入力する。この演算機6は、容器2の位置データとして予め入力された1組のユニットを構成する2個の容器2の間の距離Lと、各容器2の重比重流体wの液位の差H2−H1から、下記(1)式により打設杭11の傾きθを逐次算出する。
θ=tan−1((H2−H1)/L) (1)
Thus, after the container 2 is fixed to the outer peripheral surface of the placing pile 11, the placing is started. During this placing operation, the liquid level detector 5 sequentially detects the liquid level of the heavy specific gravity fluid w that fluctuates in each container 2. Specifically, the sensor unit 10 sequentially measures the distances H1 and H2 from the float 8 that moves in the vertical direction according to the fluctuation of the liquid level to a predetermined position of the sensor unit 10. The liquid level detector 5 sequentially inputs the distances H1 and H2 to the calculator 6 as detection data. This computing unit 6 is configured such that the distance L between the two containers 2 constituting a set of units input in advance as the position data of the containers 2 and the liquid level difference H2− of the heavy gravity fluid w in each container 2. From H1, the inclination θ of the placing pile 11 is sequentially calculated by the following equation (1).
θ = tan −1 ((H2−H1) / L) (1)

この角度θは、1組のユニットを構成する2個の容器2を通るxz平面における打設杭11の傾きを示している。同様に他のユニットを構成する2個の容器2を通るyz平面における打設杭11の傾きを演算機6は算出する。演算機6から逐次得られる角度θがゼロとなるように調整しながら、作業者は打設杭11の打設作業を行う。   This angle θ indicates the inclination of the placing pile 11 in the xz plane passing through the two containers 2 constituting one set of units. Similarly, the calculator 6 calculates the inclination of the placing pile 11 in the yz plane passing through the two containers 2 constituting another unit. While adjusting so that the angle θ sequentially obtained from the calculator 6 becomes zero, the operator performs the driving work of the driving pile 11.

例えば打設杭11の直径が3000mmであり、フロート8が300mmの長さを上下移動でき、磁歪式センサ10の測定精度がフロート8の移動可能距離の0.01%である場合は、H1とH2の検知可能な最小値はそれぞれ0.03mmとなり、液位の差H2−H1の検知可能な最小値は0.06mmとなり、角度θの精度は0.0011°となる。また液位の差H2−H1の最大値は300mmとなり、角度θの測定可能範囲は±5.71°となる。この水平度測定装置1の測定精度は、従来の方法と比べると飛躍的に高いものとなる。また打設杭11に振動が生じている場合には各容器2に振動による液位変動が生じるが、この各容器2における液位変動は同位相となり液位の差を求める際に振動の影響は相殺されるので、打設作業中であっても水平度測定装置1は打設杭11の傾きを測定することができる。   For example, when the diameter of the driving pile 11 is 3000 mm, the float 8 can move up and down a length of 300 mm, and the measurement accuracy of the magnetostrictive sensor 10 is 0.01% of the movable distance of the float 8, H1 The minimum detectable value of H2 is 0.03 mm, the minimum detectable value of the liquid level difference H2−H1 is 0.06 mm, and the accuracy of the angle θ is 0.0011 °. Further, the maximum value of the liquid level difference H2−H1 is 300 mm, and the measurable range of the angle θ is ± 5.71 °. The measurement accuracy of the levelness measuring apparatus 1 is significantly higher than that of the conventional method. Further, when vibration is generated in the placing pile 11, the liquid level fluctuation due to the vibration occurs in each container 2, and the liquid level fluctuation in each container 2 becomes the same phase, and the influence of the vibration when obtaining the liquid level difference. Is canceled out, so that the leveling device 1 can measure the inclination of the placing pile 11 even during the placing operation.

また、それぞれの容器2は密閉されていて外部の海水が流入することはない。したがって、打設杭11の打設が進んで容器2が水中に沈んでも測定を続けることができる。水上、水中に関わらずリアルタイムで打設杭11の水平度を測定できるので、従来に比して施工管理が大幅に改善される。陸上で打設杭11を打設する場合であっても本願発明は非常に有益である。   Moreover, each container 2 is sealed and external seawater does not flow in. Therefore, measurement can be continued even when the placement pile 11 is placed and the container 2 is submerged in water. Since the level of the placing pile 11 can be measured in real time regardless of whether it is on the water or underwater, the construction management is greatly improved as compared with the prior art. Even when the driving pile 11 is driven on land, the present invention is very useful.

演算機6は、例えば液位検知器5により逐次検知された検知データを、予め設定された所定時間で平均してそれぞれの容器に収容された重比重流体wの液位の平均値を算出し、この平均値を打設杭11の傾きの算出に用いる構成としてもよい。この構成によれば、波の衝撃等により1個の容器2内の液位が瞬間的に変動した場合であっても、実際とは異なる打設杭11の傾きが算出されることを抑制できる。   For example, the arithmetic unit 6 averages the detection data sequentially detected by the liquid level detector 5 over a predetermined time set in advance and calculates the average value of the liquid levels of the heavy specific gravity fluids w stored in the respective containers. The average value may be used for calculating the inclination of the placing pile 11. According to this configuration, even when the liquid level in one container 2 fluctuates instantaneously due to a wave impact or the like, it is possible to suppress the calculation of the inclination of the placing pile 11 different from the actual one. .

なお容器2に収容する重比重流体wと軽比重流体gの組み合わせは、水と空気の組み合わせに限らず、水と油など共に液体であっても比重差があり互いに混ざらないものであれば既知の物質を適宜組み合わせて利用することができる。このときフロート8は、重比重流体wには浮き軽比重流体gには沈む比重を有するように形成される。またフロート8を使用しない場合は、屈折率の異なる2種類の流体を利用し、レーザー距離計によりその境界面の位置を測定する構成としてもよい。比重の異なる2種類の流体を非圧縮性流体とすれば、打設杭11を大深度の海底に設置する際であっても、容器2や重比重流体管3や軽比重流体管4が水圧により変形する事故を防止できるので、打設杭11の傾きを高い精度で測定することができる。フロート8の移動可能距離を最大にするために、容器2の容積に対してそれぞれ50%の体積を占めるように2種類の流体を収容することが望ましい。   The combination of the heavy specific gravity fluid w and the light specific gravity fluid g stored in the container 2 is not limited to the combination of water and air, and is known as long as it does not mix with each other even if it is liquid such as water and oil. These substances can be used in appropriate combinations. At this time, the float 8 is formed to have a specific gravity that floats in the heavy specific gravity fluid w and sinks in the light specific gravity fluid g. When the float 8 is not used, two types of fluids having different refractive indexes may be used to measure the position of the boundary surface with a laser distance meter. If two types of fluids with different specific gravity are incompressible fluids, the container 2, the heavy specific gravity fluid pipe 3 and the light specific gravity fluid pipe 4 are hydraulically pressurized even when the placing pile 11 is installed on the deep seabed. Therefore, it is possible to measure the inclination of the placing pile 11 with high accuracy. In order to maximize the movable distance of the float 8, it is desirable to accommodate two kinds of fluids so as to occupy 50% of the volume of the container 2.

図3〜5に例示する据付機構を用いて、固定具7によって容器2を打設杭11に固定する場合の補助とすることもできる。この据付機構は、容器2を支持する枠体12と、枠体12に回転可能に設置されたローラ13と、ローラ13の回転軸に設置された複数の磁石14とを備えている。打設杭11に容器2を設置する際には、打設杭11の外周面にロー
ラ13を接触させるとともに磁石14は打設杭11の外周面に接触しない方向に向けておき、容器2を移動させて打設杭11の上端から予め定められた高さH0となる位置に位置決めした後、磁石14を打設杭11の外周面に接触させて容器2を仮固定する。打設杭11の軸心を中心にして平面視(xy平面)で周方向に90°の間隔で4個の容器2を順次仮固定していく。ローラ13によって容器2を円滑に移動させて位置決めすることができる。仮固定が完了してその位置の微調整が完了した後に、各容器2の外周側から固定具7を巻き付け容器2の固定を完了する。
It is also possible to use the installation mechanism illustrated in FIGS. 3 to 5 as an auxiliary when the container 2 is fixed to the placing pile 11 by the fixture 7. The installation mechanism includes a frame 12 that supports the container 2, a roller 13 that is rotatably installed on the frame 12, and a plurality of magnets 14 that are installed on the rotation shaft of the roller 13. When installing the container 2 on the driving pile 11, the roller 13 is brought into contact with the outer peripheral surface of the driving pile 11, and the magnet 14 is directed in a direction not in contact with the outer peripheral surface of the driving pile 11. After being moved and positioned at a position having a predetermined height H0 from the upper end of the driving pile 11, the magnet 14 is brought into contact with the outer peripheral surface of the driving pile 11 to temporarily fix the container 2. The four containers 2 are temporarily fixed sequentially at intervals of 90 ° in the circumferential direction in plan view (xy plane) around the axis of the placing pile 11. The container 2 can be moved and positioned smoothly by the roller 13. After the temporary fixing is completed and the fine adjustment of the position is completed, the fixing tool 7 is wound from the outer peripheral side of each container 2 to complete the fixing of the container 2.

このとき打設杭11を挟んで向かい合う2個の容器2を1組のユニットとして、それぞれの容器2が重比重流体管3および軽比重流体管4により連通される。この構成によれば、x軸方向に向かい合い固定された2個の容器2を用いて打設杭11のx軸方向の傾きを検知でき、y軸方向に向かい合い固定された2個の容器2を用いて打設杭11のy軸方向の傾きを検知することができる。またすべての容器2を重比重流体管3および軽比重流体管4で連通して、重比重流体管3、軽比重流体管4のそれぞれを通じて、重比重流体w、軽比重流体gがすべての容器2の間で移動可能に構成してもよい。この場合は選択した2個の容器2の液位H1とH2の差から、平面視でこの選択した2個の容器2を結ぶ直線方向における打設杭11の傾きを検知することができる。   At this time, the two containers 2 facing each other across the placing pile 11 are set as a unit, and the containers 2 are communicated with each other by the heavy specific gravity fluid pipe 3 and the light specific gravity fluid pipe 4. According to this configuration, the inclination of the placing pile 11 in the x-axis direction can be detected using the two containers 2 fixed facing each other in the x-axis direction, and the two containers 2 fixed facing each other in the y-axis direction are detected. It is possible to detect the inclination of the placing pile 11 in the y-axis direction. Further, all the containers 2 are communicated with each other by the heavy specific gravity fluid pipe 3 and the light specific gravity fluid pipe 4, and the heavy specific gravity fluid w and the light specific gravity fluid g are all contained in the containers through the heavy specific gravity fluid pipe 3 and the light specific gravity fluid pipe 4, respectively. You may comprise so that a movement between 2 is possible. In this case, from the difference between the liquid levels H1 and H2 of the two selected containers 2, the inclination of the placing pile 11 in the linear direction connecting the two selected containers 2 can be detected in plan view.

打設作業完了後は、水平度測定装置1を打設杭11から取り外して回収するが、打設杭11の傾きを長期的にモニタリングするために打設杭11に設置したままにすることもできる。   After the placement work is completed, the leveling measuring device 1 is removed from the placement pile 11 and collected. However, in order to monitor the inclination of the placement pile 11 for a long period, it may be left installed on the placement pile 11. it can.

図6、図7に例示するように、管径の小さい打設杭11に水平度測定装置1を設置する場合には、打設杭11の上端からの高さH0を変更し各容器2が互いに干渉しないように配置して、固定具7で固定する。このとき打設杭11を挟んで向かい合う2個の容器2を1組のユニットとして同じ高さH0に設置し、この2個の容器2を互いに重比重流体管3と軽比重流体管4で連通する。即ち打設杭11の軸心を中心にして平面視で周方向に180°の間隔となる2個の容器2を1組のユニットとし、同一の高さH0に設置し重比重流体管3等で連通させる。これにより、x軸方向とy軸方向のそれぞれにおける打設杭11の傾きを水平度測定装置1は測定することができる。このようにして、水平度測定装置1は管径の異なる打設杭11に対しても適応させることができる。   As illustrated in FIGS. 6 and 7, when the horizontality measuring device 1 is installed in the placing pile 11 having a small pipe diameter, the height H0 from the upper end of the placing pile 11 is changed and each container 2 is It arrange | positions so that it may not mutually interfere and it fixes with the fixing tool 7. FIG. At this time, the two containers 2 facing each other across the placing pile 11 are installed at the same height H0 as a unit, and the two containers 2 communicate with each other through the heavy specific gravity fluid pipe 3 and the light specific gravity fluid pipe 4. To do. That is, two containers 2 that are 180 ° apart in the circumferential direction in a plan view centering on the axis of the pile 11 are set as a unit, installed at the same height H0, and the specific gravity fluid pipe 3 etc. Connect with. Thereby, the horizontality measuring apparatus 1 can measure the inclination of the placing pile 11 in each of the x-axis direction and the y-axis direction. In this way, the horizontality measuring device 1 can be adapted to the placing piles 11 having different pipe diameters.

なお、設置する容器2の個数は少なくとも2個あれば1つの方向の傾きを検知することができ、3個あれば演算により打設杭11のx軸方向とy軸方向の傾きを検知することができ、4個あれば簡単な計算により打設杭11のx軸方向とy軸方向の傾きを検知することができる。また水平度測定装置1を打設杭11の内壁側面に設置する構成としても、上記同様に打設杭11の傾きを検知することができる。このとき打設杭11の内側側壁に容器2を直接固定するボルトまたは磁石等で構成された固定具7や、打設杭11の内壁側面に容器2を押し付けるリング状の固定具7を利用することができる。   In addition, if there are at least two containers 2 to be installed, the inclination in one direction can be detected, and if there are three, the inclination in the x-axis direction and the y-axis direction of the placing pile 11 can be detected by calculation. If there are four, the inclination of the placing pile 11 in the x-axis direction and the y-axis direction can be detected by simple calculation. Moreover, also as a structure which installs the level measuring device 1 in the inner wall side surface of the placement pile 11, the inclination of the placement pile 11 is detectable similarly to the above. At this time, a fixture 7 constituted by a bolt or a magnet or the like for directly fixing the container 2 to the inner side wall of the placing pile 11 or a ring-shaped fixture 7 for pressing the container 2 against the inner wall side surface of the placing pile 11 is used. be able to.

1 水平度測定装置
2 容器
3 重比重流体管
4 軽比重流体管
5 液位検知器
6 演算機
7 固定具
8 フロート
9 ガイドロッド
10 センサ部
11 打設杭
w 重比重流体
g 軽比重流体
DESCRIPTION OF SYMBOLS 1 Levelness measuring apparatus 2 Container 3 Heavy specific gravity fluid pipe 4 Light specific gravity fluid pipe 5 Liquid level detector 6 Calculation machine 7 Fixture 8 Float 9 Guide rod 10 Sensor part 11 Pile pile W Heavy specific gravity fluid g Light specific gravity fluid

Claims (9)

地盤に打設される打設杭の傾きを測定する打設杭の水平度測定装置において、
比重の異なる2種類の流体が収容されて気密性を有する密閉された複数の容器と、それぞれの容器を連結してこれら容器に収容された相対的に比重の大きい重比重流体を連通させる重比重流体管と、それぞれの容器を連結してこれら容器に収容された相対的に比重の小さい軽比重流体を連通させる軽比重流体管と、前記打設杭の打設作業中に、それぞれの容器に収容された前記重比重流体の液位を逐次検知する液位検知器と、この液位検知器による検知データが逐次入力される演算機と、それぞれの容器を前記打設杭の外周面に固定する固定具とを備え、前記液位検知器の検知データとそれぞれの容器の位置データとに基づいて前記演算機により打設作業中の前記打設杭の傾きを逐次算出する構成にしたことを特徴とする打設杭の水平度測定装置。
In the leveling measuring device of the driving pile that measures the inclination of the driving pile placed on the ground,
Two or more kinds of fluids having different specific gravities are accommodated and hermetically sealed containers are connected to each other, and the specific gravities of fluids having a relatively large specific gravity accommodated in these containers are connected to each other. A fluid pipe, a light specific gravity fluid pipe connecting the respective containers and communicating a light specific gravity fluid having a relatively small specific gravity accommodated in the containers, and the placement of the placing pile to each container; A liquid level detector that sequentially detects the liquid level of the contained heavy specific gravity fluid, a calculator to which detection data by the liquid level detector is sequentially input, and the respective containers are fixed to the outer peripheral surface of the placing pile A fixing tool, and based on the detection data of the liquid level detector and the position data of each container, the calculator is configured to sequentially calculate the inclination of the placing pile during the placing operation. Measuring the horizontality of the characteristic pile Location.
前記液位検知器がそれぞれの容器に収容された前記重比重流体に浮き前記軽比重流体に沈むフロートと、このフロートを上下に貫通してフロートを上下方向にガイドするガイドロッドと、このフロートの上下変位量を測定するセンサ部とを備える請求項1に記載の打設杭の水平度測定装置。   A float in which the liquid level detector floats in the heavy specific gravity fluid contained in each container and sinks in the light specific gravity fluid, a guide rod that vertically penetrates the float and guides the float in the vertical direction, and the float The leveling measuring device of the placing pile according to claim 1 provided with a sensor part which measures the amount of up-and-down displacement. 前記センサ部が、磁歪式センサである請求項2に記載の打設杭の水平度測定装置。   The leveling measuring device for a driving pile according to claim 2, wherein the sensor unit is a magnetostrictive sensor. 前記比重の異なる2種類の流体が非圧縮性流体である請求項1〜3のいずれかに記載の打設杭の水平度測定装置。   The leveling measuring device for placing piles according to any one of claims 1 to 3, wherein the two kinds of fluids having different specific gravities are incompressible fluids. 前記容器を2個備えてそれぞれの容器が平面視で前記打設杭の外周面に対向した位置に配置されるユニットを2組有し、それぞれのユニットを構成する容器が前記打設杭の軸心を中心にして平面視で周方向に90°ずれた位置に配置される請求項1〜4のいずれかに記載の打設杭の水平度測定装置。   Two containers are provided, and each container has two sets of units arranged at positions opposed to the outer peripheral surface of the placing pile in plan view, and the containers constituting each unit are shafts of the placing pile. The leveling measuring device of the placing pile according to any one of claims 1 to 4, which is arranged at a position shifted by 90 ° in the circumferential direction in plan view with the center at the center. 地盤に打設される打設杭の傾きを測定する打設杭の水平度測定方法において、
比重の異なる2種類の流体が収容されて気密性を有する密閉された複数の容器を、前記打設杭の外周面に固定するとともに、それぞれの容器を重比重流体管で連通してこれらの容器に収容された相対的に比重の大きい重比重流体を連通させ、かつ、それぞれの容器を軽比重流体管で連結してこれらの容器に収容された相対的に比重の小さい軽比重流体を連通させた状態にして、前記打設杭の打設作業中に、それぞれの容器に収容された重比重流体の液位を液位検知器により逐次検知し、この検知データを演算機に逐次入力し、この入力された検知データと予め入力されているそれぞれの容器の位置データとに基づいて前記演算機により打設作業中の前記打設杭の傾きを逐次算出することを特徴とする打設杭の水平度測定方法。
In the method for measuring the level of cast piles that measures the inclination of the cast piles that are placed on the ground,
A plurality of hermetically sealed containers containing two types of fluids having different specific gravities are fixed to the outer peripheral surface of the placing pile, and these containers are communicated with each other by heavy specific gravity fluid pipes. The specific gravity fluids with relatively large specific gravity accommodated in the containers are connected, and the respective specific gravity fluid pipes accommodated in these containers are connected by connecting the respective containers with light specific gravity fluid pipes. In this state, during the placement work of the placement pile, the liquid level of the heavy specific gravity fluid stored in each container is sequentially detected by the liquid level detector, and this detection data is sequentially input to the calculator, A pitching pile characterized in that, based on the input detection data and the position data of each container input in advance, the calculator sequentially calculates the inclination of the driving pile during the driving work . Leveling measurement method.
前記液位検知器として、それぞれの容器に収容された前記重比重流体に浮き前記軽比重流体に沈むフロートと、このフロートを上下に貫通してフロートを上下方向にガイドするガイドロッドと、このフロートの上下変位量を測定するセンサ部とを有する液位検知器を使用し、前記センサ部により前記フロートの上下変位量を逐次検知することにより、このフロートが浮かぶ重比重流体の液位を逐次検知する請求項6に記載の打設杭の水平度測定方法。   As the liquid level detector, a float that floats on the heavy specific gravity fluid contained in each container and sinks in the light specific gravity fluid, a guide rod that vertically penetrates the float and guides the float vertically, and the float Using a liquid level detector that has a sensor unit that measures the vertical displacement of the float, and sequentially detecting the vertical displacement of the float by the sensor unit, the liquid level of the heavy fluid with which the float floats is sequentially detected. The leveling measurement method of the placing pile according to claim 6. 前記液位検知器により逐次検知された検知データを、予め設定された所定時間で平均してそれぞれの容器に収容された液体の液位の平均値を算出し、この平均値を、前記打設杭の傾きの算出に用いる請求項6または7に記載の打設杭の水平度測定方法。   The detection data sequentially detected by the liquid level detector is averaged over a predetermined time set in advance to calculate an average value of the liquid level of the liquid stored in each container, and the average value is set as the placement value. The method for measuring the level of horizontalness of the driven pile according to claim 6 or 7, which is used for calculating the inclination of the pile. 前記比重の異なる2種類の流体として、非圧縮性流体を用いる請求項6〜8のいずれかに記載の打設杭の水平度測定方法。   The leveling measurement method of the placing pile according to any one of claims 6 to 8, wherein an incompressible fluid is used as the two kinds of fluids having different specific gravities.
JP2014000762A 2014-01-07 2014-01-07 Apparatus and method for measuring the level of pile pile Active JP6313047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000762A JP6313047B2 (en) 2014-01-07 2014-01-07 Apparatus and method for measuring the level of pile pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000762A JP6313047B2 (en) 2014-01-07 2014-01-07 Apparatus and method for measuring the level of pile pile

Publications (2)

Publication Number Publication Date
JP2015129661A JP2015129661A (en) 2015-07-16
JP6313047B2 true JP6313047B2 (en) 2018-04-18

Family

ID=53760492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000762A Active JP6313047B2 (en) 2014-01-07 2014-01-07 Apparatus and method for measuring the level of pile pile

Country Status (1)

Country Link
JP (1) JP6313047B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102151530B1 (en) * 2019-03-18 2020-09-03 (주)동명기술공단종합건축사사무소 Perpendiculatity measuring instrument and steel pile construction methid thereof
CN116163306A (en) * 2023-03-03 2023-05-26 华侨大学 Intelligent auxiliary positioning system for steel pipe pile on hard rock bare rock in complex water area

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018262U (en) * 1973-06-13 1975-02-28
JPS6381205U (en) * 1986-11-17 1988-05-28
KR950004586B1 (en) * 1991-10-07 1995-05-02 대한주택공사 Apparatus of and method for measurement for piling work
JP3725815B2 (en) * 2001-11-15 2005-12-14 株式会社奥村組 Height difference measuring apparatus and height difference measuring method
JP5767131B2 (en) * 2012-02-08 2015-08-19 東亜建設工業株式会社 Pile driving construction management system
KR101384674B1 (en) * 2012-04-09 2014-04-21 한국건설기술연구원 Apparatus and Method for Estimating Perpendicularity of Large Steel Pile

Also Published As

Publication number Publication date
JP2015129661A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
EP2492401B1 (en) Device for manufacturing a foundation for a mass located at height, associated method and assembly of the device and a jack-up platform
CA2795681C (en) Method and arrangement for producing a trench wall element
CN109403953A (en) A kind of quick device for accurately measuring of drilling pile body verticality and method
CN104215219B (en) Magnetostriction hydrostatic level and measuring method thereof in high precision
JP6313047B2 (en) Apparatus and method for measuring the level of pile pile
KR101384674B1 (en) Apparatus and Method for Estimating Perpendicularity of Large Steel Pile
CN104775456A (en) Port engineering load test sedimentation measurement system
CN103808236B (en) Blast hole analyzer
KR101529654B1 (en) Coring system considering tilting of coring part and Method of compensating depth of coring part using the same
JP2009002809A (en) Hole wall measuring device
JP6322787B2 (en) Measuring apparatus and evaluation method for tubular structure
CN101339255B (en) Method for accurately measuring and calculating self-elevating drilling platform well position
KR101280251B1 (en) Apparatus and method for estimating perpendicularity of large steel pile
JP6725812B2 (en) Buoy type wave height measuring device
JP2020079762A (en) Wave height calculation method
JP2011214307A (en) Perpendicular accuracy measuring system for reversely driven column
CN203881319U (en) A levelness-adjustable bench for measuring tools
JP2017044558A (en) Structure position measurement method, installation method, and position measurement device
KR100842381B1 (en) Levitation Power Measuring Instrument
KR101658028B1 (en) Apparatus for installing staff in geodetic surveying
CN108327865A (en) It is a kind of based on nighttide to testing agency from positive oil drilling platform
JP5815316B2 (en) Muddy water density measuring device
CN111994237B (en) Carrying device for underwater sediment layer surface detecting instrument and manufacturing method thereof
CN212614675U (en) Simple device for measuring inclination angle of drilling hole opening
NO20093070A1 (en) Leveling system and leveling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180322

R150 Certificate of patent or registration of utility model

Ref document number: 6313047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250