JP6311263B2 - Epoxy resin composition, adhesive sheet and semiconductor device - Google Patents

Epoxy resin composition, adhesive sheet and semiconductor device Download PDF

Info

Publication number
JP6311263B2
JP6311263B2 JP2013213166A JP2013213166A JP6311263B2 JP 6311263 B2 JP6311263 B2 JP 6311263B2 JP 2013213166 A JP2013213166 A JP 2013213166A JP 2013213166 A JP2013213166 A JP 2013213166A JP 6311263 B2 JP6311263 B2 JP 6311263B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
group
epoxy
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013213166A
Other languages
Japanese (ja)
Other versions
JP2015074750A (en
Inventor
敏明 白坂
敏明 白坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013213166A priority Critical patent/JP6311263B2/en
Publication of JP2015074750A publication Critical patent/JP2015074750A/en
Application granted granted Critical
Publication of JP6311263B2 publication Critical patent/JP6311263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、エポキシ樹脂組成物、接着シート及び半導体装置に関する。   The present invention relates to an epoxy resin composition, an adhesive sheet, and a semiconductor device.

モーター、発電機、プリント配線基板、ICチップ等の電気機器及び電子機器の小型化の進行に伴い、高密度化された導体からの発熱量は増大する傾向にある。このため、電気機器又は電子機器に使用される絶縁材料について放熱性の向上が求められている。電気機器又は電子機器向けの絶縁材料としては、耐熱性、耐湿性、電気特性、成形性、接着性等に優れるという観点から、エポキシ樹脂等の樹脂材料が広く用いられている。しかしながら、樹脂材料は熱伝導性に劣るという欠点がある。樹脂材料の熱伝導性を向上させる方法として、熱伝導性に優れる無機フィラーを樹脂材料に配合する方法が広く知られている。例えば、特許文献1には、一般的なビスフェノールA型エポキシ樹脂と酸化アルミナフィラーとの複合樹脂材料が記載され、この複合樹脂材料の熱伝導率が3.8W/mK(キセノンフラッシュ法)であることが開示されている。   With the progress of miniaturization of electric devices and electronic devices such as motors, generators, printed wiring boards, and IC chips, the amount of heat generated from the high-density conductor tends to increase. For this reason, the improvement of heat dissipation is calculated | required about the insulating material used for an electric equipment or an electronic device. As an insulating material for an electric device or an electronic device, a resin material such as an epoxy resin is widely used from the viewpoint of excellent heat resistance, moisture resistance, electrical characteristics, moldability, adhesiveness, and the like. However, the resin material has a disadvantage that it is inferior in thermal conductivity. As a method for improving the thermal conductivity of a resin material, a method of blending an inorganic filler excellent in thermal conductivity with a resin material is widely known. For example, Patent Document 1 describes a composite resin material of a general bisphenol A type epoxy resin and an alumina oxide filler, and the thermal conductivity of this composite resin material is 3.8 W / mK (xenon flash method). It is disclosed.

更に熱伝導性を向上するための方法として、樹脂材料そのものの熱伝導性を向上させることが試みられている。例えば、特許文献2には、メソゲン基を有するエポキシ樹脂とエポキシ樹脂用硬化剤とからなる樹脂の硬化物が高い熱伝導性を示し、更にフィラー粉末を含むことでより高い熱伝導率を示すことが開示されている。   Further, as a method for improving the thermal conductivity, attempts have been made to improve the thermal conductivity of the resin material itself. For example, Patent Document 2 shows that a cured product of a resin composed of an epoxy resin having a mesogenic group and a curing agent for epoxy resin exhibits high thermal conductivity, and further exhibits higher thermal conductivity by including filler powder. Is disclosed.

また、エポキシ樹脂組成物にアクリルゴム等のエラストマーを配合して、溶融粘度及び靭性を改良する方法が知られている(例えば、特許文献3〜5参照)。   Moreover, the method of mix | blending elastomers, such as acrylic rubber, with an epoxy resin composition and improving melt viscosity and toughness is known (for example, refer patent documents 3-5).

特開2008−13759号公報JP 2008-13759 A 特許第4118691号公報Japanese Patent No. 4118691 特開平1−230624号公報JP-A-1-230624 特許第4053744号公報Japanese Patent No. 4053744 特開平7−173449号公報JP-A-7-173449

メソゲン骨格をもつエポキシ樹脂は、溶融温度及び粘度が高く、溶媒への溶解性が低下するため、取扱性の改善が課題となる。更に、メソゲン骨格をもつエポキシ樹脂は樹脂の軟化点を越えると急激に粘度が低下することが多く、貼付時の温度及び圧力により樹脂がはみ出る現象(いわゆるポンプアウト)が発生し、適切な形状の絶縁層を形成できない場合がある。更に、得られた硬化物が硬く、靭性が不足することにより、信頼性試験後にクラックの発生、接着不良等を引き起こす場合がある。   An epoxy resin having a mesogenic skeleton has a high melting temperature and viscosity, and its solubility in a solvent is lowered, so that improvement in handleability becomes a problem. Furthermore, epoxy resins with a mesogenic skeleton often have a sudden drop in viscosity when the softening point of the resin is exceeded, and the phenomenon of soaking out of the resin (so-called pump-out) occurs due to the temperature and pressure at the time of application. An insulating layer may not be formed. Furthermore, the obtained cured product is hard and lacks toughness, which may cause cracking, poor adhesion, etc. after the reliability test.

また、エポキシ樹脂組成物にエラストマーを配合すると、熱伝導性が著しく低下する傾向にある。このため、熱伝導性の低下が抑制され、かつ樹脂強度及び取扱い性に優れるエポキシ樹脂組成物が強く求められている。更に、エラストマーを多量に配合すると前述のポンプアウト現象とは逆に貼付時の流動性が著しく低下して、凹凸のある接着面への追従性が低下する場合もある。   Moreover, when an elastomer is blended with the epoxy resin composition, the thermal conductivity tends to be remarkably lowered. For this reason, there is a strong demand for an epoxy resin composition that suppresses a decrease in thermal conductivity and is excellent in resin strength and handleability. Furthermore, when a large amount of elastomer is blended, the fluidity at the time of sticking is remarkably lowered contrary to the above-mentioned pump-out phenomenon, and the followability to the uneven adhesive surface may be lowered.

そこで、本発明は、硬化後の熱伝導性及び靱性、並びに取扱い性のバランスに優れるエポキシ樹脂組成物、これにより得られる接着シート及び半導体装置を提供することを目的とする。   Then, an object of this invention is to provide the epoxy resin composition excellent in the balance of the heat conductivity and toughness after hardening, and a handleability, the adhesive sheet obtained by this, and a semiconductor device.

本発明は以下の通りである。   The present invention is as follows.

<1> エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物と、液晶性又は結晶性の2官能エポキシ樹脂モノマーと、フェノールノボラック型硬化剤と、無機充填材と、を含むエポキシ樹脂組成物。 <1> A compound having two functional groups capable of addition reaction with an epoxy group in one molecule, a liquid crystalline or crystalline bifunctional epoxy resin monomer, a phenol novolac-type curing agent, and an inorganic filler. Epoxy resin composition.

<2> エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物と2官能エポキシ樹脂モノマーとの反応物であり液晶性又は結晶性を示すオリゴマーと、フェノールノボラック型硬化剤と、無機充填材と、を含むエポキシ樹脂組成物。 <2> an oligomer which is a reaction product of a compound having two functional groups capable of addition reaction with an epoxy group in one molecule and a bifunctional epoxy resin monomer and exhibits liquid crystallinity or crystallinity, a phenol novolac type curing agent, An epoxy resin composition comprising an inorganic filler.

<3> 前記エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物が、ジカルボン酸を含む前記<1>又は<2>に記載のエポキシ樹脂組成物。 <3> The epoxy resin composition according to <1> or <2>, wherein the compound having two functional groups capable of addition reaction with the epoxy group in one molecule contains a dicarboxylic acid.

<4> 前記ジカルボン酸が、下記一般式(I)で示される構造を有する化合物を含む前記<3>に記載のエポキシ樹脂組成物。 <4> The epoxy resin composition according to <3>, wherein the dicarboxylic acid includes a compound having a structure represented by the following general formula (I).

一般式(I)中、Rはフェニレン基、炭素数1〜12のアルキレン基又は炭素数1〜12のオキシアルキレン基を表す。   In general formula (I), R represents a phenylene group, an alkylene group having 1 to 12 carbon atoms, or an oxyalkylene group having 1 to 12 carbon atoms.

<5> 前記ジカルボン酸が、イソフタル酸及びグルタル酸からなる群より選択される少なくとも1種を含む前記<3>又は<4>に記載のエポキシ樹脂組成物。 <5> The epoxy resin composition according to <3> or <4>, wherein the dicarboxylic acid includes at least one selected from the group consisting of isophthalic acid and glutaric acid.

<6> 前記エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物の含有率が、エポキシ樹脂の総含有量中、5mol%〜50mol%である前記<1>〜<5>のいずれか1項に記載のエポキシ樹脂組成物。 <6> Said <1>-<5> whose content rate of the compound which has two functional groups which can carry out addition reaction with the said epoxy group is 5 mol%-50 mol% in the total content of an epoxy resin. The epoxy resin composition according to any one of the above.

<7> 前記無機充填材が、アルミナ粒子及び窒化ホウ素粒子からなる群より選択される少なくとも1種を含む前記<1>〜<6>のいずれか1項に記載のエポキシ樹脂組成物。 <7> The epoxy resin composition according to any one of <1> to <6>, wherein the inorganic filler includes at least one selected from the group consisting of alumina particles and boron nitride particles.

<8> 前記無機充填材の含有率が、60体積%〜80体積%である前記<1>〜<7>のいずれか1項に記載のエポキシ樹脂組成物。 <8> The epoxy resin composition according to any one of <1> to <7>, wherein the content of the inorganic filler is 60% by volume to 80% by volume.

<9> 基材と、前記基材上に配置される前記<1>〜<8>のいずれか1項に記載のエポキシ樹脂組成物のシート状成形物と、を有する接着シート。 The adhesive sheet which has a <9> base material and the sheet-like molding of the epoxy resin composition of any one of said <1>-<8> arrange | positioned on the said base material.

<10> 放熱板と、前記<1>〜<8>のいずれか1項に記載のエポキシ樹脂組成物のシート状硬化物と、半導体素子と、をこの順に有する半導体装置。 The semiconductor device which has a <10> heat sink, the sheet-like hardened | cured material of the epoxy resin composition of any one of said <1>-<8>, and a semiconductor element in this order.

本発明によれば、硬化後の熱伝導性及び接着性、並びに取扱い性のバランスに優れるエポキシ樹脂組成物、これにより得られる接着シート及び半導体装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the epoxy resin composition excellent in the balance of the heat conductivity and adhesiveness after hardening, and handleability, the adhesive sheet obtained by this, and a semiconductor device are provided.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。   In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. . Moreover, the numerical range shown using "to" shows the range which includes the numerical value described before and behind "to" as a minimum value and a maximum value, respectively. Furthermore, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.

<エポキシ樹脂組成物>
本発明のエポキシ樹脂組成物は、エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物と、液晶性又は結晶性の2官能エポキシ樹脂モノマーと、フェノールノボラック型硬化剤と、無機充填材と、を含む。以下、エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物を、特定硬化剤ともいう。また、液晶性又は結晶性の2官能エポキシ樹脂モノマーを、特定エポキシ樹脂モノマーともいう。
本発明の他の形態のエポキシ樹脂組成物は、エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物と2官能エポキシ樹脂モノマーとの反応物であり液晶性又は結晶性を示すオリゴマーと、フェノールノボラック型硬化剤と、無機充填材と、を含む。
<Epoxy resin composition>
The epoxy resin composition of the present invention comprises a compound having two functional groups capable of addition reaction with an epoxy group in one molecule, a liquid crystalline or crystalline bifunctional epoxy resin monomer, a phenol novolac type curing agent, an inorganic And a filler. Hereinafter, a compound having two functional groups capable of addition reaction with an epoxy group in one molecule is also referred to as a specific curing agent. The liquid crystalline or crystalline bifunctional epoxy resin monomer is also referred to as a specific epoxy resin monomer.
The epoxy resin composition according to another aspect of the present invention is a reaction product of a compound having two functional groups capable of addition reaction with an epoxy group in one molecule and a bifunctional epoxy resin monomer, and exhibits liquid crystallinity or crystallinity. An oligomer, a phenol novolac-type curing agent, and an inorganic filler;

上記成分を含むことにより、硬化後の熱伝導性及び接着性、並びに取扱い性に優れるエポキシ樹脂組成物とすることができる。その理由は以下のように考えることができる。
液晶性又は結晶性の2官能エポキシ樹脂モノマーは、硬化すると秩序性の高い高次構造を形成するため、これを含むエポキシ樹脂組成物の硬化物は、分子の熱運動に起因するフォノン振動を効率よく伝達し熱伝導性が高くなる。更に、液晶性又は結晶性の2官能エポキシ樹脂モノマーと、エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物とが反応すると、直鎖状で液晶性又は結晶性の高分子構造が形成される。そのため、本発明のエポキシ樹脂組成物の硬化物は、高分子鎖同士のからみあいによって靱性等の樹脂強度が向上し、貼付時に樹脂がはみ出るというポンプアウトが抑制されて取扱い性が向上する。よって、本発明のエポキシ樹脂組成物は、硬化後の熱伝導性を低下させずに、接着性、樹脂強度及び取扱い性を改善できると考えている。
By containing the said component, it can be set as the epoxy resin composition excellent in the heat conductivity and adhesiveness after hardening, and handleability. The reason can be considered as follows.
A liquid crystalline or crystalline bifunctional epoxy resin monomer forms a highly ordered higher-order structure when cured, and therefore the cured product of the epoxy resin composition containing the monomer efficiently eliminates phonon vibrations caused by molecular thermal motion. Good transmission and high thermal conductivity. Further, when a liquid crystalline or crystalline bifunctional epoxy resin monomer reacts with a compound having two functional groups capable of undergoing addition reaction with an epoxy group, a linear, liquid crystalline or crystalline polymer A structure is formed. Therefore, the cured product of the epoxy resin composition of the present invention improves resin strength such as toughness due to entanglement between polymer chains, and suppresses pump-out that the resin protrudes at the time of application and improves handling. Therefore, the epoxy resin composition of the present invention is considered to be able to improve adhesiveness, resin strength, and handleability without reducing the thermal conductivity after curing.

ここで、高次構造とは、その構成要素が配列してミクロな秩序構造を形成した高次構造体を含む構造を意味し、例えば、結晶相又は液晶相が相当する。このような高次構造体の存在の有無は、偏光顕微鏡観察によって容易に判断することが可能である。即ち、クロスニコル状態での観察において、偏光解消による干渉縞が見られるか否かによって判別することが可能である。高次構造体は、通常、硬化エポキシ樹脂組成物中に島状に存在してドメイン構造を形成しており、その島の1つが1つの高次構造体に対応する。この高次構造体の構成要素自体は、一般には共有結合により形成されている。
以下、エポキシ樹脂組成物の各成分について説明する。
Here, the higher order structure means a structure including a higher order structure in which the constituent elements are arranged to form a micro ordered structure, and corresponds to, for example, a crystal phase or a liquid crystal phase. The presence or absence of such a higher order structure can be easily determined by observation with a polarizing microscope. That is, in the observation in the crossed Nicols state, it is possible to determine whether or not interference fringes due to depolarization are seen. The higher order structure usually exists in an island shape in the cured epoxy resin composition to form a domain structure, and one of the islands corresponds to one higher order structure. In general, the constituent elements of this higher order structure are formed by covalent bonds.
Hereinafter, each component of the epoxy resin composition will be described.

(A)エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物
本発明のエポキシ樹脂組成物は、エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物を含む。
(A) Compound having two functional groups capable of addition reaction with epoxy group in one molecule The epoxy resin composition of the present invention includes a compound having two functional groups capable of addition reaction with epoxy group in one molecule. .

エポキシ基は、フェノール性水酸基、アミノ基、メルカプト基、カルボキシ基等と付加反応により結合を形成する。これら官能基を「エポキシ基と付加反応可能な官能基」という。特定硬化剤は、2官能エポキシ樹脂と付加反応することで、直鎖状の高分子構造を生成する。   The epoxy group forms a bond by an addition reaction with a phenolic hydroxyl group, an amino group, a mercapto group, a carboxy group, or the like. These functional groups are referred to as “functional groups capable of addition reaction with epoxy groups”. The specific curing agent generates a linear polymer structure by addition reaction with a bifunctional epoxy resin.

直鎖状の高分子構造を形成することで、主鎖の折りたたみ又はスタッキングによる高次構造、及び主鎖同士のからみあいよる擬似架橋構造が形成され、樹脂の靭性、耐熱性及び熱伝導率が向上する。
本発明は、特定硬化剤を使用することで、エポキシ樹脂が樹脂組成物中で高分子量化して、硬化後の熱伝導性及び接着性と取り扱い性とを両立できる。
By forming a linear polymer structure, a higher-order structure by folding or stacking of the main chain and a pseudo-crosslinked structure formed by entanglement of the main chains are formed, and the toughness, heat resistance and thermal conductivity of the resin are improved. To do.
In the present invention, by using a specific curing agent, the epoxy resin has a high molecular weight in the resin composition, and it is possible to achieve both heat conductivity and adhesion after curing and handleability.

特定硬化剤に含まれる上記官能基は、エポキシ基の単独重合を抑え、付加反応の選択性が高いことが好ましい。このような官能基の場合、架橋構造の生成を抑えて直鎖状の構造をより選択的に生成することができる傾向にある。例えば、アミノ基は、エポキシ基と付加反応した後、更にはエポキシ基の単独重合の触媒として作用して架橋構造を形成するため好ましくない。   The functional group contained in the specific curing agent preferably suppresses homopolymerization of the epoxy group and has high selectivity for the addition reaction. In the case of such a functional group, it tends to be possible to more selectively generate a linear structure while suppressing the generation of a crosslinked structure. For example, an amino group is not preferable because it undergoes an addition reaction with an epoxy group and further acts as a catalyst for homopolymerization of the epoxy group to form a crosslinked structure.

また、特定硬化剤に含まれる官能基は、本発明で併用するフェノールノボラック型硬化剤よりもエポキシ基との反応性が高いことが好ましい。このような官能基の場合、フェノールノボラック型硬化剤とエポキシ樹脂とが反応して架橋構造を生成する前に、2官能エポキシ樹脂と特定硬化剤とが反応して直鎖状の高分子構造を効果的に生成できる傾向にある。更に、硬化時だけでなく、配合時、塗工時、乾燥時、熟成時等の製造工程中にも、2官能エポキシ樹脂と特定硬化剤とが選択的に反応して直鎖状の高分子構造を生成することで、樹脂粘度、フロー性、未硬化樹脂シートの柔軟性、可とう性等が向上する傾向にある。   Moreover, it is preferable that the functional group contained in a specific hardening | curing agent has high reactivity with an epoxy group rather than the phenol novolak-type hardening | curing agent used together by this invention. In the case of such a functional group, before the phenol novolac type curing agent and the epoxy resin react to form a crosslinked structure, the bifunctional epoxy resin and the specific curing agent react to form a linear polymer structure. It tends to be generated effectively. Furthermore, not only at the time of curing, but also during the production process such as blending, coating, drying, and aging, the bifunctional epoxy resin and the specific curing agent selectively react to form a linear polymer. By generating the structure, the resin viscosity, the flowability, the flexibility of the uncured resin sheet, the flexibility, and the like tend to be improved.

以上の理由と入手の容易さを含めて考慮すると、特定硬化剤に含まれる官能基は、カルボキシ基であることが特に好ましい。カルボキシ基を有する硬化剤はフェノール性水酸基を有する硬化剤よりも反応性が高く、エポキシ樹脂と反応して付加反応生成物を生成しやすい。
尚、多官能カルボン酸硬化剤は、低温でも徐々にエポキシ樹脂と反応し保存安定性に欠けると考えられているため、これまであまり利用されていない。しかしながら、本発明の場合、カルボキシ基を1分子中に2個有するジカルボン酸が硬化前にエポキシ樹脂と反応したとしても、直鎖状の高分子量体が形成され、架橋構造は形成されない。そのため、本発明の場合、特定硬化剤が保存中にエポキシ樹脂と反応しても、ゲル化及び取扱性の低下が抑えられることから保存安定性における悪影響を抑えることができる。よって、本発明ではカルボキシ基を特定硬化剤の官能基として用いることができる。
Considering the above reasons and availability, it is particularly preferable that the functional group contained in the specific curing agent is a carboxy group. The curing agent having a carboxy group is more reactive than the curing agent having a phenolic hydroxyl group, and easily reacts with an epoxy resin to generate an addition reaction product.
Note that polyfunctional carboxylic acid curing agents have been rarely used so far because they are believed to react slowly with epoxy resins even at low temperatures and lack storage stability. However, in the case of the present invention, even if a dicarboxylic acid having two carboxy groups in one molecule reacts with an epoxy resin before curing, a linear high molecular weight is formed and a crosslinked structure is not formed. Therefore, in the case of this invention, even if a specific hardening | curing agent reacts with an epoxy resin during a preservation | save, since the gelatinization and the fall of handleability are suppressed, the bad influence in storage stability can be suppressed. Therefore, in the present invention, a carboxy group can be used as a functional group of the specific curing agent.

また、特定硬化剤として使用するジカルボン酸は、樹脂組成物として使用する際に樹脂又は溶媒への溶解性が高いことが好ましい。尚、特定硬化剤の融点が硬化温度よりも低い場合であって特定硬化剤が樹脂組成物に溶解せず分散した状態でも、硬化時の加熱温度において特定硬化剤が溶融して樹脂組成物中に溶解するため、使用することが可能である。   In addition, the dicarboxylic acid used as the specific curing agent preferably has high solubility in a resin or a solvent when used as a resin composition. Even when the specific curing agent has a melting point lower than the curing temperature and the specific curing agent is not dissolved and dispersed in the resin composition, the specific curing agent melts at the heating temperature at the time of curing. It can be used because it dissolves in

尚、カルボキシ基は極性が非常に高く、強い水素結合を形成するため、融点が高く、溶解性に劣る場合が多い。そのため、特定硬化剤として使用するジカルボン酸を選定及び設計する際には、融点及び溶解性を考慮することが望ましい。   The carboxy group has a very high polarity and forms a strong hydrogen bond, so that the melting point is high and the solubility is often poor. Therefore, it is desirable to consider the melting point and solubility when selecting and designing the dicarboxylic acid used as the specific curing agent.

具体的には、特定硬化剤としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸等が挙げられる。   Specific examples of the specific curing agent include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, and terephthalic acid.

特定硬化剤として用いるジカルボン酸は、脂肪族ジカルボン酸及び芳香族ジカルボン酸のいずれであってもよく、溶解性及び融点の観点から脂肪族ジカルボン酸が好ましい。   The dicarboxylic acid used as the specific curing agent may be either an aliphatic dicarboxylic acid or an aromatic dicarboxylic acid, and is preferably an aliphatic dicarboxylic acid from the viewpoints of solubility and melting point.

脂肪族ジカルボン酸及び芳香族ジカルボン酸は、相容性及び耐熱性(ガラス転移温度Tg)の観点から、下記一般式(I)で示される構造を有する化合物を含むことが好ましい。   The aliphatic dicarboxylic acid and the aromatic dicarboxylic acid preferably contain a compound having a structure represented by the following general formula (I) from the viewpoint of compatibility and heat resistance (glass transition temperature Tg).

一般式(I)中、Rはフェニレン基、炭素数1〜12のアルキレン基又は炭素数1〜12のオキシアルキレン基を表す。   In general formula (I), R represents a phenylene group, an alkylene group having 1 to 12 carbon atoms, or an oxyalkylene group having 1 to 12 carbon atoms.

Rで表されるフェニレン基は、2つのカルボキシ基の結合位置が、オルト位、メタ位及びパラ位のいずれであってもよく、メタ位であることが好ましい。   In the phenylene group represented by R, the bonding position of the two carboxy groups may be any of the ortho, meta and para positions, and is preferably the meta position.

Rで表されるアルキレン基は、炭素数が1〜12であり、炭素数1〜9であることが好ましく、炭素数2〜7であることがより好ましく、炭素数3〜5であることが更に好ましい。Rで表されるアルキレン基は、直鎖状、分岐鎖状及び環状のいずれであってもよく、直鎖状であることが好ましい。Rで表されるアルキレン基は置換基を有していてもよく、該置換基としては、アルキル基、アリール基、ヒドキシル基、フルオロ基及びクロロ基が挙げられる。Rで表されるアルキレン基は置換基を有しないことが好ましい。   The alkylene group represented by R has 1 to 12 carbon atoms, preferably 1 to 9 carbon atoms, more preferably 2 to 7 carbon atoms, and 3 to 5 carbon atoms. Further preferred. The alkylene group represented by R may be linear, branched or cyclic, and is preferably linear. The alkylene group represented by R may have a substituent, and examples of the substituent include an alkyl group, an aryl group, a hydroxyl group, a fluoro group, and a chloro group. The alkylene group represented by R preferably has no substituent.

Rで表されるオキシアルキレン基は、炭素数が1〜12であり、炭素数1〜9であることが好ましく、炭素数2〜7であることがより好ましく、炭素数3〜5であることが更に好ましい。Rで表されるオキシアルキレン基は、直鎖状、分岐鎖状及び環状のいずれであってもよく、直鎖状であることが好ましい。Rで表されるオキシアルキレン基は置換基を有していてもよく、該置換基としては、アルキル基、アリール基、ヒドキシル基、フルオロ基及びクロロ基が挙げられる。Rで表されるオキシアルキレン基は置換基を有しないことが好ましい。   The oxyalkylene group represented by R has 1 to 12 carbon atoms, preferably 1 to 9 carbon atoms, more preferably 2 to 7 carbon atoms, and 3 to 5 carbon atoms. Is more preferable. The oxyalkylene group represented by R may be linear, branched or cyclic, and is preferably linear. The oxyalkylene group represented by R may have a substituent, and examples of the substituent include an alkyl group, an aryl group, a hydroxyl group, a fluoro group, and a chloro group. The oxyalkylene group represented by R preferably has no substituent.

一般式(I)におけるRがアルキレン基である脂肪族ジカルボン酸の場合、偶奇効果又は偶奇性効果と呼ばれる効果により、アルキレン基の炭素数が偶数と奇数とでは、融点及び溶解性が大きく異なる。Rで表されるアルキレン基の炭素数が奇数の場合、低融点になり、特に好ましい。   In the case of the aliphatic dicarboxylic acid in which R in the general formula (I) is an alkylene group, the melting point and the solubility greatly differ depending on whether the number of carbon atoms of the alkylene group is an even number or an odd number due to an effect called an even or odd effect. When the number of carbon atoms of the alkylene group represented by R is an odd number, the melting point is low, which is particularly preferable.

また、脂肪族ジカルボン酸の分子量は高いほど、低融点化、及び樹脂又は溶媒への溶解性が向上して好ましいが、高すぎるとガラス転移温度の低下による樹脂硬化物の耐熱性の低下、並びに特定エポキシ樹脂の液晶性及び結晶性を阻害して熱伝導率の低下を引き起こす傾向がある。そのため、特定硬化剤として用いるジカルボン酸は、グルタル酸、ピメリン酸及びアゼライン酸からなる群より選択される少なくとも1種を含むことが好ましい。また、溶解性、耐熱性、熱伝導性、機械強度、又は接着性の観点から、特定硬化剤として用いるジカルボン酸は、イソフタル酸及びグルタル酸からなる群より選択される少なくとも1種を含むことが好ましい。   Further, the higher the molecular weight of the aliphatic dicarboxylic acid, the lower the melting point and the better the solubility in the resin or solvent, which is preferable, but if it is too high, the heat resistance of the cured resin due to the decrease in the glass transition temperature, and There exists a tendency which inhibits the liquid crystallinity and crystallinity of a specific epoxy resin, and causes the heat conductivity to fall. Therefore, the dicarboxylic acid used as the specific curing agent preferably contains at least one selected from the group consisting of glutaric acid, pimelic acid and azelaic acid. In addition, from the viewpoint of solubility, heat resistance, thermal conductivity, mechanical strength, or adhesiveness, the dicarboxylic acid used as the specific curing agent may include at least one selected from the group consisting of isophthalic acid and glutaric acid. preferable.

芳香族ジカルボン酸についても対称性を下げたり置換基を導入したりして結晶性を低下させることで、樹脂への相容性を向上させることができる。   For aromatic dicarboxylic acids, compatibility with the resin can be improved by reducing the crystallinity by lowering the symmetry or introducing a substituent.

特定硬化剤として用いるカルボン酸として、加熱分解、加水分解等の反応で容易にカルボン酸を生成する前駆体を使用してもよい。特にカルボン酸とビニルエーテルの付加反応によって得られるブロックカルボン酸は、加熱で容易にカルボン酸を生成し、溶解性の向上、低融点化、及びエポキシ樹脂との保存安定性の向上が可能であるため好ましい。   As the carboxylic acid used as the specific curing agent, a precursor that easily generates a carboxylic acid by a reaction such as thermal decomposition or hydrolysis may be used. In particular, block carboxylic acid obtained by addition reaction of carboxylic acid and vinyl ether can easily generate carboxylic acid by heating, and it can improve solubility, lower melting point, and improve storage stability with epoxy resin. preferable.

特定硬化剤の含有率は、樹脂の靭性、熱伝導率、ガラス転移温度等の観点から、特定エポキシ樹脂に対して5mol%〜50mol%が好ましく、10mol%〜40mol%がより好ましく、10mol%〜30mol%が更に好ましく、20mol%〜30mol%が特に好ましい。   The content of the specific curing agent is preferably from 5 mol% to 50 mol%, more preferably from 10 mol% to 40 mol%, more preferably from 10 mol% to the specific epoxy resin, from the viewpoints of resin toughness, thermal conductivity, glass transition temperature, and the like. 30 mol% is more preferable, and 20 mol% to 30 mol% is particularly preferable.

特定硬化剤の含有率が50mol%以下であると、樹脂への溶解又は分散が容易になる傾向があり、40mol%以下であると、ガラス転移温度の低下が抑えられる傾向がある。また、特定硬化剤の含有率が5mol%以上であると、添加の効果がより現れやすくなる傾向にあり、10mol%以上であると、熱伝導率及び靭性向上の効果がより現れやすくなる傾向にある。特定硬化剤の含有率は、熱伝導率、靭性、ガラス転移温度及び取り扱い性のバランスの観点から、20mol%〜30mol%の範囲であることが特に好ましい。   When the content of the specific curing agent is 50 mol% or less, dissolution or dispersion in the resin tends to be easy, and when it is 40 mol% or less, a decrease in the glass transition temperature tends to be suppressed. Further, when the content of the specific curing agent is 5 mol% or more, the effect of addition tends to appear more easily, and when it is 10 mol% or more, the effect of improving thermal conductivity and toughness tends to appear more easily. is there. The content of the specific curing agent is particularly preferably in the range of 20 mol% to 30 mol% from the viewpoint of the balance of thermal conductivity, toughness, glass transition temperature, and handleability.

(B)液晶性又は結晶性の2官能エポキシ樹脂モノマー
本発明のエポキシ樹脂組成物は、液晶性又は結晶性の2官能エポキシ樹脂モノマーを含む。2官能エポキシ樹脂モノマーとは、分子内にエポキシ基を2個有するエポキシ樹脂モノマーをいう。
(B) Liquid crystalline or crystalline bifunctional epoxy resin monomer The epoxy resin composition of the present invention contains a liquid crystalline or crystalline bifunctional epoxy resin monomer. The bifunctional epoxy resin monomer means an epoxy resin monomer having two epoxy groups in the molecule.

特定エポキシ樹脂モノマーが液晶性を示すか否かは以下のようにして判断される。特定エポキシ樹脂モノマーを10℃/分で加熱しながら、状態変化を偏光顕微鏡(例えば、オリンパス株式会社、BS51)にて観察(倍率:100倍)した場合、クロスニコル状態での観察において、特定エポキシ樹脂モノマーが流動性を有し、且つ偏光解消による透過光が肉眼で観察される温度領域が存在することが確認されれば、液晶性を示すと判断する。尚、ここでの流動性を有する状態とは、物体を静置したときにその自重及びそれと同等の外部応力によって塑性変形を引き起こす状態と定義する。また、偏光解消による透過光が肉眼で観測される状態とは、クロスニコル状態の暗視野部分と偏光解消を引き起こした部分の変化を肉眼にて一般的な当業者の過半数が認識できる状態をいう。   Whether or not the specific epoxy resin monomer exhibits liquid crystallinity is determined as follows. When the specific epoxy resin monomer is heated at 10 ° C./min and the state change is observed with a polarizing microscope (for example, Olympus Corporation, BS51) (magnification: 100 times), the specific epoxy is observed in the crossed Nicol state. If it is confirmed that the resin monomer has fluidity and there is a temperature range in which transmitted light due to depolarization is observed with the naked eye, it is determined that the resin monomer exhibits liquid crystallinity. Here, the state having fluidity is defined as a state in which plastic deformation is caused by its own weight and external stress equivalent thereto when the object is left still. The state in which transmitted light due to depolarization is observed with the naked eye means a state in which a majority of general persons skilled in the art can recognize changes in the dark field portion in the crossed Nicols state and the portion that caused the depolarization. .

特定エポキシ樹脂モノマーが液晶性を示す場合、上記方法において液晶状態が観察される温度領域は、10℃〜180℃であることが好ましく、10℃〜160℃であることがより好ましく、10℃〜140℃であることが更に好ましい。10℃以上で液晶状態が観察される場合は、室温(25℃)でシートの形状を維持しやすい。180℃以下で液晶状態が観察される場合は、加熱によりシートが軟化しやすく、貼りつけが容易となる傾向にある。また、160℃以下で液晶状態が観察される場合は、貼付時の温度が低くても充分に硬化させることができる傾向にある。更に、液晶状態が140℃以下で観察される場合は、硬化前のシートの柔軟性が高く、巻きつけ性及び凹凸面への埋め込み性に優れる傾向にある。   When the specific epoxy resin monomer exhibits liquid crystallinity, the temperature range where the liquid crystal state is observed in the above method is preferably 10 ° C to 180 ° C, more preferably 10 ° C to 160 ° C, and more preferably 10 ° C to 160 ° C. More preferably, it is 140 degreeC. When the liquid crystal state is observed at 10 ° C. or higher, it is easy to maintain the sheet shape at room temperature (25 ° C.). When the liquid crystal state is observed at 180 ° C. or lower, the sheet tends to soften by heating and tends to be attached easily. Further, when the liquid crystal state is observed at 160 ° C. or lower, it tends to be sufficiently cured even when the temperature at the time of sticking is low. Furthermore, when the liquid crystal state is observed at 140 ° C. or lower, the sheet has a high flexibility before curing, and tends to be excellent in winding property and embedding property on an uneven surface.

また、特定エポキシ樹脂モノマーが結晶性を示すか否かは以下のようにして判断される。該当するエポキシ樹脂の粉末を偏光顕微鏡(例えば、オリンパス株式会社、BS51)にて観察(倍率:100倍)した場合、クロスニコル状態での観察において、偏光解消による透過光が肉眼で観察されることが確認されれば、結晶性を示すと判断する。   Whether or not the specific epoxy resin monomer exhibits crystallinity is determined as follows. When the corresponding epoxy resin powder is observed with a polarizing microscope (for example, Olympus Corporation, BS51) (magnification: 100 times), transmitted light due to depolarization is observed with the naked eye in observation in a crossed Nicol state. Is confirmed, it is judged to show crystallinity.

特定エポキシ樹脂モノマーが結晶性を示す場合、特定エポキシ樹脂モノマーの融点は60℃〜180℃であることが好ましく、80℃〜160℃であることがより好ましく、100℃〜140℃であることが更に好ましい。   When the specific epoxy resin monomer exhibits crystallinity, the melting point of the specific epoxy resin monomer is preferably 60 ° C to 180 ° C, more preferably 80 ° C to 160 ° C, and preferably 100 ° C to 140 ° C. Further preferred.

特定エポキシ樹脂モノマーの融点が60℃以上であると、硬化前のシート状態でタック性等が発現しにくく取り扱い性に優れる傾向にある。特定エポキシ樹脂モノマーの融点が80℃以上であると、加熱貼付時にフロー性が高すぎず、ポンプアウトの発生が抑制される傾向にある。特定エポキシ樹脂モノマーの融点が100℃以上であると、硬化後に高次構造が形成されやすい傾向にある。特定エポキシ樹脂モノマーの融点が180℃以下であると、加熱貼付時にシートが軟化しやすく貼付が容易となる傾向にある。特定エポキシ樹脂モノマーの融点が160℃以下であると、貼付時の温度が低くても充分に硬化させることができる傾向にある。更に、特定エポキシ樹脂モノマーの融点が140℃以下であると、硬化前のシートの柔軟性が高く、巻きつけ性及び凹凸面への埋め込み性に優れる傾向がある。   When the melting point of the specific epoxy resin monomer is 60 ° C. or higher, tackiness or the like hardly appears in the sheet state before curing, and the handling property tends to be excellent. When the melting point of the specific epoxy resin monomer is 80 ° C. or higher, the flowability is not too high at the time of heating and sticking, and the occurrence of pump-out tends to be suppressed. When the melting point of the specific epoxy resin monomer is 100 ° C. or higher, a higher-order structure tends to be easily formed after curing. If the melting point of the specific epoxy resin monomer is 180 ° C. or lower, the sheet tends to soften during heating application and tends to be applied easily. If the melting point of the specific epoxy resin monomer is 160 ° C. or lower, it tends to be sufficiently cured even if the temperature at the time of application is low. Furthermore, when the melting point of the specific epoxy resin monomer is 140 ° C. or lower, the sheet before curing has high flexibility and tends to be excellent in winding property and embedding property on an uneven surface.

特定エポキシ樹脂モノマーの構造としては、メソゲン基を有する構造が挙げられる。メソゲン基とは、分子間相互作用の働きにより結晶性又は液晶性を発現し易くする官能基をいう。具体的には、ビフェニル基、フェニルベンゾエート基、アゾベンゼン基、スチルベン基、それらの誘導体等が挙げられる。コスト、溶解性及び溶融粘度の観点からはビフェニル基又はフェニルベンゾエート基が好ましい。   Examples of the structure of the specific epoxy resin monomer include a structure having a mesogenic group. The mesogenic group refers to a functional group that facilitates the expression of crystallinity or liquid crystallinity by the action of intermolecular interaction. Specific examples thereof include a biphenyl group, a phenylbenzoate group, an azobenzene group, a stilbene group, and derivatives thereof. From the viewpoints of cost, solubility and melt viscosity, a biphenyl group or a phenylbenzoate group is preferred.

特定エポキシ樹脂モノマーとしては、ビフェニル基又はフェニルベンゾエート基を有する2官能エポキシ樹脂モノマーが好ましく、ビフェニル基を有する2官能エポキシ樹脂モノマーがより好ましい。   As the specific epoxy resin monomer, a bifunctional epoxy resin monomer having a biphenyl group or a phenylbenzoate group is preferable, and a bifunctional epoxy resin monomer having a biphenyl group is more preferable.

特定エポキシ樹脂モノマーの具体例としては、4−(オキシラニルメトキシ)ベンゾイックアシッド−4,4’−〔1,8−オクタンジイルビス(オキシ)〕ビスフェノールエステル、4−(オキシラニルメトキシ)ベンゾイックアシッド−4,4’−〔1,6−ヘキサンジイルビス(オキシ)〕ビスフェノールエステル、4−(オキシラニルメトキシ)ベンゾイックアシッド−4,4’−〔1,4−ブタンジイルビス(オキシ)〕ビスフェノールエステル、4−(4−オキシラニルブトキシ)ベンゾイックアシッド−1,4’−フェニレンエステル、4,4’−ビフェノールジグリシジルエーテル、3,3’,5,5’−テトラメチル−4,4’−ビフェノールジグリシジルエーテル、1,4−(4−オキシラニルメトキシ)ベンゾイックアシッド−2−メチルフェニレンエステル、1−{4−〔(4−オキシラニルメトキシ)フェニル〕ベンゾイックアシッド}−4−オキシラニルメトキシベンゼン、1−{(3−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン、4−(オキシラニルメトキシ)ベンゾイックアシッド−4,4’−ビフェノールエステル、4−(オキシラニルメトキシ)ベンゾイックアシッド−4−(4−オキシラニルメトキシフェニル)シクロヘキシルエステル、レゾルシノールジグリシジルエーテル、カテコールジグリシジルエーテル、ヒドロキノンジグリシジルエーテル等が挙げられる。   Specific examples of the specific epoxy resin monomer include 4- (oxiranylmethoxy) benzoic acid-4,4 ′-[1,8-octanediylbis (oxy)] bisphenol ester, 4- (oxiranylmethoxy) Benzoic acid-4,4 ′-[1,6-hexanediylbis (oxy)] bisphenol ester, 4- (oxiranylmethoxy) benzoic acid-4,4 ′-[1,4-butanediylbis (oxy) ] Bisphenol ester, 4- (4-oxiranylbutoxy) benzoic acid-1,4'-phenylene ester, 4,4'-biphenoldiglycidyl ether, 3,3 ', 5,5'-tetramethyl-4 , 4′-biphenoldiglycidyl ether, 1,4- (4-oxiranylmethoxy) benzoic Cyd-2-methylphenylene ester, 1- {4-[(4-oxiranylmethoxy) phenyl] benzoic acid} -4-oxiranylmethoxybenzene, 1-{(3-methyl-4-oxiranyl) Methoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 4- (oxiranylmethoxy) benzoic acid-4,4′-biphenol ester, 4- (oxiranylmethoxy) ben Examples include zoic acid-4- (4-oxiranylmethoxyphenyl) cyclohexyl ester, resorcinol diglycidyl ether, catechol diglycidyl ether, hydroquinone diglycidyl ether, and the like.

中でも、結晶性又は液晶性の観点からは、特定エポキシ樹脂モノマーとしては、4−(オキシラニルメトキシ)ベンゾイックアシッド−4−(4−オキシラニルメトキシフェニル)シクロヘキシルエステル又は1−{(3−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセンが好ましい。コスト、溶解性及び合成の容易性の観点からは、特定エポキシ樹脂モノマーとしては、4,4’−ビフェノールジグリシジルエーテル又は3,3’,5,5’−テトラメチル−4,4’−ビフェノールジグリシジルエーテルを用いることがより好ましい。   Among these, from the viewpoint of crystallinity or liquid crystallinity, as the specific epoxy resin monomer, 4- (oxiranylmethoxy) benzoic acid-4- (4-oxiranylmethoxyphenyl) cyclohexyl ester or 1-{(3 -Methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene is preferred. From the viewpoint of cost, solubility, and ease of synthesis, the specific epoxy resin monomer may be 4,4′-biphenol diglycidyl ether or 3,3 ′, 5,5′-tetramethyl-4,4′-biphenol. More preferably, diglycidyl ether is used.

本発明のエポキシ樹脂組成物は、特定エポキシ樹脂モノマーと特定硬化剤との反応物であるオリゴマーとして、これらの成分を含んでいてもよい。エポキシ樹脂組成物がこのオリゴマーを含む場合、特定エポキシ樹脂の液晶状態が上述の温度範囲で観察されない場合であっても、オリゴマーの液晶状態が上記温度範囲で液晶状態が観察されれば、上記と同様の効果が得られる。したがって、前記オリゴマーは、特定エポキシ樹脂モノマーと特定硬化剤との反応物であり液晶性又は結晶性を示すことが好ましい。   The epoxy resin composition of the present invention may contain these components as an oligomer that is a reaction product of the specific epoxy resin monomer and the specific curing agent. When the epoxy resin composition contains this oligomer, even if the liquid crystal state of the specific epoxy resin is not observed in the above temperature range, if the liquid crystal state of the oligomer is observed in the above temperature range, Similar effects can be obtained. Therefore, the oligomer is preferably a reaction product of a specific epoxy resin monomer and a specific curing agent and exhibits liquid crystallinity or crystallinity.

特定エポキシ樹脂モノマーの含有率は、フロー性、樹脂強度、高温時の強度及び熱伝導率の観点からは、樹脂成分中、70質量%〜95質量%であることが好ましく、75質量%〜90質量%であることがより好ましく、80質量%〜85質量%であることが更に好ましい。樹脂成分とは、エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物、液晶性又は結晶性の2官能エポキシ樹脂モノマー(更に他のエポキシ樹脂モノマーを含有する場合には、他のエポキシ樹脂も包含される)、及びフェノールノボラック型硬化剤をいう。   The content of the specific epoxy resin monomer is preferably 70% by mass to 95% by mass, and 75% by mass to 90% by mass in the resin component from the viewpoints of flowability, resin strength, strength at high temperature, and thermal conductivity. More preferably, it is 80 mass%, and it is still more preferable that it is 80 mass%-85 mass%. The resin component is a compound having two functional groups capable of addition reaction with an epoxy group in one molecule, a liquid crystalline or crystalline bifunctional epoxy resin monomer (in the case of containing another epoxy resin monomer, other And epoxy novolac type curing agents.

特定エポキシ樹脂モノマーは1種を単独で用いても、2種以上を併用してもよい。また、特定エポキシ樹脂モノマー以外のその他のエポキシ樹脂モノマーを併用してもよい。その他のエポキシ樹脂モノマーとしては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールノボラック、クレゾールノボラック、レゾルシノールノボラック等のフェノール化合物のグリシジルエーテル、ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール化合物のグリシジルエーテル、フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸化合物のグリシジルエステル、アニリン、イソシアヌール酸等の窒素原子に結合した活性水素をグリシジル基で置換したもの等のグリシジル型(メチルグリシジル型も含む)エポキシ樹脂モノマー、分子内のオレフィン結合をエポキシ化して得られるビニルシクロヘキセンエポキシド、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシ)シクロヘキシル−5,5−スピロ(3,4−エポキシ)シクロヘキサン−m−ジオキサン等の脂環型エポキシ樹脂モノマー、ビス(4−ヒドロキシ)チオエーテルのエポキシ化物、パラキシリレン変性フェノール樹脂、メタキシリレンパラキシリレン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ナフタレン環含有フェノール樹脂等のグリシジルエーテル、スチルベン型エポキシ樹脂モノマー、ハロゲン化フェノールノボラック型エポキシ樹脂モノマーなど(但し、これらのうち液晶性又は結晶性の2官能エポキシ樹脂モノマーを除く)が挙げられる。その他のエポキシ樹脂モノマーの1種以上と、特定エポキシ樹脂モノマーの1種以上とを併用してもよい。   A specific epoxy resin monomer may be used individually by 1 type, or may use 2 or more types together. Moreover, you may use together other epoxy resin monomers other than a specific epoxy resin monomer. Other epoxy resin monomers include glycidyl ethers of phenolic compounds such as bisphenol A, bisphenol F, bisphenol S, phenol novolac, cresol novolac, resorcinol novolak, glycidyl ethers of alcohol compounds such as butanediol, polyethylene glycol and polypropylene glycol, phthalates Glycidyl type (including methyl glycidyl type) epoxy such as glycidyl ester of carboxylic acid compounds such as acid, isophthalic acid, tetrahydrophthalic acid, etc., active hydrogen bonded to nitrogen atom such as aniline, isocyanuric acid, etc. Resin monomer, vinylcyclohexene epoxide obtained by epoxidizing an olefin bond in the molecule, 3,4-epoxycyclohexylmethyl-3,4 Of cycloaliphatic epoxy resin monomers such as epoxycyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane, and bis (4-hydroxy) thioether Epoxidized products, paraxylylene-modified phenol resins, metaxylylene paraxylylene-modified phenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, cyclopentadiene-modified phenol resins, polycyclic aromatic ring-modified phenol resins, naphthalene ring-containing phenol resins, etc. Glycidyl ether, stilbene type epoxy resin monomer, halogenated phenol novolac type epoxy resin monomer, etc. (excluding liquid crystalline or crystalline bifunctional epoxy resin monomer). It is. You may use together 1 or more types of another epoxy resin monomer, and 1 or more types of a specific epoxy resin monomer.

その他のエポキシ樹脂モノマーを併用する場合、ガラス転移温度及び硬化前シートの柔軟性の観点からは、ナフタレン型エポキシ樹脂モノマー、ビスフェノール型エポキシ樹脂モノマー、及びフェノールノボラック型エポキシ樹脂モノマー(但し、液晶性又は結晶性の2官能エポキシ樹脂モノマーを除く)が好ましい。その他のエポキシ樹脂モノマーの含有量は特に制限されず、質量基準において、特定エポキシ樹脂モノマーを1とした場合に0.3以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることが更に好ましい。   When other epoxy resin monomers are used in combination, from the viewpoint of glass transition temperature and flexibility of the sheet before curing, naphthalene type epoxy resin monomer, bisphenol type epoxy resin monomer, and phenol novolac type epoxy resin monomer (however, liquid crystalline or (Except for the crystalline bifunctional epoxy resin monomer). The content of the other epoxy resin monomer is not particularly limited, and is preferably 0.3 or less, more preferably 0.2 or less, when the specific epoxy resin monomer is 1 on the mass basis, 0 More preferably, it is 1 or less.

(C)硬化剤
本発明のエポキシ樹脂組成物は、特定硬化剤よりも反応が遅く、ガラス転移温度、耐熱性、保存安定性、及び架橋密度確保の観点から、硬化剤として、フェノールノボラック型硬化剤を用いる。
(C) Curing Agent The epoxy resin composition of the present invention has a slower reaction than the specific curing agent, and from the viewpoint of ensuring a glass transition temperature, heat resistance, storage stability, and crosslinking density, a phenol novolac type curing is used as a curing agent. Use the agent.

フェノールノボラック型硬化剤としては、低分子フェノール化合物をメチレン鎖等で連結してノボラック化したフェノール樹脂を用いることができる。低分子フェノール化合物としては、フェノール、o−クレゾール、m−クレゾール、p−クレゾール等の単官能フェノール化合物、カテコール、レゾルシノール、ハイドロキノン等の2官能フェノール化合物、1,2,3−トリヒドロキシベンゼン、1,2,4−トリヒドロキシベンゼン、1,3,5−トリヒドロキシベンゼン等の3官能フェノール化合物などが使用可能である。低分子フェノール化合物としては、熱伝導率の観点からは、カテコール、レゾルシノール、ハイドロキノン等の2官能フェノール化合物が好ましい。   As the phenol novolac type curing agent, a phenol resin in which a low molecular phenol compound is connected by a methylene chain or the like to form a novolak can be used. Examples of the low molecular weight phenol compound include monofunctional phenol compounds such as phenol, o-cresol, m-cresol and p-cresol, bifunctional phenol compounds such as catechol, resorcinol and hydroquinone, 1,2,3-trihydroxybenzene, 1 Trifunctional phenolic compounds such as 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene can be used. As the low molecular weight phenol compound, a bifunctional phenol compound such as catechol, resorcinol, hydroquinone or the like is preferable from the viewpoint of thermal conductivity.

フェノールノボラック樹脂として具体的には、クレゾールノボラック樹脂、カテコールノボラック樹脂、レゾルシノールノボラック樹脂、ハイドロキノンノボラック樹脂等の1種のフェノール化合物をノボラック化した樹脂、カテコールレゾルシノールノボラック樹脂、レゾルシノールハイドロキノンノボラック樹脂等の2種類又はそれ以上のフェノール化合物をノボラック化した樹脂などを挙げることができる。   Specific examples of phenol novolak resins include two types of resins such as cresol novolak resins, catechol novolak resins, resorcinol novolak resins, hydroquinone novolak resins and other novolac resins, catechol resorcinol novolak resins, and resorcinol hydroquinone novolak resins. Or the resin etc. which made the more phenol compound novolak-ized can be mentioned.

本発明のエポキシ樹脂組成物は、フェノールノボラック型硬化剤以外のその他の硬化剤を併用してもよい。その他の硬化剤としては、当該技術分野で通常用いられるものを挙げることができる。その他の硬化剤の含有率は、硬化剤の総量中、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。   The epoxy resin composition of the present invention may be used in combination with other curing agents other than the phenol novolac type curing agent. Examples of other curing agents include those usually used in the technical field. The content of the other curing agent is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less in the total amount of the curing agent.

エポキシ樹脂組成物中の硬化剤の含有量は特に制限されない。エポキシ樹脂モノマーのエポキシ当量に対する、フェノール性水酸基の活性水素の当量(フェノール性水酸基当量)と特定硬化剤のカルボン酸当量との和の比〔(カルボン酸当量+フェノール性水酸基当量)/エポキシ当量〕が0.5〜2であることが好ましく、0.8〜1.2であることがより好ましい。   The content of the curing agent in the epoxy resin composition is not particularly limited. Ratio of sum of active hydrogen equivalent of phenolic hydroxyl group (phenolic hydroxyl group equivalent) and carboxylic acid equivalent of specific curing agent to epoxy equivalent of epoxy resin monomer [(carboxylic acid equivalent + phenolic hydroxyl group equivalent) / epoxy equivalent] Is preferably 0.5 to 2, and more preferably 0.8 to 1.2.

硬化剤とともに、必要に応じて硬化促進剤を併用してもよい。硬化促進剤を併用することで、エポキシ樹脂組成物を更に充分に硬化させることができる。硬化促進剤の種類は特に制限されず、通常使用される硬化促進剤から選択してよい。例えば、硬化促進剤としては、イミダゾール化合物、ホスフィン化合物、ボレート塩化合物等が挙げられる。   You may use a hardening accelerator together with a hardening | curing agent as needed. By using a curing accelerator in combination, the epoxy resin composition can be further sufficiently cured. The kind in particular of hardening accelerator is not restrict | limited, You may select from the hardening accelerator normally used. For example, examples of the curing accelerator include imidazole compounds, phosphine compounds, and borate salt compounds.

(D)無機充填材
本発明のエポキシ樹脂組成物は、無機充填材を含む。無機充填材を含むと、エポキシ樹脂組成物の粘度の調整、線膨張率の低減、熱伝導性の向上等の点で効果的である。
(D) Inorganic filler The epoxy resin composition of this invention contains an inorganic filler. Including an inorganic filler is effective in terms of adjusting the viscosity of the epoxy resin composition, reducing the coefficient of linear expansion, improving thermal conductivity, and the like.

無機充填材の種類は特に制限されず、通常使用されるものから選択してよい。具体的には、無機充填材としては、溶融シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、黒鉛等の粒子が挙げられる。中でも、無機充填材としては、アルミナ粒子及び窒化ホウ素粒子からなる群より選択される少なくとも1種が好ましい。より具体的には、熱伝導率の観点からは、窒化ホウ素粒子を用いることが好ましく、流動性及び硬化物の強度の観点からはアルミナ粒子を用いることが好ましい。これらの無機充填材は1種を単独で用いても、2種以上を併用してもよい。無機充填材の粒子径に特に制限はなく、例えば、体積平均粒子径が1μm〜30μmのものを用いてもよい。粒径の異なる無機充填材を組み合わせて用いてもよい。体積平均粒子径は、レーザー回折散乱法により得られる粒子径分布において、小径側からの体積累積50%に対応する粒子径として求められる。   The kind in particular of an inorganic filler is not restrict | limited, You may select from what is used normally. Specifically, examples of the inorganic filler include particles such as fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, and graphite. Among these, the inorganic filler is preferably at least one selected from the group consisting of alumina particles and boron nitride particles. More specifically, boron nitride particles are preferably used from the viewpoint of thermal conductivity, and alumina particles are preferably used from the viewpoint of fluidity and strength of the cured product. These inorganic fillers may be used alone or in combination of two or more. There is no restriction | limiting in particular in the particle diameter of an inorganic filler, For example, you may use a thing with a volume average particle diameter of 1 micrometer-30 micrometers. Inorganic fillers having different particle sizes may be used in combination. The volume average particle diameter is obtained as a particle diameter corresponding to 50% of the cumulative volume from the small diameter side in the particle diameter distribution obtained by the laser diffraction scattering method.

無機充填材の含有率は、高熱伝導性の観点からは大きいほど好ましく、柔軟性の観点からは小さいほど好ましい。高熱伝導性と柔軟性とのバランスの観点からは、無機充填材の含有率は60体積%〜80体積%であることが好ましく、シートの柔軟性、高熱伝導性等がより向上する観点から、65体積%〜80体積%であることがより好ましい。エポキシ樹脂組成物が有機溶剤等の溶媒を含む場合は、上記含有率はエポキシ樹脂組成物から溶媒を除いた成分の総体積を基準とする値である。   The content of the inorganic filler is preferably as large as possible from the viewpoint of high thermal conductivity, and as small as possible from the viewpoint of flexibility. From the viewpoint of the balance between high thermal conductivity and flexibility, the content of the inorganic filler is preferably 60% by volume to 80% by volume, and from the viewpoint of further improving the flexibility, high thermal conductivity, and the like of the sheet, More preferably, it is 65 volume%-80 volume%. When the epoxy resin composition contains a solvent such as an organic solvent, the content is a value based on the total volume of the components excluding the solvent from the epoxy resin composition.

(E)その他の成分
本発明のエポキシ樹脂組成物は、必要に応じて上記以外の成分を含んでもよい。その他の成分としては、溶媒、シランカップリング剤、分散剤、ゴム成分等の高分子量成分などが挙げられる。
(E) Other components The epoxy resin composition of this invention may contain components other than the above as needed. Examples of other components include solvents, silane coupling agents, dispersants, and high molecular weight components such as rubber components.

本発明のエポキシ樹脂組成物は、溶媒を含んでもよい。溶媒の種類に特に制限はなく、公知の溶媒から選択できる。具体的には、溶媒としては、シクロヘキサノン、アセトン、メチルエチルケトン、ジエチルケトン等のケトン溶剤、メタノール、エタノール、2−プロパノール、1−プロパノール、1−ブタノール、t−ブタノール等のアルコール溶剤、クロロホルム、塩化メチレン等のハロゲン化炭化水素溶剤、ベンゼン、トルエン等の芳香族炭化水素溶剤、酢酸エチル、酢酸ブチル、酢酸イソプロピル等のエステル溶剤、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル溶剤、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル溶剤などが挙げられる。   The epoxy resin composition of the present invention may contain a solvent. There is no restriction | limiting in particular in the kind of solvent, It can select from a well-known solvent. Specifically, examples of the solvent include ketone solvents such as cyclohexanone, acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and t-butanol, chloroform, and methylene chloride. Halogenated hydrocarbon solvents such as benzene, toluene, etc., ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol Examples include glycol ether solvents such as dimethyl ether.

本発明のエポキシ樹脂組成物は、シランカップリング剤を含んでもよい。シランカップリング剤としては、ビニル基、エポキシ基、メタクリロイル基、アクリロイル基、アミノ基等の官能基を有するシラン化合物を用いることが好ましい。   The epoxy resin composition of the present invention may contain a silane coupling agent. As the silane coupling agent, it is preferable to use a silane compound having a functional group such as a vinyl group, an epoxy group, a methacryloyl group, an acryloyl group, or an amino group.

本発明のエポキシ樹脂組成物は、分散剤を含んでもよい。分散剤としては、脂肪族カルボン酸、脂肪族ポリアミドアミン塩、シリコーン、リン酸塩、その他界面活性剤等が挙げられる。   The epoxy resin composition of the present invention may contain a dispersant. Examples of the dispersant include aliphatic carboxylic acids, aliphatic polyamidoamine salts, silicones, phosphates, and other surfactants.

本発明のエポキシ樹脂組成物は、応力緩和及び接着性向上を目的に、ゴム成分、フェノキシ樹脂等の高分子量成分を併用してもよい。具体的には、ポリイソプレン、ポリブタジエン、カルボキシ基末端ポリブタジエン、水酸基末端ポリブタジエン、1,2−ポリブタジエン、カルボキシ基末端1,2−ポリブタジエン、水酸基末端1,2−ポリブタジエン、アクリルゴム、スチレン−ブタジエンゴム、水酸基末端スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、カルボキシ基、水酸基、(メタ)アクリロイル基又はモルホリン基をポリマー末端に含有するアクリロニトリル−ブタジエンゴム、カルボキシル化ニトリルゴム、水酸基末端ポリ(オキシプロピレン)、アルコキシシリル基末端ポリ(オキシプロピレン)、ポリ(オキシテトラメチレン)グリコール、ポリオレフィングリコール、ポリ−ε−カプロラクトン、エポキシ基末端ビフェニル型フェノキシ樹脂等が挙げられる。これらのゴム成分は1種を単独で用いても、2種以上を混合して用いてもよい。   The epoxy resin composition of the present invention may be used in combination with a high molecular weight component such as a rubber component or a phenoxy resin for the purpose of stress relaxation and adhesion improvement. Specifically, polyisoprene, polybutadiene, carboxy-terminated polybutadiene, hydroxyl-terminated polybutadiene, 1,2-polybutadiene, carboxy-terminated 1,2-polybutadiene, hydroxyl-terminated 1,2-polybutadiene, acrylic rubber, styrene-butadiene rubber, Hydroxyl-terminated styrene-butadiene rubber, acrylonitrile-butadiene rubber, carboxy group, hydroxyl group, acrylonitrile-butadiene rubber containing carboxyl group (meth) acryloyl group or morpholine group at the polymer end, carboxylated nitrile rubber, hydroxyl-terminated poly (oxypropylene), alkoxy Silyl group-terminated poly (oxypropylene), poly (oxytetramethylene) glycol, polyolefin glycol, poly-ε-caprolactone, epoxy group-terminated biphenyl type phenoxy Resins. These rubber components may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物が高分子量成分を含む場合、熱伝導性の低下を抑制する観点から、エポキシ樹脂組成物中の高分子量成分の含有率を20質量%以下とすることが好ましく、10質量%以下とすることがより好ましく、5質量%以下とすることが更に好ましい。   When the epoxy resin composition of the present invention contains a high molecular weight component, the content of the high molecular weight component in the epoxy resin composition is preferably 20% by mass or less from the viewpoint of suppressing a decrease in thermal conductivity. More preferably, it is more preferably 5% by mass or less.

<接着シート>
本発明の接着シートは、基材と、前記基材上に配置される本発明のエポキシ樹脂組成物のシート状成形物と、を有する。本発明のエポキシ樹脂組成物のシート状成形物(以下、エポキシ樹脂組成物層ともいう)を基材上に配置する方法は特に制限されない。例えば、エポキシ樹脂組成物が所望の濃度になるように、エポキシ樹脂組成物中の樹脂成分を溶解する有機溶剤を添加して調製したワニスを、コンマコータ、バーコータ等を用いて基材上に付与した後、加熱乾燥によって有機溶剤を除去する方法が挙げられる。
<Adhesive sheet>
The adhesive sheet of this invention has a base material and the sheet-like molding of the epoxy resin composition of this invention arrange | positioned on the said base material. The method for disposing the sheet-like molded product of the epoxy resin composition of the present invention (hereinafter also referred to as an epoxy resin composition layer) on the substrate is not particularly limited. For example, a varnish prepared by adding an organic solvent that dissolves the resin component in the epoxy resin composition was applied onto the substrate using a comma coater, a bar coater, or the like so that the epoxy resin composition has a desired concentration. Then, the method of removing an organic solvent by heat drying is mentioned.

塗工時のスジ引きを抑える観点から、エポキシ樹脂組成物層の厚みが無機充填材の最大粒径以上であることが好ましい。具体的には、エポキシ樹脂組成物層の厚みは50μm〜300μmであることが好ましい。エポキシ樹脂組成物層の厚みが300μm以下であると、乾燥時に有機溶媒を容易に除去することができる傾向にある。エポキシ樹脂組成物層の厚みが300μmを超える接着シートが要求される場合には、例えば、基材上に厚み300μm以下のエポキシ樹脂組成物層を形成し、これを別途基材上に形成したエポキシ樹脂組成物層の上にラミネータ等で貼り合わせて得ることができる。   From the viewpoint of suppressing streaking during coating, the thickness of the epoxy resin composition layer is preferably equal to or greater than the maximum particle size of the inorganic filler. Specifically, the thickness of the epoxy resin composition layer is preferably 50 μm to 300 μm. When the thickness of the epoxy resin composition layer is 300 μm or less, the organic solvent tends to be easily removed during drying. When an adhesive sheet having a thickness of the epoxy resin composition layer exceeding 300 μm is required, for example, an epoxy resin composition layer having a thickness of 300 μm or less is formed on the base material, and this is separately formed on the base material. It can be obtained by laminating with a laminator or the like on the resin composition layer.

基材の種類は特に制限されない。例えば、ポリエチレンテレフタレート(PET)シート、アルミニウム箔、銅箔等が挙げられる。基材の厚みに特に制限はなく、例えば25μm〜100μmのものを用いてもよい。一般的な使用法では、基材はエポキシ樹脂組成物層を被着体に貼り付けた後に除去される。   The type of substrate is not particularly limited. For example, a polyethylene terephthalate (PET) sheet, aluminum foil, copper foil, etc. are mentioned. There is no restriction | limiting in particular in the thickness of a base material, For example, you may use a 25 micrometers-100 micrometers thing. In general usage, the substrate is removed after the epoxy resin composition layer is attached to the adherend.

<半導体装置>
本発明の半導体装置は、放熱板と、本発明のエポキシ樹脂組成物のシート状硬化物と、半導体素子と、をこの順に有する。半導体装置は、例えば、エポキシ樹脂組成物層の両面に基材が配置された接着シートを準備し、接着シートの一方の基材を剥がしてエポキシ樹脂組成物層を放熱板に貼り付けた後、もう一方の基材を剥がしてエポキシ樹脂組成物層を半導体素子に貼り付け、加熱してエポキシ樹脂組成物層を硬化させることにより製造される。
<Semiconductor device>
The semiconductor device of this invention has a heat sink, the sheet-like hardened | cured material of the epoxy resin composition of this invention, and a semiconductor element in this order. The semiconductor device is prepared, for example, by preparing an adhesive sheet in which a base material is disposed on both sides of the epoxy resin composition layer, peeling off one base material of the adhesive sheet and attaching the epoxy resin composition layer to the heat sink, The other base material is peeled off, the epoxy resin composition layer is attached to a semiconductor element, and heated to cure the epoxy resin composition layer.

本発明のエポキシ樹脂組成物は、上記の用途に限られず、一般的な電子部品装置に好適に使用される。例えば、電気絶縁材料、塗料、成型材料、積層板、接着剤等の分野で使用することができる。電子部品装置は、本発明のエポキシ樹脂組成物によって封止、成型又は接続された部材を備えていればよい。   The epoxy resin composition of the present invention is not limited to the above applications, and is preferably used for general electronic component devices. For example, it can be used in the fields of electrical insulating materials, paints, molding materials, laminates, adhesives and the like. The electronic component apparatus should just be equipped with the member sealed, shape | molded or connected with the epoxy resin composition of this invention.

以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.

<実施例1〜4、比較例1>
(エポキシ樹脂組成物の調製)
300mlのポリ瓶に、表1に示す成分を、表1に示す量(質量部)で投入し、アルミナボール(直径6mm、株式会社ニッカトー、HD−11)150質量部及びシクロヘキサノン32質量部(和光純薬工業株式会社)を加えてミックスロータを用いて25℃、120回転/分で12時間撹拌した。
<Examples 1-4, Comparative Example 1>
(Preparation of epoxy resin composition)
Into a 300 ml plastic bottle, the components shown in Table 1 were charged in the amounts (parts by mass) shown in Table 1, 150 parts by mass of alumina balls (diameter 6 mm, Nikkato, HD-11) and 32 parts by mass of cyclohexanone (sum) (Hikari Pure Chemical Industries, Ltd.) was added and stirred for 12 hours at 25 ° C. and 120 rpm with a mix rotor.

−高分子量成分−
・ビフェニル型エポキシ末端変性フェノキシ樹脂(三菱化学株式会社、YX−8100BH30、ガラス転移温度150℃、数平均分子量14,000、結晶性)
・アクリルゴム(ナガセケムテックス株式会社、HTR−708、数平均分子量700,000)
-High molecular weight component-
Biphenyl type epoxy terminal modified phenoxy resin (Mitsubishi Chemical Corporation, YX-8100BH30, glass transition temperature 150 ° C., number average molecular weight 14,000, crystallinity)
Acrylic rubber (Nagase ChemteX Corporation, HTR-708, number average molecular weight 700,000)

−特定エポキシ樹脂モノマー−
・ビフェニル型エポキシ樹脂モノマー(油化シェル株式会社、YL−6121)
-Specific epoxy resin monomer-
・ Biphenyl type epoxy resin monomer (Yuka Shell Co., Ltd., YL-6121)

−特定硬化剤−
・グルタル酸(和光純薬工業株式会社)
・イソフタル酸(和光純薬工業株式会社)
-Specific curing agent-
・ Glutaric acid (Wako Pure Chemical Industries, Ltd.)
・ Isophthalic acid (Wako Pure Chemical Industries, Ltd.)

−硬化剤−
・カテコールレゾルシノールノボラック樹脂(日立化成株式会社、CRN)
-Curing agent-
・ Catechol resorcinol novolak resin (Hitachi Chemical Co., Ltd., CRN)

−シランカップリング剤−
・信越化学工業株式会社、KBM−573
-Silane coupling agent-
・ Shin-Etsu Chemical Co., Ltd., KBM-573

−分散剤−
・楠本化成株式会社、ED−113
-Dispersant-
・ Enomoto Kasei Co., Ltd., ED-113

−無機充填材混合物−
・粒子径35μmのアルミナフィラー(マイクロン社、AL35−63):120.36質量部
・粒子径3μmのアルミナフィラー(マイクロン社、AX3−32):34.39質量部
・粒子径0.5μmのアルミナフィラー(日本軽金属株式会社、LS235):32.48質量部
・粒子径0.6μmのアルミナフィラー(株式会社アドマテックス、AO802):3.82質量部
-Inorganic filler mixture-
Alumina filler with a particle size of 35 μm (Micron, AL35-63): 120.36 parts by mass Alumina filler with a particle size of 3 μm (Micron, AX3-32): 34.39 parts by mass Alumina with a particle size of 0.5 μm Filler (Nippon Light Metal Co., Ltd., LS235): 32.48 parts by mass / Alumina filler having a particle size of 0.6 μm (Admatex Co., Ltd., AO802): 3.82 parts by mass

撹拌後、硬化促進剤としてイミダゾール化合物(四国化成工業株式会社、2PZ−CN)を表1に示す量(質量部)で投入し、更に30分撹拌した。アルミナボールをメッシュ(エスピージー社、三角コーナー用水切りネット)で濾別し、エポキシ樹脂組成物を得た。   After stirring, an imidazole compound (Shikoku Kasei Kogyo Co., Ltd., 2PZ-CN) was added as a curing accelerator in the amount (parts by mass) shown in Table 1, and further stirred for 30 minutes. The alumina balls were separated by filtration with a mesh (SPG Co., Ltd., draining net for triangular corners) to obtain an epoxy resin composition.

(接着シートの作製)
上記エポキシ樹脂組成物をポリエチレンテレフタレート(PET)フィルム(藤森工業株式会社、75E−0010CTR−4)の離型処理面にバーコータ(テスター産業株式会社)及び卓上塗工機(テスター産業株式会社、PI−1210)を用いて速度を10mm/分、ギャップを9mil(約230μm)として塗工し、熱風乾燥機を用いて100℃で20分間乾燥した。上記方法でシートを2枚作製し、それぞれの塗工面が対向するように平板プレスで減圧下(1kPa)、70℃で5MPa、5分の条件で貼り合わせ、エポキシ樹脂組成物層の両面にPETフィルムを有する接着シートを得た。エポキシ樹脂組成物層の厚みは200μmであった。
(Preparation of adhesive sheet)
The epoxy resin composition was coated with a bar coater (Tester Sangyo Co., Ltd.) and a tabletop coating machine (Tester Sangyo Co., Ltd., PI- 1210) was applied at a speed of 10 mm / min and a gap of 9 mil (about 230 μm), followed by drying at 100 ° C. for 20 minutes using a hot air dryer. Two sheets are prepared by the above method, and bonded to each other on a flat plate press under reduced pressure (1 kPa) under a reduced pressure (1 kPa) at 70 ° C. under 5 MPa for 5 minutes so that the coated surfaces face each other. An adhesive sheet having a film was obtained. The thickness of the epoxy resin composition layer was 200 μm.

実施例及び比較例で得られた接着シートを用いて特性評価を行った。結果を表3に示す。   Characteristic evaluation was performed using the adhesive sheets obtained in Examples and Comparative Examples. The results are shown in Table 3.

(1)熱伝導率
上記接着シートの両面のPETフィルムを剥がし、エポキシ樹脂組成物層を厚みが105μmの銅箔2枚で、銅箔の光沢面側がエポキシ樹脂組成物層と接するようにして挟んだ。これを真空加熱プレスにセットして3分間減圧し、0.1kPa以下に到達した後、180℃、1MPaで10分加熱加圧を行ってエポキシ樹脂組成物層を硬化させた。その後、熱風乾燥機を用いて160℃で30分、180℃で90分、の二段階で後硬化を行った。得られたエポキシ樹脂組成物層の硬化物の両面の銅箔をエッチング液(過硫酸ナトリウム水溶液)で溶かして除去した。得られたエポキシ樹脂組成物層の硬化物の熱拡散率をキセノンフラッシュ法で、密度をアルキメデス法で、比熱をDSCでそれぞれ測定した。得られた熱拡散率と密度と比熱の値から熱伝導率(W/mK)を算出した。
(1) Thermal conductivity The PET film on both sides of the adhesive sheet is peeled off, and the epoxy resin composition layer is sandwiched between two copper foils having a thickness of 105 μm so that the glossy surface side of the copper foil is in contact with the epoxy resin composition layer. It is. This was set in a vacuum heating press and reduced in pressure for 3 minutes. After reaching 0.1 kPa or less, the epoxy resin composition layer was cured by heating and pressing at 180 ° C. and 1 MPa for 10 minutes. Thereafter, post-curing was performed in two stages using a hot air dryer at 160 ° C. for 30 minutes and 180 ° C. for 90 minutes. The copper foil on both sides of the cured product of the obtained epoxy resin composition layer was dissolved and removed with an etching solution (aqueous sodium persulfate solution). The thermal diffusivity of the cured product of the obtained epoxy resin composition layer was measured by the xenon flash method, the density was measured by the Archimedes method, and the specific heat was measured by DSC. The thermal conductivity (W / mK) was calculated from the obtained thermal diffusivity, density and specific heat.

(2)引張試験
上記方法で作製した接着シートの両面のPETフィルムを剥がし、JIS K6251(2010年度版)に従って、3号ダンベル型の試験片を作製した。作製した試験片を160℃で30分、180℃で90分、の二段階で硬化させた。得られた試験片の硬化物を用いて、チャック間距離50mm、引張速度5mm/分で引張試験を行い、破断強度(MPa)及び破断伸び(%)を測定した。
(2) Tensile test The PET film on both sides of the adhesive sheet produced by the above method was peeled off, and a No. 3 dumbbell-type test piece was produced according to JIS K6251 (2010 edition). The prepared test piece was cured in two stages of 160 ° C. for 30 minutes and 180 ° C. for 90 minutes. Using a cured product of the obtained test piece, a tensile test was performed at a distance between chucks of 50 mm and a tensile speed of 5 mm / min, and the breaking strength (MPa) and breaking elongation (%) were measured.

(3)銅箔ピール試験
JIS K6854−1(1990年度版)に準じて、35μm銅箔の粗化面に対する90°銅箔ピール試験を行った。試験片作製方法は、上記方法で作製した厚み200μmの接着シートの両面のPETフィルムを剥がし、エポキシ樹脂組成物層を、銅箔の粗化面側がエポキシ樹脂組成物層と接するようにして、厚みが200μmと35μmの電解銅箔2枚で挟んだ。これを真空加熱プレスにセットして3分間減圧し、0.1kPa以下に到達した後、180℃、1MPaで10分加熱加圧を行ってエポキシ樹脂組成物層を硬化させた。その後、熱風乾燥機を用いて160℃で30分、180℃で90分の二段階後硬化を行った。35μm銅箔に幅10mm、長さ30mmの切込みを入れ、25℃で50mm/分の引張り速度で90°ピール試験を行った。ピール強度は平坦部分の平均値とし、これを3回測定した平均値をピール強度とした。
(3) Copper foil peel test A 90 ° copper foil peel test was performed on the roughened surface of a 35 µm copper foil in accordance with JIS K6854-1 (1990 edition). The test piece preparation method is such that the PET film on both sides of the 200 μm-thick adhesive sheet prepared by the above method is peeled off, and the epoxy resin composition layer is brought into contact with the epoxy resin composition layer on the roughened surface side of the copper foil. Was sandwiched between two electrolytic copper foils of 200 μm and 35 μm. This was set in a vacuum heating press and reduced in pressure for 3 minutes. After reaching 0.1 kPa or less, the epoxy resin composition layer was cured by heating and pressing at 180 ° C. and 1 MPa for 10 minutes. Thereafter, two-stage post-curing was performed at 160 ° C. for 30 minutes and 180 ° C. for 90 minutes using a hot air dryer. A notch with a width of 10 mm and a length of 30 mm was cut into a 35 μm copper foil, and a 90 ° peel test was conducted at 25 ° C. and a tensile speed of 50 mm / min. The peel strength was the average value of the flat portion, and the average value obtained by measuring this three times was taken as the peel strength.

(4)銅せん断接着試験
JIS K6850(1999年度版)に準じて、長さ100mm、幅25mm、厚み3mmの銅板を用いて引張りせん断ラップ試験を行った。試験片作製方法は上記方法で作製した接着シートの両面のPETフィルムを剥がし、エポキシ樹脂組成物層を25×12.5mmに切り出し、ラップ試験片の銅板の先端に貼り付けた。140℃1分で予熱した後140℃でゴムローラーを用いて貼り合わせた後、180℃4時間で硬化して試験片を作製した。得られた試験片を25℃で5mm/分の引張り速度で引張りせん断ラップ試験を行った。それぞれ3回ずつ測定し、得られた破断強度の平均値をせん断接着力とした。
(4) Copper Shear Adhesion Test A tensile shear lap test was performed using a copper plate having a length of 100 mm, a width of 25 mm, and a thickness of 3 mm according to JIS K6850 (1999 version). The test piece preparation method peeled off PET film of both surfaces of the adhesive sheet produced by the said method, cut out the epoxy resin composition layer to 25x12.5 mm, and affixed on the front-end | tip of the copper plate of a lap | lap test piece. After preheating at 140 ° C. for 1 minute, bonding was performed at 140 ° C. using a rubber roller, and then cured at 180 ° C. for 4 hours to prepare a test piece. The obtained test piece was subjected to a tensile shear lap test at 25 ° C. and a pulling speed of 5 mm / min. Each was measured three times, and the average value of the obtained breaking strengths was defined as shear adhesive strength.

(5)フロー量
50mm×50mm×1.0mmのアルミニウム板に、30mm×30mmの大きさにカットした上記方法で作製した接着シートの片面のPETフィルムを剥がして貼り付けた。更にその上に10cm×10cmのPETフィルムを重ねた。130℃、0.2MPaで0.5分間加熱圧着し、圧着後のエポキシ樹脂組成物層の面積の圧着前のエポキシ樹脂組成物層の面積に対する割合(%)をフロー量と定義した。圧着前後のエポキシ樹脂組成物層の面積は、真上から撮影した写真をコピー機により倍率400倍で拡大コピーしたものを切り抜いて、圧着前のエポキシ樹脂組成物層の面積の大きさのコピー用紙との重量比を計測することにより計測した。なお、面積の計測方法は誤差1%以内で計測できるならば特に上記方法に制限されない。
(5) Flow amount The PET film on one side of the adhesive sheet produced by the above method cut to a size of 30 mm × 30 mm was peeled off and attached to an aluminum plate of 50 mm × 50 mm × 1.0 mm. Further, a 10 cm × 10 cm PET film was overlaid thereon. The flow rate was defined as the ratio (%) of the area of the epoxy resin composition layer after pressure bonding to the area of the epoxy resin composition layer before pressure bonding at 130 ° C. and 0.2 MPa for 0.5 minutes. The area of the epoxy resin composition layer before and after crimping is a copy sheet of the size of the area of the epoxy resin composition layer before crimping by cutting out a photograph taken from directly above and enlarging a copy at a magnification of 400 times with a copy machine Was measured by measuring the weight ratio. The area measurement method is not particularly limited as long as it can be measured within an error of 1%.

表3に示すように、ジカルボン酸を添加していないエポキシ樹脂組成物層(比較例1)は破断強度と破断伸び量が少なく靭性が低い樹脂であり、そのため銅箔ピール強度及びせん断接着力が低かった。   As shown in Table 3, the epoxy resin composition layer to which no dicarboxylic acid is added (Comparative Example 1) is a resin having a low breaking strength and a low elongation at break and a low toughness, and therefore has a copper foil peel strength and a shear adhesive strength. It was low.

ジカルボン酸の代わりに高分子量アクリルゴムを添加したエポキシ樹脂組成物層(比較例2)は破断強度と破断伸びは改善したが、熱伝導率が大幅に低下した。更にフロー量が大幅に低下し、被着体への密着性が低下して銅箔ピール強度も低下した。   The epoxy resin composition layer (Comparative Example 2) to which a high molecular weight acrylic rubber was added instead of dicarboxylic acid improved the breaking strength and breaking elongation, but greatly reduced the thermal conductivity. Furthermore, the flow amount was greatly reduced, the adhesion to the adherend was lowered, and the copper foil peel strength was also lowered.

ジカルボン酸を添加したエポキシ樹脂組成物層(実施例1〜4)は破断伸び量が大幅に改善しており、それに伴い破断強度、銅箔ピール強度、銅せん断接着力が向上した。更に実施例1〜4はいずれも熱伝導率が向上し、樹脂強度と熱伝導率の両立を実現している。また、実施例1〜4ではフロー量も適度に調整可能で、ポンプアウトの抑制と埋め込み性の確保の両立が可能である。更に、ジカルボン酸の添加率を特定エポキシ樹脂モノマーに対して20モル%の場合(実施例1及び実施例3)、40モル%まで増やした場合(実施例2及び実施例4)と比較して、熱伝導率、破断強度、破断伸び量、銅箔ピール強度及び銅せん断接着力のいずれも向上している。   The epoxy resin composition layers to which dicarboxylic acid was added (Examples 1 to 4) had significantly improved elongation at break, and accordingly, break strength, copper foil peel strength, and copper shear adhesive strength were improved. Further, all of Examples 1 to 4 have improved thermal conductivity, realizing both resin strength and thermal conductivity. Moreover, in Examples 1-4, the flow amount can also be adjusted moderately, and both suppression of pump-out and securing of embeddability are possible. Furthermore, when the addition rate of dicarboxylic acid is 20 mol% with respect to the specific epoxy resin monomer (Example 1 and Example 3), compared with the case where it is increased to 40 mol% (Example 2 and Example 4). The thermal conductivity, breaking strength, breaking elongation, copper foil peel strength, and copper shear adhesive strength are all improved.

Claims (9)

エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物と、液晶性又は結晶性の2官能エポキシ樹脂モノマーと、フェノールノボラック型硬化剤と、無機充填材と、を含み、前記エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物が、ジカルボン酸を含む放熱板に対する接着シート形成用エポキシ樹脂組成物。 It is seen containing a compound having two in one molecule an addition functional group reactive with an epoxy group, and a liquid crystal or crystalline bifunctional epoxy resin monomer, a phenol novolak type curing agent, an inorganic filler, the said compound having two in one molecule an addition functional group reactive with an epoxy group, the adhesive sheet for forming the epoxy resin composition of dicarboxylic acid to including the heat radiating plate. エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物と2官能エポキシ樹脂モノマーとの反応物であり液晶性又は結晶性を示すオリゴマーと、フェノールノボラック型硬化剤と、無機充填材と、を含み、前記エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物が、ジカルボン酸を含む放熱板に対する接着シート形成用エポキシ樹脂組成物。 An oligomer which is a reaction product of a compound having two functional groups capable of addition reaction with an epoxy group in one molecule and a bifunctional epoxy resin monomer and exhibits liquid crystallinity or crystallinity, a phenol novolac type curing agent, and an inorganic filler When, only containing a compound having two additional functional group reactive with the epoxy groups in one molecule, the adhesive sheet for forming the epoxy resin composition of dicarboxylic acid to including the heat radiating plate. 前記ジカルボン酸が、下記一般式(I)で示される構造を有する化合物を含む請求項1又は請求項2に記載のエポキシ樹脂組成物。


〔一般式(I)中、Rはフェニレン基、炭素数1〜12のアルキレン基又は炭素数1〜12のオキシアルキレン基を表す。〕
The epoxy resin composition according to claim 1 or 2 , wherein the dicarboxylic acid contains a compound having a structure represented by the following general formula (I).


[In general formula (I), R represents a phenylene group, a C1-C12 alkylene group, or a C1-C12 oxyalkylene group. ]
前記ジカルボン酸が、イソフタル酸及びグルタル酸からなる群より選択される少なくとも1種を含む請求項1〜請求項3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein the dicarboxylic acid includes at least one selected from the group consisting of isophthalic acid and glutaric acid. 前記エポキシ基と付加反応可能な官能基を1分子中に2個有する化合物の含有率が、エポキシ樹脂の総含有量中、5mol%〜50mol%である請求項1〜請求項のいずれか1項に記載のエポキシ樹脂組成物。 The content of a compound having two epoxy groups and the additional reactive functional groups in one molecule, in the total content of the epoxy resin, any one of claims 1 to 4 which is 5 mol% 50 mol% 1 The epoxy resin composition according to item. 前記無機充填材が、アルミナ粒子及び窒化ホウ素粒子からなる群より選択される少なくとも1種を含む請求項1〜請求項のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 5 , wherein the inorganic filler includes at least one selected from the group consisting of alumina particles and boron nitride particles. 前記無機充填材の含有率が、60体積%〜80体積%である請求項1〜請求項のいずれか1項に記載のエポキシ樹脂組成物。 The content rate of the said inorganic filler is 60 volume%-80 volume%, The epoxy resin composition of any one of Claims 1-6 . 基材と、前記基材上に配置される請求項1〜請求項のいずれか1項に記載のエポキシ樹脂組成物のシート状成形物と、を有する接着シート。 Adhesive sheet having a substrate and a sheet-like molded product of epoxy resin composition according to any one of claims 1 to 7 disposed on the substrate. 放熱板と、請求項1〜請求項のいずれか1項に記載のエポキシ樹脂組成物のシート状硬化物と、半導体素子と、をこの順に有する半導体装置。 Radiating plate and a sheet-like cured product of the epoxy resin composition according to any one of claims 1 to 7, a semiconductor device having a semiconductor element, in this order.
JP2013213166A 2013-10-10 2013-10-10 Epoxy resin composition, adhesive sheet and semiconductor device Active JP6311263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213166A JP6311263B2 (en) 2013-10-10 2013-10-10 Epoxy resin composition, adhesive sheet and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213166A JP6311263B2 (en) 2013-10-10 2013-10-10 Epoxy resin composition, adhesive sheet and semiconductor device

Publications (2)

Publication Number Publication Date
JP2015074750A JP2015074750A (en) 2015-04-20
JP6311263B2 true JP6311263B2 (en) 2018-04-18

Family

ID=52999867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213166A Active JP6311263B2 (en) 2013-10-10 2013-10-10 Epoxy resin composition, adhesive sheet and semiconductor device

Country Status (1)

Country Link
JP (1) JP6311263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611760A1 (en) * 2018-08-17 2020-02-19 Korea Institute of Science and Technology Composites with enhanced thermal conductivity and method preparing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941241B2 (en) * 2016-02-25 2021-03-09 Showa Denko Materials Co., Ltd. Epoxy resin molding material, molded product, molded cured product, and method for producing molded cured product
JP6775735B2 (en) * 2016-02-25 2020-10-28 昭和電工マテリアルズ株式会社 Resin sheet and cured resin sheet
KR20210146326A (en) * 2019-03-27 2021-12-03 쇼와덴코머티리얼즈가부시끼가이샤 Epoxy resins, epoxy resin compositions, cured epoxy resins, and composite materials
JP7465714B2 (en) 2020-04-30 2024-04-11 京セラ株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746896B1 (en) * 1999-08-28 2004-06-08 Georgia Tech Research Corp. Process and material for low-cost flip-chip solder interconnect structures
JP5200386B2 (en) * 2006-02-16 2013-06-05 東レ株式会社 Adhesive sheet for electronic materials
JP2013014700A (en) * 2011-07-05 2013-01-24 Kyocera Chemical Corp Epoxy resin composition for sealing semiconductor, and lamination type semiconductor device using the same
JP6094958B2 (en) * 2012-12-12 2017-03-15 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing power semiconductor element of power module and power module using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611760A1 (en) * 2018-08-17 2020-02-19 Korea Institute of Science and Technology Composites with enhanced thermal conductivity and method preparing the same
US11186776B2 (en) 2018-08-17 2021-11-30 Korea Institute Of Science And Technology Composites with enhanced thermal conductivity and method preparing the same

Also Published As

Publication number Publication date
JP2015074750A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP6304419B2 (en) Resin composition, and resin sheet, prepreg, laminate, metal substrate, printed wiring board and power semiconductor device using the same
JP6311820B2 (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, wiring board, method for producing semi-cured epoxy resin composition, and method for producing cured epoxy resin composition
JP5573842B2 (en) MULTILAYER RESIN SHEET AND ITS MANUFACTURING METHOD, MULTILAYER RESIN SHEET CURED MANUFACTURING METHOD, AND HIGHLY HEAT CONDUCTIVE RESIN SHEET LAMINATE
JP6988091B2 (en) Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate, and power semiconductor device
JP2014156531A (en) Epoxy resin composition, adhesive sheet and semiconductor element
JP5928477B2 (en) Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed wiring board using the same
JP6311263B2 (en) Epoxy resin composition, adhesive sheet and semiconductor device
KR20140111302A (en) Curable heat radiation composition
JPWO2020071154A1 (en) Resin compositions, films, laminates and semiconductor devices
TW200924967A (en) Insulating sheet and multilayer structure
JP2012111807A (en) Thermosetting resin composition and prepreg sheet or laminated board using the thermosetting resin composition
JP2013014671A (en) Resin composition sheet, resin composition sheet with metal foil, metal base wiring board material, metal base wiring board and electronic member
JP2008297429A (en) Adhesive composition, adhesive sheet and copper foil with adhesive agent
TW201236518A (en) Multilayer resin sheet and resin sheet laminate
JP2009231249A (en) Insulation sheet and laminated structural body
TW202132496A (en) Resin sheet
JP6132041B2 (en) Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed wiring board using the same
JP2015010098A (en) Thermobonding sheet and article
TW202122493A (en) Resin composition and resin sheet
JP2008222906A (en) Adhesive composition for flexible wiring board, cover-lay, adhesive film, flexible copper-clad laminate, flexible wiring board and wiring board with stiffening plate each using the same
TW202402964A (en) Thermosetting resin composition, thermally conductive resin sheet, heat-dissipating layered product, heat-dissipating circuit board, semiconductor device and power module
TW202140673A (en) Resin composition and resin sheet
JP2012119180A (en) Insulation material and laminate structure
JP2014165200A (en) Method of manufacturing semiconductor chip
JPH11209582A (en) Epoxy resin composition for laminate, and prepreg and laminate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R151 Written notification of patent or utility model registration

Ref document number: 6311263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151