JP6313036B2 - 磁気検出装置 - Google Patents

磁気検出装置 Download PDF

Info

Publication number
JP6313036B2
JP6313036B2 JP2013265890A JP2013265890A JP6313036B2 JP 6313036 B2 JP6313036 B2 JP 6313036B2 JP 2013265890 A JP2013265890 A JP 2013265890A JP 2013265890 A JP2013265890 A JP 2013265890A JP 6313036 B2 JP6313036 B2 JP 6313036B2
Authority
JP
Japan
Prior art keywords
signal
offset
output
chopper
preamplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265890A
Other languages
English (en)
Other versions
JP2015121487A (ja
Inventor
聖 木戸
聖 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2013265890A priority Critical patent/JP6313036B2/ja
Publication of JP2015121487A publication Critical patent/JP2015121487A/ja
Application granted granted Critical
Publication of JP6313036B2 publication Critical patent/JP6313036B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁気検出装置に関する。特に、ホール素子を用いた磁気検出装置に関する。
近年、電子機器の小型化や高性能化に伴って、微小な移動量や位置を検出することが求められている。その一例として、ホール素子を用いて位置等を検出する装置があり、そのホール素子の出力を検出する装置として磁気検出装置がある。
このような磁気検出装置で検出される磁気信号には、ホール素子自体或いは磁気検出装置内各部のオフセット電圧が含まれている。また、地磁気などの微小な磁気を検出する場合には、磁気検出装置で検出される磁気も微小な値となり、各部のオフセット電圧よりも小さな値となる。そのため、ホール素子をチョッパ駆動して信号処理を行うことで、オフセット電圧をキャンセルして、磁気信号を出力する回路が知られている。
図12は、従来の磁気検出装置100の一例である。
磁気検出装置100は、ホール素子101と、第一のチョッパスイッチ102と、プリアンプ103と、積分型ADC(AD変換器)104と、を備える。積分型ADC104は、積分器111と、コンパレータ112と、FF(フリップフロップ)回路113と、カウンタ114と、を備える。
ホール素子101とプリアンプ103の差動入力端との間に第一のチョッパスイッチ102が接続され、プリアンプ103の差動出力が、積分型ADC104に入力される。つまり、ホール素子101から出力されるホール素子出力、すなわちホール起電力信号が第一のチョッパスイッチ102、プリアンプ103を介して積分型ADC104に入力され、積分型ADC104でデジタル信号に変換されて、磁気信号が出力される。
積分型ADC104では、プリアンプ103の差動出力が、内部に第二のチョッパスイッチを備える積分器111に入力され、積分器111の出力がコンパレータ112に入力される。コンパレータ112の出力がFF回路113を経由してカウンタ114に入力され、カウンタ114から磁気信号がデジタル信号として出力される。また、FF回路113の出力は、積分器111内部のリファレンス電圧の極性切替信号として積分器111に入力される。
ここで、積分型ADC104では、FF回路113の出力がLowレベルの場合はリファレンス電圧(Vref)を正極性にして入力信号(プリアンプ103の差動出力)と加算し、FF回路113の出力がHighレベルの場合はリファレンス電圧(Vref)を負極性にして入力信号(プリアンプ103の差動出力)と加算する。こうして、最終的に積分器111の差動出力が0になるようにフィードバックをかけることでAD変換を実現している。
図13は、積分器111の内部構成の一例を示す構成図である。
プリアンプ103の差動出力Vin+およびVin−が、積分器111の差動信号の入力端に入力され、リファレンス電圧Vref+およびVref−が、積分器111のリファレンス電圧の入力端に入力される。
リファレンス電圧のパスには、リファレンス電圧Vref+およびVref−の入力端と接続される極性切替スイッチ121と第三のチョッパスイッチ122とがこの順に接続され、リファレンス電圧Vref+およびVref−は、極性切替スイッチ121と第三のチョッパスイッチ122とを介して、ボルテージフォロワ構成のオペアンプ123、124に入力される。オペアンプ123、124の出力端はそれぞれ入力抵抗R2、R3を介し、さらに第二のチョッパスイッチ125を介して全差動アンプ126の入力端に接続される。また、プリアンプ103の差動出力Vin+およびVin−は、それぞれ入力抵抗R1、R4を介し、さらに第二のチョッパスイッチ125を介して全差動アンプ126の入力端に供給される。
全差動アンプ126の入力端および出力端間には積分用キャパシタC1、C2が接続され、全差動アンプ126は積分器として動作し、全差動アンプ126の出力が、積分器111の出力電圧Vout+、Vout−として出力される。
つまり、プリアンプ出力Vin+、Vin−と、オペアンプ123、124から出力されるリファレンス電圧Vref+、Vref−とがそれぞれ入力抵抗R1〜R4によって電流変換された後加算され、この加算された電流信号が第二のチョッパスイッチ125を介して積分器としての全差動アンプ126に入力され、ここで積分されて、出力される。
図14、図15は、従来の磁気検出装置100の動作の一例を説明する図である。
ここでは、図12に示す磁気検出装置100において、ホール素子を360°チョッパ駆動する場合の動作を説明する。
図14は、ホール素子101を360°チョッパ駆動した場合の、ホール素子101の出力信号S1、プリアンプ103の出力信号S2、積分器(全差動アンプ126)の入力信号S3、積分器の出力信号S4の変化状況を表したものである。図15は、ホール素子101を360°チョッパ駆動した場合の、各位相(0°、90°、270°、180°)における、第一のチョッパスイッチ102、第三のチョッパスイッチ122、第二のチョッパスイッチ125の状態を表したものである。
まず、図示しないチョッパスイッチによって、ホール素子101に流れる駆動電流の向き、および出力端子を切り替え、ホール素子101の出力信号の位相を0°、90°、270°、180°の順に切り替える。
このとき、図14の信号S1に示すように、ホール素子101の出力電圧であるホール素子出力(図15の信号S1)は、磁気量成分(つまり、ホール素子101の周囲の磁気量に応じた成分)と、ホール素子101に含まれるオフセット分との和となる。
このとき、磁気量成分は、チョッパ駆動の間はほぼ一定の信号であるとする。一方、ホール素子101のオフセット成分は、図14の信号S1に示すように、位相がφ1(0°)及びφ4(180°)の場合と、位相がφ2(90°)及びφ3(270°)の場合とで極性が切り替わることとなる。
次に、第一のチョッパスイッチ102でプリアンプ103に入力されるホール素子出力の極性を切り替えて信号を増幅すると、プリアンプ103の出力信号であるプリアンプ出力(図15の信号S2)は、図14の信号S2に示すようになる。つまり、ホール素子101のチョッパ駆動において、出力端子の切り替えを、位相がφ1(0°)、φ2(90°)、φ3(270°)、φ4(180°)の順に切り替わるように行なうものとすると、例えば、位相がφ1およびφ4の場合には、第一のチョッパスイッチ102により差動出力の極性の切り替えは行われず、ホール素子出力S1が正極性でプリアンプ103に入力され、位相がφ2およびφ3の場合には、ホール素子出力S1の極性の切り替えが行われて、ホール素子出力S1が負極性としてプリアンプ103に入力される。
このとき、磁気量成分は、図14の信号S2に示すように、第一のチョッパスイッチ102による切り替えに伴って極性が切り替わり、ホール素子101のオフセット成分はほぼ一定となる。また、プリアンプ出力S2には、プリアンプ103のオフセット成分もさらに加わるため、プリアンプ出力S2は、主に、磁気量成分と、ホール素子101のオフセット成分と、プリアンプ103のオフセット成分との和となる。
次に、積分器111内部の第二のチョッパスイッチ125で切り替えられた後の、積分器(全差動アンプ126)に入力される積分器入力(図15の信号S3)は、図14の信号S3に示すようになる。例えば、位相がφ1およびφ4の場合には、第二のチョッパスイッチ125は、入力される差動入力の極性の切り替えを行わず、ホール素子出力S1が正極性で全差動アンプ126に入力されることとなり、位相がφ2およびφ3の場合には、第二のチョッパスイッチ125に入力される差動入力の極性の切り替えを行い、差動入力が負極性として積分器(全差動アンプ126)に入力されることとなる。
これにより、図14の信号S3に示すように、積分器入力S3中の磁気量成分はほぼ一定となり、ホール素子101のオフセット成分及びプリアンプ103のオフセット成分の極性が切り替わる。
最後に、積分器(全差動アンプ126)で積分された出力(図15の信号S4)は、図14に示すように、積分器入力S3が積分されて、信号S4に示すようになる。つまり、磁気量成分は一定の傾きで増加するが、このとき、ホール素子101をチョッパ駆動する際の、位相が90°から270°に切り替わる時点、及び、位相が180°から0°に切り替わる時点において、ホール素子101のオフセット成分及びプリアンプ103のオフセット成分がともに0Vとなる。そのため、この時点で積分器出力S4を取り出せば、ホール素子やプリアンプのオフセット成分がキャンセルされて、磁気信号を取り出すことが可能となる。
なお、積分型ADC104では、リファレンス電圧Vrefを加算・減算しながら積分する構成であるため、以上の説明は、磁気量成分とオフセット成分とに焦点を合わせて説明したものである。
以上のように、ホール素子101のオフセット成分及びプリアンプ103のオフセット成分をキャンセルして、磁気量成分を取り出して、コンパレータ112、FF回路113、カウンタ114を用いてデジタル信号として出力する磁気検出装置が知られている。
また、特許文献1では、所定の人工的オフセットを生成するオフセット源を用いて、センサ信号のオフセットを低減する方法が開示されている。
特開2009−544004号公報
しかしながら、従来の磁気検出装置では、ホール素子のオフセット成分やプリアンプのオフセット成分が磁気量成分より数十倍〜数百倍ほど大きく、積分器の出力幅はこれらのオフセット成分によって制限を受けるため、前段のプリアンプのゲインや積分器のゲインを上げることができない。また積分器の出力幅は電源電圧によって決定されるため、低電源電圧動作にも向かない。
図16は、図12に示す従来の磁気検出装置100において、ホール素子101およびプリアンプ103のオフセット成分によって、積分器出力が飽和してしまう現象を示している。
図16の信号S3に示すように、積分器(全差動アンプ126)に入力された磁気量成分と、ホール素子101やプリアンプ103のオフセット成分とは図16の信号S4に示すように積分されて出力される。このとき、積分器111の出力電圧が電源電圧を超えることはできないため、図16の信号S4に示すように、積分器111の出力が飽和する。この現象が生じると磁気量成分が正常に積分されない上に、本来、ホール素子101やプリアンプ103のオフセット成分がキャンセルされるポイントである90°から270°の切り替えポイントや180°から0°の切り替えポイントでオフセット成分が残ってしまい、結果として正常なAD変換が行われなくなる。
本発明は、このような問題を鑑みてなされたもので、その目的とするところは、ホール素子のオフセット成分やプリアンプのオフセット成分による積分器の出力幅制限を大幅に緩和することにある。
本発明の一態様は、チョッパ駆動されるホール素子(例えば図1に示す、ホール素子1)と、前記ホール素子のホール起電力信号を増幅するプリアンプ(例えば図1に示す、プリアンプ3)と、前記ホール素子と前記プリアンプとの間に接続されチョッパクロック信号に応じて動作する第一のチョッパスイッチ(例えば図1に示す、第一のチョッパスイッチ2)と、積分器(例えば図2に示す、全差動アンプ126)および当該積分器の入力側に設けられチョッパクロック信号に応じて動作する第二のチョッパスイッチ(例えば図2に示す、第二のチョッパスイッチ125)を有し、前記プリアンプの出力をAD変換して磁気信号を得る積分型AD変換器(例えば図1に示す、積分型ADC4)と、前記第一および第二のチョッパスイッチ用のチョッパクロック信号を生成するチョッパクロック信号生成回路(例えば図1に示す、チョッパクロック信号生成回路6)と、前記チョッパ駆動の90°から270°の切り替わる時点、及び、180°から0°に切り替わる時点の前記積分器出力に基づいて、前記プリアンプの出力をオフセット補正するオフセット補正用電流を生成し、当該オフセット補正用電流を前記第二のチョッパスイッチを介して前記積分器への入力信号に加算する補正用DA変換器(例えば図1に示す、補正用DAC5)と、を備える磁気検出装置、である。
前記第二のチョッパスイッチが前記チョッパクロック信号に基づいてチョッパ動作を行なう磁気信号測定シーケンスと、前記第二のチョッパスイッチが一の接続状態を維持するオフセット測定シーケンスと、を有していてよい。
前記第一のチョッパスイッチは、前記磁気信号測定シーケンスおよび前記オフセット測定シーケンスにおいて同一動作を行なうものであってよい。
前記補正用DA変換器は、前記オフセット測定シーケンスにおける前記積分型AD変換器の出力信号を、前記プリアンプの出力に含まれるオフセット成分とし、当該オフセット成分に基づいて前記補正信号を生成するものであってよい。
前記チョッパクロック信号生成回路は、前記オフセット測定シーケンスにおいては、前記第二のチョッパスイッチに前記チョッパクロック信号を供給しないようになっていてよい。
前記オフセット測定シーケンスでは、前記積分器の入力端において、前記プリアンプの出力に含まれるオフセット成分がDC成分であり、磁気信号成分がAC成分であってよい。
前記磁気信号測定シーケンスでは、前記積分型AD変換器は、前記補正信号に基づいてオフセット補正を行いながら、前記磁気信号を得るようになっていてよい。
前記第一のチョッパスイッチにより前記ホール起電力信号が変調され、変調された前記ホール起電力信号は前記第二のチョッパスイッチにより復調されるようになっていてよい。
前記積分型AD変換器の出力は、符号ビットと前記プリアンプの出力の絶対値を表すビットとで表されるデジタル値であって、前記補正用DA変換器は、前記オフセット測定シーケンスにおける前記プリアンプの出力のうち、前記符号ビットに基づいて前記補正信号の極性を切り替え、前記絶対値を表すビットに基づいて前記補正信号の絶対値を生成するものであってよい。
本発明の一態様によれば、ホール素子のオフセット成分やプリアンプのオフセット成分による積分器の出力スイング幅の制限を大幅に緩和することができ、これまでオフセット成分により規制されていた回路の制約を緩和できるため高性能化、低消費電力化が期待できる。
高性能化の一例としては、S/N比の改善が挙げられる。これまでオフセット成分が占めていた積分型ADCの出力スイング幅を磁気量成分で使うことができるようになるため、前段のプリアンプのゲインを大きくすることが出来る。これにより、積分型ADCのノイズ成分が相対的に小さくなり、結果的に出力のS/N比の向上が達成される。
低消費電力化の一例としては、低電源電圧動作が可能になる。積分型ADCの出力幅は電源電圧によって決定されるため、出力スイング幅が小さくなるほど電源電圧は低く設定することができる。
本発明に係る磁気検出装置の一例を示す構成図である。 積分器の一例を示す回路図である。 補正用DA変換器(補正用電流DA変換器)の一例を示す回路図である。 制御装置の動作の一例を示す説明図である。 オフセット測定シーケンスの動作説明に供する説明図である。 オフセット測定シーケンスの動作説明に供する説明図である。 磁気信号測定シーケンスの動作説明に供する説明図である。 磁気信号測定シーケンスの動作説明に供する説明図である。 積分器のその他の例を示す回路図である。 補正用DA変換器(補正用電圧DA変換器)の一例を示す回路図である。 セレクタ回路の一例を示す回路図である。 従来の磁気検出装置の一例を示す構成図である。 従来の積分器の一例を示す回路図である。 従来の磁気検出装置の動作説明に供する説明図である。 従来の磁気検出装置の動作説明に供する説明図である。 従来の磁気検出装置の問題点を説明するための説明図である。
以下、図面を参照して本発明の実施形態について説明する。
<第1の実施形態>
まず、第1の実施形態を説明する。
<磁気検出装置の構成>
図1は、第1の実施形態に係る磁気検出装置の一例を示す構成図である。
本実施形態の磁気検出装置10は、図1に示すように、ホール素子1と、第一のチョッパスイッチ2と、プリアンプ3と、積分型ADC4と、を備えるとともに、さらに、補正用DAC5と、チョッパクロック信号生成回路6と、制御装置7と、を備える。
ホール素子1は、図示しないチョッパスイッチを備えており、このチョッパスイッチによりホール素子1をチョッパ駆動し、駆動電流が流れる向きと出力端子を切り替えることにより、出力信号の位相を、0°、90°、270°、180°の順に切り替えることができるようになっている。
第一のチョッパスイッチ2は、ホール素子1の差動出力の出力端(以下、差動出力端ともいう。)と、プリアンプ3の差動入力の入力端(以下、差動入力端ともいう。)との間に接続される。第一のチョッパスイッチ2は、ホール素子1の出力端とプリアンプ3の入力端との接続先を、チョッパクロック信号生成回路6からのチョッパクロック信号に同期して切り替えることにより、ホール素子1の差動出力をチョッパ変調する。また、第一のチョッパスイッチ2は、チョッパクロック信号生成回路6からチョッパクロック信号が入力されないときには、ホール素子1をチョッパ変調せずに、プリアンプ3に供給する。
プリアンプ3は、第一のチョッパスイッチ2によりチョッパ変調されたホール素子1の差動出力を増幅し、積分型ADC4に出力する。
積分型ADC4は、プリアンプ3の差動出力を入力する積分器11と、積分器11の差動出力を入力するコンパレータ12と、コンパレータ12の出力が入力されるFF(フリップフロップ)回路13と、FF回路13の出力が入力されるカウンタ14と、を備える。
この積分型ADC4は、図12に示す従来の磁気検出装置100の積分型ADC104と基本的な機能構成は同一であり、積分型ADC4では、FF回路13の出力がLowレベルの場合はリファレンス電圧(Vref)を正極性にして入力信号(プリアンプ3の差動出力)と加算し、FF回路13の出力がHighレベルの場合はリファレンス電圧(Vref)を負極性にして入力信号(プリアンプ3の差動出力)と加算して、最終的に積分器11の差動出力が0になるようにフィードバックをかけることでAD変換を実現して、カウンタ14からホール素子出力すなわちホール起電力信号に相当するデジタル信号を出力するが、図1に示す積分型ADC4では、さらに、積分器11に、補正用DAC5の差動出力が入力される。なお、積分型ADC4は、制御装置7から後述のオフセット測定シーケンスを表すシーケンス信号および磁気検出シーケンスを表すシーケンス信号を入力したときには、カウンタ14を初期値に戻すようになっている。
図2は、積分器11の一例を示す構成図である。この積分器11の基本的な構成は図13に示す従来の積分器111の構成と同様であるので同一部には同一符号を付与し、その詳細な説明は省略する。
図2に示すように、リファレンス電圧Vref+およびVref−は、積分器11のリファレンス電圧の入力端に入力され、極性切替スイッチ121と第三のチョッパスイッチ122とを介して、ボルテージフォロワ構成のオペアンプ123または124の入力端に接続される。
極性切替スイッチ121は、積分型ADC4のFF回路13の出力であるFF出力に応じて動作し、FF回路13の出力がLowレベルの場合はリファレンス電圧(Vref)を正極性にして入力信号(プリアンプ3の差動出力Vin+、Vin−)と加算し、FF回路13の出力がHighレベルの場合はリファレンス電圧(Vref)を負極性にして入力信号(プリアンプ3の差動出力)と加算する。こうして、最終的に積分器11の差動出力が0になるようにフィードバックをかけることでAD変換を実現している。
オペアンプ123、124の出力端はそれぞれ入力抵抗R2、R3を介し、さらに第二のチョッパスイッチ125を介して全差動アンプ126の入力端に接続される。また、プリアンプ3の差動出力Vin+およびVin−は、積分器11の差動信号の入力端に入力され、それぞれ抵抗R1、R4で電流変換され、さらに第二のチョッパスイッチ125を介して全差動アンプ126の入力端に接続される。
さらに、図2に示す積分器11は、補正用DAC5で生成されたオフセット補正用電流Ioff+、Ioff−を入力し、第二のチョッパスイッチ125を介して全差動アンプ126に供給する。
全差動アンプ126の入力端および出力端間には積分用キャパシタC1、C2が接続され、全差動アンプ126の出力が積分器11の出力Vout+、Vout−として出力される。
つまり、積分器11では、プリアンプ出力Vin+、Vin−と、オペアンプ123、124から出力されるリファレンス電圧Vref+、Vref−とがそれぞれ入力抵抗R1〜R4によって電流変換された後、オフセット補正用電流Ioff+、Ioff−と加算され、この加算された電流信号が第二のチョッパスイッチ125を介して全差動アンプ126に入力され、ここで積分されて出力される。
補正用DAC(DA変換器)5は、後述するオフセット信号に基づき、オフセット補正用の差動信号、すなわちオフセット補正用電流Ioff+、Ioff−を生成し、生成した差動信号を積分器11に出力する。
具体的には、補正用DAC5は、制御装置7からのシーケンス信号に応じて動作する。
すなわち補正用DAC5は、シーケンス信号が、オフセット測定シーケンスを表す信号であるときには、積分型ADC4の出力であるオフセット信号を、記憶部5mで保持又は記憶する。また、補正用DAC5は、シーケンス信号がオフセット測定シーケンスを表す信号であるときは、オフセット補正用の差動信号を積分器11に出力しない状態となり、オフセット測定が終了した後、積分型ADC4の出力であるオフセット信号を記憶部5mに更新記憶する。
一方、シーケンス信号が磁気検出シーケンスであるときには、補正用DAC5は、オフセット測定の終了後に記憶部5mに更新記憶されたオフセット信号に基づいて、オフセット補正用の差動信号を生成し、生成したオフセット補正用の差動信号(オフセット補正用電流Ioff+、Ioff−)を積分器11に出力する。
図3は、補正用DAC5の一例を示す構成図である。第1の実施形態は、補正用DAC5として、補正用電流を生成する補正用電流DAC5aを用いている。
補正用電流DAC5aは、図3に示すように、電流源31と、オフセット補正用電流生成回路32と、電流ミラー回路33と、電流ソース用PMOSトランジスタ34と、ソース・シンク切替回路35と、電流シンク用NMOSトランジスタ36と、を備える。
電流源31は、一端が電源に接続される、定電流Irefを供給する定電流源31aと、ドレインが定電流源31aの他端に接続されるNMOSトランジスタ31bとを備え、NMOSトランジスタ31bは接地電位に接続される。また、NMOSトランジスタ31bのゲート−ドレイン間は短絡され、ドレイン電圧が出力電圧となる。
オフセット補正用電流生成回路32は、オフセット補正用電流生成用のNMOSトランジスタm1〜m3と、NMOSトランジスタm1〜m3それぞれに対応して設けられたゲート信号切替スイッチsw1〜sw3と、を備える。
NMOSトランジスタm1〜m3は、電流ミラー回路33の後述のPMOSトランジスタm11と接地電位との間に並列に接続され、基準電流をIrefとしたとき、NMOSトランジスタm1は1Iref、NMOSトランジスタm2は2Iref、NMOSトランジスタm3は4Irefを生成する。
ゲート信号切替スイッチsw1〜sw3は同一構成である。ゲート信号切替スイッチsw1は、後述のオフセット信号の最下位ビットを表すCode[0]を入力し、Code[0]が“1”であるときNMOSトランジスタm1のゲートと電流源31の出力端とを導通状態に切り替え、電流源31の出力電圧をNMOSトランジスタm1のゲートに印加する。一方、Code[0]が“0”であるときにはNMOSトランジスタm1のゲートに接地電位を印加する。
ゲート信号切替スイッチsw2は、後述のオフセット信号の下位から2ビット目を表すCode[1]を入力し、Code[1]が“1”であるときNMOSトランジスタm2のゲートと電流源31の出力端とを導通状態に切り替え、電流源31の出力電圧をNMOSトランジスタm2のゲートに印加する。一方、Code[1]が“0”であるときにはNMOSトランジスタm2のゲートに接地電位を印加する。
ゲート信号切替スイッチsw3は、後述のオフセット信号の下位から3ビット目を表すCode[2]を入力し、Code[2]が“1”であるときNMOSトランジスタm3のゲートと電流源31の出力端とを導通状態に切り替え、電流源31の出力電圧をNMOSトランジスタm3のゲートに印加する。一方、Code[2]が“0”であるときNMOSトランジスタm3のゲートに接地電位を印加する。
つまり、オフセット信号の下位3ビットの各ビットの値に応じて、NMOSトランジスタm1〜m3をオン、またはオフに制御することによって、NMOSトランジスタm1〜m3にオフセット信号の各ビットに対応する電流が流れ、オン状態となったNMOSトランジスタを流れる電流の総和が、オフセット補正用電流Ioff+、Ioff−として生成されることになる。
なお、ここでは、オフセット信号が4ビットの信号である場合について説明しているが、オフセット信号は任意数のビットの信号を適用することができる。その場合には、最上位ビットを極性を表す符号ビットとし、最上位ビットを除くビットを、オフセット補正用電流の大きさを表すビットとすればよい。また、NMOSトランジスタおよびゲート信号切替スイッチは、オフセット信号の最上位ビットを除くビットに対応して設ければよい。
電流ミラー回路33は、カレントミラー回路を構成するPMOSトランジスタm11およびPMOSトランジスタm12と、NMOSトランジスタm13とを備え、カレントミラー回路を構成する一方のPMOSトランジスタm11のドレインは、オフセット補正用電流生成回路32のNMOSトランジスタm1〜m3のドレインと接続される。カレントミラー回路を構成する他方のPMOSトランジスタm12のドレインはNMOSトランジスタm13のドレインと接続され、NMOSトランジスタm13のソースは接地電位に接続される。NMOSトランジスタm13のドレイン−ゲート間は短絡される。また、PMOSトランジスタm11およびPMOSトランジスタm12のゲートは、PMOSトランジスタm11のドレインと接続される。
電流ソース用PMOSトランジスタ34は、電源とソース・シンク切替回路35との間に接続され、ゲートは、PMOSトランジスタm11のドレインと接続される。
電流シンク用NMOSトランジスタ36は、ソース・シンク切替回路35と接地電位との間に接続され、ゲートはNMOSトランジスタm13のドレインと接続される。NMOSトランジスタm13と電流シンク用NMOSトランジスタ36とは、カレントミラー回路を構成している。
ソース・シンク切替回路35は、直列に接続されるPMOSトランジスタm21およびNMOSトランジスタm22と、直列に接続されるPMOSトランジスタm23およびNMOSトランジスタm24とを備え、PMOSトランジスタm21およびm23のドレインがともに、電流ソース用PMOSトランジスタ34のドレインに接続され、NMOSトランジスタm22およびm24のソースがともに、電流シンク用NMOSトランジスタNMOSトランジスタ36のドレインに接続される。
PMOSトランジスタm21およびNMOSトランジスタm22のゲートには、オフセット信号の最上位ビットを表すCode[3]が入力され、PMOSトランジスタm23およびNMOSトランジスタm24のゲートには、オフセット信号の最上位ビットを表すCode[3]がインバータ35aで反転されて入力される。
PMOSトランジスタm21およびNMOSトランジスタm22のドレインが、差動出力からなるオフセット補正用電流の一方の出力端となり、PMOSトランジスタm23およびNMOSトランジスタm24のドレインが他方の出力端となる。
Code[3]が“1”であるときにはPMOSトランジスタm21、NMOSトランジスタm24がオフ、NMOSトランジスタm22、PMOSトランジスタm23がオンとなって、出力端にオフセット補正用電流Ioff+、Ioff−が生じる。逆に、Code[3]が“0”であるときにはPMOSトランジスタm21、NMOSトランジスタm24がオン、NMOSトランジスタm22、PMOSトランジスタm23がオフとなって、出力端に、Code[3]が“1”であるとは異なる極性でオフセット補正用電流Ioff+、Ioff−が生じる。
つまり、オフセット信号の符号ビットに応じて、オフセット補正用電流の差動出力Ioff+、Ioff−の極性が切り替わり、オフセット信号の符号ビットを除くビットに応じて、オフセット補正用電流の値が変化するようになっている。
図1に戻ってチョッパクロック信号生成回路6は、チョッパクロック信号を生成し、各チョッパスイッチに出力する。また、第二のチョッパスイッチ125へのチョッパクロック信号の供給を制御するスイッチ6aを備えており、スイッチ6aは、制御装置7からのシーケンス信号に応じて動作する。具体的には、シーケンス信号がオフセット測定シーケンスを表す信号であるときには、非導状態となって第二のチョッパスイッチ125へのチョッパクロック信号の供給を行なわない。一方、シーケンス信号が磁気信号測定シーケンスを表す信号であるときには、スイッチ6aは導通状態となって第二のチョッパスイッチ125へチョッパクロック信号を供給する。
制御装置7は、ホール素子1のチョッパ駆動制御を行なうとともに、磁気検出装置10の各部の動作タイミングを制御する。また、制御装置7は、磁気検出装置10の動作シーケンスを示す図4にあるように、磁気信号の測定に入る前に、まず、オフセットの測定を行い、その後、測定したオフセット量に相当する補正信号を発生する補正用DAC5を用いてオフセット補正を行いながら、磁気信号測定を行うように各部を制御する。すなわち、制御装置7はオフセットの測定を行う場合には、まず、オフセット測定シーケンスであることを表すシーケンス信号を、補正用DAC5、チョッパクロック信号生成回路6に送信した後、オフセット測定処理を実行するよう各部を制御し、続いて、磁気信号検出シーケンスであることを表すシーケンス信号を、補正用DAC5、チョッパクロック信号生成回路6に送信した後、磁気信号検出処理を実行するよう各部を制御する。
なお、ここでは、磁気信号の測定に入る前に、オフセットの測定を行なう場合について説明するが、これに限るものではない。例えば、オフセットの測定を行なったときにその値を記憶部に記憶しておき、磁気信号の測定を行なうときには記憶部に記憶した値を用いてオフセット補正を行なうようにしてもよい。
<オフセット測定>
次にオフセット測定を行なう場合の磁気検出装置10の動作について説明する。
図5および図6は、磁気検出装置10のオフセット測定における動作を示した図である。
図5は、ホール素子1を360°チョッパ駆動した場合の、ホール素子1の出力信号S11、プリアンプ3の出力信号S12、積分器(全差動アンプ126)の入力信号S13、積分器の出力信号S14の変化状況を表したものである。図6は、ホール素子1を360°チョッパ駆動した場合の、各位相(0°、90°、270°、180°)における、第一のチョッパスイッチ2、第三のチョッパスイッチ122、第二のチョッパスイッチ125の状態を表したものである。
磁気検出装置10は、まず、図示しないチョッパスイッチをチョッパ駆動することによって、ホール素子1の出力端子および入力端子を切り替え、ホール素子1の信号の位相を、0°、90°、270°、180°の順に切り替える。
このとき、ホール素子1の出力電圧である差動出力S11は、図5の信号S11に示すようになる。すなわち、差動出力S11は、ホール素子1の周囲の磁気量に応じた磁気量成分と、ホール素子1のオフセット成分との和となる。このとき、磁気量成分はチョッパ駆動の間はほぼ一定信号となる。一方、ホール素子1のオフセット成分は、チョッパ駆動されることにより、チョッパ変調されて、図5の信号S11に示すように極性が切り替わる。
次に、ホール素子1とプリアンプ3との間にある第一のチョッパスイッチ2で、プリアンプ3に入力される、ホール素子1の差動出力の極性を切り替えて、差動出力を増幅する。具体的には、ホール素子1のチョッパ駆動において、差動出力の位相がφ1(0°)、φ2(90°)、φ3(270°)、φ4(180°)の順に切り替わるように、出力端子および駆動電流が流れる端子の切り替えを行なうと、例えば、第一のチョッパスイッチ2は、位相がφ1およびφ4の場合には、差動出力の極性の切り替えを行わず、ホール素子出力S11がそのままプリアンプ3に入力され、位相がφ2およびφ3の場合には、差動出力の極性の切り替えを行い、ホール素子出力S11の極性が反転してプリアンプ3に入力されるように動作する。
このとき、図5の信号S12に示すように、プリアンプ出力S12において、磁気量成分は、第一のチョッパスイッチ2による切り替えに伴って極性が切り替わり、一方、ホール素子1のオフセット成分は一定となる。
また、プリアンプ出力S12には、プリアンプ3のオフセット成分もさらに加算される。そのため、図5の信号S12に示すように、プリアンプ出力S12は、主に、磁気量成分とホール素子1のオフセット成分とプリアンプ3のオフセット成分との和相当の値となる。
次に、積分器11内部にある第二のチョッパスイッチ125による切り替えを行わず、プリアンプ3の出力をそのまま積分器としての全差動アンプ126に入力する。このとき、積分器入力S13は、図5の信号S13に示す通りとなり、磁気量成分は極性が切り替わり、ホール素子1のオフセット成分及びプリアンプ3のオフセット成分は一定となる。
最後に、積分器(全差動アンプ126)で積分された出力として、図5の信号S13で表される積分器入力が積分されて信号S14に示す積分器出力となる。
このとき、図5の信号S14に示すように、チョッパ駆動の90°から270°の切り替わる時点、及び、180°から0°に切り替わる時点において、磁気量成分がほぼ0Vとなるため、その時点で積分器出力を取り出せば、磁気量成分はキャンセルされ、ホール素子1のオフセット成分とプリアンプ3のオフセット成分との和を取り出すことが可能となる。
本実施形態では、以上のように、磁気量成分をキャンセルして、ホール素子1のオフセット成分とプリアンプ3のオフセット成分との和を積分器出力S14として取り出して、コンパレータ12、FF回路13、カウンタ14を用いてデジタル信号として出力する。このカウンタ14から出力される、ホール素子1のオフセット成分とプリアンプ3のオフセット成分との和からなるデジタル信号がオフセット信号となる。補正用DAC5(補正用電流DAC5a)は、このオフセット信号を記憶部5mに記憶する。そして、磁気信号測定を行なう場合には、この記憶部5mに記憶されたオフセット信号を用いてオフセット補正用電流を生成する。
なお、本実施形態では、チョッパ駆動を0°、90°、270°、180°の順に切り替える形態で説明したが、駆動方法は問わず、0°、90°、180°、270°の順であってもよく、0°、90°の順であってもよい。
<磁気信号測定>
次に、磁気信号測定を行なう場合の動作を説明する。
<補正用DAC5の動作>
磁気信号測定を行なう場合、図3に示す補正用DAC5(補正用電流DAC5a)では、以下の動作を行なう。
すなわち、オフセット補正用電流生成回路32では、記憶部5mに記憶されたオフセット信号に基づき、オフセット補正用電流生成用NMOSとしてのNMOSトランジスタm1〜m3で、オフセット信号に対応したオフセット補正用電流を生成する。
生成されたオフセット補正用電流が、電流ミラー回路33で、電流ソース用PMOS34と電流シンク用NMOS36とにミラーされる。そして、オフセット信号に基づきソース・シンク切替回路35で、補正用電流DAC5aがオフセット補正用電流をソースするかシンクするかを決定する。
まず、オフセット成分のデジタル値であるオフセット信号を、補正用電流DAC5aに入力する。本実施形態では、最上位ビットを除く下位bit(Code[2:0])でゲート信号切替スイッチsw1〜sw3を制御し、オフセット補正用電流生成回路32で、オフセット補正用電流の絶対値を決定する。例えば、Code[2:0]がCode[2]が1、Code[1]が0、Code[0]が1の場合、オフセット補正用電流は、4Iref+1Iref=5Irefとなる。このように、オフセット量が大きい場合は、オフセット補正用電流の絶対値が大きくなるように設定する。
また、オフセット成分のデジタル値のMSB(Code[3])は、符号bitとしてソース・シンク切替回路35内のスイッチに入力され、出力電流の極性を制御する。これらのデジタル信号により生成されたオフセット補正用電流(Ioff+、Ioff−)が補正用電流DACの出力となる。
この補正用電流DAC5aで生成された補正用電流は、図2に示す、積分型ADC4内の第二のチョッパスイッチ125の直前に入力される。この補正用電流が入力される点では、プリアンプ出力電圧のオフセット成分(図5の信号S13)が入力抵抗により電流に変換され、オフセット成分によるDC電流として現れている。ここへ、補正用DAC5(補正用電流DAC5a)のオフセット補正用電流Ioff+、Ioff−を加算することで、オフセット成分によるDC電流をキャンセルすることができる。
<磁気検出装置10の動作>
次に、オフセット成分を補正しながら磁気測定を行う場合の、磁気検出装置における動作を図7、図8を伴って説明する。
図7は、ホール素子1を360°チョッパ駆動した場合の、ホール素子1の出力信号S11、プリアンプ3の出力信号S12、積分器(全差動アンプ126)の入力信号S13、積分器の出力信号S14の変化状況を表したものである。図8は、ホール素子1を360°チョッパ駆動した場合の、各位相(0°、90°、270°、180°)における、第一のチョッパスイッチ2、第三のチョッパスイッチ122、第二のチョッパスイッチ125の状態を表したものである。
図7において、ホール素子1をチョッパ駆動し、ホール素子1の出力を第一のチョッパスイッチ2でチョッパ変調してプリアンプ3に入力し、プリアンプ3でチョッパ変調したホール素子出力S11を増幅するまでは、図5および図6に示すオフセット測定時の処理と同様であって、各部の波形は、オフセット測定時の波形と同等となる。
プリアンプ3の出力は積分型ADC4に入力され、積分型ADC4では、第二のチョッパスイッチ125によりプリアンプ3の出力の極性を切り替えて積分器(全差動アンプ126)に入力する。例えば、ホール素子1の出力信号の位相がφ1およびφ4の場合には、プリアンプ3の差動出力の極性の切り替えを行わず、ホール素子出力が正極性で積分器に入力されることとなる。ホール素子1の出力信号の位相がφ2およびφ3の場合には、プリアンプ3の差動出力の極性の切り替えを行い、その結果、ホール素子出力が負極性として積分器に入力されることとなる。これにより、図7の信号S13に示すように、積分器への差動入力の磁気量成分は、ほぼ一定となり、ホール素子1のオフセット成分及びプリアンプ3のオフセット成分の極性が切り替わる。
このとき、積分器への差動入力は、オフセット補正用電流によりオフセット補正されることにより、ホール素子1のオフセット成分及びプリアンプ3のオフセット成分のDCオフセットが補正される。そのため、図7の信号S13に示すように、磁気量成分は略一定となり、ホール素子1のオフセット成分およびプリアンプ3のオフセット成分は、位相がφ2およびφ3の場合に極性が切り替わるが、オフセット成分が大幅に減少することになる。
最後に、積分器(全差動アンプ126)で積分された出力としては、図7の信号S13に示す積分器入力が積分されて、積分器出力は図7の信号S14に示すような値となる。つまり磁気量成分は略一定の傾きで増加する値となるが、チョッパ駆動の90°から270°の切り替わる時点、及び、180°から0°に切り替わる時点において、ホール素子1およびプリアンプ3のオフセット成分がほぼ0Vとなる。そのため、この時点で積分器出力を取り出せば、ホール素子1、プリアンプ3のオフセット成分はキャンセルされ、すなわち磁気量成分を取り出すことが可能となる。
上述の通り、オフセット成分を補正しながら磁気測定を行うことで、補正を行わない場合と比較して積分器の出力スイング幅を大幅に抑えることができる。
また、ホール素子1のオフセット成分のみを考慮した場合でも、その大きさは磁気量成分の数十倍〜数百倍である。これに加えて、プリアンプ3のオフセット成分も合わせて補正することで、積分器の出力スイング幅は少なくとも数十分の一以下に抑えることが出来る。その効果により、回路に要求される制約が大幅に緩和され、より高性能化や低消費電力化が期待できる。
高性能化の一例としては、S/N比の改善が挙げられるが、これまでオフセット成分が占めていた積分型ADCの出力スイング幅を信号成分で使うことが出来るようになるため、前段のプリアンプのゲインを大きくすることができる。これにより、積分型ADC回路のノイズ成分が相対的に小さくなり、結果的に出力のS/N比の向上も達成される。
低消費電力化の一例としては、低電源電圧動作が可能になる。積分型ADCの出力幅は
電源電圧によって決定されるため、出力スイング幅が小さくなるほど電源電圧は低く設定することもできる。
また、本実施形態によれば、オフセットが周囲の温度等の環境変化により変動しても、磁気信号測定の前に、オフセット測定シーケンスを設けることで、ダイナミックにオフセット補正を行うことができる。
<第2の実施形態>
次に、第2の実施形態を説明する。
この第2の実施形態は、補正用DAC(補正用DA変換器)5として、補正用電圧を生成する補正用電圧DAC5bを適用したものである。
磁気検出装置10の基本的な構成は第1の実施形態における磁気検出装置と同等であるため、同一部には同一符号を付与し、その詳細な説明は省略する。
図9は、第2の実施形態における積分器11の一例を示す構成図である。
第2の実施形態における積分器11は、図2に示す第1の実施形態における積分器11において、補正電圧入力回路127、128をさらに備えている。
補正電圧入力回路127は、ボルテージフォロワ構成のオペアンプ127aと、抵抗127bとを備える。オペアンプ127aの一方の入力端は、オフセット補正用電圧Voff+の入力端と接続され、オペアンプ127aの出力端は抵抗127bを介して第二のチョッパスイッチ125の一方の入力端に接続される。
補正電圧入力回路128も同様に、ボルテージフォロワ構成のオペアンプ128aと、抵抗128bとを備える。オペアンプ128aの一方の入力端は、オフセット補正用電圧Voff−の入力端と接続され、オペアンプ128aの出力端は抵抗127bを介して第二のチョッパスイッチ125の他方の入力端に接続される。
つまり、補正用電圧DAC5bの出力であるオフセット補正用電圧Voff+、Voff−は、オペアンプ127a、128aと抵抗127b、128bを介して、第二のチョッパスイッチ125の直前に入力される。オペアンプ127a、128aはボルテージフォロワ構成であり、オペアンプ127a、128aの出力とサミングノードとの間には抵抗127b、128bが接続される。この抵抗127b、128bにより、オフセット補正用電圧Voff+、Voff−、つまりオフセット補正用DC電圧出力が補正用DC電流出力へと変換される。このサミングノードでは、ホール素子1の差動出力のオフセット成分、またプリアンプ3の出力電圧のオフセット成分が入力抵抗R1〜R4により電流に変換され、DC電流として現れているため、補正用DC電流出力を加算することによって、ホール素子1およびプリアンプ3のオフセット電流をキャンセルすることができる。
図10は、第2の実施形態における補正用DAC5(補正用電圧DAC5b)の一例を示す構成図である。この補正用電圧DAC5bは、補正用電圧を生成する回路である。
補正用電圧DAC5bは、図10に示すように、ボルテージフォロワ構成のオペアンプ41と、複数の抵抗が直列に接続されてなる分圧用抵抗42と、セレクタ回路43とを備える。
オペアンプ41は非反転入力端子にリファレンス電圧Vrefを入力する。つまり、オペアンプ41はリファレンス電圧Vrefと同じ電圧を出力する。
分圧用抵抗42は、図10では、7つの抵抗r1〜r7が直列に接続され、V3+〜V3−までの電圧を生成する。これら抵抗r1〜r7によって分圧された電圧はセレクタ回路43に入力される。すなわち、抵抗r3およびr4間の電圧をVcom電圧として、抵抗r3とr2との間の電圧がV1+、抵抗r2とr1との間の電圧がV2+、抵抗r1とオペアンプ41の出力端との間の電圧がV3+として、セレクタ回路43に入力される。同様に、抵抗r4とr5との間の電圧がV1−、抵抗r5とr6との間の電圧がV2−、抵抗r6と抵抗r7との間の電圧がV3−として、セレクタ回路43に入力される。
セレクタ回路43は、オフセット測定で測定されたオフセット信号に基づいて、オフセット信号に応じた補正電圧を生成する。
図11は、セレクタ回路43の一例を示す構成図である。
セレクタ回路43は、選択スイッチ43aおよび43bと、極性切替スイッチ43cとを備える。
選択スイッチ43aは、分圧電圧Vcom、V1+〜V3+を入力する。選択スイッチ43bは分圧電圧Vcom、V1−〜V3−を入力する。選択スイッチ43a、43bは、記憶部5mに記憶されているオフセット信号に基づき、オフセット信号の最上位ビットを除くビットで指定されるオフセット電圧の絶対値相当となり得る分圧電圧をそれぞれ選択する。
極性切替スイッチ43cはオフセット信号の最上位ビットで指定される極性に応じて選択スイッチ43a、43bの出力の極性を切り替えて、差動信号からなるオフセット補正用電圧Voff+、Voff−として出力する。
この第2の実施形態においても、オフセット補正用電圧Voff+、Voff−によって、ホール素子1やプリアンプ3のオフセットをキャンセルすることができる。
したがって、上記第1の実施形態と同等の作用効果を得ることができる。
なお、本発明はホール素子をチョッパ駆動する場合であれば適用することが可能であり、ホール素子の駆動方式は、定電流駆動方式であっても、定電圧駆動方式であってもよい。
また、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
1 ホール素子
2 第一のチョッパスイッチ
3 プリアンプ
4 積分型ADC(AD変換器)
5 補正用DAC(DA変換器)
5a 補正用電流DAC(DA変換器)
5b 補正用電圧DAC(DA変換器)
6 チョッパクロック信号生成回路
7 制御装置
11 積分器

Claims (9)

  1. チョッパ駆動されるホール素子と、
    前記ホール素子のホール起電力信号を増幅するプリアンプと、
    前記ホール素子と前記プリアンプとの間に接続されチョッパクロック信号に応じて動作する第一のチョッパスイッチと、
    積分器および当該積分器の入力側に設けられチョッパクロック信号に応じて動作する第二のチョッパスイッチを有し、前記プリアンプの出力をAD変換して磁気信号を得る積分型AD変換器と、
    前記第一および第二のチョッパスイッチ用のチョッパクロック信号を生成するチョッパクロック信号生成回路と、
    前記チョッパ駆動の90°から270°の切り替わる時点、及び、180°から0°に切り替わる時点の前記積分器出力に基づいて、前記プリアンプの出力をオフセット補正するオフセット補正用電流を生成し、当該オフセット補正用電流を前記第二のチョッパスイッチを介して前記積分器への入力信号に加算する補正用DA変換器と、
    を備える磁気検出装置。
  2. 前記第二のチョッパスイッチが前記チョッパクロック信号に基づいてチョッパ動作を行なう磁気信号測定シーケンスと、
    前記第二のチョッパスイッチが一の接続状態を維持するオフセット測定シーケンスと、を有する請求項1に記載の磁気検出装置。
  3. 前記第一のチョッパスイッチは、前記磁気信号測定シーケンスおよび前記オフセット測定シーケンスにおいて同一動作を行なう請求項2に記載の磁気検出装置。
  4. 前記補正用DA変換器は、前記オフセット測定シーケンスにおける前記積分型AD変換器の出力信号を、前記プリアンプの出力に含まれるオフセット成分とし、当該オフセット成分に基づいて前記補正信号を生成する請求項2または請求項3に記載の磁気検出装置。
  5. 前記チョッパクロック信号生成回路は、前記オフセット測定シーケンスにおいては、前記第二のチョッパスイッチに前記チョッパクロック信号を供給しないようになっている請求項2から請求項4のいずれか1項に記載の磁気検出装置。
  6. 前記オフセット測定シーケンスでは、前記積分器の入力端において、前記プリアンプの出力に含まれるオフセット成分がDC成分であり、磁気信号成分がAC成分である請求項2から請求項5のいずれか1項に記載の磁気検出装置。
  7. 前記磁気信号測定シーケンスでは、前記積分型AD変換器は、前記補正信号に基づいてオフセット補正を行いながら、前記磁気信号を得る請求項2から請求項6のいずれか1項に記載の磁気検出装置。
  8. 前記第一のチョッパスイッチにより前記ホール起電力信号が変調され、
    変調された前記ホール起電力信号は前記第二のチョッパスイッチにより復調される請求項1から請求項7のいずれか1項に記載の磁気検出装置。
  9. 前記積分型AD変換器の出力は、符号ビットと前記プリアンプの出力の絶対値を表すビットとで表されるデジタル値であって、
    前記補正用DA変換器は、前記オフセット測定シーケンスにおける前記プリアンプの出力のうち、前記符号ビットに基づいて前記補正信号の極性を切り替え、前記絶対値を表すビットに基づいて前記補正信号の絶対値を生成する請求項4に記載の磁気検出装置。
JP2013265890A 2013-12-24 2013-12-24 磁気検出装置 Active JP6313036B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265890A JP6313036B2 (ja) 2013-12-24 2013-12-24 磁気検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265890A JP6313036B2 (ja) 2013-12-24 2013-12-24 磁気検出装置

Publications (2)

Publication Number Publication Date
JP2015121487A JP2015121487A (ja) 2015-07-02
JP6313036B2 true JP6313036B2 (ja) 2018-04-18

Family

ID=53533219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265890A Active JP6313036B2 (ja) 2013-12-24 2013-12-24 磁気検出装置

Country Status (1)

Country Link
JP (1) JP6313036B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417005B1 (ja) 2023-09-29 2024-01-17 第一工業製薬株式会社 粒状難燃剤組成物および熱可塑性樹脂組成物
JP7417003B1 (ja) 2023-09-29 2024-01-17 第一工業製薬株式会社 粒状難燃剤組成物および熱可塑性樹脂組成物
JP7417004B1 (ja) 2023-09-29 2024-01-17 第一工業製薬株式会社 粒状難燃剤組成物および熱可塑性樹脂組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200143A1 (de) * 2017-01-09 2018-07-12 Robert Bosch Gmbh Magnetometer
CN108627190B (zh) * 2017-07-28 2023-12-19 杭州思泰微电子有限公司 一种基于集成电路的高精度磁传感器校正结构和校正方法
CN116488657A (zh) * 2023-06-20 2023-07-25 南方电网数字电网研究院有限公司 积分器电路、西格玛-德尔塔调制器及模数转换器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059421B4 (de) * 2006-07-14 2011-06-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Verarbeitung von Offset-behafteten Sensorsignalen sowie für die Durchführung des Verfahrens ausgebildete Sensoranordnung
US7425821B2 (en) * 2006-10-19 2008-09-16 Allegro Microsystems, Inc. Chopped Hall effect sensor
JP5341745B2 (ja) * 2009-12-28 2013-11-13 旭化成エレクトロニクス株式会社 磁気検出装置
WO2013111521A1 (ja) * 2012-01-25 2013-08-01 旭化成エレクトロニクス株式会社 ホール起電力信号検出回路及びその電流センサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417005B1 (ja) 2023-09-29 2024-01-17 第一工業製薬株式会社 粒状難燃剤組成物および熱可塑性樹脂組成物
JP7417003B1 (ja) 2023-09-29 2024-01-17 第一工業製薬株式会社 粒状難燃剤組成物および熱可塑性樹脂組成物
JP7417004B1 (ja) 2023-09-29 2024-01-17 第一工業製薬株式会社 粒状難燃剤組成物および熱可塑性樹脂組成物

Also Published As

Publication number Publication date
JP2015121487A (ja) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6313036B2 (ja) 磁気検出装置
JP6363822B2 (ja) 信号処理回路、およびレゾルバデジタルコンバータ
US10826523B2 (en) Analog-to-digital converter, measurement arrangement and method for analog-to-digital conversion
JP5799786B2 (ja) オートゼロアンプ及び該アンプを使用した帰還増幅回路
EP3531559A2 (en) Current detection circuit, semiconductor device and semiconductor system
US7116161B2 (en) Differential amplifier circuit and drive circuit of liquid crystal display unit using the same
US9128127B2 (en) Sensor device
US10163521B2 (en) High voltage bootstrap sampling circuit
US8884653B2 (en) Comparator and ad converter provided therewith
US10041983B2 (en) VDS equalizer offset compensation for a current sense circuit
JP2012191821A (ja) 電流方向検出回路及びdc−dcコンバータ
JP2012147361A (ja) 演算増幅回路
JP2008515378A (ja) 間接電流検出を使用する充電方法及び回路
JP2012105197A (ja) 光電変換回路
US7911366B2 (en) Gray code current mode analog-to-digital converter
US6707333B2 (en) Bias circuit
CN109933117B (zh) 基准电压发生器
JP5108850B2 (ja) スイッチトキャパシタ回路
JP5462604B2 (ja) スイッチトキャパシタ型積分器
JP5616781B2 (ja) スイッチトキャパシタ型積分器
US7098837B2 (en) A/D converter
KR20090113266A (ko) 파이프라인 전하영역 아날로그 디지털 변환기의 아날로그 오차 정정
JP2018164307A (ja) マルチパスネステッドミラー増幅回路
JP2956119B2 (ja) 並列型a/d変換器
JP4635612B2 (ja) サンプル・ホールド回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180322

R150 Certificate of patent or registration of utility model

Ref document number: 6313036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150