JP6307121B2 - Sintered body and cylindrical sputtering target containing LiCoO 2 - Google Patents

Sintered body and cylindrical sputtering target containing LiCoO 2 Download PDF

Info

Publication number
JP6307121B2
JP6307121B2 JP2016147264A JP2016147264A JP6307121B2 JP 6307121 B2 JP6307121 B2 JP 6307121B2 JP 2016147264 A JP2016147264 A JP 2016147264A JP 2016147264 A JP2016147264 A JP 2016147264A JP 6307121 B2 JP6307121 B2 JP 6307121B2
Authority
JP
Japan
Prior art keywords
sintered body
cylindrical
porosity
region
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016147264A
Other languages
Japanese (ja)
Other versions
JP2018016512A (en
Inventor
雄一 武富
雄一 武富
守賀 金丸
守賀 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2016147264A priority Critical patent/JP6307121B2/en
Priority to PCT/JP2017/022660 priority patent/WO2018020908A1/en
Priority to TW106122152A priority patent/TW201803832A/en
Publication of JP2018016512A publication Critical patent/JP2018016512A/en
Application granted granted Critical
Publication of JP6307121B2 publication Critical patent/JP6307121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、LiCoOを含有する焼結体および円筒形スパッタリングターゲットに関する。 The present invention relates to a sintered body containing LiCoO 2 and a cylindrical sputtering target.

Li系薄膜二次電池は、薄膜太陽電池、薄膜熱電素子および無線充電素子等の各種デバイスに用いられ、その需要が急速に高まっている。Li系薄膜二次電池は、代表的には、Liと遷移金属であるCoとを含むLiCoO含有薄膜からなる正極と、Liを含む固体電解質と、Li金属薄膜等からなる負極とから構成されている。 Li-based thin-film secondary batteries are used in various devices such as thin-film solar cells, thin-film thermoelectric elements, and wireless charging elements, and their demand is rapidly increasing. A Li-based thin film secondary battery is typically composed of a positive electrode composed of a LiCoO 2 containing thin film containing Li and Co as a transition metal, a solid electrolyte containing Li, and a negative electrode composed of a Li metal thin film. ing.

LiCoO含有薄膜の成膜には、当該膜と同じ組成のスパッタリングターゲット(以下、ターゲットと略記する場合がある。)をスパッタリングするスパッタリング法が好適に用いられている。スパッタリング法によれば、成膜条件の調整が容易であり、半導体基板上に容易に成膜できる等の利点がある。一般的に、成膜レートを高めるために、陰極に磁場を印加しながらスパッタリングを行うマグネトロンスパッタリング法が採用されている。 For the formation of the LiCoO 2 -containing thin film, a sputtering method is preferably used in which a sputtering target having the same composition as the film (hereinafter sometimes abbreviated as a target) is sputtered. The sputtering method has advantages such as easy adjustment of film forming conditions and easy film formation on a semiconductor substrate. In general, in order to increase the film forming rate, a magnetron sputtering method is employed in which sputtering is performed while applying a magnetic field to the cathode.

従来、平板型スパッタリングターゲットが一般的に利用されていたが、マグネトロンスパッタリング法によるスパッタリングの際、ターゲットの特定箇所にエロージョンが進行する現象が起こる。そのため、エロージョン部がターゲットのバッキングプレートまで達したところでターゲットの寿命となり、ターゲットの使用効率が20〜30%程度にとどまるという問題がある。   Conventionally, a flat plate-type sputtering target has been generally used. However, when sputtering is performed by a magnetron sputtering method, a phenomenon in which erosion proceeds to a specific portion of the target occurs. Therefore, when the erosion part reaches the backing plate of the target, there is a problem that the life of the target is reached, and the usage efficiency of the target remains at about 20 to 30%.

この問題に対して、スパッタリングターゲットを円筒形とすることにより、ターゲットの使用効率を上げることが提案されている。円筒形スパッタリングターゲットを用いたマグネトロンスパッタリングにおいては、バッキングチューブの外周に形成した円筒形スパッタリングターゲットを用い、ターゲットを回転させながらスパッタリングを行うことにより、エロ−ジョンがターゲット全体に進行する。その結果、ターゲットの使用効率を60〜70%程度まで高めることができる。   In response to this problem, it has been proposed to increase the use efficiency of the target by making the sputtering target cylindrical. In magnetron sputtering using a cylindrical sputtering target, erosion proceeds to the entire target by performing sputtering while rotating the target using a cylindrical sputtering target formed on the outer periphery of the backing tube. As a result, the use efficiency of the target can be increased to about 60 to 70%.

このような円筒形スパッタリングターゲットとして、特許文献1には、円筒形の成形体の焼結収縮率と同等の焼結収縮率を有する板状の成形体の上に、円筒形状の成形体を載置して焼成することにより、相対密度95%以上の円筒形の焼結体を得て、これを用いて円筒形スパッタリングターゲットを製造することが記載されている。   As such a cylindrical sputtering target, in Patent Document 1, a cylindrical molded body is mounted on a plate-shaped molded body having a sintering shrinkage rate equivalent to that of the cylindrical molded body. It is described that a cylindrical sintered body having a relative density of 95% or more is obtained by placing and firing, and a cylindrical sputtering target is produced using this.

また、特許文献2には、雰囲気ガスを供給するための配管と、当該雰囲気ガスを上方より排出する出口とを備える焼成炉を用いて、常圧において、円筒形の成形体を焼結させて、円筒形の焼結体を得る工程を含む、円筒形スパッタリングターゲット用焼結体の製造方法が記載されている。   Further, in Patent Document 2, a cylindrical molded body is sintered at normal pressure using a firing furnace including a pipe for supplying atmospheric gas and an outlet for discharging the atmospheric gas from above. A method for producing a sintered body for a cylindrical sputtering target is described, which includes the step of obtaining a cylindrical sintered body.

特開2005−281862号公報JP 2005-281862 A 特開2012−126587号公報JP 2012-125687 A

しかし、金属粉末を焼成して焼結体を製造する際、円筒形焼結体は、平板型焼結体よりも熱収縮による影響を受けて割れやすい。また、焼結の際に割れることなく円筒形焼結体を製造することができても、それを用いて円筒形スパッタリングターゲットを製造する際の加工により、円筒形焼結体が割れることがある。特許文献1および2に開示の製造方法では、円筒形焼結体の構造自体を制御することにより、加工時等に割れにくい円筒形焼結体を製造する検討が不足している。   However, when a sintered body is produced by firing metal powder, the cylindrical sintered body is more susceptible to cracking due to thermal shrinkage than the flat plate-type sintered body. Further, even if a cylindrical sintered body can be produced without cracking during sintering, the cylindrical sintered body may be broken by processing when producing a cylindrical sputtering target using the cylindrical sintered body. . In the manufacturing methods disclosed in Patent Documents 1 and 2, there is a lack of studies for manufacturing a cylindrical sintered body that is difficult to break during processing by controlling the structure of the cylindrical sintered body itself.

本発明は、上記の問題点に着目してなされたものであって、その目的は、加工時等に割れにくい焼結体を提供することである。また、そのような焼結体を備えた円筒形スパッタリングターゲットを提供することも目的とする。   The present invention has been made paying attention to the above-mentioned problems, and an object of the present invention is to provide a sintered body that is difficult to break during processing or the like. It is another object of the present invention to provide a cylindrical sputtering target provided with such a sintered body.

本発明に係る焼結体は、
LiCoOを含有し、内周面で規定される中空部を含んだ円筒形状を有し、外周面から前記内周面に至る距離の15%以上、70%以下の範囲である中心領域の気孔率が、前記円筒形焼結体の高さの80%以上に亘って、15%以上、34%以下であり、
下記(1)式を満足する。
200≦(Do+Di)×π×L/200≦950 ・・・(1)
ここで、Doは前記焼結体の外径[mm]であり、Diは前記焼結体の内径[mm]であり、Lは前記焼結体の高さ[mm]である。
The sintered body according to the present invention is:
A pore in the central region containing LiCoO 2 , having a cylindrical shape including a hollow portion defined by the inner peripheral surface, and having a range from 15% to 70% of the distance from the outer peripheral surface to the inner peripheral surface The rate is 15% or more and 34% or less over 80% or more of the height of the cylindrical sintered body,
The following expression (1) is satisfied.
200 ≦ (Do + Di) × π × L / 200 ≦ 950 (1)
Here, Do is the outer diameter [mm] of the sintered body, Di is the inner diameter [mm] of the sintered body, and L is the height [mm] of the sintered body.

本発明に係る焼結体は、相対密度が90%以上であってよい。   The sintered body according to the present invention may have a relative density of 90% or more.

本発明に係る円筒形スパッタリングターゲットは、バッキングチューブと、本発明に係る焼結体とを含む。   The cylindrical sputtering target according to the present invention includes a backing tube and the sintered body according to the present invention.

本発明に係る焼結体は、加工時等に割れにくい。   The sintered body according to the present invention is difficult to break during processing.

図1は、本発明に係る焼結体の一部を模式的に示す模式図である。FIG. 1 is a schematic view schematically showing a part of a sintered body according to the present invention. 図2は、前駆焼結体の上面および底面からの切断位置を模式的に示す模式図である。FIG. 2 is a schematic diagram schematically showing cutting positions from the top surface and the bottom surface of the precursor sintered body.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、LiCoOを含有する焼結体において、内周面で規定される中空部を含んだ円筒形状を有し、外周面と内周面との間に位置する所定の領域が、当該焼結体の高さの所定の割合に亘って、所定の気孔率を有するように制御し、さらに、当該焼結体の外径、内径および高さについて、所定の関係を満たすように制御することにより、加工時等に割れにくい焼結体が得られることを見出した。 As a result of intensive studies to solve the above problems, the inventors of the present invention have a cylindrical shape including a hollow portion defined by an inner peripheral surface in a sintered body containing LiCoO 2 , and an outer peripheral surface. A predetermined region located between the inner peripheral surface and the inner peripheral surface is controlled to have a predetermined porosity over a predetermined ratio of the height of the sintered body, and further, the outer diameter of the sintered body It was found that by controlling the inner diameter and the height so as to satisfy a predetermined relationship, a sintered body that is difficult to break during processing or the like can be obtained.

以下、本発明に係る焼結体および円筒形スパッタリングターゲットについて説明する。   Hereinafter, the sintered body and the cylindrical sputtering target according to the present invention will be described.

本発明において、「焼結体」とは、単一の焼結体を意味し、複数の焼結体を繋ぎ合わせたものを含まない。本発明の焼結体は、単一の焼結体からなる。
また、本発明に係る焼結体を「円筒形焼結体」と呼ぶことがある。
In the present invention, the “sintered body” means a single sintered body and does not include a combination of a plurality of sintered bodies. The sintered body of the present invention consists of a single sintered body.
Further, the sintered body according to the present invention may be referred to as a “cylindrical sintered body”.

<1.円筒形焼結体> <1. Cylindrical sintered body>

後述のように、円筒形焼結体は、LiCoOを含む粉末を黒鉛型に充填し、加圧焼結をすることにより前駆焼結体を得る工程と、前駆焼結体をさらに熱処理することにより円筒形焼結体を得る工程とを行うことにより製造される。 As will be described later, the cylindrical sintered body includes a step of obtaining a precursor sintered body by filling a graphite mold with a powder containing LiCoO 2 and performing pressure sintering, and further heat-treating the precursor sintered body. To obtain a cylindrical sintered body.

円筒形焼結体の製造は、平板形焼結体の製造に比べて、加圧焼結または熱処理の際に、熱収縮による影響を受けやすく、前駆焼結体および/または円筒形焼結体の外径方向および高さ方向の熱収縮が不均一となり、前駆焼結体および/または円筒形焼結体に歪みが生じ、割れることがある。LiCoOを含む粉末を黒鉛型に充填して加圧焼結した際に、熱収縮により前駆焼結体が割れることがあり、加圧焼結の際に前駆焼結体が割れなかったとしても、前駆焼結体をさらに熱処理することにより、熱収縮がさらに進行して、円筒形焼結体が割れることがある。 The production of a cylindrical sintered body is more susceptible to thermal shrinkage during pressure sintering or heat treatment than the production of a flat plate sintered body, and a precursor sintered body and / or a cylindrical sintered body. The heat shrinkage in the outer diameter direction and the height direction is nonuniform, and the precursor sintered body and / or the cylindrical sintered body may be distorted and cracked. When powder containing LiCoO 2 is filled in a graphite mold and sintered under pressure, the precursor sintered body may crack due to thermal shrinkage, and even if the precursor sintered body does not crack during pressure sintering, Further, when the precursor sintered body is further heat-treated, the thermal shrinkage further proceeds and the cylindrical sintered body may be cracked.

さらに、熱処理後に円筒形焼結体が割れなかったとしても、熱処理の際、円筒形焼結体が割れないことに重点をおいて熱処理条件を制御した結果、円筒形焼結体が構造的に弱くなり、スパッタリングターゲット等の製造のために円筒形焼結体を加工等する際に、円筒形焼結体が割れることがある。   Furthermore, even if the cylindrical sintered body did not crack after the heat treatment, the result of controlling the heat treatment conditions with an emphasis on the cylindrical sintered body not cracking during the heat treatment was When the cylindrical sintered body is processed for manufacturing a sputtering target or the like, the cylindrical sintered body may break.

このように、円筒形焼結体の製造は、熱処理による熱収縮の影響を受けやすく、一方で、熱処理の条件を単に制御するだけでは、割れにくい円筒形焼結体を得ることは難しい。   As described above, the manufacture of the cylindrical sintered body is easily affected by the thermal shrinkage due to the heat treatment. On the other hand, it is difficult to obtain a cylindrical sintered body that is difficult to break by simply controlling the heat treatment conditions.

本発明者らは、加圧焼結の条件を適切に制御することにより、前駆焼結体の構造を制御するという点に着目した。そして、適切に制御された所定の構造を有する前駆焼結体に熱処理を施すことにより、熱処理の際に割れにくい円筒形焼結体が得られることを見出した。このようにして得られた円筒形焼結体は構造的に強く、割れにくい。   The inventors of the present invention focused on controlling the structure of the precursor sintered body by appropriately controlling the pressure sintering conditions. And it discovered that the cylindrical sintered compact which is hard to be cracked in the case of heat processing is obtained by heat-processing to the precursor sintered compact which has the predetermined structure controlled appropriately. The cylindrical sintered body thus obtained is structurally strong and difficult to crack.

以下、円筒形焼結体の構造について詳述する。   Hereinafter, the structure of the cylindrical sintered body will be described in detail.

[1−1.円筒形焼結体内部の領域] [1-1. Area inside cylindrical sintered body]

図1は、本発明に係る実施形態の円筒形焼結体の一部を模式的に示す模式図であり、円筒形焼結体の外径方向および高さ方向で規定される面における断面を示している。円筒形焼結体は、外周面および周面を360°に亘って有する円筒形状である。当該図は、本発明に係る実施形態の円筒形焼結体の理解を容易にするための模式図であり、本発明はこれに限定されるものではない。 FIG. 1 is a schematic view schematically showing a part of a cylindrical sintered body according to an embodiment of the present invention, and shows a cross section in a plane defined by an outer diameter direction and a height direction of the cylindrical sintered body. Show. The cylindrical sintered body has a cylindrical shape having an outer peripheral surface and an inner peripheral surface over 360 °. The said figure is a schematic diagram for making an understanding of the cylindrical sintered compact of embodiment concerning this invention easy, and this invention is not limited to this.

図1に示されるように、円筒形焼結体内部の領域は、外周面1から内周面2に向かって、第1領域5、第2領域6(中心領域)および第3領域7を有する。   As shown in FIG. 1, the region inside the cylindrical sintered body has a first region 5, a second region 6 (central region), and a third region 7 from the outer peripheral surface 1 toward the inner peripheral surface 2. .

円筒形焼結体は、内周面で規定される中空部を含んだ円筒形状を有し、外周面から前記内周面に至る距離の15%以上、70%以下の範囲である中心領域(第2領域6)の気孔率が、前記円筒形焼結体の高さの80%以上に亘って、15%以上、34%以下である。すなわち、外周面から内周面に至る距離をdとしたとき、中心領域は0.15×dの位置から0.70×dの位置までの範囲である。   The cylindrical sintered body has a cylindrical shape including a hollow portion defined by an inner peripheral surface, and a central region (range 15% to 70% of the distance from the outer peripheral surface to the inner peripheral surface ( The porosity of the second region 6) is 15% or more and 34% or less over 80% or more of the height of the cylindrical sintered body. That is, when the distance from the outer peripheral surface to the inner peripheral surface is d, the central region is a range from a position of 0.15 × d to a position of 0.70 × d.

後述のように、円筒形焼結体は、円筒形焼結体は、LiCoOを含む粉末を黒鉛型に充填し、加圧焼結をすることにより前駆焼結体を得る工程と、前駆焼結体をさらに熱処理することにより円筒形焼結体を得る工程とを行うことにより製造される。
前駆焼結体を作製する際、黒鉛型と接している外側部分(前駆焼結体の外周面、内周面、上面および底面)は、黒鉛型からの熱伝達が大きいため、黒鉛型と接していない内側部分に比べて、LiCoOを含む粉末の焼結が進行しやすく、気孔率が低くなる。
また、黒鉛型と接していない内側部分に比べて、外側部分の焼結が進行しやすいため、外周面から、外周面と内周面との中間部分に向かって気孔率は増加し、外周面と内周面との中間部分から、内周面に向かって気孔率は減少すると考えられる。また、上面から、上面と底面との中間部分に向かって気孔率は増加し、上面と底面との中間部分から、底面に向かって気孔率は減少すると考えられる。
熱処理により得られた円筒形焼結体については、熱処理により、前駆焼結体と比較して、気孔率の値は低くなるが、気孔率の分布は同様である。外側の第1領域5および第3領域7は、気孔率が低く、内側の第2領域6は、気孔率が高い。
As will be described later, the cylindrical sintered body includes a step of obtaining a precursor sintered body by filling a graphite mold with a powder containing LiCoO 2 and performing pressure sintering, and precursor sintering. It is manufactured by performing the process of obtaining a cylindrical sintered compact by further heat-processing a bonded body.
When producing the precursor sintered body, the outer part (outer peripheral surface, inner peripheral surface, upper surface and bottom surface of the precursor sintered body) in contact with the graphite mold is in contact with the graphite mold because of the large heat transfer from the graphite mold. Compared with the inner part which is not, sintering of the powder containing LiCoO 2 proceeds easily, and the porosity is lowered.
In addition, since the sintering of the outer portion is easier to proceed than the inner portion not in contact with the graphite mold, the porosity increases from the outer peripheral surface toward the intermediate portion between the outer peripheral surface and the inner peripheral surface, and the outer peripheral surface It is considered that the porosity decreases from the intermediate portion between the inner peripheral surface and the inner peripheral surface toward the inner peripheral surface. Further, it is considered that the porosity increases from the upper surface toward the intermediate portion between the upper surface and the bottom surface, and the porosity decreases from the intermediate portion between the upper surface and the bottom surface toward the bottom surface.
The cylindrical sintered body obtained by the heat treatment has a lower porosity value than the precursor sintered body by the heat treatment, but the porosity distribution is the same. The outer first region 5 and the third region 7 have a low porosity, and the inner second region 6 has a high porosity.

このように、円筒形焼結体において、外側の第1領域5および第3領域7は、気孔率が低く(密度が高い)、内側の第2領域6は、気孔率が高い(密度が低い)。外側の第1領域5および第3領域7は、密度が高く硬いため、外部からの衝撃に対して強く、さらに、内側の第2領域6は、密度が低く柔らかいため、円筒形焼結体に加えられた応力を緩和する機能を有すると考えられる。円筒形焼結体は、当該円筒形焼結体の高さのうち、所定の割合の高さに亘って、このような気孔率を有しているため、外力に対して強く、割れにくい。   Thus, in the cylindrical sintered body, the outer first region 5 and the third region 7 have a low porosity (high density), and the inner second region 6 has a high porosity (low density). ). Since the outer first region 5 and the third region 7 are dense and hard, they are strong against impacts from the outside, and the inner second region 6 is soft and low in density, so that it is made into a cylindrical sintered body. It is considered to have a function of relieving applied stress. Since the cylindrical sintered body has such a porosity over a predetermined proportion of the height of the cylindrical sintered body, the cylindrical sintered body is strong against external force and is not easily cracked.

本発明において、気孔率が、前記円筒形焼結体の高さの80%以上に亘って、15%以上、34%以下であるとは、円筒形焼結体の高さLのうち、当該気孔率を有する部分の長さLの割合、すなわちL/L×100で表される値が80%以上であることを意味する。L=Lである場合には、円筒形焼結体の高さの100%以上に亘って、当該気孔率を有している。 In the present invention, the porosity is 15% or more and 34% or less over 80% or more of the height of the cylindrical sintered body. It means that the ratio of the length L * of the portion having porosity, that is, the value represented by L * / L × 100 is 80% or more. When L = L * , the porosity is provided over 100% or more of the height of the cylindrical sintered body.

上述のように、気孔率は、上面3から、上面3と底面4との中間部分に向かって増加し、上面3と底面4との中間部分から、底面4に向かって減少すると考えられる。従って、第2領域6について円筒形焼結体の高さ方向の気孔率の分布を測定する際、例えば、円筒形焼結体の上面3の気孔率Tおよび底面4の気孔率Bと、円筒形焼結体の高さの半分の位置の気孔率Mとを測定し、その結果から、第2領域が、気孔率Mを限とし、気孔率Tまたは気孔率Bのうちのい気孔率を限とした気孔率分布を有しているとみなすことができる。 As described above, it is considered that the porosity increases from the upper surface 3 toward the intermediate portion between the upper surface 3 and the bottom surface 4 and decreases from the intermediate portion between the upper surface 3 and the bottom surface 4 toward the bottom surface 4. Therefore, when measuring the distribution of the porosity in the height direction of the cylindrical sintered body in the second region 6, for example, the porosity T of the top surface 3 and the porosity B of the bottom surface 4 of the cylindrical sintered body, and the cylinder and measuring the porosity M of half the height of the form sintered body, from the result, the second region, the porosity M and the upper limit, the low have pores of porosity T or porosity B the rate can be considered to have a porosity distribution which is the lower limit.

気孔率を測定する方法として、例えば、以下の方法が挙げられる。
まず、円筒形焼結体の外径方向および高さ方向で規定される面における当該円筒形焼結体の断面(以下、垂直断面とよぶことがある)を得るように、円筒形焼結体を切断する。そして、当該断面から10mm(高さ方向)×9mm(外径方向)の試料を採取し、各試料を樹脂埋め後、断面を研磨し、試料断面を露出させる。次に、光学顕微鏡を用いて450倍で研磨面を観察し、無造作に選択した観察視野中に存在する全ての気孔を特定して気孔の合計面積を算出し、当該観察視野の面積に対する気孔の合計面積の割合を気孔率とする。気孔の面積は、市販の画像解析ソフトを用いて算出してよく、例えばWayne Rasband製「ImageJ」を用いてよい。
Examples of the method for measuring the porosity include the following methods.
First, the cylindrical sintered body is obtained so as to obtain a cross section of the cylindrical sintered body (hereinafter, sometimes referred to as a vertical cross section) in a plane defined by the outer diameter direction and the height direction of the cylindrical sintered body. Disconnect. Then, a 10 mm (height direction) × 9 mm (outer diameter direction) sample is taken from the cross section, and after filling each sample with resin, the cross section is polished to expose the sample cross section. Next, the polished surface is observed at 450 times using an optical microscope, all the pores present in the observation field selected at random are specified, the total area of the pores is calculated, and the pore area relative to the area of the observation field is calculated. The ratio of the total area is defined as the porosity. The area of the pores may be calculated using commercially available image analysis software. For example, “ImageJ” manufactured by Wayne Rasband may be used.

以下、第1領域〜第3領域について詳述する。   Hereinafter, the first region to the third region will be described in detail.

(1)第2領域(中心領域)
第2領域6(中心領域)は、外周面から前記内周面に至る距離の15%以上、70%以下の範囲であり、前記円筒形焼結体の高さの80%以上に亘って、15%以上、34%以下の気孔率を有する。
外周面から前記内周面に至る距離の15%未満になると、第1領域5が狭くなり過ぎるため、外部からの衝撃に対して弱く、円筒形焼結体が割れやすくなる。70%より大きくなると、第3領域7が狭くなり過ぎるため、外部からの衝撃に対して弱く、円筒形焼結体が割れやすくなる。第1領域5および第3領域7を大きくして、より外力に対して強い円筒形焼結体を得る観点から、外周面から前記内周面に至る距離の17%以上、68%以下の範囲であることが好ましく、20%以上、65%以下の範囲であることがより好ましい。
第2領域の気孔率が15%未満になると、第2領域6が硬くなり過ぎるため、応力を緩和する第2領域6の機能を十分に発揮できず、円筒形焼結体が割れやすくなる。また、34%より大きくなると、第2領域6が柔らかくなり過ぎるため、第1領域5または第3領域7に加えられた外部からの衝撃に耐えられず、円筒形焼結体が割れやすくなる。
より外力に対して強い円筒形焼結体を得る観点から、第2領域6の気孔率は、好ましくは16%以上、より好ましくは17%以上であり、好ましくは32%以下、より好ましくは30%以下である。
また、円筒形焼結体の高さ方向に上記気孔率が亘っている割合が、80%未満になると、第2領域6において、気孔率が低く硬過ぎる部分または気孔率が高く柔らか過ぎる部分の割合が大きくなり、応力を緩和する第2領域6の機能を十分に発揮できないか、あるいは外部からの衝撃に対して弱くなり、円筒形焼結体が割れやすくなる。より外力に対して強い円筒形焼結体を得る観点から、当該気孔率は、好ましくは、円筒形焼結体の高さの85%以上、より好ましくは90%以上、最も好ましくは100%に亘る。
(1) Second region (central region)
The second region 6 (central region) is in the range of 15% or more and 70% or less of the distance from the outer peripheral surface to the inner peripheral surface, and over 80% or more of the height of the cylindrical sintered body. It has a porosity of 15% or more and 34% or less.
If the distance from the outer peripheral surface to the inner peripheral surface is less than 15%, the first region 5 becomes too narrow, so that it is weak against impact from the outside, and the cylindrical sintered body is easily cracked. If it is larger than 70%, the third region 7 becomes too narrow, so that it is weak against an external impact and the cylindrical sintered body is easily cracked. From the viewpoint of obtaining a cylindrical sintered body that is stronger against external force by enlarging the first region 5 and the third region 7, a range from 17% to 68% of the distance from the outer peripheral surface to the inner peripheral surface It is preferable that it is 20% or more and 65% or less of range.
When the porosity of the second region is less than 15%, the second region 6 becomes too hard, so that the function of the second region 6 that relaxes stress cannot be sufficiently exerted, and the cylindrical sintered body is easily cracked. On the other hand, if it exceeds 34%, the second region 6 becomes too soft, so that it cannot withstand the external impact applied to the first region 5 or the third region 7, and the cylindrical sintered body easily breaks.
From the viewpoint of obtaining a cylindrical sintered body stronger against external force, the porosity of the second region 6 is preferably 16% or more, more preferably 17% or more, preferably 32% or less, more preferably 30. % Or less.
In addition, when the ratio of the porosity in the height direction of the cylindrical sintered body is less than 80%, in the second region 6, a portion where the porosity is too low and too hard or a portion where the porosity is too high and too soft. The ratio increases, and the function of the second region 6 for relaxing the stress cannot be sufficiently exhibited, or it becomes weak against an external impact, and the cylindrical sintered body is easily cracked. From the viewpoint of obtaining a cylindrical sintered body that is stronger against external force, the porosity is preferably 85% or more, more preferably 90% or more, and most preferably 100% of the height of the cylindrical sintered body. It spans.

(2)第1領域
第1領域5は、外周面から第2領域6までの範囲である。
第1領域5の密度を高め、より外力に対して強い円筒形焼結体を得る観点から、第1領域5の気孔率は、好ましくは2%以上、15%以下であり、当該気孔率は、好ましくは、円筒形焼結体の高さの90%以上、最も好ましくは100%に亘る。
(2) First region The first region 5 is a range from the outer peripheral surface to the second region 6.
From the viewpoint of increasing the density of the first region 5 and obtaining a cylindrical sintered body that is more resistant to external force, the porosity of the first region 5 is preferably 2% or more and 15% or less, and the porosity is , Preferably over 90% of the height of the cylindrical sintered body, most preferably over 100%.

(3)第3領域
第3領域7は、第2領域6から外周面までの範囲である。
第3領域7の密度を高め、より外力に対して強い円筒形焼結体を得る観点から、第3領域7の気孔率は、好ましくは2%以上、15%以下であり、当該気孔率は、好ましくは、円筒形焼結体の高さの90%以上、最も好ましくは100%に亘る。
(3) Third Region The third region 7 is a range from the second region 6 to the outer peripheral surface.
From the viewpoint of increasing the density of the third region 7 and obtaining a cylindrical sintered body that is more resistant to external force, the porosity of the third region 7 is preferably 2% or more and 15% or less, and the porosity is , Preferably over 90% of the height of the cylindrical sintered body, most preferably over 100%.

[1−2.外径Do、内径Diおよび高さLとの関係(1)式]
円筒形焼結体の外径Do[mm]、内径Di[mm]および高さL[mm]は、下記(1)式を満足する。
200≦(Do+Di)×π×L/200≦950 ・・・(1)
上記(1)式は、実質的に、円筒形焼結体の大きさを規定したものである。すなわち、外径と内径との和が大きい場合には高さを小さくし、外径と内径との和が小さい場合には高さを大きくして、上記(1)式を満たすように円筒形焼結体の大きさを制御することにより、外力に対して強い円筒形焼結体を得ることができる。
[1-2. Relationship between Outer Diameter Do, Inner Diameter Di, and Height L (Expression (1))]
The outer diameter Do [mm], inner diameter Di [mm], and height L [mm] of the cylindrical sintered body satisfy the following formula (1).
200 ≦ (Do + Di) × π × L / 200 ≦ 950 (1)
The above formula (1) substantially defines the size of the cylindrical sintered body. That is, when the sum of the outer diameter and the inner diameter is large, the height is reduced, and when the sum of the outer diameter and the inner diameter is small, the height is increased, so that the cylinder is formed so as to satisfy the above formula (1). By controlling the size of the sintered body, a cylindrical sintered body that is strong against external force can be obtained.

より外力に対して強い円筒形焼結体を得る観点から、上記(1)式の下限は、好ましくは210、より好ましくは220であり、上記(1)式の上限は、好ましくは940、より好ましくは930である。   From the viewpoint of obtaining a cylindrical sintered body stronger against external force, the lower limit of the above formula (1) is preferably 210, more preferably 220, and the upper limit of the above formula (1) is preferably 940, more Preferably it is 930.

以上のように、円筒形焼結体が所定の構造を有することにより、円筒形焼結体は、外力に対して強くなり、例えば、円筒形焼結体の搬送時、スパッタリングターゲットへの加工時、製造ラインへのスパッタリングターゲットの取り付け時等に割れにくくなる。   As described above, since the cylindrical sintered body has a predetermined structure, the cylindrical sintered body becomes strong against external force. For example, when the cylindrical sintered body is transported or processed into a sputtering target. It becomes difficult to break when the sputtering target is attached to the production line.

[1−3.円筒形焼結体の組成]
円筒形焼結体は、コバルト酸リチウム(LiCoO)を含む。円筒形焼結体は、焼結体全体に対するLiCoOの比率が、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、最も好ましくは100質量%である。LiCoO以外の成分としては、例えば、Co以外の遷移金属(Mn、FeまたはNi)、Co以外の遷移金属とLiとの複合酸化物等が挙げられる。
[1-3. Composition of cylindrical sintered body]
The cylindrical sintered body contains lithium cobalt oxide (LiCoO 2 ). In the cylindrical sintered body, the ratio of LiCoO 2 to the whole sintered body is preferably 50% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and most preferably 100% by mass. is there. Examples of components other than LiCoO 2 include transition metals other than Co (Mn, Fe, or Ni), complex oxides of Li and other transition metals, and Co.

また、DCスパッタリングによる成膜を行う場合、成膜速度向上の観点から、円筒形焼結体の抵抗は、好ましくは100kΩ以下、より好ましくは50kΩ以下である。抵抗は、例えば、円筒形焼結体の外周面と内周面との間の領域について、2端子法により測定してよい。   When performing film formation by DC sputtering, from the viewpoint of improving the film formation rate, the resistance of the cylindrical sintered body is preferably 100 kΩ or less, more preferably 50 kΩ or less. For example, the resistance may be measured by a two-terminal method in a region between the outer peripheral surface and the inner peripheral surface of the cylindrical sintered body.

また、より外力に対して強い円筒形焼結体を得る観点から、円筒形焼結体全体の相対密度は、好ましくは85%以上、より好ましくは90%以上である。相対密度は、例えば、LiCoOの理論密度を5.06g/cmとして、アルキメデス法によって測定した円筒形焼結体の見かけ密度を当該理論密度で除して算出してよい。 Further, from the viewpoint of obtaining a cylindrical sintered body that is more resistant to external force, the relative density of the entire cylindrical sintered body is preferably 85% or more, more preferably 90% or more. For example, the relative density may be calculated by setting the theoretical density of LiCoO 2 to 5.06 g / cm 3 and dividing the apparent density of the cylindrical sintered body measured by the Archimedes method by the theoretical density.

<2.円筒形焼結体の製造方法>
円筒形焼結体は、LiCoOを含む粉末を黒鉛型に充填し、加圧焼結をすることにより前駆焼結体を得る工程と、前駆焼結体をさらに熱処理することにより円筒形焼結体を得る工程とを行うことにより製造される。
<2. Manufacturing Method for Cylindrical Sintered Body>
The cylindrical sintered body includes a step of obtaining a precursor sintered body by filling a powder containing LiCoO 2 into a graphite mold and performing pressure sintering, and a cylindrical sintering by further heat-treating the precursor sintered body. It is manufactured by performing the process of obtaining a body.

焼結方法としては、原材料を大気雰囲気下で焼結する常圧焼結法と、原材料を黒鉛型などの成形型に充填して行う加圧焼結法等が挙げられる。ホットプレスによる加圧焼結の場合、加熱のみで焼結を行なう常圧焼結に比べ、加圧による焼結サポート効果により低温で焼結できるため、結晶組織の細かい焼結体が得られる。ここで、気孔は結晶粒同士の接点に形成される。そのため、ホットプレス法によって細かい結晶組織を形成することにより、円筒形焼結体内にポアが均一に分散した結晶組織を得ることができると考えられる。   Examples of the sintering method include a normal pressure sintering method in which the raw materials are sintered in an air atmosphere, and a pressure sintering method in which the raw materials are filled in a mold such as a graphite mold. In the case of pressure sintering by hot pressing, sintering can be performed at a low temperature due to the sintering support effect by pressurization, compared to normal pressure sintering in which sintering is performed only by heating, so that a sintered body with a fine crystal structure can be obtained. Here, the pores are formed at the contact points between the crystal grains. Therefore, it is considered that a crystal structure in which pores are uniformly dispersed in a cylindrical sintered body can be obtained by forming a fine crystal structure by a hot press method.

さらに、ホットプレス法によれば、円筒形焼結体の相対密度が高められる。これに対し、常圧焼結法では原理的に緻密化しにくく、ホットプレスと同様の高い相対密度を有する焼結体を得ることができない。特に、本発明で対象とするLiCoOのような複合酸化物は、相対密度を高くしにくいという性質を有するため、ホットプレス法が有効である。また、加圧によるアシスト効果により、低い焼結温度でも比較的容易に密度を制御することができる。 Furthermore, according to the hot press method, the relative density of the cylindrical sintered body is increased. On the other hand, in the normal pressure sintering method, it is difficult to densify in principle, and a sintered body having a high relative density similar to hot press cannot be obtained. In particular, a composite oxide such as LiCoO 2 that is a subject of the present invention has a property that it is difficult to increase the relative density, and thus a hot press method is effective. Further, the density can be controlled relatively easily even at a low sintering temperature due to the assist effect of the pressurization.

また、ホットプレス法においてはセラミックス型を用いることもあるが、寸法の大きな
セラミックス型を製造するのは困難なため、黒鉛型を使用することが好ましい。
In the hot pressing method, a ceramic mold may be used. However, it is difficult to manufacture a ceramic mold having a large size, and therefore a graphite mold is preferably used.

以下、円筒形焼結体の製造方法について詳述する。   Hereinafter, the manufacturing method of a cylindrical sintered compact is explained in full detail.

[2−1.原材料]
原材料としては、LiCoOを含む粉末(以下、原材料粉末と呼ぶことがある)を使用する。当該粉末には、焼結体の組成に合わせて他の複合酸化物を含んでいてよい。本発明においては、LiCoO含有粉末として特別なものを使用する必要はなく、例えば、市販のLiCoO粉末をそのまま使用してよい。LiCoO含有粉末は、最も好ましくは、全て(100質量%)がLiCoOからなる。LiCoO以外の成分としては、例えば、Co以外の遷移金属(Mn、FeまたはNi)、Co以外の遷移金属とLiとの複合酸化物等が挙げられる。原材料粉末の充填量は、原材料粉末の熱収縮および最終的に得られる円筒形焼結体の大きさ等を考慮して適宜調節してよい。
[2-1. raw materials]
As a raw material, a powder containing LiCoO 2 (hereinafter sometimes referred to as raw material powder) is used. The powder may contain another composite oxide in accordance with the composition of the sintered body. In the present invention, it is not necessary to use a special LiCoO 2 -containing powder. For example, a commercially available LiCoO 2 powder may be used as it is. Most preferably, the LiCoO 2 -containing powder is entirely (100% by mass) made of LiCoO 2 . Examples of components other than LiCoO 2 include transition metals other than Co (Mn, Fe, or Ni), complex oxides of Li and other transition metals, and Co. The filling amount of the raw material powder may be appropriately adjusted in consideration of the thermal shrinkage of the raw material powder and the size of the finally obtained cylindrical sintered body.

[2−2.加圧焼結]
LiCoOを含む粉末を黒鉛型に充填し、加圧焼結をすることにより前駆焼結体を得る。黒鉛型への充填の際、原材料粉末を予備成形することなく、直接充填してもよく、あるいは、別の金型に一旦充填し、金型プレスで予備成形した後、黒鉛型に充填してもよい。後者の予備成形は、加圧焼結工程で所定の型にセットする際のハンドリング性を向上させる目的で行なわれるものであり、例えば、約0.5〜1.0tonf/cm程度の圧力を加えて予備成形体としてよい。
[2-2. Pressure sintering]
A powder containing LiCoO 2 is filled into a graphite mold and subjected to pressure sintering to obtain a precursor sintered body. When filling into the graphite mold, the raw material powder may be filled directly without preforming, or once filled into another mold and pre-molded with a mold press, then filled into the graphite mold. Also good. The latter preforming is performed for the purpose of improving the handling property when set in a predetermined mold in the pressure sintering process. For example, a pressure of about 0.5 to 1.0 tonf / cm 2 is applied. In addition, a preform may be used.

加圧焼結の条件、例えば、ホットプレス時の雰囲気、焼結時の温度、圧力および時間等は、加圧焼結により得られる前駆焼結体が後述の構造を有し、最終的に得られる円筒形焼結体が本発明に規定の構造を有する限りは、特に限定されない。   The conditions of pressure sintering, such as the atmosphere during hot pressing, the temperature, pressure and time during sintering, etc., the precursor sintered body obtained by pressure sintering has the structure described later and is finally obtained. The cylindrical sintered body is not particularly limited as long as it has the structure defined in the present invention.

加圧焼結は、例えば、窒素ガスまたはアルゴンガス等の不活性雰囲気下で行う。雰囲気を制御する方法は、特に限定されず、例えば炉内に窒素ガスまたはアルゴンガスを導入することによって雰囲気を調整してよい。   The pressure sintering is performed in an inert atmosphere such as nitrogen gas or argon gas. The method for controlling the atmosphere is not particularly limited. For example, the atmosphere may be adjusted by introducing nitrogen gas or argon gas into the furnace.

焼結温度までの昇温速度は、特に限定されず、例えば、1〜20℃/分の範囲内であってよい。   The rate of temperature rise to the sintering temperature is not particularly limited, and may be, for example, in the range of 1 to 20 ° C./min.

加圧焼結は、例えば、700〜1000℃の温度および10〜100MPaの圧力に制御し、0.5〜4時間行うことが好ましい。   The pressure sintering is preferably performed, for example, at a temperature of 700 to 1000 ° C. and a pressure of 10 to 100 MPa for 0.5 to 4 hours.

加圧焼結の温度を700℃以上にすることにより、焼結体の相対密度を向上させることができる。加圧焼結の温度を1000℃以下にすることにより、焼結による重量減少を抑制し、焼結体の相対密度を向上させることができる。相対密度をより向上させる観点から、加圧焼結の温度のより好ましい下限は800℃、より好ましい上限は950℃である。 By setting the pressure sintering temperature to 700 ° C. or higher, the relative density of the sintered body can be improved. By setting the pressure sintering temperature to 1000 ° C. or less, weight reduction due to sintering can be suppressed and the relative density of the sintered body can be improved. From the viewpoint of further improving the relative density, a more preferable lower limit of the pressure sintering temperature is 800 ° C., and a more preferable upper limit is 950 ° C.

加圧焼結の圧力を10MPa以上にすることにより、焼結体の相対密度を向上させることができる。また、加圧焼結の圧力を100MPa以下にすることにより、黒鉛型の破損を抑制することができる。相対密度をより向上させる観点から、加圧焼結の圧力のより好ましい下限は、20MPaであり、黒鉛型の破損をさらに抑制する観点から、加圧焼結の圧力のより好ましい上限は、50MPaである。   By setting the pressure sintering pressure to 10 MPa or more, the relative density of the sintered body can be improved. Moreover, damage of the graphite mold can be suppressed by setting the pressure of pressure sintering to 100 MPa or less. From the viewpoint of further improving the relative density, a more preferable lower limit of the pressure sintering pressure is 20 MPa, and from a viewpoint of further suppressing breakage of the graphite mold, a more preferable upper limit of the pressure sintering pressure is 50 MPa. is there.

加圧焼結の時間を0.5時間以上にすることにより、焼結体の相対密度を向上させることができる。また、加圧焼結の時間を4時間以下にすることにより、焼結による重量減少を抑制し、焼結体の相対密度を向上させることができる。相対密度をより向上させる観点から、加圧焼結の時間のより好ましい下限は1時間、より好ましい上限は3時間である。   By setting the pressure sintering time to 0.5 hours or longer, the relative density of the sintered body can be improved. In addition, by reducing the pressure sintering time to 4 hours or less, weight reduction due to sintering can be suppressed, and the relative density of the sintered body can be improved. From the viewpoint of further improving the relative density, the more preferable lower limit of the pressure sintering time is 1 hour, and the more preferable upper limit is 3 hours.

また、加圧焼結の際、最高温度域に達したときに、温度を保持してもよい。このときの保持時間は、焼結時の温度や圧力などによるが、おおむね100時間以下であることが好ましい。原材料などとの関係で焼結温度が最適な範囲に設定されている場合は、保持時間はゼロとすることが可能である。   Further, the temperature may be maintained when the maximum temperature range is reached during pressure sintering. The holding time at this time is preferably about 100 hours or less, although it depends on the temperature and pressure during sintering. When the sintering temperature is set to an optimum range in relation to raw materials, the holding time can be zero.

[2−3.前駆焼結体]
加圧焼結により得られた前駆焼結体は、熱処理により円筒形焼結体の第1領域〜第3領域に変化する第1’領域〜第3’領域を有する。熱処理の際に、前駆焼結体をより均一に熱収縮させ、前駆焼結体の割れを抑制する観点から、第2’領域の気孔率を制御することが必要である。すなわち、第2’領域は、前駆焼結体の高さの100%以上に亘って、40%以上、60%以下の気孔率を有する。
[2-3. Pre-sintered body]
The precursor sintered body obtained by pressure sintering has a first ′ region to a third ′ region that changes from a first region to a third region of the cylindrical sintered body by heat treatment. In the heat treatment, it is necessary to control the porosity of the second ′ region from the viewpoint of more uniformly heat shrinking the precursor sintered body and suppressing cracking of the precursor sintered body. That is, the second ′ region has a porosity of 40% or more and 60% or less over 100% or more of the height of the precursor sintered body.

第2’領域の気孔率が、40%未満、または60%より大きくなると、加圧焼結または熱処理の際、熱収縮が均一とならず、前駆焼結体が割れやすくなる。より均一に熱収縮させる観点から、第2’領域の気孔率は、好ましくは42%以上、より好ましくは44%以上であり、好ましくは58%以下、より好ましくは56%以下である。
また、前駆焼結体の高さ方向に上記気孔率が亘っている割合が、100%未満になると、熱収縮が均一とならず、前駆焼結体が割れやすくなる。従って、前駆焼結体の第2’領域において、上面および/または底面の気孔率が、40%未満または60%を超える場合には、熱処理の前に、上面および/または底面から適切な位置で前駆焼結体を切断することにより、第2’領域が、前駆焼結体の高さの100%以上に亘って、40%以上、60%以下の気孔率を有するように成形してよい。
図2は、前駆焼結体の上面8からの切断位置10および前駆焼結体の底面9からの切断位置11を模式的に示す模式図である。当該図は、前駆焼結体の理解を容易にするための模式図であり、本発明はこれに限定されるものではない。上面8からの切断位置10および底面9からの切断位置11はそれぞれ、例えば、前駆焼結体の上面8から5mmの位置および底面9から5mmの位置であってよい。
上面8および底面9から所定の位置で切断する場合には、前駆焼結体の高さは、切断位置10と切断位置11との間の長さである。
上面8から所定の位置でのみ切断する場合には、前駆焼結体の高さは、切断位置10と底面9との間の長さである。
底面9から所定の位置でのみ切断する場合には、前駆焼結体の高さは、上面8と切断位置11との間の長さである。
When the porosity of the second 'region is less than 40% or greater than 60%, the thermal shrinkage is not uniform during pressure sintering or heat treatment, and the precursor sintered body is easily cracked. From the viewpoint of more uniformly heat shrinking, the porosity of the second 'region is preferably 42% or more, more preferably 44% or more, preferably 58% or less, more preferably 56% or less.
Further, when the ratio of the porosity in the height direction of the precursor sintered body is less than 100%, the thermal shrinkage is not uniform, and the precursor sintered body is easily cracked. Therefore, if the porosity of the top surface and / or the bottom surface is less than 40% or more than 60% in the 2 ′ region of the precursor sintered body, the heat treatment is performed at an appropriate position from the top surface and / or the bottom surface before the heat treatment. By cutting the precursor sintered body, the second ′ region may be shaped to have a porosity of 40% or more and 60% or less over 100% or more of the height of the precursor sintered body.
FIG. 2 is a schematic diagram schematically showing a cutting position 10 from the upper surface 8 of the precursor sintered body and a cutting position 11 from the bottom surface 9 of the precursor sintered body. The said figure is a schematic diagram for making an understanding of a precursor sintered compact easy, and this invention is not limited to this. The cutting position 10 from the top surface 8 and the cutting position 11 from the bottom surface 9 may be, for example, a position 5 mm from the top surface 8 and a position 5 mm from the bottom surface 9 of the precursor sintered body, respectively.
When cutting from the top surface 8 and the bottom surface 9 at a predetermined position, the height of the precursor sintered body is a length between the cutting position 10 and the cutting position 11.
When cutting only from the upper surface 8 at a predetermined position, the height of the precursor sintered body is the length between the cutting position 10 and the bottom surface 9.
When cutting only from the bottom surface 9 at a predetermined position, the height of the precursor sintered body is the length between the top surface 8 and the cutting position 11.

より均一に熱収縮させる観点から、第1’領域の気孔率は、好ましくは15%以上、30%以下であり、当該気孔率は、好ましくは、前駆焼結体の高さの95%以上、最も好ましくは100%に亘る。
より外力に対して強い円筒形焼結体を得る観点から、第3’領域の気孔率は、好ましくは15%以上、30%以下であり、当該気孔率は、好ましくは、前駆焼結体の高さの95%以上、最も好ましくは100%に亘る。
From the viewpoint of more uniformly heat shrinking, the porosity of the first 'region is preferably 15% or more and 30% or less, and the porosity is preferably 95% or more of the height of the precursor sintered body, Most preferably over 100%.
From the viewpoint of obtaining a cylindrical sintered body stronger against external force, the porosity of the 3 ′ region is preferably 15% or more and 30% or less, and the porosity is preferably that of the precursor sintered body. Over 95% of the height, most preferably over 100%.

前駆焼結体の気孔率も、円筒形焼結体の気孔率と同様に測定してよい。   The porosity of the precursor sintered body may be measured similarly to the porosity of the cylindrical sintered body.

前駆焼結体において、前駆焼結体の外径Do’[mm]、内径Di’[mm]および高さL’[mm]は、下記(2)式を満足する。
250≦(Do’+Di’)×π×L’/200≦1000 ・・・(2)
上記(2)式は、実質的に、前駆焼結体の大きさを規定したものである。すなわち、外径と内径との和が大きい場合には高さを小さくし、外径と内径との和が小さい場合には高さを大きくして、上記(2)式を満たすように前駆焼結体の大きさを制御することにより、前駆焼結体の外径方向と高さ方向との間の熱収縮のバランスが取れ、前駆焼結体の割れを抑制することができる。
In the precursor sintered body, the outer diameter Do ′ [mm], the inner diameter Di ′ [mm], and the height L ′ [mm] of the precursor sintered body satisfy the following expression (2).
250 ≦ (Do ′ + Di ′) × π × L ′ / 200 ≦ 1000 (2)
The above equation (2) substantially defines the size of the precursor sintered body. That is, when the sum of the outer diameter and the inner diameter is large, the height is reduced, and when the sum of the outer diameter and the inner diameter is small, the height is increased and the precursor firing is performed so as to satisfy the above formula (2). By controlling the size of the bonded body, the thermal shrinkage between the outer diameter direction and the height direction of the precursor sintered body can be balanced, and cracking of the precursor sintered body can be suppressed.

より均一に熱収縮させる観点から、上記(2)式の下限は、好ましくは260であり、上記()式の上限は、好ましくは990である。 From the viewpoint of more uniformly heat shrinking, the lower limit of the formula (2) is preferably 260, and the upper limit of the formula ( 2 ) is preferably 990.

また、後述のように、前駆焼結体の抵抗を低下させるために、酸素を含む雰囲気下で熱処理を行うことが好ましいが、その際、前駆焼結体の全体に渡って酸素を行き渡らせる観点から、前駆焼結体の相対密度は92%以下であることが好ましい。また、前駆焼結体の割れを抑制する観点から、相対密度が88%以上であることが好ましい。   Further, as will be described later, in order to reduce the resistance of the precursor sintered body, it is preferable to perform heat treatment in an atmosphere containing oxygen. In this case, a viewpoint of spreading oxygen throughout the precursor sintered body. Therefore, the relative density of the precursor sintered body is preferably 92% or less. Moreover, it is preferable that a relative density is 88% or more from a viewpoint of suppressing the crack of a precursor sintered compact.

[2−4.熱処理]
加圧焼結により得られた前駆焼結体をさらに熱処理することにより円筒形焼結体を得る。
[2-4. Heat treatment]
A cylindrical sintered body is obtained by further heat-treating the precursor sintered body obtained by pressure sintering.

加圧焼結により得られた前駆焼結体は抵抗が高い。これは、原材料が黒鉛型と接触して還元反応が生じ、前駆焼結体の酸素欠損により抵抗が増加するためと考えられる。
従って、熱処理を、大気下、好ましくは酸素を含む雰囲気下で行うことが好ましく、上記還元反応によって不足した酸素を補うことにより、最終的に得られる円筒形焼結体の抵抗を低下させることができる。
The precursor sintered body obtained by pressure sintering has high resistance. This is presumably because the raw material comes into contact with the graphite mold to cause a reduction reaction, and the resistance increases due to oxygen deficiency in the precursor sintered body.
Therefore, it is preferable to perform the heat treatment in the atmosphere, preferably in an atmosphere containing oxygen. By supplementing the oxygen deficient by the reduction reaction, the resistance of the finally obtained cylindrical sintered body can be reduced. it can.

酸素を含む雰囲気は、例えば、酸素を20体積%以上含む雰囲気、代表的には大気が挙げられ、好ましくは酸素を50体積%以上、より好ましくは90体積%以上、さらに好ましくは100体積%含む雰囲気である。   The atmosphere containing oxygen includes, for example, an atmosphere containing 20% by volume or more of oxygen, typically air, and preferably contains 50% by volume or more, more preferably 90% by volume or more, and even more preferably 100% by volume. The atmosphere.

熱処理は、所望の特性が得られるよう、酸素を含む雰囲気中で加熱することが重要であり、具体的な熱処理条件は、使用する原材料の種類、前駆焼結体のサイズまたは一度に熱処理する前駆焼結体の数等を考慮して、適宜制御してよい。例えば、熱処理は、800℃〜1150℃の温度で、2〜100時間行うことが好ましい。 It is important that the heat treatment be performed in an oxygen-containing atmosphere so that desired characteristics can be obtained. Specific heat treatment conditions include the type of raw material used, the size of the precursor sintered body, or the precursor to be heat treated at one time. It may be appropriately controlled in consideration of the number of sintered bodies and the like. For example, the heat treatment at a temperature of 800 ° C. to 1150 ° C., preferably 2 to 100 times Magyo Ukoto.

熱処理の温度を800℃以上にすることにより、所望の低い抵抗を有する円筒形焼結体をえることができる。また、焼結時の温度を1150℃以下にすることにより、焼結による重量減少を抑制し、円筒形焼結体の相対密度を向上させることができる。より好ましい抵抗および相対密度を得る観点から、熱処理の温度のより好ましい下限は850℃、より好ましい上限は1100℃である。 By setting the heat treatment temperature to 800 ° C. or higher, a cylindrical sintered body having a desired low resistance can be obtained. Moreover, the temperature at the time of sintering shall be 1150 degrees C or less, the weight reduction by sintering can be suppressed and the relative density of a cylindrical sintered compact can be improved. From the viewpoint of obtaining a more preferable resistance and relative density, a more preferable lower limit of the heat treatment temperature is 850 ° C., and a more preferable upper limit is 1100 ° C.

熱処理の時間を2時間以上にすることにより、焼結体の相対密度を向上させることができる。また、熱処理の時間を100時間以下にすることにより、焼結による重量減少を抑制し、円筒形焼結体の相対密度を向上させることができる。相対密度をより向上させる観点から、熱処理の時間のより好ましい下限は5時間、より好ましい上限は50時間である。   By setting the heat treatment time to 2 hours or more, the relative density of the sintered body can be improved. Further, by setting the heat treatment time to 100 hours or less, it is possible to suppress the weight loss due to sintering and to improve the relative density of the cylindrical sintered body. From the viewpoint of further improving the relative density, a more preferable lower limit of the heat treatment time is 5 hours, and a more preferable upper limit is 50 hours.

熱処理は、以下のように、2段階の工程を有することが好ましい。すなわち、好ましくは800〜1000℃、より好ましくは900℃の温度で1〜50時間加熱することにより、前駆焼結体の相対密度を比較的低く維持して、前駆焼結体に酸素を行き渡らせ、抵抗を低下させる工程と、当該工程後、好ましくは1050〜1150℃、より好ましくは1100℃の温度で1〜50時間加熱することにより、焼結体の平均結晶粒径を増大させ、前記工程により抵抗が低下した円筒形焼結体の相対密度を増大させる工程とを組み合わせることが好ましい。   The heat treatment preferably has a two-stage process as follows. That is, by heating at a temperature of preferably 800 to 1000 ° C., more preferably 900 ° C. for 1 to 50 hours, the relative density of the precursor sintered body is maintained relatively low, and oxygen is distributed to the precursor sintered body. The step of reducing the resistance, and after the step, the average crystal grain size of the sintered body is increased by heating at a temperature of preferably 1050 to 1150 ° C., more preferably 1100 ° C. for 1 to 50 hours. It is preferable to combine with the step of increasing the relative density of the cylindrical sintered body whose resistance is reduced by the above.

以上のように本発明に係るLiCoOを含有する円筒形焼結体の製造方法を説明したが、本発明に係る円筒形焼結体の所望の特性を理解した当業者が試行錯誤を行い、本発明に係る所望の特性を有する円筒形焼結体を製造する方法であって、上記の製造方法以外の方法を見出す可能性がある。 As described above, the method for producing a cylindrical sintered body containing LiCoO 2 according to the present invention has been described. However, a person skilled in the art who understands the desired characteristics of the cylindrical sintered body according to the present invention performs trial and error, There is a possibility of finding a method other than the above manufacturing method, which is a method for manufacturing a cylindrical sintered body having desired characteristics according to the present invention.

<3.円筒形スパッタリングターゲット>
本発明のLiCoOを含有する円筒形焼結体は、平面研削等により、所定の寸法に加工した後、純金属または合金からなるバッキングチューブに接合して、円筒形スパッタリングターゲットとすることができる。接合材料としては、低融点半田、金属粉末を含む樹脂ペーストまたは導電性樹脂を用いてよいが、導電性および展延性の観点から、低融点半田を用いるのが好ましい。このような低融点半田としては、インジウムを主成分として80%以上含むものが、特に導電性および展延性に優れているため好ましい。
<3. Cylindrical Sputtering Target>
The cylindrical sintered body containing LiCoO 2 of the present invention can be processed into a predetermined size by surface grinding or the like, and then bonded to a backing tube made of a pure metal or an alloy to form a cylindrical sputtering target. . As the bonding material, low melting point solder, resin paste containing metal powder or conductive resin may be used, but low melting point solder is preferably used from the viewpoint of conductivity and spreadability. As such a low melting point solder, one containing 80% or more of indium as a main component is particularly preferable because of its excellent conductivity and spreadability.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all possible and are within the scope of the present invention.

[円筒形焼結体の製造]
原料粉末として、市販のLiCoO粉末(純度99.9%以上、平均粒径10μm以下の微粒材)を用いた。
[Manufacture of cylindrical sintered body]
As the raw material powder, a commercially available LiCoO 2 powder (a fine particle material having a purity of 99.9% or more and an average particle size of 10 μm or less) was used.

上記の原材料を、直接、黒鉛型にセットし、表1および表4に示す条件でホットプレスによる加圧焼結を行い、表2および4に示す大きさの前駆焼結体を得た。
次に、比較例3を除いて、熱処理前に、前駆焼結体の上面から底面に向かって5mmの位置、および底面から上面に向かって5mmの位置で切断を行った。
その後、得られた前駆焼結体について、表1および表4に示す条件で熱処理を行い、実施例1〜12および比較例1〜8の円筒形焼結体を得た。
前駆焼結体の外径Do’、内径Di’、高さL’および(2)式の値、並びに円筒形焼結体の外径Do、内径Di、高さLおよび(1)式の値を表2〜4に示す。
The above raw materials were directly set in a graphite mold and subjected to pressure sintering by hot pressing under the conditions shown in Tables 1 and 4 to obtain precursor sintered bodies having the sizes shown in Tables 2 and 4.
Next, except for Comparative Example 3, before the heat treatment, cutting was performed at a position of 5 mm from the top surface to the bottom surface of the precursor sintered body and at a position of 5 mm from the bottom surface to the top surface.
Then, about the obtained precursor sintered compact, it heat-processed on the conditions shown in Table 1 and Table 4, and obtained the cylindrical sintered compact of Examples 1-12 and Comparative Examples 1-8.
The outer diameter Do ′, the inner diameter Di ′, the height L ′ of the precursor sintered body and the values of the formula (2), and the outer diameter Do, the inner diameter Di, the height L and the values of the formula (1) of the cylindrical sintered body. Are shown in Tables 2-4.

[気孔率の測定]
(1)円筒形焼結体の気孔率
円筒形焼結体の外径方向および高さ方向で規定される面で円筒形焼結体を切断した。当該断面について、以下の[1]〜[3]の10mm(高さ方向)×9mm(外径方向)の試料を採取し、各試料を樹脂埋め後、断面を研磨し、試料断面を露出させた。第2領域は、外周面から内周面に至る距離の15%以上、70%以下の範囲とした。
[1]円筒形焼結体の上面の気孔率測定用
上面から底面に向かって高さ方向に10mm、外径方向にmm
[2]円筒形焼結体の高さの半分の位置の気孔率測定用
円筒形焼結体の高さの半分の位置から±5mm、外径方向にmm
[3]円筒形焼結体の底面の気孔率測定用
底面から上面に向かって高さ方向に10mm、外径方向にmm
次に、光学顕微鏡を用いて450倍で研磨面を観察し、無造作に選択した観察視野中に存在する全ての気孔を特定して気孔の合計面積を算出し、当該観察視野の面積に対する気孔の合計面積の割合を気孔率とした。気孔の面積は、Wayne Rasband製の画像解析ソフト「ImageJ」を用いて算出した。結果を表3に示す。
また、第1領域および第3領域について同様に気孔率を測定した結果を、参考値として表3に示す。
また、表3において、円筒形焼結体の上面、高さの半分の位置および底面の気孔率を、それぞれT、MおよびBと表し、第2領域において、円筒形焼結体の高さのうち、15%以上、34%以下の気孔率を有する部分の長さの割合をPと表す。
[Measurement of porosity]
(1) Porosity of cylindrical sintered body The cylindrical sintered body was cut along a plane defined by the outer diameter direction and the height direction of the cylindrical sintered body. Regarding the cross section, samples of 10 mm (height direction) × 9 mm (outer diameter direction) of the following [1] to [3] are collected, each sample is filled with resin, the cross section is polished, and the sample cross section is exposed. It was. The second region was in the range of 15% to 70% of the distance from the outer peripheral surface to the inner peripheral surface.
[1] Porosity measurement of the upper surface of the cylindrical sintered body 10 mm in the height direction from the upper surface to the bottom surface, 9 mm in the outer diameter direction
[2] For porosity measurement at half the height of the cylindrical sintered body ± 5 mm from the half height of the cylindrical sintered body, 9 mm in the outer diameter direction
[3] For measuring the porosity of the bottom surface of the cylindrical sintered body 10 mm in the height direction and 9 mm in the outer diameter direction from the bottom surface to the top surface
Next, the polished surface is observed at 450 times using an optical microscope, all the pores present in the observation field selected at random are specified, the total area of the pores is calculated, and the pore area relative to the area of the observation field is calculated. The ratio of the total area was taken as the porosity. The area of the pores was calculated using image analysis software “ImageJ” manufactured by Wayne Rasband. The results are shown in Table 3.
Moreover, the result of having similarly measured the porosity about 1st area | region and 3rd area | region is shown in Table 3 as a reference value.
Also, in Table 3, the porosity of the top surface, half the height of the cylindrical sintered body, and the porosity of the bottom surface are represented by T, M, and B, respectively, and in the second region, the height of the cylindrical sintered body is Among these, the ratio of the length of the portion having a porosity of 15% or more and 34% or less is represented by P.

(2)前駆焼結体の気孔率
前駆焼結体の第2’領域についても、試料の大きさが10mm(高さ方向)×20mm(外径方向)であること以外は、上記(1)と同様に気孔率を測定した。結果を表2に示す。
表2において、前駆焼結体の上面、高さの半分の位置および底面の気孔率を、それぞれT’、M’およびB’と表し、第2’領域において、前駆焼結体の高さのうち、40%以上、60%以下の気孔率を有する部分の長さの割合をP’と表す。
(2) Porosity of pre-sintered body For the 2 ′ region of the pre-sintered body, the above (1) except that the sample size is 10 mm (height direction) × 20 mm (outer diameter direction) The porosity was measured in the same manner as described above. The results are shown in Table 2.
In Table 2, the porosity of the upper surface, half the height of the precursor sintered body, and the porosity of the bottom surface are represented by T ′, M ′, and B ′, respectively, and in the second ′ region, the height of the precursor sintered body is Among these, the ratio of the length of the portion having a porosity of 40% or more and 60% or less is expressed as P ′.

[相対密度の測定]
上記のようにして得られた各前駆焼結体および各円筒形焼結体について、アルキメデス法により見かけ密度を測定し、LiCoOの理論密度を5.06g/cmとして、当該見かけ密度を当該理論密度で除した値を相対密度とした。結果を表2および3に示す。
[Measurement of relative density]
For each precursor sintered body and each cylindrical sintered body obtained as described above, the apparent density was measured by the Archimedes method, the theoretical density of LiCoO 2 was 5.06 g / cm 3 , and the apparent density was The value divided by the theoretical density was taken as the relative density. The results are shown in Tables 2 and 3.

[抵抗の測定]
上記のようにして得られた各円筒形焼結体について、各円筒形焼結体の底面から上面に向かって、上面から10mmの箇所、高さの半分の箇所および底面から10mmの箇所について、2端子法により抵抗を測定した。詳細には、エー・アンド・デイ社製抵抗測定器「デジタルマルチテスターAD−5529」を用いて、端子の一方を円筒形焼結体の外周面に接触させ、他方を円筒形焼結体の内周面に接触させて抵抗を測定した。測定した抵抗の平均値を、円筒形焼結体の抵抗とした。結果を表3に示す。
[円筒形焼結体の加工]
実施例1〜12の円筒形焼結体について、マシニングセンタで加工を行った際の割れの有無を観察した。結果を表3および4に示す。
[Measurement of resistance]
For each cylindrical sintered body obtained as described above, from the bottom surface to the top surface of each cylindrical sintered body, about 10 mm from the top surface, half the height and 10 mm from the bottom surface, Resistance was measured by the two-terminal method. Specifically, using a resistance measuring instrument “Digital Multitester AD-5529” manufactured by A & D, one of the terminals is brought into contact with the outer peripheral surface of the cylindrical sintered body, and the other is made of the cylindrical sintered body. The resistance was measured in contact with the inner peripheral surface. The average value of the measured resistance was defined as the resistance of the cylindrical sintered body. The results are shown in Table 3.
[Processing of cylindrical sintered body]
About the cylindrical sintered compact of Examples 1-12, the presence or absence of the crack at the time of processing with a machining center was observed. The results are shown in Tables 3 and 4.

Figure 0006307121
Figure 0006307121

Figure 0006307121
Figure 0006307121

Figure 0006307121
Figure 0006307121

Figure 0006307121
Figure 0006307121

実施例1〜3の円筒形焼結体は全て、第2領域における気孔率が、円筒形焼結体の高さの80%以上に亘って、15%以上、34%以下であり、(1)式を満足するため、外力に対して強く、加工中に割れなかった。また、相対密度が92%以上と高く、抵抗が38kΩ以下と低く、良好な特性が得られた。
また、実施例1〜3の円筒形焼結体を製造する過程において、加圧焼結により得られた前駆焼結体は全て、第2’領域における気孔率が、前駆焼結体の高さの100%以上に亘って、40%以上、60%以下であり、(2)式を満足するため、熱収縮が均一となり、また前駆焼結体の外径方向と高さ方向との間の熱収縮のバランスが取れ、加圧焼結後に割れず、その後の熱処理後にも割れなかった。
In all the cylindrical sintered bodies of Examples 1 to 3, the porosity in the second region is 15% or more and 34% or less over 80% or more of the height of the cylindrical sintered body. ) In order to satisfy the formula, it was strong against external force and did not crack during processing. Moreover, the relative density was as high as 92% or more, and the resistance was as low as 38 kΩ or less, and good characteristics were obtained.
In addition, in the process of manufacturing the cylindrical sintered bodies of Examples 1 to 3, all of the precursor sintered bodies obtained by pressure sintering had a porosity in the second 'region, which was the height of the precursor sintered body. Of 100% or more and 40% or more and 60% or less, and satisfying the formula (2), the thermal shrinkage becomes uniform, and between the outer diameter direction and the height direction of the precursor sintered body. The thermal shrinkage was balanced, it did not crack after pressure sintering, and it did not crack after the subsequent heat treatment.

実施例4〜12の円筒形焼結体は全て、(1)式を満足するため、外力に対して強く、加工中に割れなかった。
また、実施例4〜12の円筒形焼結体を製造する過程において、加圧焼結により得られた前駆焼結体は全て、(2)式を満足するため、外径方向と高さ方向との間の熱収縮のバランスが取れ、熱処理後に割れなかった。
All of the cylindrical sintered bodies of Examples 4 to 12 satisfied the formula (1), and thus were strong against external force and were not cracked during processing.
Moreover, in the process which manufactures the cylindrical sintered compact of Examples 4-12, since all the precursor sintered compacts obtained by pressure sintering satisfy (2) Formula, an outer diameter direction and a height direction The thermal shrinkage between the two was balanced and did not crack after the heat treatment.

一方、比較例1については、加圧焼結により得られた前駆焼結体の第2’領域における気孔率が、前駆焼結体の高さの100%以上に亘って、70%と高いため、熱収縮が不均一となり、加圧焼結後に割れた。   On the other hand, for Comparative Example 1, the porosity in the second 'region of the precursor sintered body obtained by pressure sintering is as high as 70% over 100% of the height of the precursor sintered body. The heat shrinkage became non-uniform and cracked after pressure sintering.

比較例2については、加圧焼結により得られた前駆焼結体の第2’領域における気孔率が、前駆焼結体の高さの100%以上に亘って、65%と高いため、熱収縮が不均一となり、熱処理後に割れた。なお、熱処理により割れた円筒形焼結体の気孔率等を参考値として表3に示す。   For Comparative Example 2, since the porosity in the second 'region of the precursor sintered body obtained by pressure sintering is as high as 65% over 100% of the height of the precursor sintered body, Shrinkage became uneven and cracked after heat treatment. In addition, the porosity of the cylindrical sintered body cracked by the heat treatment is shown in Table 3 as a reference value.

比較例3については、加圧焼結により得られた前駆焼結体の第2’領域において、上面の気孔率T’および底面の気孔率B’が19%と低いため、熱収縮が不均一となり、熱処理後に割れた。前駆焼結体について、40%以上、60%の気孔率を有する部分は、円筒形焼結体の高さの90%であった。なお、熱処理により割れた円筒形焼結体の気孔率等を参考値として表3に示す。   For Comparative Example 3, in the second 'region of the precursor sintered body obtained by pressure sintering, the top surface porosity T' and the bottom surface porosity B 'are as low as 19%. And cracked after heat treatment. In the precursor sintered body, the portion having a porosity of 40% or more and 60% was 90% of the height of the cylindrical sintered body. In addition, the porosity of the cylindrical sintered body cracked by the heat treatment is shown in Table 3 as a reference value.

比較例4については、加圧焼結により得られた前駆焼結体の第2’領域における気孔率が、前駆焼結体の高さの100%以上に亘って、35%と低いため、熱収縮が不均一となり、熱処理後に割れた。なお、熱処理により割れた円筒形焼結体の気孔率等を参考値として表3に示す。   For Comparative Example 4, the porosity in the 2 ′ region of the precursor sintered body obtained by pressure sintering is as low as 35% over 100% of the height of the precursor sintered body. Shrinkage became uneven and cracked after heat treatment. In addition, the porosity of the cylindrical sintered body cracked by the heat treatment is shown in Table 3 as a reference value.

比較例5〜8については、前駆焼結体は全て、(2)式を満足しないため、外径方向と高さ方向との間の熱収縮のバランスが取れず、加圧焼結後に割れた。
For Comparative Examples 5 to 8, since all of the precursor sintered bodies did not satisfy the formula (2), the thermal shrinkage balance between the outer diameter direction and the height direction was not achieved, and cracked after pressure sintering . .

1 外周面
2 内周面
3 上面
4 底面
5 第1領域
6 第2領域
7 第3領域
8 上面(前駆焼結体)
9 底面(前駆焼結体)
10 上面からの切断位置
11 底面からの切断位置
100 円筒形焼結体
200 前駆焼結体
DESCRIPTION OF SYMBOLS 1 Outer peripheral surface 2 Inner peripheral surface 3 Upper surface 4 Bottom surface 5 1st area | region 6 2nd area | region 7 3rd area | region 8 Upper surface (precursor sintered body)
9 Bottom (pre-sintered body)
10 Cutting position from the top surface 11 Cutting position from the bottom surface 100 Cylindrical sintered body 200 Pre-sintered body

Claims (3)

LiCoOを含有し、内周面で規定される中空部を含んだ円筒形状を有し、
外周面から前記内周面に至る距離の0%以上、15%未満の範囲である第1領域の気孔率が、前記円筒形焼結体の高さの90%以上に亘って、2%以上、15%以下であり、
外周面から前記内周面に至る距離の15%以上、70%以下の範囲である第2領域の気孔率が、前記円筒形焼結体の高さの80%以上に亘って、15%以上、34%以下であり、
外周面から前記内周面に至る距離の70%超、100%以下の範囲である第3領域の気孔率が、前記円筒形焼結体の高さの90%以上に亘って、2%以上、15%以下であり、
下記(1)式を満足する焼結体。
200≦(Do+Di)×π×L/200≦950 ・・・(1)
ここで、Doは前記焼結体の外径[mm]であり、Diは前記焼結体の内径[mm]であり、Lは前記焼結体の高さ[mm]である。
Containing LiCoO 2 and having a cylindrical shape including a hollow portion defined by the inner peripheral surface;
The porosity of the first region in the range of 0% or more and less than 15% of the distance from the outer peripheral surface to the inner peripheral surface is 2% or more over 90% or more of the height of the cylindrical sintered body. 15% or less,
The porosity of the second region which is 15% or more and 70% or less of the distance from the outer peripheral surface to the inner peripheral surface is 15% or more over 80% or more of the height of the cylindrical sintered body. 34% or less,
The porosity of the third region, which is in the range of more than 70% and 100% or less of the distance from the outer peripheral surface to the inner peripheral surface, is 2% or more over 90% or more of the height of the cylindrical sintered body. 15% or less,
A sintered body satisfying the following formula (1).
200 ≦ (Do + Di) × π × L / 200 ≦ 950 (1)
Here, Do is the outer diameter [mm] of the sintered body, Di is the inner diameter [mm] of the sintered body, and L is the height [mm] of the sintered body.
前記焼結体の相対密度が90%以上である、請求項1に記載の焼結体。   The sintered body according to claim 1, wherein a relative density of the sintered body is 90% or more. バッキングチューブと、前記バッキングチューブに載置された請求項1または2に記載の焼結体とを含む円筒形スパッタリングターゲット。   The cylindrical sputtering target containing a backing tube and the sintered compact of Claim 1 or 2 mounted in the said backing tube.
JP2016147264A 2016-07-27 2016-07-27 Sintered body and cylindrical sputtering target containing LiCoO 2 Expired - Fee Related JP6307121B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016147264A JP6307121B2 (en) 2016-07-27 2016-07-27 Sintered body and cylindrical sputtering target containing LiCoO 2
PCT/JP2017/022660 WO2018020908A1 (en) 2016-07-27 2017-06-20 LiCoO2-CONTAINING SINTERED BODY AND TUBULAR SPUTTERING TARGET
TW106122152A TW201803832A (en) 2016-07-27 2017-07-03 LiCoO2-containing sintered body and tubular sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016147264A JP6307121B2 (en) 2016-07-27 2016-07-27 Sintered body and cylindrical sputtering target containing LiCoO 2

Publications (2)

Publication Number Publication Date
JP2018016512A JP2018016512A (en) 2018-02-01
JP6307121B2 true JP6307121B2 (en) 2018-04-04

Family

ID=61016982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016147264A Expired - Fee Related JP6307121B2 (en) 2016-07-27 2016-07-27 Sintered body and cylindrical sputtering target containing LiCoO 2

Country Status (3)

Country Link
JP (1) JP6307121B2 (en)
TW (1) TW201803832A (en)
WO (1) WO2018020908A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044798A1 (en) * 2018-08-27 2020-03-05 三菱マテリアル株式会社 Oxide sputtering target and production method for oxide sputtering target

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762062B2 (en) * 2006-06-22 2011-08-31 出光興産株式会社 Sintered body, film, and organic electroluminescence element
KR101364414B1 (en) * 2010-01-15 2014-02-18 가부시키가이샤 아루박 MANUFACTURING METHOD FOR LiCoO2 SINTERED BODY, AND SPUTTERING TARGET MADE FROM SAME
JP6157387B2 (en) * 2013-03-13 2017-07-05 株式会社コベルコ科研 LiCoO2-containing sintered body, sputtering target, and method for producing LiCoO2-containing sintered body

Also Published As

Publication number Publication date
JP2018016512A (en) 2018-02-01
TW201803832A (en) 2018-02-01
WO2018020908A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6157387B2 (en) LiCoO2-containing sintered body, sputtering target, and method for producing LiCoO2-containing sintered body
JP5969786B2 (en) LiCoO2 sintered body, sputtering target, and manufacturing method thereof
EP2524904A1 (en) MANUFACTURING METHOD FOR LiCoO2 SINTERED BODY, AND SPUTTERING TARGET MADE FROM SAME
EP2532634A1 (en) Method for manufacturing sintered licoo2, and sputtering target
CN105478772B (en) A kind of manufacturing method of molybdenum planar targets
JP6430427B2 (en) Lithium cobaltate sintered body, sputtering target produced using the sintered body, method for producing lithium cobaltate sintered body, and thin film comprising lithium cobaltate
CN103917688B (en) Sputtering target material and manufacture method thereof
JP6307121B2 (en) Sintered body and cylindrical sputtering target containing LiCoO 2
JP2017088956A (en) LiCoO2 CONTAINING SPUTTERING TARGET AND LiCoO2 CONTAINING SINTERED BODY
JP5969799B2 (en) Li-containing phosphoric acid compound sintered body, sputtering target, and manufacturing method thereof
JP6144858B1 (en) Oxide sintered body, sputtering target, and production method thereof
JP2019038720A (en) Method of producing sintered body of cesium tungsten oxide, sintered body of cesium tungsten oxide, and oxide target
JP6254308B2 (en) Oxide sintered body, sputtering target, and production method thereof
JP6888294B2 (en) Manufacturing method of Cu-Ga alloy sputtering target and Cu-Ga alloy sputtering target
JP2010123396A (en) Positive electrode, nonaqueous electrolyte secondary battery, and methods of manufacturing them
JP2012246574A (en) Sputtering target and method for producing the same
WO2017064920A1 (en) Licoo2-containing sintered compact, licoo2-containing sputtering target, and licoo2-containing sintered compact manufacturing method
JP7415680B2 (en) Method for sintering nitrogen solid solution silicon carbide powder and method for manufacturing silicon carbide polycrystalline substrate
JP6585251B2 (en) Lithium cobaltate sintered body, sputtering target produced using the sintered body, method for producing lithium cobaltate sintered body, and thin film comprising lithium cobaltate
TW200940447A (en) Sintered silicon wafer
JP5776902B2 (en) Sputtering target and manufacturing method thereof
WO2017134999A1 (en) Cu-Ga ALLOY SPUTTERING TARGET MANUFACTURING METHOD, AND Cu-Ga ALLOY SPUTTERING TARGET
WO2017183263A1 (en) Oxide sintered body, sputtering target, and methods for manufacturing same
JP2019137875A (en) Sputtering target, and manufacturing method of sputtering target

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180309

R150 Certificate of patent or registration of utility model

Ref document number: 6307121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees