JP6312456B2 - Organic thin film solar cell - Google Patents

Organic thin film solar cell Download PDF

Info

Publication number
JP6312456B2
JP6312456B2 JP2014023516A JP2014023516A JP6312456B2 JP 6312456 B2 JP6312456 B2 JP 6312456B2 JP 2014023516 A JP2014023516 A JP 2014023516A JP 2014023516 A JP2014023516 A JP 2014023516A JP 6312456 B2 JP6312456 B2 JP 6312456B2
Authority
JP
Japan
Prior art keywords
solar cell
organic thin
film solar
thin film
squarylium derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014023516A
Other languages
Japanese (ja)
Other versions
JP2015153767A (en
Inventor
城戸 淳二
淳二 城戸
久宏 笹部
久宏 笹部
五十嵐 司
司 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2014023516A priority Critical patent/JP6312456B2/en
Publication of JP2015153767A publication Critical patent/JP2015153767A/en
Application granted granted Critical
Publication of JP6312456B2 publication Critical patent/JP6312456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、新規なスクアリリウム誘導体、それよりなるドナー材料およびそれを用いた有機薄膜太陽電池に関する。   The present invention relates to a novel squarylium derivative, a donor material comprising the derivative, and an organic thin film solar cell using the same.

有機薄膜太陽電池は、光電変換層(活性層)に有機化合物を用いた太陽電池であり、現在普及しているシリコン系や化合物半導体系の無機太陽電池に比べて、軽量で、フレキシブルであり、また、着色性に優れ、製造コストが低い等の利点を有しており、実用化・市場投入段階に入りつつある。しかしながら、有機薄膜太陽電池は、効率及び信頼性が無機太陽電池よりも低く、その改善向上のための研究開発が、近年、盛んに行われている。   The organic thin film solar cell is a solar cell using an organic compound in the photoelectric conversion layer (active layer), and is lighter and more flexible than the silicon-based and compound semiconductor-based inorganic solar cells that are currently popular, In addition, it has advantages such as excellent colorability and low manufacturing costs, and is entering the stage of commercialization and market introduction. However, the organic thin film solar cell has lower efficiency and reliability than the inorganic solar cell, and research and development for improvement and improvement have been actively performed in recent years.

太陽光は、エネルギーの50%以上を650nmよりも長波長の近赤外・赤外領域に持つ。そのため、光電変換効率の飛躍的な向上には、この波長領域を効率よく吸収し、電気エネルギーとして取り出すことが必須である。
有機薄膜太陽電池では、ドナー分子とアクセプタ分子を組み合わせた薄膜が形成される。アクセプタ材料として一般に用いられているフラーレン誘導体は、電子移動度が速く、逆電子移動が遅いという利点がある反面、近赤外領域付近に強い吸収を持たないことから、有機薄膜太陽電池の高効率化には、長波長領域の吸収を持つドナー材料の開発が非常に重要となる。
Sunlight has 50% or more of energy in the near infrared / infrared region having a wavelength longer than 650 nm. Therefore, in order to dramatically improve the photoelectric conversion efficiency, it is essential to efficiently absorb this wavelength region and take it out as electric energy.
In an organic thin film solar cell, a thin film in which a donor molecule and an acceptor molecule are combined is formed. Fullerene derivatives generally used as acceptor materials have the advantages of high electron mobility and slow reverse electron transfer, but they do not have strong absorption near the near infrared region, so the high efficiency of organic thin-film solar cells Development of a donor material having absorption in the long wavelength region is very important for the conversion.

また、有機薄膜太陽電池は、蒸着型と塗布型に大きく分類され、特に、塗布型有機薄膜太陽電池は、製造コストが安く、大量生産に適している。塗布型有機薄膜太陽電池に使用する材料においては、当然に、溶媒への溶解性が良好である必要がある。   Organic thin-film solar cells are broadly classified into vapor deposition types and coating types. In particular, coating type organic thin-film solar cells are low in manufacturing cost and suitable for mass production. Naturally, the material used for the coating type organic thin film solar cell needs to have good solubility in a solvent.

前記ドナー材料は、高分子型と低分子型に大別される。
高分子型材料は、変換効率8%程度まで向上しているが、高分子材料の生成及び高純度化が困難であり、製造ロット間の特性変化が大きく、品質を保つことが難しい。
The donor material is roughly classified into a high molecular type and a low molecular type.
Although the polymer type material is improved to a conversion efficiency of about 8%, it is difficult to produce and purify the polymer material, the property change between production lots is large, and it is difficult to maintain the quality.

一方、低分子型材料は、分子量分布を持たないため、精製が容易で不純物を含まず、信頼性が高く、製造ロット間の品質は一定であり、ロットによりエネルギー変換効率に影響を与えることはないものの、低分子であるため、一般的に近赤外領域付近に吸収を持たせることが難しい。また、近年、低分子型材料として注目されているスクアリリウム誘導体も、移動度が10-5cm2/Vs程度と低く、変換効率は6%程度に止まっている(例えば、特許文献1〜3参照)。
また、高効率を達成している材料においても、一般的に有機溶媒への溶解性が低く、塗布型有機薄膜太陽電池を作製する際に、オルトジクロロベンゼン、クロロホルム等のハロゲン系の溶媒を使用しなければならず、環境面での課題を有していた。
On the other hand, low molecular weight materials do not have a molecular weight distribution, so they are easy to purify, do not contain impurities, have high reliability, and the quality between production lots is constant. Although it is not present, it is generally difficult to give absorption in the vicinity of the near infrared region because it is a low molecule. In addition, a squarylium derivative that has been attracting attention as a low molecular weight material in recent years also has a low mobility of about 10 −5 cm 2 / Vs and a conversion efficiency of about 6% (see, for example, Patent Documents 1 to 3). ).
In addition, even materials that have achieved high efficiency generally have low solubility in organic solvents, and halogen-based solvents such as orthodichlorobenzene and chloroform are used when preparing coated organic thin-film solar cells. And had environmental challenges.

特開2003−109676号公報JP 2003-109676 A 特開2007−67074号公報JP 2007-67074 A 特開2011−198811号公報JP 2011-198811 A

したがって、有機薄膜太陽電池のさらなる高性能化及び実用性の向上のためには、近赤外領域吸収及び高い電荷移動度を持ち、非ハロゲン系有機溶媒にも高い溶解性を示す低分子材料の開発が望まれる。
本発明者らは、このような低分子材料として、スクアリリウム誘導体に注目し、これを骨格とした誘導体による新規ドナー材料の開発を検討した。
Therefore, in order to further improve the performance and practicality of organic thin-film solar cells, a low-molecular material that has near-infrared absorption and high charge mobility and high solubility in non-halogen organic solvents can be used. Development is desired.
The present inventors paid attention to a squarylium derivative as such a low molecular weight material, and examined the development of a new donor material using a derivative having this as a skeleton.

すなわち、本発明は、高効率な有機薄膜太陽電池を提供するために有用な新規化合物であって、非ハロゲン系有機溶媒に対しても高い溶解性を示し、逆電子移動が遅く、高い対称性を持つアクセプタ材料に対するドナー材料に適したスクアリリウム誘導体、それよりなるドナー材料及びそれを用いた有機薄膜太陽電池を提供することを目的とするものである。   That is, the present invention is a novel compound useful for providing a high-efficiency organic thin film solar cell, exhibiting high solubility in non-halogen organic solvents, slow reverse electron transfer, and high symmetry. It is an object of the present invention to provide a squarylium derivative suitable as a donor material for an acceptor material having the above, a donor material comprising the same, and an organic thin film solar cell using the same.

本発明に係る有機薄膜太陽電池は、下記一般式(1)で表されるスクアリリウム誘導体が用いられていることを特徴とするThe organic thin film solar cell according to the present invention is characterized in that a squarylium derivative represented by the following general formula (1) is used .

Figure 0006312456
Figure 0006312456

前記式(1)において、R1は置換又は無置換の芳香族炭化水素基であり、R2は炭素数が4以上の置換又は無置換の脂肪族炭化水素基(エステル基を除く)である。
スクアリリウム誘導体の末端側鎖をこのような置換基とすることにより、近赤外領域における広く、かつ強い吸収と、非ハロゲン系有機溶媒に対する溶解性の向上が図られる。
In the formula (1), R 1 is a substituted or unsubstituted aromatic hydrocarbon group, and R 2 is a substituted or unsubstituted aliphatic hydrocarbon group having 4 or more carbon atoms (excluding an ester group) . .
By using the terminal side chain of the squarylium derivative as such a substituent, wide and strong absorption in the near-infrared region and improved solubility in a non-halogen organic solvent can be achieved.

また、本発明によれば、前記スクアリリウム誘導体よりなるドナー材料が提供される。
前記スクアリリウム誘導体は、逆電子移動が遅く、高い対称性を持つアクセプタ材料に適したドナー材料である。
Moreover, according to this invention, the donor material which consists of said squarylium derivative | guide_body is provided.
The squarylium derivative is a donor material suitable for an acceptor material having a slow reverse electron transfer and high symmetry.

また、本発明によれば、前記スクアリリウム誘導体が用いられていることを特徴とする有機薄膜太陽電池が提供される。
このような有機薄膜太陽電池は、塗布プロセスによるデバイス作製時の脱ハロゲン化及び高効率化が可能となる。
Moreover, according to this invention, the said squarylium derivative | guide_body is used, The organic thin film solar cell characterized by the above-mentioned is provided.
Such an organic thin film solar cell can be dehalogenated and highly efficient during device fabrication by a coating process.

本発明に係る新規なスクアリリウム誘導体は、近赤外領域において広くて強い吸収を持ち、高効率な有機薄膜太陽電池を提供することができる。また、低コストで容易に大量合成することができ、さらに、非ハロゲン系有機溶媒にも高い溶解性を示すことから、塗布プロセスによるデバイス作製時の脱ハロゲン化が可能となり、環境問題対策への貢献も期待される。   The novel squarylium derivative according to the present invention has wide and strong absorption in the near infrared region, and can provide a highly efficient organic thin-film solar cell. In addition, it can be easily synthesized in large quantities at low cost, and also exhibits high solubility in non-halogen organic solvents, enabling dehalogenation during device fabrication by the coating process, and addressing environmental issues A contribution is also expected.

本発明に係る有機薄膜太陽電池の層構造の一例を模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically an example of the layer structure of the organic thin-film solar cell concerning this invention.

以下、本発明について、より詳細に説明する。
本発明に係るスクアリリウム誘導体は、前記一般式(1)で表される化合物である。
前記式(1)において、R1は置換又は無置換の芳香族炭化水素基であり、R2は炭素数が4以上の置換又は無置換の脂肪族炭化水素基である。
このようなスクアリリウム誘導体は、新規化合物であり、両末端のアミノ基の窒素原子に結合する置換基(側鎖)の1つに芳香族炭化水素基を有することにより、深いHOMO及び近赤外領域における広い吸収を持つことができ、また、もう1つに脂肪族炭化水素基を有することにより、非ハロゲン系有機溶媒に対する溶解性の向上が図られる。
Hereinafter, the present invention will be described in more detail.
The squarylium derivative according to the present invention is a compound represented by the general formula (1).
In the formula (1), R 1 is a substituted or unsubstituted aromatic hydrocarbon group, and R 2 is a substituted or unsubstituted aliphatic hydrocarbon group having 4 or more carbon atoms.
Such a squarylium derivative is a novel compound, and has an aromatic hydrocarbon group in one of the substituents (side chains) bonded to the nitrogen atoms of the amino groups at both ends, so that a deep HOMO and a near infrared region can be obtained. In addition, by having an aliphatic hydrocarbon group as another, the solubility in a non-halogen organic solvent can be improved.

前記一般式(1)で表されるスクアリリウム誘導体のうち、代表例としては、側鎖の1つがフェニル基、もう1つがブチル基である下記に示すSQ−BPや、側鎖の1つがフェニル基、もう1つがドデシル基である下記に示すSQ−DcP等が挙げられる。なお、下記に示す構造式は、前記一般式(1)の共鳴構造に対応するものである。   Among the squarylium derivatives represented by the general formula (1), typical examples include SQ-BP shown below in which one of the side chains is a phenyl group and the other is a butyl group, and one of the side chains is a phenyl group. And SQ-DcP shown below, the other of which is a dodecyl group. The structural formula shown below corresponds to the resonance structure of the general formula (1).

Figure 0006312456
Figure 0006312456

ただし、本発明に係るスクアリリウム誘導体の側鎖の種類は、これらに限定されるものではない。
芳香族炭化水素基は、単環のアリール基でも、多環(縮合環)芳香族炭化水素基でもよい。また、置換基を有するものであってもよい。
一方、脂肪族炭化水素基は、ここでは、広く、芳香族化合物でない炭素化合物による置換基を意味するものとし、環式でも非環式でもよく、また、置換基を有するものであってもよい。例えば、長鎖アルキル基やアルキニル基、シクロアルキル基、エーテル基等が挙げられる。
However, the type of the side chain of the squarylium derivative according to the present invention is not limited to these.
The aromatic hydrocarbon group may be a monocyclic aryl group or a polycyclic (fused ring) aromatic hydrocarbon group. Moreover, you may have a substituent.
On the other hand, the aliphatic hydrocarbon group here means broadly a substituent by a carbon compound that is not an aromatic compound, and may be cyclic or acyclic, or may have a substituent. . For example, a long chain alkyl group, an alkynyl group, a cycloalkyl group, an ether group and the like can be mentioned.

上記のような本発明に係るスクアリリウム誘導体の合成方法は、特に限定されるものではないが、例えば、下記実施例に示すような方法により合成することができる。
このような方法によれば、低コストでの大量合成が可能である。
The method for synthesizing the squarylium derivative according to the present invention as described above is not particularly limited, and for example, it can be synthesized by a method as shown in the following examples.
According to such a method, mass synthesis can be performed at low cost.

また、上記のようなスクアリリウム誘導体は、近赤外領域において広くて強い吸収を持ち、また、非ハロゲン系有機溶媒にも高い溶解性を示すことから、有機薄膜太陽電池に好適に適用することができる。前記有機薄膜太陽電池の具体的な層構造としては、例えば、図1に示すように、基板1/正極2/正孔輸送層3/活性層4/電子輸送層5/負極6のような構造が挙げられる。   In addition, the squarylium derivative as described above has a wide and strong absorption in the near infrared region, and also exhibits high solubility in non-halogen organic solvents, so that it can be suitably applied to organic thin film solar cells. it can. As a specific layer structure of the organic thin film solar cell, for example, as shown in FIG. 1, a structure such as substrate 1 / positive electrode 2 / hole transport layer 3 / active layer 4 / electron transport layer 5 / negative electrode 6 is used. Is mentioned.

本発明に係るスクアリリウム誘導体は、上記のような各層の有機層のいずれに用いられてもよく、正孔輸送材料、アクセプタ材料、電子輸送材料とともに分散して用いることも可能である。
特に、前記スクアリリウム誘導体をドナー材料とし、アクセプタ材料とともに、活性層4を構成することにより、高効率の有機薄膜太陽電池を提供することができる。
The squarylium derivative according to the present invention may be used in any of the organic layers as described above, and may be used in a dispersed manner together with a hole transport material, an acceptor material, and an electron transport material.
In particular, by forming the active layer 4 together with the acceptor material using the squarylium derivative as a donor material, a highly efficient organic thin-film solar cell can be provided.

前記アクセプタ材料は、特に限定されるものではなく、公知のものを適宜選択して用いることができるが、電子輸送性があり、HOMOのエネルギー準位が深い化合物が好ましく、具体的には、以下に示すようなフラーレン(C60、C70等)又はその誘導体が好適に用いられる。   The acceptor material is not particularly limited, and a known material can be appropriately selected and used. However, a compound having an electron transporting property and a deep HOMO energy level is preferable. Fullerenes (C60, C70, etc.) or derivatives thereof as shown in FIG.

Figure 0006312456
Figure 0006312456

なお、前記有機薄膜太陽電池においては、本発明に係るスクアリリウム誘導体以外の各層の構成材料は、特に限定されるものではなく、公知のものから適宜選択して用いることができ、低分子系又は高分子系のいずれであってもよい。
前記各層の膜厚は、各層同士の適応性や求められる全体の層厚さ等を考慮して、適宜状況に応じて定められるが、通常、5nm〜5μmの範囲内であることが好ましい。
In the organic thin film solar cell, the constituent material of each layer other than the squarylium derivative according to the present invention is not particularly limited, and can be appropriately selected from known ones. Any of molecular systems may be used.
The film thickness of each of the layers is appropriately determined depending on the situation in consideration of adaptability between the layers and the required total layer thickness, but is usually preferably in the range of 5 nm to 5 μm.

上記各層の形成方法は、蒸着法、スパッタリング法等などのドライプロセスでもよいが、本発明は、特に、非ハロゲン系有機溶媒を用いた塗布プロセスにより形成可能である点に利点を有しており、スピンコート法、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、ナノパーティクル分散液を用いる方法等のウェットプロセスを好適に適用することができる。   The method for forming each layer may be a dry process such as a vapor deposition method or a sputtering method, but the present invention has an advantage in that it can be formed by a coating process using a non-halogen organic solvent. Wet process such as spin coating method, ink jet method, casting method, dip coating method, bar coating method, blade coating method, roll coating method, gravure coating method, flexographic printing method, spray coating method, method using nanoparticle dispersion Can be suitably applied.

また、電極も、公知の材料及び構成でよく、特に限定されるものではない。例えば、ガラスやポリマーからなる透明基板上に透明導電性薄膜が形成されたものが用いられ、ガラス基板1に正極2として酸化インジウム錫(ITO)電極が形成された、いわゆるITO基板が一般的である。一方、負極6は、Al等の仕事関数の小さい(4eV以下)金属や合金、導電性化合物により構成される。   Also, the electrode may be a known material and configuration, and is not particularly limited. For example, a so-called ITO substrate in which a transparent conductive thin film is formed on a transparent substrate made of glass or polymer and an indium tin oxide (ITO) electrode is formed on the glass substrate 1 as the positive electrode 2 is generally used. is there. On the other hand, the negative electrode 6 is made of a metal, alloy, or conductive compound having a small work function (4 eV or less) such as Al.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
(スクアリリウム誘導体の合成)
本発明に係るスクアリリウム誘導体の代表例として、SQ−BP及びSQ−DcPの合成例を以下に示す。N−アルキルアニリンから前駆体を合成後、スクアリン酸との反応により、SQ−BP及びSQ−DcPをそれぞれ合成した。なお、各工程における目的物の同定は、1H−NMR、マススペクトルにて行った。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
(Synthesis of squarylium derivatives)
As typical examples of the squarylium derivative according to the present invention, synthesis examples of SQ-BP and SQ-DcP are shown below. After synthesizing the precursor from N-alkylaniline, SQ-BP and SQ-DcP were respectively synthesized by reaction with squaric acid. In addition, the target object in each process was identified by 1 H-NMR and mass spectrum.

(合成例1)SQ−BPの合成
(1−1)N−(3,5−ジメトキシフェニル)−ブチルアニリンの合成
Synthesis Example 1 Synthesis of SQ-BP (1-1) Synthesis of N- (3,5-dimethoxyphenyl) -butylaniline

Figure 0006312456
Figure 0006312456

300mlの3つ口フラスコに、窒素フローを10分間程行った後、1−ブロモ−3,5−ジメトキシベンゼン4.34g(20mmol)、N−ブチルフェニルアミン1.49g(1.6ml)(10mmol)、tBuOK5.61g50mmol、キシレン(脱水)200mlを入れた。窒素バブリングを30分間行った後、Pd2(dba)30.137g(0.15mmol)とtBu3P0.15ml(0.6mmol)を加えて、130℃で加熱還流した。約20時間後、薄層クロマトグラフィー(TLC)(SiO2、展開溶媒 トルエン)で原料のN−ブチルフェニルアミンの消失を確認し、室温に戻した。
トルエン100ml程度を入れて分液ロートに移し、イオン交換水150mlを加え、有機層を抽出し、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥させた。シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製し、飴状の黄色の物質2.41g(収率84%)を得た。
A 300 ml three-necked flask was subjected to nitrogen flow for about 10 minutes, then 4.34 g (20 mmol) of 1-bromo-3,5-dimethoxybenzene, 1.49 g (1.6 ml) (10 mmol) of N-butylphenylamine. ), TBuOK (5.61 g, 50 mmol) and xylene (dehydrated) (200 ml) were added. After performing nitrogen bubbling for 30 minutes, 0.137 g (0.15 mmol) of Pd 2 (dba) 3 and 0.15 ml (0.6 mmol) of tBu 3 P were added, and the mixture was heated to reflux at 130 ° C. After about 20 hours, the disappearance of the raw material N-butylphenylamine was confirmed by thin layer chromatography (TLC) (SiO 2 , developing solvent toluene), and the temperature was returned to room temperature.
About 100 ml of toluene was added and transferred to a separatory funnel, 150 ml of ion exchange water was added, the organic layer was extracted, washed with saturated brine, and dried over magnesium sulfate. Purification by silica gel column chromatography (developing solvent: toluene) gave 2.41 g (84% yield) of a bowl-like yellow substance.

(1−2)N−(3,5−ジヒドロキシフェニル)−ブチルアニリンの合成 (1-2) Synthesis of N- (3,5-dihydroxyphenyl) -butylaniline

Figure 0006312456
Figure 0006312456

200mlの4つ口フラスコに、N−(3,5−ジメトキシフェニル)−ブチルアニリン2.75g(9.6mmol)を入れ、塩化メチレン(脱水)50mlを加え、氷浴で0℃まで冷却した後、反応系を0℃に保ったまま、BBr325ml(1MのCH2Cl2溶液)をゆっくり滴下した。滴下終了後、室温で撹拌し、16時間後、再度0℃に冷却し、H2O30mlをゆっくり滴下した。
分液により酸等を除去し、硫酸マグネシウムで乾燥させた。シリカゲルクロマトグラフィー(展開溶媒:塩化メチレン)で精製し、アセトンで回収し、茶色の飴状の物質1.64g(収率66%)を得た。
In a 200 ml four-necked flask, 2.75 g (9.6 mmol) of N- (3,5-dimethoxyphenyl) -butylaniline was added, 50 ml of methylene chloride (dehydrated) was added, and the mixture was cooled to 0 ° C. in an ice bath. While maintaining the reaction system at 0 ° C., 25 ml of BBr 3 (1M CH 2 Cl 2 solution) was slowly added dropwise. After completion of dropping, the mixture was stirred at room temperature, and after 16 hours, it was cooled again to 0 ° C., and 30 ml of H 2 O was slowly added dropwise.
The acid and the like were removed by liquid separation and dried with magnesium sulfate. The product was purified by silica gel chromatography (developing solvent: methylene chloride) and collected with acetone to obtain 1.64 g (yield 66%) of a brown bowl-like substance.

(1−3)SQ−BPの合成 (1-3) Synthesis of SQ-BP

Figure 0006312456
Figure 0006312456

ディーンスターク管を取り付けた300mlの3つ口フラスコに、スクアリン酸0.364g(3.2mmol)、トルエン:ブタノール(3:1)60mlに溶解させたN−(3,5−ジヒドロキシフェニル)−ブチルアニリン1.64g(6.38mmol)を入れ、窒素バブリングを30分間行い、120℃で加熱還流した。16時間後、TLC(SiO2、展開溶媒:クロロホルム)で原料の消失を確認し、反応を停止した。
反応系の溶媒を、ディーンスターク管を用いて10ml程度まで濃縮し、シクロヘキサン30mlを入れ、再度10ml程度まで濃縮した。ナスフラスコに移して、シクロヘキサンを30ml程度加え、目的物を析出させた後、溶媒が少量残る程度までさらに濃縮した。再度、シクロヘキサンを30ml程度加えて、目的物を析出させ、吸引ろ過し、メタノールとヘキサンによる分散洗浄を行い、金属光沢のある緑色の粉末1.78g(収率88%)を得た。塩化メチレンに完全に溶解させ、撹拌しているメタノールに滴下して、再沈殿により精製した。
N- (3,5-dihydroxyphenyl) -butyl dissolved in 0.364 g (3.2 mmol) of squaric acid and 60 ml of toluene: butanol (3: 1) in a 300 ml three-necked flask equipped with a Dean-Stark tube 1.64 g (6.38 mmol) of aniline was added, nitrogen bubbling was performed for 30 minutes, and the mixture was heated to reflux at 120 ° C. After 16 hours, the disappearance of the raw materials was confirmed by TLC (SiO 2 , developing solvent: chloroform), and the reaction was stopped.
The solvent of the reaction system was concentrated to about 10 ml using a Dean-Stark tube, 30 ml of cyclohexane was added, and the mixture was again concentrated to about 10 ml. After transferring to an eggplant flask and adding about 30 ml of cyclohexane to precipitate the target product, the mixture was further concentrated until a small amount of solvent remained. Again, about 30 ml of cyclohexane was added to precipitate the target product, which was subjected to suction filtration and dispersed and washed with methanol and hexane to obtain 1.78 g (yield 88%) of a metallic glossy green powder. It was completely dissolved in methylene chloride, added dropwise to stirring methanol and purified by reprecipitation.

(合成例2)SQ−DcPの合成
(2−1)N−(3,5−ジメトキシフェニル)−ドデシルアニリンの合成
Synthesis Example 2 Synthesis of SQ-DcP (2-1) Synthesis of N- (3,5-dimethoxyphenyl) -dodecylaniline

Figure 0006312456
Figure 0006312456

200mlの3つ口フラスコに、窒素フローを10分間程行った後、1−ブロモ−3,5−ジメトキシベンゼン4.34g(20mmol)、N−ドデシルフェニルアミン2.61g(10mmol)、tBuOK5.61g(50mmol)、キシレン(脱水)180mlを入れ、窒素バブリングを30分間行った後、Pd2(dba)3137mg(0.15mol)とtBu3P0.15ml(0.06mmol)を加えて、130℃で加熱還流した。約26時間後、TLC(SiO2、展開溶媒:トルエン)で原料の消費を確認し、反応を停止した。
分液により触媒や塩などを取り除き、硫酸マグネシウムで乾燥させた。シリカゲルクロマトグラフィー(展開溶媒:トルエン)で精製し、黄色の飴状の物質3.88g(収率95%)を得た。
A 200 ml three-necked flask was subjected to a nitrogen flow for about 10 minutes, then 4.34 g (20 mmol) of 1-bromo-3,5-dimethoxybenzene, 2.61 g (10 mmol) of N-dodecylphenylamine, and 5.61 g of tBuOK. (50 mmol) and 180 ml of xylene (dehydrated) were added and nitrogen bubbling was performed for 30 minutes. Then, 137 mg (0.15 mol) of Pd 2 (dba) 3 and 0.15 ml (0.06 mmol) of tBu 3 P were added, and 130 ° C. And heated at reflux. After about 26 hours, consumption of the raw materials was confirmed by TLC (SiO 2 , developing solvent: toluene), and the reaction was stopped.
Catalysts and salts were removed by liquid separation and dried over magnesium sulfate. Purification by silica gel chromatography (developing solvent: toluene) gave 3.88 g (yield 95%) of a yellow bowl-like substance.

(2−2)N−(3,5−ジヒドロキシフェニル)−ドデシルアニリンの合成 (2-2) Synthesis of N- (3,5-dihydroxyphenyl) -dodecylaniline

Figure 0006312456
Figure 0006312456

200mlの4つ口フラスコに、N−(3,5−ジメトキシフェニル)−ドデシルアニリン3.80g(9.55mmol)、塩化メチレン(脱水)20mlを入れ、氷浴で0℃まで冷却した後、反応系を0℃に保ったまま、BBr328ml(1MのCH2Cl2溶液)をゆっくり滴下した。滴下終了後、室温で撹拌し、14時間後、再度0℃に冷却し、H2O30mlをゆっくり滴下した。
分液により酸等を除去し、硫酸マグネシウムで乾燥させた。シリカゲルクロマトグラフィー(展開溶媒:塩化メチレン)で精製し、塩化メチレン:酢酸エチル(20:1)で回収し、茶色の飴状の物質2.48g(収率70%)を得た。
A 200 ml four-necked flask was charged with 3.80 g (9.55 mmol) of N- (3,5-dimethoxyphenyl) -dodecylaniline and 20 ml of methylene chloride (dehydrated), cooled to 0 ° C. in an ice bath, and then reacted. While maintaining the system at 0 ° C., 28 ml of BBr 3 (1M CH 2 Cl 2 solution) was slowly added dropwise. After completion of dropping, the mixture was stirred at room temperature, and after 14 hours, it was cooled again to 0 ° C., and 30 ml of H 2 O was slowly added dropwise.
The acid and the like were removed by liquid separation and dried with magnesium sulfate. Purification by silica gel chromatography (developing solvent: methylene chloride) and recovery with methylene chloride: ethyl acetate (20: 1) gave 2.48 g (yield 70%) of a brown bowl-like substance.

(2−3)SQ−DcPの合成 (2-3) Synthesis of SQ-DcP

Figure 0006312456
Figure 0006312456

ディーンスターク管を取り付けた200mlの3つ口フラスコに、スクアリン酸0.376g(3.3mmol)、トルエン:ブタノール(3:1)80mlに溶解させたN−(3,5−ジヒドロキシフェニル)−ドデシルアニリン2.48g(6.71mmol)を入れ、窒素バブリングを30分間行い、120℃で加熱還流した。20時間後、TLC(SiO2、展開溶媒:塩化メチレン)で原料の消失を確認し、反応を停止した。
反応系の溶媒を、ディーンスターク管を用いて10ml程度まで濃縮し、シクロヘキサン30mlを入れ、再度10ml程度まで濃縮した。再度、シクロヘキサン30mlを入れ、10ml程度まで濃縮後、室温まで冷却した。これに、シクロヘキサン30mlを加え、析出物をろ過し、メタノールとヘキサンによる分散洗浄後、減圧乾燥し、金属光沢のある緑色の粉末2.2g(収率82%)を得た。
N- (3,5-dihydroxyphenyl) -dodecyl dissolved in 0.376 g (3.3 mmol) squaric acid and 80 ml toluene: butanol (3: 1) in a 200 ml three-necked flask equipped with a Dean-Stark tube 2.48 g (6.71 mmol) of aniline was added, nitrogen bubbling was performed for 30 minutes, and the mixture was heated to reflux at 120 ° C. After 20 hours, the disappearance of the raw materials was confirmed by TLC (SiO 2 , developing solvent: methylene chloride), and the reaction was stopped.
The solvent of the reaction system was concentrated to about 10 ml using a Dean-Stark tube, 30 ml of cyclohexane was added, and the mixture was again concentrated to about 10 ml. Again, 30 ml of cyclohexane was added and concentrated to about 10 ml, and then cooled to room temperature. To this was added 30 ml of cyclohexane, the precipitate was filtered, dispersed and washed with methanol and hexane, and then dried under reduced pressure to obtain 2.2 g (yield 82%) of a metallic glossy green powder.

上記により合成したSQ−BP及びSQ−DcPについて、以下に示すような各種特性評価を行った。   Various characteristics evaluation as shown below was performed about SQ-BP and SQ-DcP which were synthesize | combined by the above.

(溶解性評価)
SQ−DcPは、クロロホルムにも、トルエンやTHF等の等の非ハロゲン系溶媒にも、高い溶解性を示した。
(Solubility evaluation)
SQ-DcP showed high solubility in chloroform and non-halogen solvents such as toluene and THF.

(熱特性評価)
TGAにより熱分解温度Tdを測定した。
(Thermal characteristics evaluation)
The thermal decomposition temperature Td was measured by TGA.

(紫外−可視光吸収スペクトル測定)
各スクアリリウム誘導体の1×10-6Mクロロホルム溶液を調製し、紫外−可視光吸収スペクトル測定により、溶液のモル吸係数ε及び最大吸収ピーク波長λmaxを求めた。
また、各スクアリリウム誘導体の2mg/mlクロロホルム溶液を調製し、これを石英基板上にスピンコート(2000rpm、20秒間)により成膜した固体薄膜について、紫外−可視光吸収スペクトル測定により、最大吸収ピーク波長λmaxを求めた。
(Measurement of UV-visible absorption spectrum)
A 1 × 10 −6 M chloroform solution of each squarylium derivative was prepared, and the molar absorption coefficient ε and the maximum absorption peak wavelength λ max of the solution were determined by ultraviolet-visible absorption spectrum measurement.
In addition, a 2 mg / ml chloroform solution of each squarylium derivative was prepared, and the maximum absorption peak wavelength was measured by ultraviolet-visible absorption spectrum measurement for a solid thin film formed on a quartz substrate by spin coating (2000 rpm, 20 seconds). λ max was determined.

(サイクリックボルタンメトリー(CV)測定)
各スクアリリウム誘導体の0.5mM塩化メチレン溶液を調製し、フェロセンを基準に、HOMO/LUMOを求めた。
(Cyclic voltammetry (CV) measurement)
A 0.5 mM methylene chloride solution of each squarylium derivative was prepared, and HOMO / LUMO was determined based on ferrocene.

(光電子収量分光(PYS)測定)
ITO基板上に、各スクアリリウム誘導体を塗布成膜し、イオン化ポテンシャルIpを測定した。
(Photoelectron yield spectroscopy (PYS) measurement)
Each squarylium derivative was applied and formed on an ITO substrate, and the ionization potential I p was measured.

上記の各種評価結果を表1にまとめて示す。   The various evaluation results are summarized in Table 1.

Figure 0006312456
Figure 0006312456

表1に示した結果から分かるように、SQ−BP及びSQ−DcPは、いずれも、太陽電池材料として十分に高い耐熱性を有していることが認められた。
また、SQ−BP及びSQ−DcPは、可視光〜近赤外領域(500〜700nm)にかけて広く、強い吸収を示すことから、十分な太陽光の吸収が期待される。
さらに、SQ−BP及びSQ−DcPは、HOMO、LUMOともに同等の値を示し、LUMOが、アクセプタ材料となるPC70BMのLUMOレベル4.0eVよりも浅く、電荷分離に適したエネルギー準位であることが認められた。
As can be seen from the results shown in Table 1, it was confirmed that both SQ-BP and SQ-DcP have sufficiently high heat resistance as a solar cell material.
Further, SQ-BP and SQ-DcP are broad from visible light to near infrared region (500 to 700 nm) and show strong absorption, so that sufficient absorption of sunlight is expected.
Furthermore, SQ-BP and SQ-DcP show equivalent values for both HOMO and LUMO, and LUMO is shallower than the LUMO level of 4.0 eV of PC 70 BM, which is an acceptor material, and has an energy level suitable for charge separation. It was recognized that there was.

(有機薄膜太陽電池素子の作製及び特性評価)
各スクアリリウム誘導体(SQ)をドナー材料として用い、フラーレン誘導体PC70BMを用いて、図1に示すような層構造の有機薄膜太陽電池素子を作製した。具体的には、以下のようにして作製した。
まず、ガラス基板1上にITOが膜厚140nmで成膜された正極2上に、正孔輸送層3としてMoO3を膜厚6nmで真空蒸着により成膜した。
その上に、ドナーとしてSQ、アクセプタとしてPC70BMの混合比1:3(質量比)の20mg/mlクロロホルム溶液をスピンコート(2500rpm、40秒間)し、活性層4を膜厚70nmで成膜した。
そして、電子輸送層5として、下記に示すBCPを膜厚10nmでスピンコートにより成膜し、その上に、負極6としてAlを膜厚100nmで真空蒸着により成膜した。
(Production and characteristic evaluation of organic thin-film solar cell elements)
Each squarylium derivative (SQ) was used as a donor material, and an organic thin-film solar cell element having a layer structure as shown in FIG. 1 was produced using a fullerene derivative PC 70 BM. Specifically, it was produced as follows.
First, MoO 3 was formed into a film with a film thickness of 6 nm as a hole transport layer 3 on the positive electrode 2 on which the ITO film was formed with a film thickness of 140 nm on the glass substrate 1 by vacuum deposition.
On top of that, a 20 mg / ml chloroform solution having a mixing ratio of 1: 3 (mass ratio) of SQ as a donor and PC 70 BM as an acceptor is spin-coated (2500 rpm, 40 seconds), and the active layer 4 is formed to a thickness of 70 nm. did.
Then, as the electron transport layer 5, BCP shown below was formed by spin coating with a film thickness of 10 nm, and Al was formed thereon by vacuum deposition with a film thickness of 100 nm as the negative electrode 6.

Figure 0006312456
Figure 0006312456

上記により作製した素子の層構成は、ITO/MoO3(6nm)/SQ:PC70BM(70nm)/BCP(10nm)/Al(100nm)である。 The layer structure of the element produced as described above is ITO / MoO 3 (6 nm) / SQ: PC 70 BM (70 nm) / BCP (10 nm) / Al (100 nm).

上記において作製した各素子について、AM1.5G、100mW/cm2の疑似太陽光を照射して、太陽電池特性を測定した。短絡電流密度JSC、開放電圧VOC、曲線因子FF、エネルギー変換効率PCEの評価結果を表2にまとめて示す。 About each element produced in the above, AM1.5G, 100 mW / cm < 2 > pseudo-sunlight was irradiated, and the solar cell characteristic was measured. Table 2 summarizes the evaluation results of the short-circuit current density J SC , the open circuit voltage V OC , the fill factor FF, and the energy conversion efficiency PCE.

Figure 0006312456
Figure 0006312456

表2に示した結果から分かるように、塗布型有機薄膜太陽電池として高い特性を示すことが認められた。   As can be seen from the results shown in Table 2, it was confirmed that the coating-type organic thin film solar cell exhibits high characteristics.

1 基板
2 正極
3 正孔輸送層
4 活性層
5 電子輸送層
6 負極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Positive electrode 3 Hole transport layer 4 Active layer 5 Electron transport layer 6 Negative electrode

Claims (1)

下記一般式(1)で表されるスクアリリウム誘導体が用いられていることを特徴とする有機薄膜太陽電池。
Figure 0006312456
(式(1)中、R1は置換又は無置換の芳香族炭化水素基であり、R2は炭素数が4以上の置換又は無置換の脂肪族炭化水素基(エステル基を除く)である。)
The organic thin-film solar cell characterized by using the squarylium derivative represented by following General formula (1).
Figure 0006312456
(In Formula (1), R 1 is a substituted or unsubstituted aromatic hydrocarbon group, and R 2 is a substituted or unsubstituted aliphatic hydrocarbon group having 4 or more carbon atoms (excluding an ester group). .)
JP2014023516A 2014-02-10 2014-02-10 Organic thin film solar cell Active JP6312456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014023516A JP6312456B2 (en) 2014-02-10 2014-02-10 Organic thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023516A JP6312456B2 (en) 2014-02-10 2014-02-10 Organic thin film solar cell

Publications (2)

Publication Number Publication Date
JP2015153767A JP2015153767A (en) 2015-08-24
JP6312456B2 true JP6312456B2 (en) 2018-04-18

Family

ID=53895771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023516A Active JP6312456B2 (en) 2014-02-10 2014-02-10 Organic thin film solar cell

Country Status (1)

Country Link
JP (1) JP6312456B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393136B2 (en) * 2013-09-26 2018-09-19 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Compound
JP6736077B2 (en) * 2015-06-03 2020-08-05 国立大学法人山形大学 Novel squarylium derivative and organic thin-film solar cell using the same
CN111033781A (en) * 2017-09-13 2020-04-17 富士胶片株式会社 Photoelectric conversion element, solar cell, and hole transport material
JP2020013879A (en) * 2018-07-18 2020-01-23 国立大学法人山形大学 Translucent organic thin-film solar cell
WO2020054627A1 (en) * 2018-09-14 2020-03-19 コニカミノルタ株式会社 Squarylium compound, light-emitting composition, and light-emitting film
CN110224065B (en) * 2019-04-11 2021-01-01 浙江大学 Film thickness insensitive inverse thick film two-dimensional hybrid perovskite solar cell and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177410A (en) * 1992-12-07 1994-06-24 Ricoh Co Ltd Manufacture of photovoltaic element and its manufacture
JP5125549B2 (en) * 2008-01-30 2013-01-23 コニカミノルタビジネステクノロジーズ株式会社 Color toner for electrophotography
JP5603545B2 (en) * 2008-09-08 2014-10-08 公立大学法人大阪府立大学 Donor-acceptor dye
JP2010271486A (en) * 2009-05-20 2010-12-02 Fuji Xerox Co Ltd Electrophotographic toner, electrophotographic developer, toner cartridge, process cartridge, and image forming device
US8273875B2 (en) * 2009-11-16 2012-09-25 University Of Notre Dame Du Lac High performance luminescent compounds
JP2011198811A (en) * 2010-03-17 2011-10-06 Fujifilm Corp Photoelectric conversion element and organic thin-film solar cell

Also Published As

Publication number Publication date
JP2015153767A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6312456B2 (en) Organic thin film solar cell
EP2962992B1 (en) Fullerene derivative, organic solar cell using same, and manufacturing method thereof
US10629826B2 (en) Organic compound and photoelectric conversion element
JP5417039B2 (en) Indole derivatives and organic thin film solar cells using the same
Yang et al. Cyano-substitution on the end-capping group: facile access toward asymmetrical squaraine showing strong dipole–dipole interactions as a high performance small molecular organic solar cells material
US9691989B2 (en) Carbo- and heterocyclic spiro compounds as donor materials for organic photovoltaics and their preparation
US10062854B2 (en) Organic material and photoelectric conversion element
US10818849B2 (en) Electron acceptors based on alpha-position substituted PDI for OPV solar cells
Deng et al. Solution-processable star-shaped photovoltaic organic molecule with triphenylamine core and thieno [3, 2-b] thiophene–dicyanovinyl arms
Zhang et al. Solution-processable star-shaped photovoltaic organic molecules based on triphenylamine and benzothiadiazole with longer pi-bridge
US20110130566A1 (en) Perylene tetracarboximide derivatives for photovoltaic devices
Mi et al. Synthesis and characterization of a novel fullerene derivative containing carbazole group for use in organic solar cells
Yang et al. Two different donor subunits substituted unsymmetrical squaraines for solution-processed small molecule organic solar cells
CN109912621B (en) Asymmetric naphthalene nucleus small molecule receptor material and preparation method and application thereof
US8802975B2 (en) Compounds for organic thin-film solar cells and organic thin-film solar cells
Amitha et al. Synthesis of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine and its application in bulk hetero junction solar cells
Yang et al. Unsymmetrical squaraines with new linkage manner for high-performance solution-processed small-molecule organic photovoltaic cells
WO2011013597A1 (en) Fullerene derivatives
JP6281975B2 (en) Asymmetric squarylium derivative, donor material comprising the same, and organic thin film solar cell using the same
EP3290422B1 (en) Compound and organic solar cell comprising same
Adhikari et al. Towards amorphous solution-processed small-molecule photovoltaic cells by design
US8568623B2 (en) Triphenylamine derivatives and organic photovoltaic cells including the derivatives
KR20140083969A (en) Bibenzo[b]furan compound, photoelectric conversion material, and photoelectric conversion element
US20130174910A1 (en) Indenoperylene compound, material for organic thin-film photovotaic cell containing indenoperylene derivative and organic thin film photovotaic cell using same
Lu et al. Synthesis, characterization and photovoltaic application of N, N′-bisfluorenyl substituted perylene bisimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6312456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150