WO2017183263A1 - Oxide sintered body, sputtering target, and methods for manufacturing same - Google Patents

Oxide sintered body, sputtering target, and methods for manufacturing same Download PDF

Info

Publication number
WO2017183263A1
WO2017183263A1 PCT/JP2017/004821 JP2017004821W WO2017183263A1 WO 2017183263 A1 WO2017183263 A1 WO 2017183263A1 JP 2017004821 W JP2017004821 W JP 2017004821W WO 2017183263 A1 WO2017183263 A1 WO 2017183263A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide sintered
atomic
sintering
less
Prior art date
Application number
PCT/JP2017/004821
Other languages
French (fr)
Japanese (ja)
Inventor
幸樹 田尾
中根 靖夫
英雄 畠
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017007850A external-priority patent/JP6254308B2/en
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Priority to KR1020187029670A priority Critical patent/KR102091554B1/en
Priority to US16/092,400 priority patent/US20190177230A1/en
Priority to CN201780023775.2A priority patent/CN109071361B/en
Publication of WO2017183263A1 publication Critical patent/WO2017183263A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present disclosure relates to an oxide sintered body used when a thin film transistor (TFT, Thin Film Transistor) oxide semiconductor thin film used in a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method, and a sputtering target. , As well as their manufacturing method.
  • TFT Thin Film Transistor
  • the amorphous (amorphous) oxide semiconductor thin film used for TFT has higher carrier mobility, larger optical band gap, and can be formed at a lower temperature than general-purpose amorphous silicon (a-Si). Therefore, it is expected to be used in next-generation displays that require large size, high resolution and high-speed driving, and applied on a resin substrate with low heat resistance.
  • a-Si general-purpose amorphous silicon
  • an In-containing amorphous oxide semiconductor has been proposed.
  • an In—Ga—Zn-based oxide semiconductor has attracted attention.
  • a sputtering method of sputtering a sputtering target made of a material having the same composition as the thin film (hereinafter also referred to as “target material”) is preferably used.
  • Patent Document 1 discloses a target material made of an In—Ga—Zn—Sn-based oxide sintered body, in which the ratio of the InGaZn 2 O 5 phase is controlled to 3% or less as a main phase.
  • Patent Document 2 discloses a target material made of an In—Ga—Sn-based oxide sintered body, in which the ratio of the InGaO 3 phase is controlled to 0.05% or more.
  • Patent Document 3 is a target material made of an In—Ga—Sn-based oxide sintered body, in which the proportion of the Ga 3 InSn 5 O 16 phase is controlled to 0.02% or more and 0.2% or less. It is disclosed.
  • Patent Document 4 is a target material made of an In—Ga—Sn-based oxide sintered body, in which the proportion of the Ga 3 InSn 5 O 16 phase is controlled to 0.02% or more and 0.2% or less. It is disclosed.
  • JP 2014-58415 A Japanese Patent Laying-Open No. 2015-127293 JP 2015-166305 A JP2011-252231A
  • the target material of the In—Ga—Zn—Sn-based oxide sintered body is disclosed in Patent Document 1, but when the content of each element in the target material is different from that of Patent Document 1, Even if the ratio of the InGaZn 2 O 5 phase is controlled to 3% or less, there are cases where cracking of the target cannot be suppressed.
  • An embodiment of the present invention has been made in view of the above circumstances, and a first object is to use In—Ga for use in a sputtering target suitable for manufacturing an In—Ga—Zn—Sn-based oxide semiconductor thin film.
  • -Zn-Sn-based oxide sintered body which provides an oxide sintered body that can suppress the occurrence of cracking when bonded to a backing plate for an oxide sintered body containing a specific amount of each element That is.
  • the second object of the embodiment of the present invention is to provide a method for producing the above-described oxide sintered body.
  • the third object of the embodiment of the present invention is to provide a sputtering target using the above-described oxide sintered body.
  • the fourth object of the embodiment of the present invention is to provide a method for manufacturing a sputtering target.
  • the ratio (atomic%) of zinc, indium, gallium, and tin to all the metal elements excluding oxygen is [Zn] [In], [Ga], respectively. ] And [Sn] 40 atomic% ⁇ [Zn] ⁇ 55 atomic%, 20 atomic% ⁇ [In] ⁇ 40 atomic%, 5 atomic% ⁇ [Ga] ⁇ 15 atomic%, and 5 atomic% ⁇ [Sn] ⁇ 20 atomic% Satisfied, The relative density is 95% or more, As a crystal phase, InGaZn 2 O 5 is contained at 5 to 20% by volume.
  • the maximum equivalent circle diameter of the pores in the oxide sintered body is preferably 3 ⁇ m or less.
  • the relative ratio of the average equivalent circle diameter to the maximum equivalent circle diameter of the pores in the oxide sintered body is preferably 0.3 or more and 1.0 or less.
  • the oxide sintered body further contains InGaZn 3 O 6 as a crystal phase in an amount of more than 0% by volume and 10% by volume or less.
  • the oxide sintered body preferably has a crystal grain size of 20 ⁇ m or less, and particularly preferably a crystal grain size of 5 ⁇ m or less.
  • the oxide sintered body preferably has a specific resistance of 1 ⁇ ⁇ cm or less.
  • the sputtering target according to the embodiment of the present invention is formed by fixing the oxide sintered body on a backing plate with a bonding material.
  • a method for producing an oxide sintered body includes: Preparing a mixed powder containing zinc oxide, indium oxide, gallium oxide and tin oxide in a predetermined ratio; Sintering the mixed powder into a predetermined shape.
  • the sintering step may include holding the mixed powder at a sintering temperature of 900 to 1100 ° C. for 1 to 12 hours in a state where a surface pressure of 10 to 39 MPa is applied to the mixed powder with a molding die. At this time, in the step of sintering, it is preferable that an average rate of temperature increase up to the sintering temperature is 600 ° C./hr or less.
  • the manufacturing method further includes a step of preforming the mixed powder after the step of preparing the mixed powder and before the step of sintering.
  • the sintering step may include maintaining the preformed molded body at a sintering temperature of 1450 to 1550 ° C. for 1 to 5 hours under normal pressure. At this time, in the step of sintering, it is preferable that an average rate of temperature increase up to the sintering temperature is 100 ° C./hr or less.
  • the sputtering target according to the embodiment of the present invention includes a step of bonding the oxide sintered body or the oxide sintered body manufactured by the manufacturing method to a backing plate with a bonding material.
  • an oxide sintered body capable of suppressing the occurrence of cracks when bonded to a backing plate, a sputtering target using the oxide sintered body, and an oxide sintered body and a sputtering target. It is possible to provide a manufacturing method.
  • FIG. 1 is a schematic cross-sectional view of a sputtering target according to an embodiment of the present invention.
  • FIG. 2 is a secondary electron image of the oxide sintered body.
  • the oxide sintered body according to the embodiment of the present invention includes oxides of zinc, indium, gallium, and tin.
  • the content of the metal element contained in the oxide sintered body used for the sputtering target, and the crystal phase It is necessary to appropriately control the content rate.
  • the oxide sintered body of the embodiment of the present invention is When the content ratio (atomic%) of zinc, indium, gallium and tin with respect to all metal elements excluding element is [Zn] [In], [Ga] and [Sn], respectively. 40 atomic% ⁇ [Zn] ⁇ 55 atomic%, 20 atomic% ⁇ [In] ⁇ 40 atomic%, 5 atomic% ⁇ [Ga] ⁇ 15 atomic%, and 5 atomic% ⁇ [Sn] ⁇ 20 atomic% Satisfied, The relative density is 95% or more, As a crystal phase, InGaZn 2 O 5 is contained at 5 to 20% by volume.
  • the “all metal elements excluding oxygen contained in the oxide sintered body” are zinc, indium, gallium, and tin, and may further contain metal impurities inevitable in production.
  • the inevitable amount of metal impurities is very small, the influence on defining the ratio of the metal elements in the oxide sintered body is small. Therefore, “all metal elements excluding oxygen contained in the oxide sintered body” are substantially zinc, indium, gallium and tin.
  • the content of zinc, indium, gallium and tin in the oxide sintered body is expressed by the number of atoms, and the zinc content relative to the total amount (total number of atoms) is “[Zn]”.
  • the indium content is “[In]”
  • the gallium content is “[Ga]”
  • the tin content is “[Sn]”.
  • [Zn] + [In] + [Ga] + [Sn] 100 atomic%.
  • each element of zinc, indium, gallium and tin The content (atomic%) of each element of zinc, indium, gallium and tin will be described in detail below. Note that the content of each element is set mainly in consideration of the characteristics of the oxide semiconductor thin film formed using a sputtering target.
  • Zinc content 40 atomic% ⁇ [Zn] ⁇ 55 atomic% Zinc improves the stability of the amorphous structure of the oxide semiconductor thin film.
  • the zinc content is preferably 42 atomic% ⁇ [Zn] ⁇ 54 atomic%, more preferably 44 atomic% ⁇ [Zn] ⁇ 53 atomic%.
  • Indium content 20 atomic% ⁇ [In] ⁇ 40 atomic% Indium increases the carrier mobility of the oxide semiconductor thin film.
  • the indium content is preferably 21 atomic% ⁇ [In] ⁇ 39 atomic%, and more preferably 22 atomic% ⁇ [In] ⁇ 38 atomic%.
  • Gallium content 5 atomic% ⁇ [Ga] ⁇ 15 atomic% Gallium improves the light stress reliability of the oxide semiconductor thin film, that is, the threshold bias shift.
  • the content of gallium is preferably 6 atomic% ⁇ [Ga] ⁇ 14 atomic%, more preferably 7 atomic% ⁇ [Ga] ⁇ 13 atomic%.
  • Tin content 5 atomic% ⁇ [Sn] ⁇ 20 atomic% Tin improves the etchant resistance of the oxide semiconductor thin film.
  • the tin content is preferably 6 atomic% ⁇ [Sn] ⁇ 22 atomic%, and more preferably 7 atomic% ⁇ [Sn] ⁇ 20 atomic%.
  • [Sn] / [Ga] more than 0.5, less than 2.5 [Sn] / [Ga] is an index of the content of InGaZn 3 O 6 .
  • [Sn] / [Ga] is preferably more than 0.5 and less than 2.5.
  • InGaZn 3 O 6 exceeds 20% by volume, and when [Sn] / [Ga] is 2.5 or more, InGaZn 3 O 6 is 0 volume. %.
  • the oxide sintered body includes oxides of zinc, indium, gallium and tin. Specifically, it contains Zn 2 SnO 4 phase, InGaZnO 4 phase, InGaZn 2 O 5 phase, InGaZn 3 O 6 phase, In 2 O 3 phase and SnO 2 phase as constituent phases. Further, it may contain impurities such as oxides inevitably mixed or generated in production. In particular, in the embodiment of the present invention, cracking of the oxide sintered body can be effectively suppressed by containing the InGaZn 2 O 5 phase at a predetermined ratio.
  • the ratio of the crystal phase can be obtained by analyzing the X-ray diffraction spectrum of the oxide sintered body.
  • X-ray diffraction on the premise that the above-described crystal phases (that is, Zn 2 SnO 4 phase, InGaZnO 4 phase, InGaZn 2 O 5 phase, InGaZn 3 O 6 phase, In 2 O 3 phase and SnO 2 phase) exist.
  • the spectral peaks are assigned to specific crystal planes of these six crystal phases.
  • One peak is selected from a plurality of peaks assigned to each crystal phase, and the peak intensity of the selected peak is measured.
  • Six peak intensity measurements are obtained from the six crystal phases, and the six measurement values are converted to the strongest peak intensity of each crystal phase.
  • the ratio of the converted value of each crystal phase to the value (total value) obtained by summing the six converted values is determined.
  • This ratio is defined as the ratio of each crystal phase contained in the oxide crystal (content: volume%). That is, in this specification, when the converted values of the six peak intensities obtained from each crystal phase are totaled and the total value is taken as 100%, the ratio (%) of each converted value corresponding to each crystal phase, Used as the content (volume%) of each crystal phase.
  • the Zn 2 SnO 4 phase, the InGaZnO 4 phase, the InGaZn 2 O 5 phase, the InGaZn 3 O 6 phase, and the In 2 O 3 Only the phase and the SnO 2 phase are considered.
  • crystal phases other than the above-described crystal phases can be included, but the effect of the embodiment of the present invention (preventing cracking of the oxide sintered body) is not affected. Therefore, in the embodiment of the present invention, in order to obtain the effect of preventing cracking of the oxide sintered body, only the above six crystal phases are considered.
  • the content (volume%) of each crystal phase that can be included in the oxide sintered body will be described in detail. Note that the unit of the crystal phase content (volume%) may be simply expressed as “%”.
  • InGaZn 2 O 5 5 to 20% by volume InGaZn 2 O 5 has a pinning effect between crystal grains.
  • InGaZn 2 O 5 growth of the crystal grain size can be suppressed and the material strength can be increased, and cracking of the oxide sintered body when bonding to the backing plate can be suppressed.
  • the content of InGaZn 2 O 5 is less than 5% by volume, the material strength is not sufficient, and cracking of the oxide sintered body tends to occur. If the content exceeds 30% by volume, the specific resistance increases, and thus abnormal discharge may be induced. Therefore, by containing 5% by volume of InGaZn 2 O 5 , the effect of preventing cracking of the oxide sintered body can be sufficiently exhibited.
  • the content of InGaZn 2 O 5 is preferably 5 to 20% by volume, more preferably 5 to 15% by volume.
  • InGaZn 3 O 6 more than 0% by volume and ⁇ 10% by volume or less InGaZn 3 O 6 has a pinning effect between crystal grains like InGaZn 2 O 5 .
  • InGaZn 3 O 6 is included in addition to InGaZn 2 O 5 , the pinning effect can be further improved. Therefore, it is possible to further suppress cracking of the oxide sintered body when bonding to the backing plate.
  • InGaZn 3 O 6 is preferably contained in an amount of 0.5 to 8% by volume, more preferably 1 to 6% by volume.
  • the effect of suppressing cracking of the oxide sintered body can be improved by varying the range of the content ratio of the crystal phase depending on the ratio of the element content ratio.
  • preferable contents of Zn 2 SnO 4 , InGaZnO 4 and In 2 O 3 differ depending on the ratio of [Zn] / [In].
  • Zn 2 SnO 4 and In 2 O 3 have the effect of contributing to improvement of relative density and reduction of specific resistance.
  • the stability of discharge can be improved.
  • InGaZnO 4 has a pinning effect between crystal grains similarly to InGaZn 2 O 5 and InGaZn 3 O 6 . When InGaZnO 4 is included in addition to InGaZn 2 O 5 , the pinning effect can be further improved. Therefore, it is possible to further suppress cracking of the oxide sintered body when bonding to the backing plate.
  • [Zn] / [In] is less than 1.5, it is preferable to contain In 2 O 3 at 30% by volume or more.
  • the relative density of the oxide sintered body is preferably 95% or more. Thereby, the intensity
  • the relative density is more preferably 97% or more, and even more preferably 99% or more.
  • the relative density in this specification is calculated
  • FIG. 2 shows an example of a secondary electron image (magnification 1000 times) of the oxide sintered body.
  • black dot-like portions are pores. The pores can be easily distinguished from other metal structures in both SEM photographs and secondary electron images.
  • the pores in the oxide sintered body it is preferable that not only the porosity is low but also the pore size is small.
  • the molded body including pores is sintered, small pores disappear by sintering, but large pores do not disappear and remain inside the oxide sintered body.
  • the gas exists in a compressed state.
  • Sn, Ga, and the like in the molded body may be decomposed during sintering to generate pores inside the oxide sintered body. Compressed gas may also exist inside the pores thus generated. If pores containing a compressed gas are present in the oxide sintered body, the internal stress increases, and the mechanical strength and thermal shock resistance of the oxide sintered body are reduced.
  • the crack of the oxide sintered body due to the pores tends to be higher as the pores are larger. Therefore, by suppressing the size of the pores in the oxide sintered body, the mechanical strength of the oxide sintered body is increased, and cracking of the oxide sintered body can be suppressed.
  • the maximum equivalent circle diameter Dmax of the pores is 3 ⁇ m or less, the internal stress can be sufficiently reduced.
  • the maximum equivalent circle diameter of the porosity is more preferably 2 ⁇ m or less.
  • the relative ratio of the average equivalent circle diameter D ave ( ⁇ m) to the maximum equivalent circle diameter D max ( ⁇ m) of pores in the oxide sintered body is preferably 0.3 or more and 1.0 or less (that is, 0.3 ⁇ D ave / D max ⁇ 1.0).
  • the relative ratio is 1.0, the shape is circular. The smaller the relative ratio is, the flatter oval shape is.
  • the pores are elliptical, the mechanical strength is lowered and the oxide sintered body is easily cracked as compared to the case of a circular shape. In particular, the tendency becomes more prominent as the shape becomes a flat ellipse. Therefore, when the relative ratio is 0.3 or more, the strength of the oxide sintered body can be increased. More preferably, the relative ratio is 0.5 or more.
  • the maximum equivalent circle diameter and the average equivalent circle diameter of the pores in this specification are determined as follows. An oxide sintered body prepared as a measurement sample is cut in a thickness direction at an arbitrary position, and an arbitrary position of the cut surface is mirror-ground. Next, using a scanning electron microscope (SEM), photographs were taken at an appropriate magnification (for example, 1000 times magnification), and the equivalent circle diameters of all pores existing in a 100 ⁇ m square region were obtained. Similarly, the equivalent circle diameters of all pores were obtained at 20 cut surfaces in the same sample.
  • SEM scanning electron microscope
  • the largest equivalent circle diameter is defined as the “maximum equivalent circle diameter of pores” of the oxide sintered body, and the average value of all equivalent circle diameters is The oxide sintered body was defined as “the average equivalent circular diameter of pores”.
  • the average crystal grain size of the crystal grains is preferably 20 ⁇ m or less, whereby the effect of suppressing cracking of the oxide sintered body can be further improved.
  • the average crystal grain size is more preferably 10 ⁇ m or less, still more preferably 8 ⁇ m or less, and particularly preferably 5 ⁇ m.
  • the lower limit value of the average crystal grain size is not particularly limited, but a preferable lower limit of the average crystal grain size is about 0.05 ⁇ m from the balance between refinement of the average crystal grain size and production cost.
  • the average crystal grain size of the crystal grains is measured as follows. An oxide sintered body prepared as a measurement sample is cut in a thickness direction at an arbitrary position, and an arbitrary position of the cut surface is mirror-ground. Next, a photograph of the tissue on the cut surface is taken at a magnification of 400 using a scanning electron microscope (SEM). On the photograph taken, a straight line corresponding to a length of 100 ⁇ m is drawn in an arbitrary direction, and the number (N) of crystal grains existing on the straight line is obtained. The value calculated by [100 / N] ( ⁇ m) is defined as the “crystal grain size on a straight line”.
  • coarse crystal grains having a crystal grain size exceeding 30 ⁇ m cause cracking of the oxide sintered body at the time of bonding.
  • coarse crystal grains having a crystal grain size exceeding 30 ⁇ m are preferably in an area ratio of 10% or less, more preferably 8% or less, further preferably 6% or less, further preferably 4% or less, and most preferably 0%. .
  • the area ratio of crystal grains having a crystal grain size exceeding 30 ⁇ m is measured as follows.
  • a crystal grain having a length of 30 ⁇ m or more cut by the straight line is defined as a “coarse grain”.
  • L ( ⁇ m) the length occupied by the coarse particles (that is, the length of the portion of the straight line crossing the coarse particles)
  • R (%) of coarse particles on this straight line was defined as the ratio R (%) of coarse particles on this straight line.
  • R (%) (L ( ⁇ m) / 100 ( ⁇ m)) ⁇ 100 (%)
  • the ratio R (%) of the coarse particles is obtained.
  • the ratio R (%) of coarse grains was determined, and the average value was taken as the ratio of coarse grains of this sintered body.
  • the specific resistance of the oxide sintered body is preferably 1 ⁇ ⁇ cm or less, more preferably 10 ⁇ 1 ⁇ ⁇ cm or less, and further preferably 10 ⁇ 2 ⁇ ⁇ cm or less.
  • the oxide sintered body is fixed to a backing plate to form a sputtering target.
  • this sputtering target by suppressing the specific resistance of the oxide sintered body to a low level, abnormal discharge during sputtering can be suppressed, and consequently cracking of the oxide sintered body due to abnormal discharge is suppressed. be able to. Thereby, the cost of forming an oxide semiconductor thin film using a sputtering target can be reduced.
  • an oxide semiconductor thin film having uniform and favorable characteristics can be manufactured. For example, by manufacturing a TFT oxide semiconductor thin film using a sputtering target in a production line for manufacturing a display device, the manufacturing cost of the TFT, and thus the manufacturing cost of the display device, can be suppressed. Furthermore, an oxide semiconductor thin film exhibiting favorable TFT characteristics can be formed, and a high-performance display device can be manufactured.
  • the specific resistance of the oxide sintered body was measured by the four probe method. Specifically, the specific resistance of the oxide sintered body can be measured using a known specific resistance measuring instrument (for example, Lorester GP manufactured by Mitsubishi Chemical Analytech Co., Ltd.). In addition, the specific resistance of this specification points out what was obtained by measuring the distance between each terminal as 1.5 mm. The specific resistance was measured several times (for example, four times) at different locations, and the average value was taken as the specific resistance of the oxide sintered body.
  • a known specific resistance measuring instrument for example, Lorester GP manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the specific resistance of this specification points out what was obtained by measuring the distance between each terminal as 1.5 mm. The specific resistance was measured several times (for example, four times) at different locations, and the average value was taken as the specific resistance of the oxide sintered body.
  • FIG. 1 is a schematic cross-sectional view of the sputtering target 1.
  • the sputtering target 1 includes a backing plate 20 and an oxide sintered body 10 fixed on the backing plate 20 with a bonding material 30.
  • the oxide sintered body 10 uses the oxide sintered body according to the embodiment of the present invention. Therefore, when bonding to the backing plate 20 with the bonding material 30, the oxide sintered body is difficult to break and the sputtering target 1 can be manufactured with a high yield.
  • the oxide sintered body of the embodiment of the present invention is obtained by sintering a mixed powder containing zinc oxide, indium oxide, gallium oxide, and tin oxide.
  • the sputtering target of the embodiment of the present invention is obtained by fixing the obtained oxide sintered body on a backing plate. More specifically, the oxide sintered body is manufactured by the following steps (a) to (e). The sputtering target is manufactured by the following steps (f) and (g).
  • the oxide sintered body finally obtained is a mixture containing these oxides so that zinc, indium, gallium and tin are contained in a predetermined ratio.
  • the sintering conditions are controlled so that the crystal phase in the oxide sintered body is formed in an appropriate range.
  • Steps (b) to (d) and (f) to (g) are not particularly limited as long as the oxide sintered body and the sputtering target can be produced, and are usually used in the production of the oxide sintered body and the sputtering target. Can be applied as appropriate.
  • each process is demonstrated in detail, it is not the meaning which limits embodiment of this invention to these processes.
  • Zinc oxide, indium oxide powder, gallium oxide powder and tin oxide powder are mixed in a predetermined ratio, mixed and pulverized.
  • the purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a small amount of an impurity element may impair the semiconductor characteristics of the oxide semiconductor thin film.
  • Predetermined ratio of each raw material powder means that zinc, indium, gallium and tin with respect to all metal elements (zinc, indium, gallium and tin) excluding oxygen contained in the sintered oxide obtained after sintering. The ratio of the content is within the following range.
  • each raw material powder may be blended so that the ratio is in the above range.
  • a ball mill or bead mill is preferably used for mixing and grinding.
  • the mixed powder can be obtained by charging the raw material powder and water into the mill device and crushing and mixing the raw material powder.
  • a dispersing agent may be added and mixed, and further, a binder may be added and mixed in order to easily form a molded body later.
  • balls and beads (these are referred to as “media”) used in the ball mill and the bead mill, those made of zirconium oxide, nylon or alumina can be used.
  • the pod used for the ball mill and the bead mill a nylon pod, an alumina pod, and a zirconia pod can be used.
  • the mixing time by the ball mill or bead mill is preferably 1 hour or longer, more preferably 10 hours or longer, and further preferably 20 hours or longer.
  • the granulated mixed powder is filled into a mold having a predetermined size and preliminarily molded into a predetermined shape by applying a predetermined pressure (for example, about 49 MPa to about 98 MPa) with a mold press.
  • a predetermined pressure for example, about 49 MPa to about 98 MPa
  • the step (c) may be omitted.
  • An oxide sintered body can be produced.
  • the compact may be placed in a sintering mold and hot pressed.
  • the sintering in step (e) is performed by atmospheric pressure sintering, a dense oxide sintered body can be produced by preforming in step (c).
  • a dispersion material and / or a binder is added to the mixed powder
  • the heating conditions are not particularly limited as long as the temperature and time allow the dispersion material and the binder to be removed.
  • the molded body is held at a heating temperature of about 500 ° C. in the atmosphere for about 5 hours.
  • the step (d) may be omitted.
  • step (c) When step (c) is omitted, that is, when sintering is performed by hot pressing in step (e) and a molded body is not formed, the mixed powder is heated, and the dispersion material in the mixed powder and The binder may be removed (degreasing).
  • the molded body after degreasing is sintered under predetermined sintering conditions to obtain an oxide sintered body.
  • a sintering method both hot press and normal pressure sintering can be used.
  • hot pressing is advantageous in that the sintering temperature can be lowered, and thus the crystal grain size of the obtained oxide sintered body can be reduced.
  • Atmospheric pressure sintering is advantageous in that it does not require pressurization, and therefore requires no pressurization equipment. The sintering conditions and the like will be described below for each of hot press and normal pressure sintering.
  • (I) Hot press In the hot press, the compact is placed in a sintering furnace in a state where it is placed in a sintering mold and sintered in a pressurized state. By sintering the molded body while applying pressure to the molded body, a dense oxide sintered body can be obtained while keeping the sintering temperature relatively low.
  • the hot press uses a sintering mold for pressurizing the compact.
  • the mold for sintering either a metal mold (mold) or a graphite mold (graphite mold) can be used depending on the sintering temperature. In particular, a graphite mold having excellent heat resistance is preferable and can withstand high temperatures of 900 ° C. or higher.
  • the pressure applied to the mold is not particularly limited, but a surface pressure (pressurized pressure) of 10 to 39 MPa is preferable. If the pressure is too high, the sintering graphite mold may be damaged, and a large press facility is required. On the other hand, if it exceeds 39 MPa, the densification promoting effect of the sintered body is saturated, so that there is little profit to pressurize at a higher pressure. On the other hand, if the pressure is less than 10 MPa, densification of the sintered body is difficult to proceed sufficiently. A more preferable pressure condition is 10 to 30 MPa.
  • the sintering temperature is equal to or higher than the temperature at which the mixed powder in the molded body progresses. For example, if the sintering is performed under a surface pressure of 10 to 39 MPa, the sintering temperature is 900 to 1200 ° C. preferable. When the sintering temperature is 900 ° C. or higher, the sintering proceeds sufficiently and the density of the obtained oxide sintered body can be increased.
  • the sintering temperature is more preferably 920 ° C. or higher, and further preferably 940 ° C. or higher. Further, when the sintering temperature is 1200 ° C. or lower, grain growth during sintering is suppressed, and the crystal grain size in the oxide sintered body can be reduced.
  • the sintering temperature is more preferably 1100 ° C. or less, and further preferably 1000 ° C. or less.
  • the time for holding at the predetermined sintering temperature is set to a time during which the sintering of the mixed powder proceeds sufficiently and the density of the obtained oxide sintered body is equal to or higher than the predetermined density.
  • the holding time is preferably 1 to 12 hours.
  • the holding time is 1 hour or longer, the structure in the obtained oxide sintered body can be made uniform.
  • the holding time is more preferably 2 hours or more, and further preferably 3 hours or more. Further, when the holding time is 12 hours or less, grain growth during sintering can be suppressed and the crystal grain size in the oxide sintered body can be reduced.
  • the holding time is more preferably 10 hours or less, and even more preferably 8 hours or less.
  • the average heating rate up to the sintering temperature can affect the size of the crystal grains in the oxide sintered body and the relative density of the oxide sintered body.
  • the average rate of temperature rise is preferably 600 ° C./hr or less, and abnormal growth of crystal grains hardly occurs, so that the ratio of coarse crystal grains can be suppressed.
  • the relative density of the oxide sinter after sintering can be made high that it is 600 degrees C / hr or less.
  • the average temperature rising rate is more preferably 400 ° C./hr or less, and further preferably 300 ° C./hr or less.
  • the lower limit of the average heating rate is not particularly limited, but is preferably 50 ° C./hr or more, more preferably 100 ° C./hr or more from the viewpoint of productivity.
  • the sintering atmosphere is preferably an inert gas atmosphere in order to suppress oxidation and disappearance of the graphite mold for sintering.
  • an atmosphere of an inert gas such as Ar gas and N 2 gas can be applied.
  • the sintering atmosphere can be adjusted by introducing an inert gas into the sintering furnace.
  • the atmospheric gas pressure is preferably atmospheric pressure in order to suppress evaporation of a metal having a high vapor pressure, but may be vacuum (that is, a pressure lower than atmospheric pressure).
  • the sintering temperature is not particularly limited as long as it is equal to or higher than the temperature at which sintering of the mixed powder in the molded body proceeds.
  • the sintering temperature can be 1450 to 1600 ° C.
  • the sintering temperature is more preferably 1500 ° C. or higher, and further preferably 1550 ° C. or higher.
  • the sintering temperature is 1600 ° C. or lower, grain growth during sintering can be suppressed, and the crystal grain size in the oxide sintered body can be reduced.
  • the sintering temperature is more preferably 1580 ° C. or less, and further preferably 1550 ° C. or less.
  • the holding time is not particularly limited as long as the sintering of the mixed powder proceeds sufficiently and the density of the obtained oxide sintered body is equal to or higher than a predetermined density.
  • the holding time may be 1 to 5 hours. it can. When the holding time is 1 hour or longer, the structure in the obtained oxide sintered body can be made uniform.
  • the holding time is more preferably 2 hours or more, and further preferably 3 hours or more. Further, when the holding time is 5 hours or less, grain growth during sintering can be suppressed, and the crystal grain size in the oxide sintered body can be reduced.
  • the holding time is more preferably 4 hours or less, and even more preferably 3 hours or less.
  • the average heating rate is preferably 100 ° C./hr or less, and abnormal growth of crystal grains hardly occurs, so that the ratio of coarse crystal grains can be suppressed. Moreover, the relative density of the oxide sinter after sintering as it is 100 degrees C / hr or less can be made high.
  • the average temperature rising rate is more preferably 90 ° C./hr or less, and still more preferably 80 ° C./hr or less.
  • the lower limit of the average heating rate is not particularly limited, but is preferably 50 ° C./hr or more, more preferably 60 ° C./hr or more from the viewpoint of productivity.
  • the sintering atmosphere is preferably air or an oxygen rich atmosphere.
  • the oxygen concentration in the atmosphere is desirably 50 to 100% by volume.
  • the oxide sintered body can be manufactured by the steps (a) to (e).
  • the obtained oxide sintered body may be processed into a shape suitable for a sputtering target.
  • the processing method of oxide sinter is not specifically limited, What is necessary is just to process to the shape according to various uses by a well-known method.
  • the processed oxide sintered body 10 is bonded onto a backing plate 20 by a bonding material 30.
  • the sputtering target 1 is obtained.
  • the material of the backing plate 20 is not particularly limited, but pure copper or copper alloy having excellent thermal conductivity is preferable.
  • the bonding material 30 various known bonding materials having conductivity can be used, and for example, an In-based solder material and an Sn-based solder material are suitable.
  • the joining method is not particularly limited as long as the backing plate 20 and the oxide sintered body 10 are joined by the bonding material 30 to be used.
  • the oxide sintered body 10 and the backing plate 20 are heated to a temperature (for example, about 140 ° C. to about 220 ° C.) at which the bonding material 30 is melted.
  • a temperature for example, about 140 ° C. to about 220 ° C.
  • the oxide sintered body 10 is applied to the bonding surface 23. Place.
  • the bonding material 30 is solidified and the oxide sintered body 10 is fixed on the bonding surface 23.
  • Example 1 Hot press> (Production of oxide sintered body) 99.99% pure zinc oxide powder (ZnO) 99.99% pure indium oxide powder (In 2 O 3 ), 99.99% pure gallium oxide powder (Ga 2 O 3 ), 99.99% pure Tin oxide powder (SnO 2 ) was blended in the atomic ratio (atomic%) shown in Table 1 to obtain a raw material powder. Water and a dispersant (ammonium polycarboxylate) were added and mixed and pulverized with a ball mill for 20 hours. In this example, a ball mill using a nylon pod and zirconia balls as media was used. Next, the mixed powder obtained in the above step was dried and granulated.
  • ZnO zinc oxide powder
  • In 2 O 3 indium oxide powder
  • Ga 2 O 3 gallium oxide powder
  • Tin oxide powder SnO 2
  • the obtained mixed powder was pressed at a pressure of 1.0 ton / cm 2 using a mold press to prepare a disk-shaped molded body having a diameter of 110 mm and a thickness of 13 mm.
  • the molded body was heated to 500 ° C. under normal pressure and atmospheric atmosphere, and held at that temperature for 5 hours for degreasing.
  • the degreased compact was set in a graphite mold and hot pressed under the conditions shown in Table 2. At this time, N 2 gas was introduced into the furnace and sintered in an N 2 atmosphere.
  • the relative density of the oxide sintered body was determined using the porosity measured as follows. The oxide sintered body is cut in the thickness direction at an arbitrary position, and the cut surface
  • the content (volume ratio) of each crystal phase (Zn 2 SnO 4 , InGaZnO 4 , InGaZn 2 O 5 , InGaZn 3 O 6 and In 2 O 3 ) is calculated from the measured value I of the intensity of the selected peak by the following calculation formula. Asked. In the calculation formula, the ratio of the intensity of the main peak of the target crystal phase to the total intensity (I sum ) of the main peaks of the six crystal phases can be obtained. In the present specification, the strength ratio of the target crystal phase is defined as the content (%) of the crystal phase.
  • I sum I [Zn 2 SnO 4 ] ⁇ 4.
  • the “average crystal grain size ( ⁇ m)” of the oxide sintered body was measured as follows. First, it cut
  • Example 2 Normal pressure sintering>
  • Raw material powders a to c shown in Table 1 were prepared in the same manner as in Example 1.
  • the obtained mixed powder was pressed at a pressure of 1.0 ton / cm 2 using a mold press to prepare a disk-shaped molded body having a diameter of 110 mm and a thickness of 13 mm.
  • the molded body was heated to 500 ° C. under normal pressure and atmospheric atmosphere, and held at that temperature for 5 hours for degreasing.
  • the degreased compact was set in a graphite mold and subjected to normal pressure sintering under the conditions shown in Table 5.
  • N 2 gas was introduced into the furnace and sintered in an N 2 atmosphere.
  • the obtained oxide sintered body was measured for the relative density, the crystal phase content, the average crystal grain size, and the cracks during bonding in the same manner as in Example 1. The measurement results are shown in Tables 6 and 7.
  • Example 5 to 8 having a relative density within the range defined in the embodiment of the present invention, no crack was generated when the oxide sintered body was bonded to the backing plate. Since the density of Comparative Example 1 was as low as 91%, cracking occurred when the oxide sintered body was bonded to the backing plate.
  • Aspect 1 When the content ratio (atomic%) of zinc, indium, gallium and tin with respect to all metal elements excluding oxygen is [Zn] [In], [Ga] and [Sn], respectively. 40 atomic% ⁇ [Zn] ⁇ 55 atomic%, 20 atomic% ⁇ [In] ⁇ 40 atomic%, 5 atomic% ⁇ [Ga] ⁇ 15 atomic%, and 5 atomic% ⁇ [Sn] ⁇ 20 atomic% Satisfied, The relative density is 95% or more, An oxide sintered body containing 5 to 20% by volume of InGaZn 2 O 5 as a crystal phase.
  • Aspect 2 The oxide sintered body according to aspect 1, wherein the maximum equivalent circle diameter of pores in the oxide sintered body is 3 ⁇ m or less.
  • Aspect 3 Oxide sintering according to embodiment 1 or 2, wherein a relative ratio of an average equivalent circle diameter ( ⁇ m) to a maximum equivalent circle diameter ( ⁇ m) of pores in the oxide sintered body is 0.3 or more and 1.0 or less. body.
  • Aspect 4 [Zn] / [In] is more than 1.75 and less than 2.25, The oxide sintered body according to any one of embodiments 1 to 3, further containing 30 to 90% by volume of Zn 2 SnO 4 and 1 to 20% by volume of InGaZnO 4 as a crystal phase.
  • Aspect 5 [Zn] / [In] is less than 1.5, The oxide sintered body according to any one of embodiments 1 to 3, further containing 30 to 90% by volume of In 2 O 3 as a crystal phase.
  • Aspect 6 The oxide sintered body according to any one of embodiments 1 to 3, further containing InGaZn 3 O 6 in a crystal phase in an amount of more than 0% by volume and 10% by volume or less.
  • Aspect 7 7. The oxide sintered body according to any one of embodiments 1 to 6, wherein the crystal grain size is 20 ⁇ m or less.
  • Aspect 8 The oxide sintered body according to aspect 7, wherein the crystal grain size is 5 ⁇ or less.
  • Aspect 9 The oxide sintered body according to any one of embodiments 1 to 8, wherein the specific resistance is 1 ⁇ ⁇ cm or less.
  • Aspect 10 A sputtering target comprising the oxide sintered body according to any one of embodiments 1 to 9 fixed on a backing plate by a bonding material.
  • Aspect 11 A method for producing an oxide sintered body according to any one of aspects 1 to 9, comprising: Preparing a mixed powder containing zinc oxide, indium oxide, gallium oxide and tin oxide in a predetermined ratio; And a step of sintering the mixed powder into a predetermined shape.
  • Aspect 12 The production method according to aspect 11, wherein the sintering step includes holding the mixed powder at a sintering temperature of 900 to 1100 ° C.
  • Aspect 13 The manufacturing method according to aspect 12, wherein, in the sintering step, an average rate of temperature rise to the sintering temperature is 600 ° C./hr or less.
  • Aspect 14 Furthermore, after the step of preparing the mixed powder, before the step of sintering, the step of preforming the mixed powder, 12.
  • Aspect 15 The manufacturing method according to aspect 14, wherein, in the sintering step, an average rate of temperature rise to the sintering temperature is 100 ° C./hr or less.
  • Aspect 16 The oxide sintered body according to any one of aspects 1 to 9 or the oxide sintered body produced by the manufacturing method according to any one of aspects 11 to 15 is bonded to a backing plate with a bonding material.

Abstract

An oxide sintered body that: satisfies 40 atom%≤[Zn]≤55 atom%, 20 atom%≤[In]≤40 atom%, 5 atom%≤[Ga]≤15 atom%, and 5 atom%≤[Sn]≤20 atom% when the percentages (atom%) of contents of zinc, indium, gallium, and tin with respect to all metal elements excluding oxygen are, respectively, [Zn], [In], [Ga], and [Sn]; has a relative density of 95% or more; and includes, as a crystal phase, 5 to 20 volume% of InGaZn2O5.

Description

酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法Oxide sintered body, sputtering target, and production method thereof
 本開示は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT、Thin Film Transistor)の酸化物半導体薄膜をスパッタリング法で成膜するときに用いられる酸化物焼結体、およびスパッタリングターゲット、並びにそれらの製造方法に関するものである。 The present disclosure relates to an oxide sintered body used when a thin film transistor (TFT, Thin Film Transistor) oxide semiconductor thin film used in a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method, and a sputtering target. , As well as their manufacturing method.
 TFTに用いられるアモルファス(非晶質)酸化物半導体薄膜は、汎用のアモルファスシリコン(a-Si)に比べると、キャリア移動度が高く、光学バンドギャップが大きく、そして低温で成膜できる。そのため、大型、高解像度かつ高速駆動が要求される次世代ディスプレイでの利用、および耐熱性の低い樹脂基板上への適用などが期待されている。これらの用途に好適な酸化物半導体として、In含有の非晶質酸化物半導体が提案されている。例えば、In-Ga-Zn系酸化物半導体が注目されている。 The amorphous (amorphous) oxide semiconductor thin film used for TFT has higher carrier mobility, larger optical band gap, and can be formed at a lower temperature than general-purpose amorphous silicon (a-Si). Therefore, it is expected to be used in next-generation displays that require large size, high resolution and high-speed driving, and applied on a resin substrate with low heat resistance. As an oxide semiconductor suitable for these uses, an In-containing amorphous oxide semiconductor has been proposed. For example, an In—Ga—Zn-based oxide semiconductor has attracted attention.
 上記酸化物半導体薄膜の形成にあたっては、当該薄膜と同じ組成を有する材料から成るスパッタリングターゲット(以下、「ターゲット材」ということがある)をスパッタリングするスパッタリング法が好適に用いられている。 In forming the oxide semiconductor thin film, a sputtering method of sputtering a sputtering target made of a material having the same composition as the thin film (hereinafter also referred to as “target material”) is preferably used.
 スパッタリング中に異常放電が生じると、ターゲット材が割れることがある。そこで、ターゲット材の割れを抑制するために、ターゲット材中の結晶相の含有量を調節することが検討されている(例えば、特許文献1~4)。
 特許文献1は、In-Ga-Zn-Sn系酸化物焼結体から成るターゲット材であって、主相として、InGaZn相の割合を3%以下に制御したものが開示されている。
 特許文献2は、In-Ga-Sn系酸化物焼結体から成るターゲット材であって、InGaO相の割合を0.05%以上に制御したものが開示されている。
 特許文献3は、In-Ga-Sn系酸化物焼結体から成るターゲット材であって、GaInSn16相の割合を0.02%以上、0.2%以下に制御したものが開示されている。
 特許文献4は、In-Ga-Sn系酸化物焼結体から成るターゲット材であって、GaInSn16相の割合を0.02%以上、0.2%以下に制御したものが開示されている。
If abnormal discharge occurs during sputtering, the target material may be broken. Therefore, in order to suppress cracking of the target material, it has been studied to adjust the content of the crystal phase in the target material (for example, Patent Documents 1 to 4).
Patent Document 1 discloses a target material made of an In—Ga—Zn—Sn-based oxide sintered body, in which the ratio of the InGaZn 2 O 5 phase is controlled to 3% or less as a main phase. .
Patent Document 2 discloses a target material made of an In—Ga—Sn-based oxide sintered body, in which the ratio of the InGaO 3 phase is controlled to 0.05% or more.
Patent Document 3 is a target material made of an In—Ga—Sn-based oxide sintered body, in which the proportion of the Ga 3 InSn 5 O 16 phase is controlled to 0.02% or more and 0.2% or less. It is disclosed.
Patent Document 4 is a target material made of an In—Ga—Sn-based oxide sintered body, in which the proportion of the Ga 3 InSn 5 O 16 phase is controlled to 0.02% or more and 0.2% or less. It is disclosed.
特開2014-58415号公報JP 2014-58415 A 特開2015-127293号公報Japanese Patent Laying-Open No. 2015-127293 特開2015-166305号公報JP 2015-166305 A 特開2011-252231号公報JP2011-252231A
 半導体薄膜の特性をより向上させる目的で、又は異なる特性を付与する目的で、薄膜中のインジウム、ガリウム、亜鉛および錫の含有量を変えたIn-Ga-Zn-Sn系酸化物半導体薄膜が研究されている。そのような酸化物半導体薄膜を形成するためには、目的とする酸化物半導体薄膜の組成と同様の組成を有するIn-Ga-Zn-Sn系酸化物焼結体を備えたターゲット材を使用する。
 In-Ga-Zn-Sn系酸化物焼結体のターゲット材については、特許文献1に開示があるが、ターゲット材中の各元素の含有量を特許文献1とは異なる量としたときに、InGaZn相の割合を3%以下に制御しても、ターゲットの割れを抑制できない場合があった。
Research has been conducted on In-Ga-Zn-Sn-based oxide semiconductor thin films in which the content of indium, gallium, zinc and tin in the thin film is changed for the purpose of improving the characteristics of the semiconductor thin film or imparting different characteristics. Has been. In order to form such an oxide semiconductor thin film, a target material including an In—Ga—Zn—Sn-based oxide sintered body having the same composition as that of the target oxide semiconductor thin film is used. .
The target material of the In—Ga—Zn—Sn-based oxide sintered body is disclosed in Patent Document 1, but when the content of each element in the target material is different from that of Patent Document 1, Even if the ratio of the InGaZn 2 O 5 phase is controlled to 3% or less, there are cases where cracking of the target cannot be suppressed.
 本発明の実施形態は上記事情に鑑みてなされたものであり、第1の目的は、In-Ga-Zn-Sn系酸化物半導体薄膜の製造に適したスパッタリングターゲットに使用するためのIn-Ga-Zn-Sn系酸化物焼結体であって、各元素を特定量で含有する酸化物焼結体について、バッキングプレートにボンディングする際の割れの発生を抑制できる酸化物焼結体を提供することである。
 本発明の実施形態の第2の目的は、上述した酸化物焼結体の製造方法を提供することである。
 本発明の実施形態の第3の目的は、上述した酸化物焼結体を用いたスパッタリングターゲットを提供することである。
 本発明の実施形態の第4の目的は、スパッタリングターゲットの製造方法を提供することである。
An embodiment of the present invention has been made in view of the above circumstances, and a first object is to use In—Ga for use in a sputtering target suitable for manufacturing an In—Ga—Zn—Sn-based oxide semiconductor thin film. -Zn-Sn-based oxide sintered body, which provides an oxide sintered body that can suppress the occurrence of cracking when bonded to a backing plate for an oxide sintered body containing a specific amount of each element That is.
The second object of the embodiment of the present invention is to provide a method for producing the above-described oxide sintered body.
The third object of the embodiment of the present invention is to provide a sputtering target using the above-described oxide sintered body.
The fourth object of the embodiment of the present invention is to provide a method for manufacturing a sputtering target.
 発明者らは前記課題を解決するために鋭意検討を重ねたところ、亜鉛、インジウム、ガリウム及び錫の酸化物を所定量で含有する酸化物焼結体において、結晶相、特にInGaZnを特定の含有率で含有することによって、前記課題を解決できることを見出し、本発明の実施形態を完成するに至った。 The inventors have made extensive studies in order to solve the above-mentioned problems. As a result, in an oxide sintered body containing oxides of zinc, indium, gallium and tin in a predetermined amount, a crystalline phase, particularly InGaZn 2 O 5 is added. It discovered that the said subject could be solved by containing with a specific content rate, and came to complete embodiment of this invention.
 本発明の実施形態に係る酸化物焼結体は、酸素を除く全金属元素に対する、亜鉛、インジウム、ガリウム及び錫の含有量の割合(原子%)を夫々、[Zn][In]、[Ga]及び[Sn]としたとき、
 40原子%≦[Zn]≦55原子%、
 20原子%≦[In]≦40原子%、
 5原子%≦[Ga]≦15原子%、および
 5原子%≦[Sn]≦20原子%
を満足し、
 相対密度が95%以上であり、
 結晶相として、InGaZnを5~20体積%で含有する。
In the oxide sintered body according to the embodiment of the present invention, the ratio (atomic%) of zinc, indium, gallium, and tin to all the metal elements excluding oxygen is [Zn] [In], [Ga], respectively. ] And [Sn]
40 atomic% ≦ [Zn] ≦ 55 atomic%,
20 atomic% ≦ [In] ≦ 40 atomic%,
5 atomic% ≦ [Ga] ≦ 15 atomic%, and 5 atomic% ≦ [Sn] ≦ 20 atomic%
Satisfied,
The relative density is 95% or more,
As a crystal phase, InGaZn 2 O 5 is contained at 5 to 20% by volume.
 酸化物焼結体中の気孔の最大円相当径が3μm以下であるのが好ましい。 The maximum equivalent circle diameter of the pores in the oxide sintered body is preferably 3 μm or less.
 酸化物焼結体中の気孔の最大円相当径に対する平均円相当径の相対比が0.3以上1.0以下であるのが好ましい。 The relative ratio of the average equivalent circle diameter to the maximum equivalent circle diameter of the pores in the oxide sintered body is preferably 0.3 or more and 1.0 or less.
 上記酸化物焼結体において、[Zn]/[In]が1.75超、2.25未満である場合には、
 結晶相としてさらに
  ZnSnOを30~90体積%、および
  InGaZnOを1~20体積%で含有するのが好ましい。
In the oxide sintered body, when [Zn] / [In] is more than 1.75 and less than 2.25,
It is preferable to further contain 30 to 90% by volume of Zn 2 SnO 4 and 1 to 20% by volume of InGaZnO 4 as crystal phases.
 上記酸化物焼結体において、[Zn]/[In]が1.5未満である場合には、
 結晶相としてさらにInを30~90体積%で含有するのが好ましい。
In the oxide sintered body, when [Zn] / [In] is less than 1.5,
It is preferable to further contain 30 to 90% by volume of In 2 O 3 as a crystal phase.
 上記酸化物焼結体は、結晶相としてさらにInGaZnを0体積%超、10体積%以下で含有するのが好ましい。 It is preferable that the oxide sintered body further contains InGaZn 3 O 6 as a crystal phase in an amount of more than 0% by volume and 10% by volume or less.
 上記酸化物焼結体は、結晶粒径が20μm以下であるのが好ましく、 結晶粒径が5μm以下であるのが特に好ましい。 The oxide sintered body preferably has a crystal grain size of 20 μm or less, and particularly preferably a crystal grain size of 5 μm or less.
 上記酸化物焼結体は、比抵抗が1Ω・cm以下であるのが好ましい。 The oxide sintered body preferably has a specific resistance of 1 Ω · cm or less.
 本発明の実施形態に係るスパッタリングターゲットは、上記酸化物焼結体が、バッキングプレート上にボンディング材によって固定されて成る。 The sputtering target according to the embodiment of the present invention is formed by fixing the oxide sintered body on a backing plate with a bonding material.
 本発明の実施形態に係る酸化物焼結体の製造方法は、
 酸化亜鉛、酸化インジウム、酸化ガリウムおよび酸化錫を所定の割合で含有する混合粉末を準備する工程と、
 前記混合粉末を所定形状に焼結する工程と、を含む。
A method for producing an oxide sintered body according to an embodiment of the present invention includes:
Preparing a mixed powder containing zinc oxide, indium oxide, gallium oxide and tin oxide in a predetermined ratio;
Sintering the mixed powder into a predetermined shape.
 上記製造方法では、前記焼結する工程において、成形型で前記混合粉末に面圧10~39MPaかけた状態で、焼結温度900~1100℃に1~12時間保持することを含んでもよい。
 このとき、前記焼結する工程において、前記焼結温度までの平均昇温速度が600℃/hr以下であるのが好ましい。
In the manufacturing method, the sintering step may include holding the mixed powder at a sintering temperature of 900 to 1100 ° C. for 1 to 12 hours in a state where a surface pressure of 10 to 39 MPa is applied to the mixed powder with a molding die.
At this time, in the step of sintering, it is preferable that an average rate of temperature increase up to the sintering temperature is 600 ° C./hr or less.
 上記製造方法では、さらに、前記混合粉末を準備する工程より後で、前記焼結する工程より前に、前記混合粉末を予備成形する工程を含み、
 前記焼結する工程において、予備成形された成形体を、常圧下で、焼結温度1450~1550℃に1~5時間保持することを含んでもよい。このとき、前記焼結する工程において、前記焼結温度までの平均昇温速度が100℃/hr以下であるのが好ましい。
The manufacturing method further includes a step of preforming the mixed powder after the step of preparing the mixed powder and before the step of sintering.
The sintering step may include maintaining the preformed molded body at a sintering temperature of 1450 to 1550 ° C. for 1 to 5 hours under normal pressure. At this time, in the step of sintering, it is preferable that an average rate of temperature increase up to the sintering temperature is 100 ° C./hr or less.
 本発明の実施形態に係るスパッタリングターゲットは、上記酸化物焼結体、または上記製造方法で製造された酸化物焼結体を、バッキングプレート上にボンディング材で接合する工程を含む。 The sputtering target according to the embodiment of the present invention includes a step of bonding the oxide sintered body or the oxide sintered body manufactured by the manufacturing method to a backing plate with a bonding material.
 本発明の実施形態によれば、バッキングプレートにボンディングする際の割れの発生を抑制できる酸化物焼結体、および該酸化物焼結体を用いたスパッタリングターゲット、並びに酸化物焼結体およびスパッタリングターゲットの製造方法を提供することが可能である。 According to the embodiments of the present invention, an oxide sintered body capable of suppressing the occurrence of cracks when bonded to a backing plate, a sputtering target using the oxide sintered body, and an oxide sintered body and a sputtering target. It is possible to provide a manufacturing method.
図1は、本発明の実施形態に係るスパッタリングターゲットの概略断面図である。FIG. 1 is a schematic cross-sectional view of a sputtering target according to an embodiment of the present invention. 図2は、酸化物焼結体の二次電子像である。FIG. 2 is a secondary electron image of the oxide sintered body.
<酸化物焼結体>
 まず、本発明の実施形態に係る酸化物焼結体について、詳細に説明する。
 本発明の実施形態の酸化物焼結体は、亜鉛、インジウム、ガリウムおよび錫の酸化物を含むものである。ここで、TFT特性に優れた効果を有する酸化物半導体薄膜を形成できるスパッタリングターゲットを製造するためには、スパッタリングターゲットに使用する酸化物焼結体に含まれる金属元素の含有量と、結晶相の含有率を夫々適切に制御する必要がある。
<Oxide sintered body>
First, the oxide sintered body according to the embodiment of the present invention will be described in detail.
The oxide sintered body according to the embodiment of the present invention includes oxides of zinc, indium, gallium, and tin. Here, in order to manufacture a sputtering target capable of forming an oxide semiconductor thin film having an excellent effect on TFT characteristics, the content of the metal element contained in the oxide sintered body used for the sputtering target, and the crystal phase It is necessary to appropriately control the content rate.
 そこで、本発明の実施形態の酸化物焼結体は、
素を除く全金属元素に対する、亜鉛、インジウム、ガリウム及び錫の含有量の割合(原子%)を夫々、[Zn][In]、[Ga]及び[Sn]としたとき、
 40原子%≦[Zn]≦55原子%、
 20原子%≦[In]≦40原子%、
 5原子%≦[Ga]≦15原子%、および
 5原子%≦[Sn]≦20原子%
を満足し、
 相対密度が95%以上であり、
 結晶相として、InGaZnを5~20体積%で含有する。
Therefore, the oxide sintered body of the embodiment of the present invention is
When the content ratio (atomic%) of zinc, indium, gallium and tin with respect to all metal elements excluding element is [Zn] [In], [Ga] and [Sn], respectively.
40 atomic% ≦ [Zn] ≦ 55 atomic%,
20 atomic% ≦ [In] ≦ 40 atomic%,
5 atomic% ≦ [Ga] ≦ 15 atomic%, and 5 atomic% ≦ [Sn] ≦ 20 atomic%
Satisfied,
The relative density is 95% or more,
As a crystal phase, InGaZn 2 O 5 is contained at 5 to 20% by volume.
 「酸化物焼結体に含まれる酸素を除く全金属元素」とは、亜鉛、インジウム、ガリウム、錫であり、さらに、製造上不可避的な金属不純物を含み得る。
 ここで、不可避な金属不純物は微量であるため、酸化物焼結体内の金属元素の比率を規定する上での影響が小さい。よって、「酸化物焼結体に含まれる酸素を除く全金属元素」は、実質的には、亜鉛、インジウム、ガリウムおよび錫である。
The “all metal elements excluding oxygen contained in the oxide sintered body” are zinc, indium, gallium, and tin, and may further contain metal impurities inevitable in production.
Here, since the inevitable amount of metal impurities is very small, the influence on defining the ratio of the metal elements in the oxide sintered body is small. Therefore, “all metal elements excluding oxygen contained in the oxide sintered body” are substantially zinc, indium, gallium and tin.
 よって、本明細書では、酸化物焼結体中の亜鉛、インジウム、ガリウムおよび錫の含有量を原子数で表現し、その全量(合計原子数)に対する亜鉛の含有率が"[Zn]"、インジウムの含有率が"[In]"、ガリウムの含有率が"[Ga]"、および錫の含有率が"[Sn]"と言い換えることができる。そして、[Zn]+[In]+[Ga]+[Sn]=100原子%となる。このように規定した亜鉛、インジウム、ガリウムおよび錫の各元素の含有率(原子%)([Zn]、[In]、[Ga]および[Sn])が、所定範囲を満足するように、各元素の含有量を制御する。 Therefore, in this specification, the content of zinc, indium, gallium and tin in the oxide sintered body is expressed by the number of atoms, and the zinc content relative to the total amount (total number of atoms) is “[Zn]”. In other words, the indium content is “[In]”, the gallium content is “[Ga]”, and the tin content is “[Sn]”. [Zn] + [In] + [Ga] + [Sn] = 100 atomic%. In order that the content (atomic%) ([Zn], [In], [Ga], and [Sn]) of each element of zinc, indium, gallium, and tin defined as described above satisfy a predetermined range, Control element content.
 亜鉛、インジウム、ガリウムおよび錫の各元素の含有率(原子%)について、以下に詳細に説明する。なお、各元素の含有量は、主に、スパッタリングターゲットを用いて成膜される酸化物半導体薄膜の特性を考慮して、設定されている。 The content (atomic%) of each element of zinc, indium, gallium and tin will be described in detail below. Note that the content of each element is set mainly in consideration of the characteristics of the oxide semiconductor thin film formed using a sputtering target.
 亜鉛の含有率:40原子%≦[Zn]≦55原子%
 亜鉛は、酸化物半導体薄膜のアモルファス構造の安定性を向上する。亜鉛の含有率は、好ましくは42原子%≦[Zn]≦54原子%であり、より好ましくは44原子%≦[Zn]≦53原子%である。
Zinc content: 40 atomic% ≦ [Zn] ≦ 55 atomic%
Zinc improves the stability of the amorphous structure of the oxide semiconductor thin film. The zinc content is preferably 42 atomic% ≦ [Zn] ≦ 54 atomic%, more preferably 44 atomic% ≦ [Zn] ≦ 53 atomic%.
 インジウムの含有率:20原子%≦[In]≦40原子%
 インジウムは、酸化物半導体薄膜のキャリア移動度を増加させる。インジウムの含有率は、好ましくは21原子%≦[In]≦39原子%であり、より好ましくは22原子%≦[In]≦38原子%である。
Indium content: 20 atomic% ≦ [In] ≦ 40 atomic%
Indium increases the carrier mobility of the oxide semiconductor thin film. The indium content is preferably 21 atomic% ≦ [In] ≦ 39 atomic%, and more preferably 22 atomic% ≦ [In] ≦ 38 atomic%.
 ガリウムの含有率:5原子%≦[Ga]≦15原子%
 ガリウムは、酸化物半導体薄膜の対光ストレス信頼性、つまり閾値バイアスシフトを向上する。ガリウムの含有率は、好ましくは6原子%≦[Ga]≦14原子%であり、より好ましくは7原子%≦[Ga]≦13原子%である。
Gallium content: 5 atomic% ≦ [Ga] ≦ 15 atomic%
Gallium improves the light stress reliability of the oxide semiconductor thin film, that is, the threshold bias shift. The content of gallium is preferably 6 atomic% ≦ [Ga] ≦ 14 atomic%, more preferably 7 atomic% ≦ [Ga] ≦ 13 atomic%.
 錫の含有率:5原子%≦[Sn]≦20原子%
 錫は、酸化物半導体薄膜のエッチャント耐性を向上する。錫の含有率は、好ましくは6原子%≦[Sn]≦22原子%であり、より好ましくは7原子%≦[Sn]≦20原子%である。
Tin content: 5 atomic% ≦ [Sn] ≦ 20 atomic%
Tin improves the etchant resistance of the oxide semiconductor thin film. The tin content is preferably 6 atomic% ≦ [Sn] ≦ 22 atomic%, and more preferably 7 atomic% ≦ [Sn] ≦ 20 atomic%.
 [Sn]/[Ga]:0.5超、2.5未満
 [Sn]/[Ga]は、InGaZnの含有量の指標となる。[Sn]/[Ga]は0.5超、2.5未満であるのが好ましい。[Sn]/[Ga]が0.5未満の場合には、InGaZnが20体積%を超えてしまい、[Sn]/[Ga]が2.5以上ではInGaZnが0体積%となる。
[Sn] / [Ga]: more than 0.5, less than 2.5 [Sn] / [Ga] is an index of the content of InGaZn 3 O 6 . [Sn] / [Ga] is preferably more than 0.5 and less than 2.5. When [Sn] / [Ga] is less than 0.5, InGaZn 3 O 6 exceeds 20% by volume, and when [Sn] / [Ga] is 2.5 or more, InGaZn 3 O 6 is 0 volume. %.
 酸化物焼結体は、亜鉛、インジウム、ガリウムおよび錫の酸化物を含む。具体的には、ZnSnO相、InGaZnO相、InGaZn相、InGaZn相、In相およびSnO相を構成相として含有する。さらに、製造上不可避的に混入または生成される酸化物などの不純物を含んでいてもよい。
 特に、本発明の実施形態では、InGaZn相を所定の比率で含有することにより、酸化物焼結体の割れを効果的に抑制することができる。
The oxide sintered body includes oxides of zinc, indium, gallium and tin. Specifically, it contains Zn 2 SnO 4 phase, InGaZnO 4 phase, InGaZn 2 O 5 phase, InGaZn 3 O 6 phase, In 2 O 3 phase and SnO 2 phase as constituent phases. Further, it may contain impurities such as oxides inevitably mixed or generated in production.
In particular, in the embodiment of the present invention, cracking of the oxide sintered body can be effectively suppressed by containing the InGaZn 2 O 5 phase at a predetermined ratio.
 ここで結晶相の割合は、酸化物焼結体のX線回折スペクトルを解析して求めることができる。上述した結晶相(つまり、ZnSnO相、InGaZnO相、InGaZn相、InGaZn相、In相およびSnO相)が存在することを前提として、X線回折スペクトルのピークをそれら6つの結晶相の特定の結晶面に帰属させる。各結晶相に帰属された複数のピークから1つのピークを選択し、その選択ピークのピーク強度を測定する。6つの結晶相から、6つのピーク強度の測定値が得られ、その6つの測定値を、各結晶相の最強ピーク強度に換算する。6つの換算値を合計して得られた値(合計値)に対する各結晶相の換算値の比率を求める。この比率を、酸化物結晶体中に含まれる各結晶相の比率(含有率:体積%)とする。つまり、本明細書では、各結晶相から得られる6つのピーク強度の換算値を合計し、その合計値を100%としたとき、各結晶相に対応する各換算値の割合(%)を、各結晶相の含有率(体積%)として用いる。 Here, the ratio of the crystal phase can be obtained by analyzing the X-ray diffraction spectrum of the oxide sintered body. X-ray diffraction on the premise that the above-described crystal phases (that is, Zn 2 SnO 4 phase, InGaZnO 4 phase, InGaZn 2 O 5 phase, InGaZn 3 O 6 phase, In 2 O 3 phase and SnO 2 phase) exist. The spectral peaks are assigned to specific crystal planes of these six crystal phases. One peak is selected from a plurality of peaks assigned to each crystal phase, and the peak intensity of the selected peak is measured. Six peak intensity measurements are obtained from the six crystal phases, and the six measurement values are converted to the strongest peak intensity of each crystal phase. The ratio of the converted value of each crystal phase to the value (total value) obtained by summing the six converted values is determined. This ratio is defined as the ratio of each crystal phase contained in the oxide crystal (content: volume%). That is, in this specification, when the converted values of the six peak intensities obtained from each crystal phase are totaled and the total value is taken as 100%, the ratio (%) of each converted value corresponding to each crystal phase, Used as the content (volume%) of each crystal phase.
 上述の通り、本明細書においては、結晶相の含有率(体積%)を計算する際にZnSnO相、InGaZnO相、InGaZn相、InGaZn相、In相およびSnO相のみを考慮している。実際には、上記した結晶相以外の結晶相も含み得るが、本発明の実施形態の効果(酸化物焼結体の割れ防止)において影響を及ぼさない。よって、本発明の実施形態においては、酸化物焼結体の割れ防止の効果を得るために、上記した6つの結晶相のみを考慮している。 As described above, in this specification, when calculating the content (volume%) of the crystal phase, the Zn 2 SnO 4 phase, the InGaZnO 4 phase, the InGaZn 2 O 5 phase, the InGaZn 3 O 6 phase, and the In 2 O 3 Only the phase and the SnO 2 phase are considered. Actually, crystal phases other than the above-described crystal phases can be included, but the effect of the embodiment of the present invention (preventing cracking of the oxide sintered body) is not affected. Therefore, in the embodiment of the present invention, in order to obtain the effect of preventing cracking of the oxide sintered body, only the above six crystal phases are considered.
 酸化物焼結体に含まれ得る各結晶相の含有率(体積%)について詳細に説明する。なお、結晶相の含有率(体積%)の単位を単に「%」と表記することがある。 The content (volume%) of each crystal phase that can be included in the oxide sintered body will be described in detail. Note that the unit of the crystal phase content (volume%) may be simply expressed as “%”.
 InGaZn:5~20体積%
 InGaZnは、結晶粒間のピン止め効果を有する。InGaZnを含むことにより、結晶粒径成長を抑制して材料強度を上げることができ、バッキングプレートにボンディングする際の酸化物焼結体の割れを抑制できる。
 InGaZnの含有率が5体積%未満であると、材料強度が十分ではなく、酸化物焼結体の割れが生じやすくなる。含有率が30体積%を超えると、比抵抗が増大するので、異常放電を誘発するおそれがある。よって、InGaZnを5体積%含むことにより、酸化物焼結体の割れ防止効果を十分に発揮することができる。一方、InGaZnが多すぎると主相の平衡状態を崩し放電の安定性が低下するので、30体積%以下とする。
 InGaZnの含有率は、好ましくは5~20体積%であり、より好ましくは5~15体積%である。
InGaZn 2 O 5 : 5 to 20% by volume
InGaZn 2 O 5 has a pinning effect between crystal grains. By including InGaZn 2 O 5 , growth of the crystal grain size can be suppressed and the material strength can be increased, and cracking of the oxide sintered body when bonding to the backing plate can be suppressed.
When the content of InGaZn 2 O 5 is less than 5% by volume, the material strength is not sufficient, and cracking of the oxide sintered body tends to occur. If the content exceeds 30% by volume, the specific resistance increases, and thus abnormal discharge may be induced. Therefore, by containing 5% by volume of InGaZn 2 O 5 , the effect of preventing cracking of the oxide sintered body can be sufficiently exhibited. On the other hand, if there is too much InGaZn 2 O 5, the equilibrium state of the main phase is lost and the discharge stability is lowered, so the content is made 30% by volume or less.
The content of InGaZn 2 O 5 is preferably 5 to 20% by volume, more preferably 5 to 15% by volume.
 InGaZn:0体積%超、~10体積%以下
 InGaZnは、InGaZnと同様に、結晶粒間のピン止め効果を有する。InGaZnに加えてInGaZnを含むと、ピン止め効果をさらに向上することができる。よって、バッキングプレートにボンディングする際の酸化物焼結体の割れをさらに抑制できる。
 InGaZnは、0.5~8体積%含むのが好ましく、1~6体積%含むのがより好ましい。
InGaZn 3 O 6 : more than 0% by volume and ˜10% by volume or less InGaZn 3 O 6 has a pinning effect between crystal grains like InGaZn 2 O 5 . When InGaZn 3 O 6 is included in addition to InGaZn 2 O 5 , the pinning effect can be further improved. Therefore, it is possible to further suppress cracking of the oxide sintered body when bonding to the backing plate.
InGaZn 3 O 6 is preferably contained in an amount of 0.5 to 8% by volume, more preferably 1 to 6% by volume.
 さらに、元素の含有率の比率によって、結晶相の含有率の範囲を異ならせることにより、酸化物焼結体の割れを抑制する効果を向上し得る。
 例えば、ZnSnO、InGaZnOおよびInは、[Zn]/[In]の比率によって好ましい含有量が異なる。
 ZnSnOならびにInは、相対密度の向上、比抵抗の低減に寄与という効果を有する。放電の安定性向上が図れる。
 InGaZnOは、InGaZnおよびInGaZnと同様に、結晶粒間のピン止め効果を有する。InGaZnに加えてInGaZnOを含むと、ピン止め効果をさらに向上することができる。よって、バッキングプレートにボンディングする際の酸化物焼結体の割れをさらに抑制できる。
Furthermore, the effect of suppressing cracking of the oxide sintered body can be improved by varying the range of the content ratio of the crystal phase depending on the ratio of the element content ratio.
For example, preferable contents of Zn 2 SnO 4 , InGaZnO 4 and In 2 O 3 differ depending on the ratio of [Zn] / [In].
Zn 2 SnO 4 and In 2 O 3 have the effect of contributing to improvement of relative density and reduction of specific resistance. The stability of discharge can be improved.
InGaZnO 4 has a pinning effect between crystal grains similarly to InGaZn 2 O 5 and InGaZn 3 O 6 . When InGaZnO 4 is included in addition to InGaZn 2 O 5 , the pinning effect can be further improved. Therefore, it is possible to further suppress cracking of the oxide sintered body when bonding to the backing plate.
 [Zn]/[In]が1.75超、2.25未満の場合には、ZnSnOを30~90体積%、およびInGaZnOを1~20体積%で含有するのが好ましい。
 [Zn]/[In]が1.5未満の場合には、Inを30体積%以上で含有するのが好ましい。
[Zn] / [In] of 1.75 than in the case of less than 2.25, the Zn 2 SnO 4 30 ~ 90 volume%, and preferably contains InGaZnO 4 in 1 to 20 vol%.
When [Zn] / [In] is less than 1.5, it is preferable to contain In 2 O 3 at 30% by volume or more.
 酸化物焼結体の相対密度は、95%以上であるのが好ましい。これにより、酸化物焼結体の強度が上昇して、バッキングプレートにボンディングする際の酸化物焼結体の割れを効果的に抑制できる。相対密度は、より好ましくは97%以上であり、さらに好ましくは99%以上である。 The relative density of the oxide sintered body is preferably 95% or more. Thereby, the intensity | strength of oxide sintered compact raises and the crack of oxide sintered compact at the time of bonding to a backing plate can be suppressed effectively. The relative density is more preferably 97% or more, and even more preferably 99% or more.
 本明細書における相対密度は、以下のように求める。
 測定用試料として準備した酸化物焼結体を任意の位置で厚さ方向に切断し、その切断面の任意の位置を鏡面研削する。次に、走査型電子顕微鏡(SEM)を用いて倍率1000倍で写真撮影し、100μm角の領域内における気孔の面積率(%)を測定して「気孔率(%)」とした。同じ試料において20箇所の切断面で同様の気孔率測定を行い、20回の測定で得られた気孔率の平均値を当該試料の平均気孔率(%)とした。[100-平均気孔率]により求めた値を、本明細書における「相対密度(%)」とした。
The relative density in this specification is calculated | required as follows.
An oxide sintered body prepared as a measurement sample is cut in a thickness direction at an arbitrary position, and an arbitrary position of the cut surface is mirror-ground. Next, a picture was taken at a magnification of 1000 using a scanning electron microscope (SEM), and the area ratio (%) of pores in a 100 μm square region was measured to obtain “porosity (%)”. The same porosity measurement was performed on 20 cut surfaces of the same sample, and the average value of the porosity obtained by 20 measurements was defined as the average porosity (%) of the sample. The value obtained by [100−average porosity] was defined as “relative density (%)” in the present specification.
 図2に、酸化物焼結体の二次電子像(倍率1000倍)の一例を示す。図2において、黒色の点状部分が気孔である。気孔は、SEM写真および二次電子像のいずれにおいても他の金属組織と容易に識別することができる。 FIG. 2 shows an example of a secondary electron image (magnification 1000 times) of the oxide sintered body. In FIG. 2, black dot-like portions are pores. The pores can be easily distinguished from other metal structures in both SEM photographs and secondary electron images.
 酸化物焼結体中の気孔については、気孔率が低いだけでなく、気孔のサイズが小さいほうが好ましい。
 気孔を含む成形体を焼結すると、小さい気孔は、焼結により消滅するが、大きい気孔は消滅せず、酸化物焼結体の内部に残る。酸化物焼結体中の気孔内には、気体が圧縮された状態で存在する。また、成形体中のSn、Ga等が焼結中に分解して、酸化物焼結体の内部に気孔を生じることがある。このように生じた気孔の内部にも、圧縮された気体が存在し得る。酸化物焼結体中に、圧縮された気体を含む気孔が存在すると内部応力が高くなり、酸化物焼結体の機械強度および熱衝撃耐性が低下する。
As for the pores in the oxide sintered body, it is preferable that not only the porosity is low but also the pore size is small.
When the molded body including pores is sintered, small pores disappear by sintering, but large pores do not disappear and remain inside the oxide sintered body. In the pores in the oxide sintered body, the gas exists in a compressed state. In addition, Sn, Ga, and the like in the molded body may be decomposed during sintering to generate pores inside the oxide sintered body. Compressed gas may also exist inside the pores thus generated. If pores containing a compressed gas are present in the oxide sintered body, the internal stress increases, and the mechanical strength and thermal shock resistance of the oxide sintered body are reduced.
 気孔に起因する酸化物焼結体の割れは、気孔が大きいほど高くなる傾向がある。そのため、酸化物焼結体中の気孔のサイズを小さく抑えることにより、酸化物焼結体の機械強度が上がり、酸化物焼結体の割れを抑制できる。気孔の最大円相当径Dmaxを3μm以下とすることにより、内部応力を十分に低くすることができる。気孔率の最大円相当径が2μm以下であるのがより好ましい。 The crack of the oxide sintered body due to the pores tends to be higher as the pores are larger. Therefore, by suppressing the size of the pores in the oxide sintered body, the mechanical strength of the oxide sintered body is increased, and cracking of the oxide sintered body can be suppressed. By setting the maximum equivalent circle diameter Dmax of the pores to 3 μm or less, the internal stress can be sufficiently reduced. The maximum equivalent circle diameter of the porosity is more preferably 2 μm or less.
 また、酸化物焼結体中の気孔の最大円相当径Dmax(μm)に対する平均円相当径Dave(μm)の相対比が0.3以上1.0以下であるのが好ましい(つまり、0.3≦Dave/Dmax≦1.0)。相対比が1.0のとき円形であり、相対比が小さくなるほど扁平な楕円形となる。
 気孔の形状が楕円形であると、円形の場合に比べて、機械強度が下がってしまい酸化物焼結体が割れやすくなってしまう。特に、扁平な楕円になるほど、その傾向が顕著になる。そのため、相対比が0.3以上とすることにより、酸化物焼結体の強度を高くすることができる。相対比が0.5以上であるのがより好ましい。
The relative ratio of the average equivalent circle diameter D ave (μm) to the maximum equivalent circle diameter D max (μm) of pores in the oxide sintered body is preferably 0.3 or more and 1.0 or less (that is, 0.3 ≦ D ave / D max ≦ 1.0). When the relative ratio is 1.0, the shape is circular. The smaller the relative ratio is, the flatter oval shape is.
When the pores are elliptical, the mechanical strength is lowered and the oxide sintered body is easily cracked as compared to the case of a circular shape. In particular, the tendency becomes more prominent as the shape becomes a flat ellipse. Therefore, when the relative ratio is 0.3 or more, the strength of the oxide sintered body can be increased. More preferably, the relative ratio is 0.5 or more.
 本明細書における気孔の最大円相当径および平均円相当径は、以下のように求める。
 測定用試料として準備した酸化物焼結体を任意の位置で厚さ方向に切断し、その切断面の任意の位置を鏡面研削する。次に、走査型電子顕微鏡(SEM)を用いて適切な倍率(例えば倍率1000倍)で写真撮影し、100μm角の領域内に存在する全ての気孔の円相当径を求めた。同じ試料において20箇所の切断面で、同様に、全ての気孔の円相当径を求めた。20回の測定で得られた全ての円相当径のうち、最も大きい円相当径を、その酸化物焼結体の「気孔の最大円相当径」とし、全ての円相当径の平均値を、その酸化物焼結体の「気孔の平均円相当径」とした。
The maximum equivalent circle diameter and the average equivalent circle diameter of the pores in this specification are determined as follows.
An oxide sintered body prepared as a measurement sample is cut in a thickness direction at an arbitrary position, and an arbitrary position of the cut surface is mirror-ground. Next, using a scanning electron microscope (SEM), photographs were taken at an appropriate magnification (for example, 1000 times magnification), and the equivalent circle diameters of all pores existing in a 100 μm square region were obtained. Similarly, the equivalent circle diameters of all pores were obtained at 20 cut surfaces in the same sample. Of all the equivalent circle diameters obtained by 20 measurements, the largest equivalent circle diameter is defined as the “maximum equivalent circle diameter of pores” of the oxide sintered body, and the average value of all equivalent circle diameters is The oxide sintered body was defined as “the average equivalent circular diameter of pores”.
 酸化物焼結体の結晶粒を微細化すると、バッキングプレートにボンディングする際の酸化物焼結体の割れを抑制する効果を高めることができる。結晶粒の平均結晶粒径は、好ましくは20μm以下であり、これにより、酸化物焼結体の割れ抑制効果をより一層向上することができる。平均結晶粒径は、より好ましくは10μm以下であり、さらに好ましくは8μm以下であり、特に好ましくは5μmである。
 一方、当該平均結晶粒径の下限値は特に限定されないが、平均結晶粒径の微細化と製造コストのバランスから、平均結晶粒径の好ましい下限は0.05μm程度である。
When the crystal grains of the oxide sintered body are made finer, the effect of suppressing cracking of the oxide sintered body when bonding to the backing plate can be enhanced. The average crystal grain size of the crystal grains is preferably 20 μm or less, whereby the effect of suppressing cracking of the oxide sintered body can be further improved. The average crystal grain size is more preferably 10 μm or less, still more preferably 8 μm or less, and particularly preferably 5 μm.
On the other hand, the lower limit value of the average crystal grain size is not particularly limited, but a preferable lower limit of the average crystal grain size is about 0.05 μm from the balance between refinement of the average crystal grain size and production cost.
 結晶粒の平均結晶粒径は、以下のように測定する。
 測定用試料として準備した酸化物焼結体を任意の位置で厚さ方向に切断し、その切断面の任意の位置を鏡面研削する。次に、切断面における組織を、走査型電子顕微鏡(SEM)を用いて倍率400倍で写真撮影する。撮影した写真上で、任意の方向に長さ100μm相当の直線を引き、この直線上に存在する結晶粒の数(N)を求める。[100/N](μm)で算出した値を当該「直線上での結晶粒径」とする。さらに、写真上に長さ100μm相当の直線を20本作成して、各直線上での結晶粒径を算出する。そして、[(各直線上での結晶粒径の合計)/20]で算出した値を、を本明細書における「酸化物焼結体の平均結晶粒径」とした。
The average crystal grain size of the crystal grains is measured as follows.
An oxide sintered body prepared as a measurement sample is cut in a thickness direction at an arbitrary position, and an arbitrary position of the cut surface is mirror-ground. Next, a photograph of the tissue on the cut surface is taken at a magnification of 400 using a scanning electron microscope (SEM). On the photograph taken, a straight line corresponding to a length of 100 μm is drawn in an arbitrary direction, and the number (N) of crystal grains existing on the straight line is obtained. The value calculated by [100 / N] (μm) is defined as the “crystal grain size on a straight line”. Further, 20 straight lines corresponding to a length of 100 μm are created on the photograph, and the crystal grain size on each straight line is calculated. The value calculated by [(total crystal grain size on each straight line) / 20] was defined as “average crystal grain size of oxide sintered body” in the present specification.
 酸化物焼結体の結晶粒の平均結晶粒径の制御に加えて、粒度分布を適切に制御することがさらに好ましい。特に、結晶粒径が30μmを超える粗大結晶粒は、ボンディング時の酸化物焼結体の割れの原因となるため、できるだけ少ない方がよい。結晶粒径が30μmを超える粗大結晶粒は、面積率で、好ましくは10%以下、より好ましくは8%以下、さらに好ましくは6%以下、さらに好ましくは4%以下、最も好ましくは0%である。 In addition to controlling the average crystal grain size of the oxide sintered body crystal grains, it is more preferable to appropriately control the particle size distribution. In particular, coarse crystal grains having a crystal grain size exceeding 30 μm cause cracking of the oxide sintered body at the time of bonding. Coarse crystal grains having a crystal grain size exceeding 30 μm are preferably in an area ratio of 10% or less, more preferably 8% or less, further preferably 6% or less, further preferably 4% or less, and most preferably 0%. .
 結晶粒径が30μmを超える結晶粒の面積率は、以下のように測定する。
 上述した「結晶粒の平均結晶粒径」の測定において、長さ100μm相当の直線を引いた際に、その直線で切り取られる長さが30μm以上となる結晶粒を「粗大粒」とする。長さ100μmの直線上で、この粗大粒の占める長さ(つまり、直線のうち、粗大粒を横切っている部分の長さ)をL(μm)とする。L(μm)を100(μm)で除した値を、この直線上の粗大粒の割合R(%)とした。
   R(%)=(L(μm)/100(μm))×100(%)
 なお、長さ100μmの直線上に複数の粗大粒がある場合は、各粗大粒を横切る部分の長さの合計をL(μm)として、粗大粒の割合R(%)を求める。
 結晶粒の平均結晶粒径の測定で引く20本の直線のそれぞれにおいて、粗大粒の割合R(%)を求めて、その平均値をこの焼結体の粗大粒の割合とした。
The area ratio of crystal grains having a crystal grain size exceeding 30 μm is measured as follows.
In the measurement of the “average grain size of crystal grains” described above, when a straight line corresponding to a length of 100 μm is drawn, a crystal grain having a length of 30 μm or more cut by the straight line is defined as a “coarse grain”. On the straight line having a length of 100 μm, the length occupied by the coarse particles (that is, the length of the portion of the straight line crossing the coarse particles) is defined as L (μm). The value obtained by dividing L (μm) by 100 (μm) was defined as the ratio R (%) of coarse particles on this straight line.
R (%) = (L (μm) / 100 (μm)) × 100 (%)
In addition, when there are a plurality of coarse particles on a straight line having a length of 100 μm, the total length of portions crossing each coarse particle is defined as L (μm), and the ratio R (%) of the coarse particles is obtained.
In each of the 20 straight lines drawn in the measurement of the average crystal grain size of the crystal grains, the ratio R (%) of coarse grains was determined, and the average value was taken as the ratio of coarse grains of this sintered body.
 酸化物焼結体の比抵抗は、好ましくは1Ω・cm以下、より好ましくは10-1Ω・cm以下、さらに好ましくは10-2Ω・cm以下である。後述するように、酸化物焼結体は、バッキングプレートに固定されてスパッタリングターゲットを形成する。このスパッタリングターゲットを使用する際、酸化物焼結体の比抵抗を低く抑えることにより、スパッタリング中の異常放電を抑制することができ、ひいては異常放電に起因する酸化物焼結体の割れを抑制することができる。これにより、スパッタリングターゲットを用いた酸化物半導体薄膜の成膜のコストを抑えることができる。さらに、スパッタリング中の異常放電による成膜不良を抑制できるので、均一かつ良好な特性を有する酸化物半導体薄膜を製造することができる。
 例えば、表示装置を製造する生産ラインで、スパッタリングターゲットを用いてTFTの酸化物半導体薄膜を製造することにより、TFTの製造コスト、ひいては表示装置の製造コストを抑制することができる。さらに、良好なTFT特性を示す酸化物半導体薄膜を形成することができ、高性能の表示装置を製造することができる。
The specific resistance of the oxide sintered body is preferably 1 Ω · cm or less, more preferably 10 −1 Ω · cm or less, and further preferably 10 −2 Ω · cm or less. As will be described later, the oxide sintered body is fixed to a backing plate to form a sputtering target. When using this sputtering target, by suppressing the specific resistance of the oxide sintered body to a low level, abnormal discharge during sputtering can be suppressed, and consequently cracking of the oxide sintered body due to abnormal discharge is suppressed. be able to. Thereby, the cost of forming an oxide semiconductor thin film using a sputtering target can be reduced. Further, since a film formation defect due to abnormal discharge during sputtering can be suppressed, an oxide semiconductor thin film having uniform and favorable characteristics can be manufactured.
For example, by manufacturing a TFT oxide semiconductor thin film using a sputtering target in a production line for manufacturing a display device, the manufacturing cost of the TFT, and thus the manufacturing cost of the display device, can be suppressed. Furthermore, an oxide semiconductor thin film exhibiting favorable TFT characteristics can be formed, and a high-performance display device can be manufactured.
 酸化物焼結体の比抵抗は、四探針法により測定した。詳細には、酸化物焼結体の比抵抗を、既知の比抵抗測定器(例えば、三菱化学アナリテック社製のロレスターGPなど)を用いて測定することができる。なお、本明細書の比抵抗は、各端子間の距離を1.5mmとして測定して得たものを指す。異なる場所で比抵抗を複数回(例えば4回)測定し、その平均値を酸化物焼結体の比抵抗とした。 The specific resistance of the oxide sintered body was measured by the four probe method. Specifically, the specific resistance of the oxide sintered body can be measured using a known specific resistance measuring instrument (for example, Lorester GP manufactured by Mitsubishi Chemical Analytech Co., Ltd.). In addition, the specific resistance of this specification points out what was obtained by measuring the distance between each terminal as 1.5 mm. The specific resistance was measured several times (for example, four times) at different locations, and the average value was taken as the specific resistance of the oxide sintered body.
<スパッタリングターゲット>
 次に、酸化物焼結体を用いたスパッタリングターゲットについて説明する。
 図1は、スパッタリングターゲット1の概略断面図である。スパッタリングターゲット1は、バッキングプレート20と、バッキングプレート20上にボンディング材30で固定された酸化物焼結体10とを含む。
 酸化物焼結体10には、本発明の実施形態に係る酸化物焼結体を用いている。よって、バッキングプレート20にボンディング材30でボンディングする際に、酸化物焼結体が割れにくく、歩留まりよくスパッタリングターゲット1を製造することができる。
<Sputtering target>
Next, a sputtering target using an oxide sintered body will be described.
FIG. 1 is a schematic cross-sectional view of the sputtering target 1. The sputtering target 1 includes a backing plate 20 and an oxide sintered body 10 fixed on the backing plate 20 with a bonding material 30.
The oxide sintered body 10 uses the oxide sintered body according to the embodiment of the present invention. Therefore, when bonding to the backing plate 20 with the bonding material 30, the oxide sintered body is difficult to break and the sputtering target 1 can be manufactured with a high yield.
<製造方法>
 次に、本発明の実施形態の酸化物焼結体およびスパッタリングターゲットの製造方法について説明する。
<Manufacturing method>
Next, the manufacturing method of the oxide sintered compact and sputtering target of embodiment of this invention is demonstrated.
 本発明の実施形態の酸化物焼結体は、酸化亜鉛、酸化インジウム、酸化ガリウムおよび酸化錫を含有する混合粉末を焼結して得られる。本発明の実施形態のスパッタリングターゲットは得られた酸化物焼結体をバッキングプレート上に固定することにより得られる。
 より詳細には、酸化物焼結体は、以下の工程(a)~(e)により製造される。スパッタリングターゲットは、以下の工程(f)および(g)により製造される。
 工程(a):酸化物の粉末を混合し粉砕する
 工程(b):得られた混合粉末を乾燥し造粒する
 工程(c):造粒した混合粉末を予備成形する
 工程(d):予備成形した成形体を脱脂する
 工程(e):脱脂した成形体を焼結して、酸化物焼結体を得る
 工程(f):得られた酸化物焼結体を加工する
 工程(g):加工した酸化物焼結体をバッキングプレートにボンディングして、スパッタリングターゲットを得る
The oxide sintered body of the embodiment of the present invention is obtained by sintering a mixed powder containing zinc oxide, indium oxide, gallium oxide, and tin oxide. The sputtering target of the embodiment of the present invention is obtained by fixing the obtained oxide sintered body on a backing plate.
More specifically, the oxide sintered body is manufactured by the following steps (a) to (e). The sputtering target is manufactured by the following steps (f) and (g).
Step (a): Oxide powder is mixed and pulverized Step (b): The obtained mixed powder is dried and granulated Step (c): The granulated mixed powder is preformed Step (d): Preliminary Degreasing the formed molded body Step (e): Sintering the degreased molded body to obtain an oxide sintered body Step (f): Processing the obtained oxide sintered body Step (g): Bonding the processed oxide sintered body to a backing plate to obtain a sputtering target
 本発明の実施形態では、工程(a)では、最終的に得られる酸化物焼結体中に、亜鉛、インジウム、ガリウムおよび錫が所定の割合で含まれるように、それらの酸化物を含む混合粉末を調製する。また、工程(e)では、酸化物焼結体中の結晶相が適切な範囲で形成されるように、焼結条件を制御する。工程(b)~(d)および(f)~(g)は、酸化物焼結体およびスパッタリングターゲットを製造することができれば特に限定されず、酸化物焼結体およびスパッタリングターゲットの製造において通常用いられる工程を適宜適用することができる。以下、各工程を詳細に説明するが、本発明の実施形態をこれらの工程に限定する趣旨ではない。 In the embodiment of the present invention, in the step (a), the oxide sintered body finally obtained is a mixture containing these oxides so that zinc, indium, gallium and tin are contained in a predetermined ratio. Prepare powder. In the step (e), the sintering conditions are controlled so that the crystal phase in the oxide sintered body is formed in an appropriate range. Steps (b) to (d) and (f) to (g) are not particularly limited as long as the oxide sintered body and the sputtering target can be produced, and are usually used in the production of the oxide sintered body and the sputtering target. Can be applied as appropriate. Hereinafter, although each process is demonstrated in detail, it is not the meaning which limits embodiment of this invention to these processes.
(工程(a):酸化物の粉末を混合し粉砕する)
 酸化亜鉛、酸化インジウム粉末、酸化ガリウム粉末および酸化錫粉末を所定の割合に配合し、混合し粉砕する。用いられる各原料粉末の純度はそれぞれ、約99.99%以上が好ましい。微量の不純物元素が存在すると、酸化物半導体薄膜の半導体特性を損なう恐れがあるためである。
 各原料粉末の「所定の割合」とは、焼結後に得られる酸化物焼結体に含まれる酸素を除く全金属元素(亜鉛、インジウム、ガリウムおよび錫)に対する、亜鉛、インジウム、ガリウムおよび錫の含有量の割合が以下の範囲内となるような割合のことである。
 40原子%≦[Zn]≦55原子%、
 20原子%≦[In]≦40原子%、
 5原子%≦[Ga]≦15原子%、
 5原子%≦[Sn]≦20原子%
(Step (a): Oxide powder is mixed and pulverized)
Zinc oxide, indium oxide powder, gallium oxide powder and tin oxide powder are mixed in a predetermined ratio, mixed and pulverized. The purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a small amount of an impurity element may impair the semiconductor characteristics of the oxide semiconductor thin film.
“Predetermined ratio” of each raw material powder means that zinc, indium, gallium and tin with respect to all metal elements (zinc, indium, gallium and tin) excluding oxygen contained in the sintered oxide obtained after sintering. The ratio of the content is within the following range.
40 atomic% ≦ [Zn] ≦ 55 atomic%,
20 atomic% ≦ [In] ≦ 40 atomic%,
5 atomic% ≦ [Ga] ≦ 15 atomic%,
5 atomic% ≦ [Sn] ≦ 20 atomic%
 通常は、各原料粉末(酸化亜鉛、酸化インジウム粉末、酸化ガリウム粉末および酸化錫粉末)を混合した後の混合粉末に含まれる酸素を除く全金属元素に対する、亜鉛、インジウム、ガリウムおよび錫の含有量の割合が上記の範囲内となるように、各原料粉末を配合すればよい。 Normally, the content of zinc, indium, gallium and tin with respect to all metal elements excluding oxygen contained in the mixed powder after mixing each raw material powder (zinc oxide, indium oxide powder, gallium oxide powder and tin oxide powder) Each raw material powder may be blended so that the ratio is in the above range.
 混合および粉砕には、ボールミルまたはビーズミルを使用するのが好ましい。原料粉末と水をミル装置に投入して、原料粉末を粉砕し混合することにより、混合粉末を得ることができる。このとき、原料粉末を均一に混合する目的で、分散材を添加して混合してもよく、さらに、後で成形体を形成するのを容易にするためにバインダーを添加して混合してもよい。
 ボールミルおよびビーズミルで使用されるボールやビーズ(これらを「メディア」と称する)としては、酸化ジルコニウム製、ナイロン製またはアルミナ製のものを使用できる。ボールミルおよびビーズミルに使用するポッドは、ナイロンポッド、アルミナポッド、およびジルコニアポッドを利用することができる。
A ball mill or bead mill is preferably used for mixing and grinding. The mixed powder can be obtained by charging the raw material powder and water into the mill device and crushing and mixing the raw material powder. At this time, for the purpose of uniformly mixing the raw material powder, a dispersing agent may be added and mixed, and further, a binder may be added and mixed in order to easily form a molded body later. Good.
As balls and beads (these are referred to as “media”) used in the ball mill and the bead mill, those made of zirconium oxide, nylon or alumina can be used. As the pod used for the ball mill and the bead mill, a nylon pod, an alumina pod, and a zirconia pod can be used.
 ボールミルまたはビーズミルによる混合時間は、1時間以上であるのが好ましく、より好ましくは10時間以上であり、更に好ましくは20時間以上である。 The mixing time by the ball mill or bead mill is preferably 1 hour or longer, more preferably 10 hours or longer, and further preferably 20 hours or longer.
(工程(b):混合粉末を乾燥し造粒する)
 工程(a)で得られた混合粉末について例えばスプレードライヤなどで乾燥して、造粒を行うことが好ましい。
(Step (b): Dry and granulate the mixed powder)
It is preferable to perform granulation by drying the mixed powder obtained in the step (a) with, for example, a spray dryer.
(工程(c):造粒した混合粉末を予備成形する)
 造粒後の混合粉末を所定寸法の金型に充填し、金型プレスで所定の圧力(例えば約49MPa~約98MPa)の圧力をかけることにより、所定の形状に予備成形するのが好ましい。
 工程(e)における焼結をホットプレスで行う場合には、工程(c)を省略してもよく、焼結用の金型に混合粉末を装填して加圧焼結することにより、緻密な酸化物焼結体を製造することができる。なお、取扱いを容易にするために、工程(c)で予備成形を行った後に、成形体を焼結用の成形型に入れてホットプレスを行ってもよい。
 一方、工程(e)における焼結を常圧焼結で行う場合には、工程(c)において予備成形することにより、緻密な酸化物焼結体を製造することができる。
(Step (c): pre-molding the granulated mixed powder)
It is preferable that the granulated mixed powder is filled into a mold having a predetermined size and preliminarily molded into a predetermined shape by applying a predetermined pressure (for example, about 49 MPa to about 98 MPa) with a mold press.
When the sintering in the step (e) is performed by a hot press, the step (c) may be omitted. An oxide sintered body can be produced. In order to facilitate handling, after the preforming is performed in the step (c), the compact may be placed in a sintering mold and hot pressed.
On the other hand, when the sintering in step (e) is performed by atmospheric pressure sintering, a dense oxide sintered body can be produced by preforming in step (c).
(工程(d):予備成形した成形体を脱脂する)
 工程(a)において、混合粉末に分散材および/またはバインダーを添加した場合には、成形体を加熱して、成形体中の分散材およびバインダーを除去(すなわち脱脂)するのが好ましい。加熱条件(加熱温度および保持時間)は、分散材およびバインダーを除去できる温度および時間であれば特に限定されない。例えば、成形体を、大気中、約500℃の加熱温度に約5時間保持する。
 工程(a)において、分散材およびバインダーを使用しなかった場合には、工程(d)を省略してもよい。
 工程(c)を省略した場合、すなわち、工程(e)でホットプレスにより焼結する場合であってかつ成形体を形成しない場合には、混合粉末を加熱して、混合粉末中の分散材およびバインダーを除去(脱脂)してもよい。
(Step (d): Degreasing the preformed molded body)
In the step (a), when a dispersion material and / or a binder is added to the mixed powder, it is preferable to heat (i.e., degrease) the dispersion material and the binder in the molded body by heating the molded body. The heating conditions (heating temperature and holding time) are not particularly limited as long as the temperature and time allow the dispersion material and the binder to be removed. For example, the molded body is held at a heating temperature of about 500 ° C. in the atmosphere for about 5 hours.
In the step (a), when the dispersant and the binder are not used, the step (d) may be omitted.
When step (c) is omitted, that is, when sintering is performed by hot pressing in step (e) and a molded body is not formed, the mixed powder is heated, and the dispersion material in the mixed powder and The binder may be removed (degreasing).
(工程(e):成形体を焼結して、酸化物焼結体を得る)
 脱脂後の成形体を所定の焼結条件で焼結して、酸化物焼結体を得る。焼結方法としては、ホットプレスと、常圧焼結のいずれも利用できる。なお、ホットプレスは、焼結温度を低くすることができるため、得られた酸化物焼結体の結晶粒径を小さくできる点で有利である。常圧焼結は、加圧する必要がないため加圧設備が不要となる点で有利である。
 以下にホットプレスと常圧焼結のそれぞれについて、焼結条件等を説明する。
(Step (e): Sintering the molded body to obtain an oxide sintered body)
The molded body after degreasing is sintered under predetermined sintering conditions to obtain an oxide sintered body. As a sintering method, both hot press and normal pressure sintering can be used. Note that hot pressing is advantageous in that the sintering temperature can be lowered, and thus the crystal grain size of the obtained oxide sintered body can be reduced. Atmospheric pressure sintering is advantageous in that it does not require pressurization, and therefore requires no pressurization equipment.
The sintering conditions and the like will be described below for each of hot press and normal pressure sintering.
(i)ホットプレス
 ホットプレスでは、成形体を焼結用の成形型内に入れた状態で焼結炉内に配置して、加圧状態で焼結を行う。成形体に圧力をかけながら成形体を焼結することにより、焼結温度を比較的低く抑えながら、緻密な酸化物焼結体を得ることができる。
 ホットプレスでは、成形体に加圧するための焼結用成形型を利用する。焼結用成形型としては、焼結温度に応じて金属製の成形型(金型)、黒鉛製の成形型(黒鉛型)のいずれも用いることができる。特に、耐熱性に優れた黒鉛型が好ましく、900℃以上の高温にも耐えうる。
(I) Hot press In the hot press, the compact is placed in a sintering furnace in a state where it is placed in a sintering mold and sintered in a pressurized state. By sintering the molded body while applying pressure to the molded body, a dense oxide sintered body can be obtained while keeping the sintering temperature relatively low.
The hot press uses a sintering mold for pressurizing the compact. As the mold for sintering, either a metal mold (mold) or a graphite mold (graphite mold) can be used depending on the sintering temperature. In particular, a graphite mold having excellent heat resistance is preferable and can withstand high temperatures of 900 ° C. or higher.
 成形型にかける圧力は特に限定されないが、面圧(加圧圧力)10~39MPaが好ましい。圧力が高すぎると、焼結用の黒鉛型が破損する恐れがあり、また、大型のプレス設備が必要となる。また、39MPaを超えると、焼結体の緻密化促進効果が飽和するため、それ以上の圧力で加圧する利益が少ない。一方、圧力が10MPa未満であると、焼結体の緻密化が十分に進みにくい。より好ましい加圧条件は10~30MPaである。 The pressure applied to the mold is not particularly limited, but a surface pressure (pressurized pressure) of 10 to 39 MPa is preferable. If the pressure is too high, the sintering graphite mold may be damaged, and a large press facility is required. On the other hand, if it exceeds 39 MPa, the densification promoting effect of the sintered body is saturated, so that there is little profit to pressurize at a higher pressure. On the other hand, if the pressure is less than 10 MPa, densification of the sintered body is difficult to proceed sufficiently. A more preferable pressure condition is 10 to 30 MPa.
 焼結温度は、成形体内の混合粉末の焼結が進行する温度以上とし、例えば、面圧10~39MPaの圧力下での焼結であれば、焼結温度は900~1200℃であるのが好ましい。
 焼結温度が900℃以上であると、焼結が十分に進み、得られる酸化物焼結体の密度を高くすることができる。焼結温度は、より好ましくは920℃以上であり、さらに好ましくは940℃以上である。また、焼結温度が1200℃以下であると、焼結中の粒成長が抑制され、酸化物焼結体中の結晶粒径を小さくすることができる。焼結温度は、より好ましくは1100℃以下であり、さらに好ましくは1000℃以下である。
The sintering temperature is equal to or higher than the temperature at which the mixed powder in the molded body progresses. For example, if the sintering is performed under a surface pressure of 10 to 39 MPa, the sintering temperature is 900 to 1200 ° C. preferable.
When the sintering temperature is 900 ° C. or higher, the sintering proceeds sufficiently and the density of the obtained oxide sintered body can be increased. The sintering temperature is more preferably 920 ° C. or higher, and further preferably 940 ° C. or higher. Further, when the sintering temperature is 1200 ° C. or lower, grain growth during sintering is suppressed, and the crystal grain size in the oxide sintered body can be reduced. The sintering temperature is more preferably 1100 ° C. or less, and further preferably 1000 ° C. or less.
 所定の焼結温度で保持する時間(保持時間)は、混合粉末の焼結が十分に進行し、かつ得られる酸化物焼結体の密度が所定の密度以上となる時間とする。例えば、焼結温度が900~1200℃であれば、保持時間を1~12時間であるのが好ましい。
 保持時間が1時間以上であると、得られる酸化物焼結体中の組織を均一化できる。保持時間は、より好ましくは2時間以上であり、さらに好ましくは3時間以上である。また、保持時間が12時間以下であると、焼結中の粒成長を抑制して、酸化物焼結体中の結晶粒径を小さくすることができる。保持時間は、より好ましくは10時間以下であり、さらに好ましくは8時間以下である。
The time for holding at the predetermined sintering temperature (holding time) is set to a time during which the sintering of the mixed powder proceeds sufficiently and the density of the obtained oxide sintered body is equal to or higher than the predetermined density. For example, when the sintering temperature is 900 to 1200 ° C., the holding time is preferably 1 to 12 hours.
When the holding time is 1 hour or longer, the structure in the obtained oxide sintered body can be made uniform. The holding time is more preferably 2 hours or more, and further preferably 3 hours or more. Further, when the holding time is 12 hours or less, grain growth during sintering can be suppressed and the crystal grain size in the oxide sintered body can be reduced. The holding time is more preferably 10 hours or less, and even more preferably 8 hours or less.
 焼結温度までの平均昇温速度は、酸化物焼結体中の結晶粒の寸法および酸化物焼結体の相対密度に影響を及ぼし得る。平均昇温速度は、600℃/hr以下であるのが好ましく、結晶粒の異常成長が起こりにくいので、粗大結晶粒の割合を抑えることができる。また、600℃/hr以下であると、焼結後の酸化物焼結体の相対密度を高くすることができる。平均昇温速度は、より好ましいくは400℃/hr以下、更に好ましくは300℃/hr以下である。
 平均昇温速度の下限は特に限定されないが、生産性の観点からは50℃/hr以上とすることが好ましく、より好ましくは100℃/hr以上である。
The average heating rate up to the sintering temperature can affect the size of the crystal grains in the oxide sintered body and the relative density of the oxide sintered body. The average rate of temperature rise is preferably 600 ° C./hr or less, and abnormal growth of crystal grains hardly occurs, so that the ratio of coarse crystal grains can be suppressed. Moreover, the relative density of the oxide sinter after sintering can be made high that it is 600 degrees C / hr or less. The average temperature rising rate is more preferably 400 ° C./hr or less, and further preferably 300 ° C./hr or less.
The lower limit of the average heating rate is not particularly limited, but is preferably 50 ° C./hr or more, more preferably 100 ° C./hr or more from the viewpoint of productivity.
 焼結工程では、焼結用の黒鉛型の酸化および消失を抑制するために、焼結雰囲気を不活性ガス雰囲気とすることが好ましい。好適な不活性雰囲気は、例えばArガスおよびN2ガス等の不活性ガスの雰囲気が適用できる。例えば、焼結炉内に不活性ガスを導入することによって、焼結雰囲気を調整することができる。また雰囲気ガスの圧力は、蒸気圧の高い金属の蒸発を抑制するために大気圧とすることが望ましいが、真空(つまり、大気圧より低い圧力)にしてもよい。 In the sintering step, the sintering atmosphere is preferably an inert gas atmosphere in order to suppress oxidation and disappearance of the graphite mold for sintering. As a suitable inert atmosphere, for example, an atmosphere of an inert gas such as Ar gas and N 2 gas can be applied. For example, the sintering atmosphere can be adjusted by introducing an inert gas into the sintering furnace. The atmospheric gas pressure is preferably atmospheric pressure in order to suppress evaporation of a metal having a high vapor pressure, but may be vacuum (that is, a pressure lower than atmospheric pressure).
(ii)常圧焼結
 常圧焼結では、成形体を焼結炉内に配置して、常圧で焼結を行う。なお、常圧焼結では、焼結時に圧力がかかっていないため焼結が進みにくいので、通常は、ホットプレスよりも高い焼結温度で焼結する。
(Ii) Normal pressure sintering In normal pressure sintering, the compact is placed in a sintering furnace and sintered at normal pressure. In normal pressure sintering, since pressure is not applied at the time of sintering, it is difficult to proceed with sintering. Therefore, sintering is usually performed at a higher sintering temperature than hot pressing.
 焼結温度は、成形体内の混合粉末の焼結が進行する温度以上であれば特に限定されず、例えば、焼結温度1450~1600℃にすることができる。
 焼結温度が1450℃以上であると、焼結が十分に進み、得られる酸化物焼結体の密度を高くすることができる。焼結温度は、より好ましくは1500℃以上であり、さらに好ましくは1550℃以上である。また、焼結温度が1600℃以下であると、焼結中の粒成長を抑制して、酸化物焼結体中の結晶粒径を小さくすることができる。焼結温度は、より好ましくは1580℃以下であり、さらに好ましくは1550℃以下である。
The sintering temperature is not particularly limited as long as it is equal to or higher than the temperature at which sintering of the mixed powder in the molded body proceeds. For example, the sintering temperature can be 1450 to 1600 ° C.
When the sintering temperature is 1450 ° C. or higher, the sintering proceeds sufficiently and the density of the obtained oxide sintered body can be increased. The sintering temperature is more preferably 1500 ° C. or higher, and further preferably 1550 ° C. or higher. In addition, when the sintering temperature is 1600 ° C. or lower, grain growth during sintering can be suppressed, and the crystal grain size in the oxide sintered body can be reduced. The sintering temperature is more preferably 1580 ° C. or less, and further preferably 1550 ° C. or less.
 保持時間は、混合粉末の焼結が十分に進行し、かつ得られる酸化物焼結体の密度が所定の密度以上となる時間であれば特に限定されず、例えば1~5時間にすることができる。
 保持時間が1時間以上であると、得られる酸化物焼結体中の組織を均一化できる。保持時間は、より好ましくは2時間以上であり、さらに好ましくは3時間以上である。また、保持時間が5時間以下であると、焼結中の粒成長を抑制して、酸化物焼結体中の結晶粒径を小さくすることができる。保持時間は、より好ましくは4時間以下であり、さらに好ましくは3時間以下である。
The holding time is not particularly limited as long as the sintering of the mixed powder proceeds sufficiently and the density of the obtained oxide sintered body is equal to or higher than a predetermined density. For example, the holding time may be 1 to 5 hours. it can.
When the holding time is 1 hour or longer, the structure in the obtained oxide sintered body can be made uniform. The holding time is more preferably 2 hours or more, and further preferably 3 hours or more. Further, when the holding time is 5 hours or less, grain growth during sintering can be suppressed, and the crystal grain size in the oxide sintered body can be reduced. The holding time is more preferably 4 hours or less, and even more preferably 3 hours or less.
 平均昇温速度は、100℃/hr以下であるのが好ましく、結晶粒の異常成長が起こりにくいので、粗大結晶粒の割合を抑えることができる。また、100℃/hr以下であると、焼結後の酸化物焼結体の相対密度を高くすることができる。平均昇温速度は、より好ましいくは90℃/hr以下、更に好ましくは80℃/hr以下である。
 平均昇温速度の下限は特に限定されないが、生産性の観点からは50℃/hr以上とすることが好ましく、より好ましくは60℃/hr以上である。
The average heating rate is preferably 100 ° C./hr or less, and abnormal growth of crystal grains hardly occurs, so that the ratio of coarse crystal grains can be suppressed. Moreover, the relative density of the oxide sinter after sintering as it is 100 degrees C / hr or less can be made high. The average temperature rising rate is more preferably 90 ° C./hr or less, and still more preferably 80 ° C./hr or less.
The lower limit of the average heating rate is not particularly limited, but is preferably 50 ° C./hr or more, more preferably 60 ° C./hr or more from the viewpoint of productivity.
 焼結雰囲気は大気もしくは酸素リッチな雰囲気とすることが好ましい。特に、雰囲気中の酸素濃度が50~100体積%であることが望ましい。 The sintering atmosphere is preferably air or an oxygen rich atmosphere. In particular, the oxygen concentration in the atmosphere is desirably 50 to 100% by volume.
 このように、工程(a)~(e)により、酸化物焼結体を製造することができる。 Thus, the oxide sintered body can be manufactured by the steps (a) to (e).
(工程(f):酸化物焼結体を加工する)
 得られた酸化物焼結体を、スパッタリングターゲットに適した形状に加工してもよい。酸化物焼結体の加工方法は特に限定されず、公知の方法によって各種用途に応じた形状に加工すればよい。
(Process (f): Processing oxide sintered body)
The obtained oxide sintered body may be processed into a shape suitable for a sputtering target. The processing method of oxide sinter is not specifically limited, What is necessary is just to process to the shape according to various uses by a well-known method.
(工程(g):酸化物焼結体をバッキングプレートにボンディングする)
 図1のように、加工した酸化物焼結体10をバッキングプレート20上にボンディング材30によって接合する。これにより、スパッタリングターゲット1が得られる。バッキングプレート20の材料は特に限定されないが、熱伝導性に優れた純銅または銅合金が好ましい。ボンディング材30には、導電性を有する各種公知のボンディング材を使用することができ、例えば、In系はんだ材、Sn系はんだ材などが好適である。接合方法は、使用するボンディング材30によりバッキングプレート20と酸化物焼結体10とが接合される方法であれば、特に限定されない。一例としては、酸化物焼結体10とバッキングプレート20を、ボンディング材30が溶解する温度(例えば約140℃~約220℃)に加熱する。バッキングプレート20のボンディング面23(酸化物焼結体10が固定される面、すなわちバッキングプレート20の上面)に溶融したボンディング材30を塗布した後、ボンディング面23上に酸化物焼結体10を載置する。バッキングプレート20と酸化物焼結体10とを圧着した状態で冷却することにより、ボンディング材30が固化して、ボンディング面23上に酸化物焼結体10が固定される。
(Step (g): Bonding the oxide sintered body to the backing plate)
As shown in FIG. 1, the processed oxide sintered body 10 is bonded onto a backing plate 20 by a bonding material 30. Thereby, the sputtering target 1 is obtained. The material of the backing plate 20 is not particularly limited, but pure copper or copper alloy having excellent thermal conductivity is preferable. As the bonding material 30, various known bonding materials having conductivity can be used, and for example, an In-based solder material and an Sn-based solder material are suitable. The joining method is not particularly limited as long as the backing plate 20 and the oxide sintered body 10 are joined by the bonding material 30 to be used. As an example, the oxide sintered body 10 and the backing plate 20 are heated to a temperature (for example, about 140 ° C. to about 220 ° C.) at which the bonding material 30 is melted. After the molten bonding material 30 is applied to the bonding surface 23 (the surface to which the oxide sintered body 10 is fixed, that is, the upper surface of the backing plate 20) of the backing plate 20, the oxide sintered body 10 is applied to the bonding surface 23. Place. By cooling the backing plate 20 and the oxide sintered body 10 in a pressure-bonded state, the bonding material 30 is solidified and the oxide sintered body 10 is fixed on the bonding surface 23.
 以下、実施例を挙げて本発明の実施形態をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and is implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all included in the technical scope of the present invention.
<実施例1:ホットプレス>
(酸化物焼結体の作製)
 純度99.99%の酸化亜鉛粉末(ZnO)純度99.99%の酸化インジウム粉末(In)、純度99.99%の酸化ガリウム粉末(Ga)、純度99.99%の酸化錫粉末(SnO)を表1に示す原子比率(原子%)で配合して原料粉末とした。水と分散剤(ポリカルボン酸アンモニウム)を加えてボールミルで20時間混合および粉砕した。この実施例では、ナイロンポッドと、メディアとしてジルコニアボールとを使用したボールミルを用いた。次に、上記工程で得られた混合粉末を乾燥して造粒を行った。
<Example 1: Hot press>
(Production of oxide sintered body)
99.99% pure zinc oxide powder (ZnO) 99.99% pure indium oxide powder (In 2 O 3 ), 99.99% pure gallium oxide powder (Ga 2 O 3 ), 99.99% pure Tin oxide powder (SnO 2 ) was blended in the atomic ratio (atomic%) shown in Table 1 to obtain a raw material powder. Water and a dispersant (ammonium polycarboxylate) were added and mixed and pulverized with a ball mill for 20 hours. In this example, a ball mill using a nylon pod and zirconia balls as media was used. Next, the mixed powder obtained in the above step was dried and granulated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた混合粉末を、金型プレスを用いて、圧力1.0ton/cm2で加圧して、直径110mm×厚さ13mmのディスク状の成形体を作成した。成形体を、常圧、大気雰囲気下で500℃まで加熱し、その温度で5時間保持して脱脂した。脱脂後の成形体を黒鉛型にセットし、表2の条件でホットプレスを行った。この際、炉内にはNガスを導入し、N雰囲気下で焼結した。 The obtained mixed powder was pressed at a pressure of 1.0 ton / cm 2 using a mold press to prepare a disk-shaped molded body having a diameter of 110 mm and a thickness of 13 mm. The molded body was heated to 500 ° C. under normal pressure and atmospheric atmosphere, and held at that temperature for 5 hours for degreasing. The degreased compact was set in a graphite mold and hot pressed under the conditions shown in Table 2. At this time, N 2 gas was introduced into the furnace and sintered in an N 2 atmosphere.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(相対密度の測定)
 酸化物焼結体の相対密度は、以下のように測定した気孔率を用いて求めた。
 酸化物焼結体を任意の位置で厚さ方向に切断し、その切断面の任意の
(Measurement of relative density)
The relative density of the oxide sintered body was determined using the porosity measured as follows.
The oxide sintered body is cut in the thickness direction at an arbitrary position, and the cut surface
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以下の計算式によって、選択ピークの強度の測定値Iから各結晶相(ZnSnO、InGaZnO、InGaZn、InGaZnおよびIn)の含有率(体積比率)を求めた。計算式では、6つの結晶相の主ピークの強度の合計(Isum)に対して、対象となる結晶相の主ピークの強度の比率を求めることができる。本明細書においては、対象となる結晶相の強度の比率を、その結晶相の含有率(%)とした。
  ZnSnOの主ピークの強度の比率=ZnSnOの含有率(%)=I[ZnSnO]×4.74/Isum×100(%)
  InGaZnOの主ピークの強度の比率=InGaZnOの含有率(%)=I[InGaZnO]×2.55/Isum×100(%)
  InGaZnの主ピークの強度の比率=InGaZnの含有率(%)=I[InGaZn]×3.33/Isum×100(%)
  InGaZnの主ピークの強度の比率=InGaZnの含有率(%)=I[InGaZn]×2.78/Isum×100(%)
  Inの主ピークの強度の比率=Inの含有率(%)=I[In]×8.13/Isum×100(%)
 ここで、Isum=I[ZnSnO]×4.74+I[InGaZnO]×2.55+I[In]×8.13+I[SnO]+I[InGaZn]×3.33+I[InGaZn]×2.78である。
The content (volume ratio) of each crystal phase (Zn 2 SnO 4 , InGaZnO 4 , InGaZn 2 O 5 , InGaZn 3 O 6 and In 2 O 3 ) is calculated from the measured value I of the intensity of the selected peak by the following calculation formula. Asked. In the calculation formula, the ratio of the intensity of the main peak of the target crystal phase to the total intensity (I sum ) of the main peaks of the six crystal phases can be obtained. In the present specification, the strength ratio of the target crystal phase is defined as the content (%) of the crystal phase.
Zn 2 SnO 4 intensity ratio of main peak = Zn 2 SnO 4 content (%) = I [Zn 2 SnO 4 ] × 4.74 / I sum × 100 (%)
InGaZnO 4 main peak intensity ratio = InGaZnO 4 content (%) = I [InGaZnO 4 ] × 2.55 / I sum × 100 (%)
InGaZn 2 O 5 main peak intensity ratio = InGaZn 2 O 5 content (%) = I [InGaZn 2 O 5 ] × 3.33 / I sum × 100 (%)
InGaZn 3 O 6 main peak intensity ratio = InGaZn 3 O 6 content (%) = I [InGaZn 3 O 6 ] × 2.78 / I sum × 100 (%)
In 2 O 3 main peak intensity ratio = In 2 O 3 content (%) = I [In 2 O 3 ] × 8.13 / I sum × 100 (%)
Here, I sum = I [Zn 2 SnO 4 ] × 4.74 + I [InGaZnO 4 ] × 2.55 + I [In 2 O 3 ] × 8.13 + I [SnO 2 ] + I [InGaZn 2 O 5 ] × 3.33 + I [InGaZn 3 O 6 ] × 2.78.
(平均結晶粒径)
 酸化物焼結体の「平均結晶粒径(μm)」は以下のようにして測定した。まず、酸化物焼結体の任意の位置で厚さ方向に切断し、その切断面の任意の位置を鏡面研削した。次に、切断面における組織を、走査型電子顕微鏡(SEM)を用いて倍率400倍で写真撮影した。撮影した写真上で、任意の方向に長さ100μm相当の直線を引き、この直線上に存在する結晶粒の数(N)を求めた。[100/N](μm)で算出した値を当該「直線上での結晶粒径」とした。さらに、写真上に長さ100μm相当の直線を20本作成して、各直線上での結晶粒径を算出した。なお、複数の直線を引く場合には、同一の結晶粒を複数回カウントするのを回避するために、隣接する直線の間の距離が少なくとも20μm(粗大結晶粒の粒径相当)となるように、直線を引いた。
 そして、[(各直線上での結晶粒径の合計)/20]で算出した値を「酸化物焼結体の平均結晶粒径」とした。平均結晶粒径の測定結果を表2に示す。
(Average crystal grain size)
The “average crystal grain size (μm)” of the oxide sintered body was measured as follows. First, it cut | disconnected in the thickness direction in the arbitrary positions of the oxide sintered compact, and the arbitrary positions of the cut surface were mirror-ground. Next, the structure | tissue in a cut surface was photographed by 400-times multiplication factor using the scanning electron microscope (SEM). On the photograph taken, a straight line corresponding to a length of 100 μm was drawn in an arbitrary direction, and the number (N) of crystal grains existing on the straight line was obtained. The value calculated by [100 / N] (μm) was defined as the “crystal grain size on a straight line”. Furthermore, 20 straight lines corresponding to a length of 100 μm were created on the photograph, and the crystal grain size on each straight line was calculated. When drawing a plurality of straight lines, the distance between adjacent straight lines should be at least 20 μm (corresponding to the grain size of coarse crystal grains) in order to avoid counting the same crystal grains multiple times. Draw a straight line.
The value calculated by [(total crystal grain size on each straight line) / 20] was defined as “average crystal grain size of oxide sintered body”. The measurement results of the average crystal grain size are shown in Table 2.
(ボンディング時の割れ)
 酸化物焼結体について、バッキングプレートにボンディング材でボンディングした時に割れが生じるか否かを調べた。
 機械加工した酸化物焼結体を上述の条件でバッキングプレートにボンディングした後、酸化物焼結体の表面に割れが生じていないか目視で確認した。酸化物焼結体表面に長さ1mmを超えるクラックが確認された場合には、「割れが生じた」と判定し、長さ1mmを超えるクラックが確認できない場合には「割れが生じなかった」と判定した。
 各実施例及び比較例について、機械加工した酸化物焼結体を10枚準備して、バッキングプレートにボンディングする操作を10回行った。酸化物焼結体が1枚でも「割れが生じた」場合には、表4の「割れ」に「有」と記載した。10枚全てについて「割れが生じなかった」場合には、表4の「割れ」に「無」と記載した。
(Breaking during bonding)
The oxide sintered body was examined for whether or not cracking would occur when bonded to the backing plate with a bonding material.
After bonding the machined oxide sintered body to the backing plate under the above-described conditions, it was visually confirmed whether or not cracks had occurred on the surface of the oxide sintered body. When cracks exceeding 1 mm in length are confirmed on the surface of the oxide sintered body, it is determined that “cracks have occurred”, and when cracks exceeding 1 mm in length cannot be confirmed, “no cracks have occurred”. It was determined.
For each example and comparative example, 10 machined oxide sintered bodies were prepared and bonded to the backing plate 10 times. When even one oxide sintered body “cracked”, “present” is described in “crack” in Table 4. In the case of “no cracking” for all 10 sheets, “None” was entered in “Crack” in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の実施形態に規定される範囲内の相対密度及び結晶相の含有率を有する実施例1~3では、酸化物焼結体をバッキングプレートにボンディングする際に割れが生じなかった。 In Examples 1 to 3 having a relative density and a crystal phase content within the range defined in the embodiment of the present invention, no cracks occurred when the oxide sintered body was bonded to the backing plate.
<実施例2:常圧焼結>
 実施例1と同様の方法で、表1に示す原料粉末a~cを準備した。
 得られた混合粉末を、金型プレスを用いて、圧力1.0ton/cm2で加圧して、直径110mm×厚さ13mmのディスク状の成形体を作成した。成形体を、常圧、大気雰囲気下で500℃まで加熱し、その温度で5時間保持して脱脂した。脱脂後の成形体を黒鉛型にセットし、表5の条件で常圧焼結を行った。この際、炉内にはNガスを導入し、N雰囲気下で焼結した。
<Example 2: Normal pressure sintering>
Raw material powders a to c shown in Table 1 were prepared in the same manner as in Example 1.
The obtained mixed powder was pressed at a pressure of 1.0 ton / cm 2 using a mold press to prepare a disk-shaped molded body having a diameter of 110 mm and a thickness of 13 mm. The molded body was heated to 500 ° C. under normal pressure and atmospheric atmosphere, and held at that temperature for 5 hours for degreasing. The degreased compact was set in a graphite mold and subjected to normal pressure sintering under the conditions shown in Table 5. At this time, N 2 gas was introduced into the furnace and sintered in an N 2 atmosphere.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 得られた酸化物焼結体を、実施例1と同様に、相対密度の測定、結晶相の含有率、平均結晶粒径およびボンディング時の割れを測定した。測定結果を表6および表7に示した。 The obtained oxide sintered body was measured for the relative density, the crystal phase content, the average crystal grain size, and the cracks during bonding in the same manner as in Example 1. The measurement results are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明の実施形態に規定される範囲内の相対密度を有する実施例5~8では、酸化物焼結体をバッキングプレートにボンディングする際に割れが生じなかった。
 比較例1は、密度が91%と低かったため、酸化物焼結体をバッキングプレートにボンディングする際に割れが生じた。
In Examples 5 to 8 having a relative density within the range defined in the embodiment of the present invention, no crack was generated when the oxide sintered body was bonded to the backing plate.
Since the density of Comparative Example 1 was as low as 91%, cracking occurred when the oxide sintered body was bonded to the backing plate.
 本開示は以下の態様を含む。
態様1:
 酸素を除く全金属元素に対する、亜鉛、インジウム、ガリウム及び錫の含有量の割合(原子%)を夫々、[Zn][In]、[Ga]及び[Sn]としたとき、
 40原子%≦[Zn]≦55原子%、
 20原子%≦[In]≦40原子%、
 5原子%≦[Ga]≦15原子%、および
 5原子%≦[Sn]≦20原子%
を満足し、
 相対密度が95%以上であり、
 結晶相として、InGaZnを5~20体積%で含有する酸化物焼結体。
態様2:
 前記酸化物焼結体中の気孔の最大円相当径が3μm以下である態様1に記載の酸化物焼結体。
態様3:
 前記酸化物焼結体中の気孔の最大円相当径(μm)に対する平均円相当径(μm)の相対比が0.3以上1.0以下である態様1または2に記載の酸化物焼結体。
態様4:
 [Zn]/[In]が1.75超、2.25未満であり、
 結晶相としてさらに
  ZnSnOを30~90体積%、および
  InGaZnOを1~20体積%で含有する態様1~3のいずれか1つに記載の酸化物焼結体。
態様5:
 [Zn]/[In]が1.5未満であり、
 結晶相としてさらにInを30~90体積%で含有する態様1~3のいずれか1つに記載の酸化物焼結体。
態様6:
  結晶相としてさらにInGaZnを0体積%超、10体積%以下で含有する態様1~3のいずれか1つに記載の酸化物焼結体。
態様7:
 結晶粒径が20μm以下である態様1~6のいずれか1つに記載の酸化物焼結体。
態様8:
 結晶粒径が5μμ以下である態様7に記載の酸化物焼結体。
態様9:
 比抵抗が1Ω・cm以下である態様1~8のいずれか1つに記載の酸化物焼結体。
態様10:
 態様1~9のいずれか1つに記載の酸化物焼結体が、バッキングプレート上にボンディング材によって固定されて成るスパッタリングターゲット。
態様11:
 態様1~9のいずれか1つに記載の酸化物焼結体を製造する方法であって、
 酸化亜鉛、酸化インジウム、酸化ガリウムおよび酸化錫を所定の割合で含有する混合粉末を準備する工程と、
 前記混合粉末を所定形状に焼結する工程と、を含む酸化物焼結体の製造方法。
態様12:
 前記焼結する工程において、成形型で前記混合粉末に面圧10~39MPaかけた状態で、焼結温度900~1100℃に1~12時間保持することを含む、態様11に記載の製造方法。
態様13:
 前記焼結する工程において、前記焼結温度までの平均昇温速度が600℃/hr以下である態様12に記載の製造方法。
態様14:
 さらに、前記混合粉末を準備する工程より後で、前記焼結する工程より前に、前記混合粉末を予備成形する工程を含み、
 前記焼結する工程において、予備成形された成形体を、常圧下で、焼結温度1450~1550℃に1~5時間保持することを含む、態様11に記載の製造方法。
態様15:
 前記焼結する工程において、前記焼結温度までの平均昇温速度が100℃/hr以下である態様14に記載の製造方法。
態様16:
 態様1~9のいずれか1つに記載の酸化物焼結体または態様11~15のいずれか1つに記載の製造方法で製造された酸化物焼結体を、バッキングプレート上にボンディング材で接合する工程を含むスパッタリングターゲットの製造方法。
The present disclosure includes the following aspects.
Aspect 1:
When the content ratio (atomic%) of zinc, indium, gallium and tin with respect to all metal elements excluding oxygen is [Zn] [In], [Ga] and [Sn], respectively.
40 atomic% ≦ [Zn] ≦ 55 atomic%,
20 atomic% ≦ [In] ≦ 40 atomic%,
5 atomic% ≦ [Ga] ≦ 15 atomic%, and 5 atomic% ≦ [Sn] ≦ 20 atomic%
Satisfied,
The relative density is 95% or more,
An oxide sintered body containing 5 to 20% by volume of InGaZn 2 O 5 as a crystal phase.
Aspect 2:
The oxide sintered body according to aspect 1, wherein the maximum equivalent circle diameter of pores in the oxide sintered body is 3 µm or less.
Aspect 3:
Oxide sintering according to embodiment 1 or 2, wherein a relative ratio of an average equivalent circle diameter (μm) to a maximum equivalent circle diameter (μm) of pores in the oxide sintered body is 0.3 or more and 1.0 or less. body.
Aspect 4:
[Zn] / [In] is more than 1.75 and less than 2.25,
The oxide sintered body according to any one of embodiments 1 to 3, further containing 30 to 90% by volume of Zn 2 SnO 4 and 1 to 20% by volume of InGaZnO 4 as a crystal phase.
Aspect 5:
[Zn] / [In] is less than 1.5,
The oxide sintered body according to any one of embodiments 1 to 3, further containing 30 to 90% by volume of In 2 O 3 as a crystal phase.
Aspect 6:
The oxide sintered body according to any one of embodiments 1 to 3, further containing InGaZn 3 O 6 in a crystal phase in an amount of more than 0% by volume and 10% by volume or less.
Aspect 7:
7. The oxide sintered body according to any one of embodiments 1 to 6, wherein the crystal grain size is 20 μm or less.
Aspect 8:
The oxide sintered body according to aspect 7, wherein the crystal grain size is 5 μμ or less.
Aspect 9:
The oxide sintered body according to any one of embodiments 1 to 8, wherein the specific resistance is 1 Ω · cm or less.
Aspect 10:
A sputtering target comprising the oxide sintered body according to any one of embodiments 1 to 9 fixed on a backing plate by a bonding material.
Aspect 11:
A method for producing an oxide sintered body according to any one of aspects 1 to 9, comprising:
Preparing a mixed powder containing zinc oxide, indium oxide, gallium oxide and tin oxide in a predetermined ratio;
And a step of sintering the mixed powder into a predetermined shape.
Aspect 12:
The production method according to aspect 11, wherein the sintering step includes holding the mixed powder at a sintering temperature of 900 to 1100 ° C. for 1 to 12 hours in a state where a surface pressure of 10 to 39 MPa is applied to the mixed powder with a molding die.
Aspect 13:
The manufacturing method according to aspect 12, wherein, in the sintering step, an average rate of temperature rise to the sintering temperature is 600 ° C./hr or less.
Aspect 14:
Furthermore, after the step of preparing the mixed powder, before the step of sintering, the step of preforming the mixed powder,
12. The production method according to aspect 11, wherein the sintering step includes holding the preformed molded body at a sintering temperature of 1450 to 1550 ° C. for 1 to 5 hours under normal pressure.
Aspect 15:
The manufacturing method according to aspect 14, wherein, in the sintering step, an average rate of temperature rise to the sintering temperature is 100 ° C./hr or less.
Aspect 16:
The oxide sintered body according to any one of aspects 1 to 9 or the oxide sintered body produced by the manufacturing method according to any one of aspects 11 to 15 is bonded to a backing plate with a bonding material. A method for manufacturing a sputtering target, comprising a step of bonding.
 本出願は、出願日が2016年4月19日である日本国特許出願、特願第2016-83840号および2017年1月19日である日本国特許出願、特願第2017-7850号を基礎出願とする優先権主張を伴う。特願第2016-83840号および特願第2017-7850号は参照することにより本明細書に取り込まれる。 This application is based on a Japanese patent application filed on April 19, 2016, Japanese Patent Application No. 2016-83840, and a Japanese patent application filed on January 19, 2017, Japanese Patent Application No. 2017-7850. Accompanies priority claim for application. Japanese Patent Application No. 2016-83840 and Japanese Patent Application No. 2017-7850 are incorporated herein by reference.
  1 スパッタリングターゲット
  10 酸化物焼結体
  20 バッキングプレート
  30 ボンディング材
1 Sputtering target 10 Oxide sintered body 20 Backing plate 30 Bonding material

Claims (16)

  1.  酸素を除く全金属元素に対する、亜鉛、インジウム、ガリウム及び錫の含有量の割合(原子%)を夫々、[Zn][In]、[Ga]及び[Sn]としたとき、
     40原子%≦[Zn]≦55原子%、
     20原子%≦[In]≦40原子%、
     5原子%≦[Ga]≦15原子%、および
     5原子%≦[Sn]≦20原子%
    を満足し、
     相対密度が95%以上であり、
     結晶相として、InGaZnを5~20体積%で含有する酸化物焼結体。
    When the content ratio (atomic%) of zinc, indium, gallium and tin with respect to all metal elements excluding oxygen is [Zn] [In], [Ga] and [Sn], respectively.
    40 atomic% ≦ [Zn] ≦ 55 atomic%,
    20 atomic% ≦ [In] ≦ 40 atomic%,
    5 atomic% ≦ [Ga] ≦ 15 atomic%, and 5 atomic% ≦ [Sn] ≦ 20 atomic%
    Satisfied,
    The relative density is 95% or more,
    An oxide sintered body containing 5 to 20% by volume of InGaZn 2 O 5 as a crystal phase.
  2.  前記酸化物焼結体中の気孔の最大円相当径が3μm以下である請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein a maximum equivalent circle diameter of pores in the oxide sintered body is 3 µm or less.
  3.  前記酸化物焼結体中の気孔の最大円相当径(μm)に対する平均円相当径(μm)の相対比が0.3以上1.0以下である請求項1に記載の酸化物焼結体。 2. The oxide sintered body according to claim 1, wherein a relative ratio of an average equivalent circle diameter (μm) to a maximum equivalent circle diameter (μm) of pores in the oxide sintered body is 0.3 or more and 1.0 or less. .
  4.  [Zn]/[In]が1.75超、2.25未満であり、
     結晶相としてさらに
      ZnSnOを30~90体積%、および
      InGaZnOを1~20体積%で含有する請求項1~3のいずれか1項に記載の酸化物焼結体。
    [Zn] / [In] is more than 1.75 and less than 2.25,
    The oxide sintered body according to any one of claims 1 to 3, further comprising 30 to 90% by volume of Zn 2 SnO 4 and 1 to 20% by volume of InGaZnO 4 as crystal phases.
  5.  [Zn]/[In]が1.5未満であり、
     結晶相としてさらにInを30~90体積%で含有する請求項1~3のいずれか1項に記載の酸化物焼結体。
    [Zn] / [In] is less than 1.5,
    The oxide sintered body according to any one of claims 1 to 3, further comprising 30 to 90% by volume of In 2 O 3 as a crystal phase.
  6.  結晶相としてさらにInGaZnを0体積%超、10体積%以下で含有する請求項1~3のいずれか1項に記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 3, further comprising InGaZn 3 O 6 in an amount of more than 0% by volume and 10% by volume or less as a crystal phase.
  7.  結晶粒径が20μm以下である請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein the crystal grain size is 20 μm or less.
  8.  結晶粒径が5μμ以下である請求項7に記載の酸化物焼結体。 The oxide sintered body according to claim 7, wherein the crystal grain size is 5 μμ or less.
  9.  比抵抗が1Ω・cm以下である請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein the specific resistance is 1 Ω · cm or less.
  10.  請求項1に記載の酸化物焼結体が、バッキングプレート上にボンディング材によって固定されて成るスパッタリングターゲット。 A sputtering target in which the oxide sintered body according to claim 1 is fixed on a backing plate by a bonding material.
  11.  請求項1に記載の酸化物焼結体を製造する方法であって、
     酸化亜鉛、酸化インジウム、酸化ガリウムおよび酸化錫を所定の割合で含有する混合粉末を準備する工程と、
     前記混合粉末を所定形状に焼結する工程と、を含む酸化物焼結体の製造方法。
    A method for producing the oxide sintered body according to claim 1,
    Preparing a mixed powder containing zinc oxide, indium oxide, gallium oxide and tin oxide in a predetermined ratio;
    And a step of sintering the mixed powder into a predetermined shape.
  12.  前記焼結する工程において、成形型で前記混合粉末に面圧10~39MPaかけた状態で、焼結温度900~1100℃に1~12時間保持することを含む、請求項11に記載の製造方法。 The production method according to claim 11, wherein the sintering step includes holding at a sintering temperature of 900 to 1100 ° C for 1 to 12 hours in a state where a surface pressure of 10 to 39 MPa is applied to the mixed powder with a molding die. .
  13.  前記焼結する工程において、前記焼結温度までの平均昇温速度が600℃/hr以下である請求項12に記載の製造方法。 The manufacturing method according to claim 12, wherein, in the sintering step, an average temperature rising rate up to the sintering temperature is 600 ° C / hr or less.
  14.  さらに、前記混合粉末を準備する工程より後で、前記焼結する工程より前に、前記混合粉末を予備成形する工程を含み、
     前記焼結する工程において、予備成形された成形体を、常圧下で、焼結温度1450~1550℃に1~5時間保持することを含む、請求項11に記載の製造方法。
    Furthermore, after the step of preparing the mixed powder, before the step of sintering, the step of preforming the mixed powder,
    The production method according to claim 11, wherein in the sintering step, the preformed molded body is held at a sintering temperature of 1450 to 1550 ° C for 1 to 5 hours under normal pressure.
  15.  前記焼結する工程において、前記焼結温度までの平均昇温速度が100℃/hr以下である請求項14に記載の製造方法。 The manufacturing method according to claim 14, wherein, in the sintering step, an average rate of temperature rise to the sintering temperature is 100 ° C / hr or less.
  16.  請求項1に記載の酸化物焼結体または請求項11に記載の製造方法で製造された酸化物焼結体を、バッキングプレート上にボンディング材で接合する工程を含むスパッタリングターゲットの製造方法。 A method for producing a sputtering target, comprising the step of joining the oxide sintered body according to claim 1 or the oxide sintered body produced by the production method according to claim 11 on a backing plate with a bonding material.
PCT/JP2017/004821 2016-04-19 2017-02-09 Oxide sintered body, sputtering target, and methods for manufacturing same WO2017183263A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187029670A KR102091554B1 (en) 2016-04-19 2017-02-09 Oxide sintered bodies and sputtering targets, and their production methods
US16/092,400 US20190177230A1 (en) 2016-04-19 2017-02-09 Oxide sintered body and sputtering target, and methods for manufacturing same
CN201780023775.2A CN109071361B (en) 2016-04-19 2017-02-09 Oxide sintered body and sputtering target, and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016083840 2016-04-19
JP2016-083840 2016-04-19
JP2017-007850 2017-01-19
JP2017007850A JP6254308B2 (en) 2016-04-19 2017-01-19 Oxide sintered body, sputtering target, and production method thereof

Publications (1)

Publication Number Publication Date
WO2017183263A1 true WO2017183263A1 (en) 2017-10-26

Family

ID=60115907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004821 WO2017183263A1 (en) 2016-04-19 2017-02-09 Oxide sintered body, sputtering target, and methods for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017183263A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108181A (en) * 2008-05-22 2013-06-06 Idemitsu Kosan Co Ltd Sputtering target, method for forming amorphous oxide thin film using the same, and method for manufacturing thin film transistor
WO2013179676A1 (en) * 2012-05-31 2013-12-05 出光興産株式会社 Sputtering target
JP2014058415A (en) * 2012-09-14 2014-04-03 Kobelco Kaken:Kk Oxide sintered product, sputtering target and method for manufacturing the same
JP2014058416A (en) * 2012-09-14 2014-04-03 Kobelco Kaken:Kk Oxide sintered product and sputtering target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108181A (en) * 2008-05-22 2013-06-06 Idemitsu Kosan Co Ltd Sputtering target, method for forming amorphous oxide thin film using the same, and method for manufacturing thin film transistor
WO2013179676A1 (en) * 2012-05-31 2013-12-05 出光興産株式会社 Sputtering target
JP2014058415A (en) * 2012-09-14 2014-04-03 Kobelco Kaken:Kk Oxide sintered product, sputtering target and method for manufacturing the same
JP2014058416A (en) * 2012-09-14 2014-04-03 Kobelco Kaken:Kk Oxide sintered product and sputtering target

Similar Documents

Publication Publication Date Title
US10515787B2 (en) Oxide sintered body and sputtering target, and method for producing same
JP5883367B2 (en) Oxide sintered body, sputtering target, and manufacturing method thereof
JP5883368B2 (en) Oxide sintered body and sputtering target
JP5952891B2 (en) Oxide sintered body and method for producing sputtering target
JP6144858B1 (en) Oxide sintered body, sputtering target, and production method thereof
JP6285076B2 (en) Oxide sintered body and sputtering target comprising the oxide sintered body
JP6254308B2 (en) Oxide sintered body, sputtering target, and production method thereof
JP6781931B2 (en) Sputtering target material
WO2017183263A1 (en) Oxide sintered body, sputtering target, and methods for manufacturing same
TW201910539A (en) Oxide sintered body and sputtering target
WO2018211899A1 (en) Oxide sintered body and sputtering target
JP2017019668A (en) Oxide sintered body and sputtering target and manufacturing method therefor
TW201336803A (en) Oxide sintered compact and sputtering target, and method for producing the same
JP6364562B1 (en) Oxide sintered body and sputtering target
JP2023124649A (en) Sputtering target member and method for producing sputtering target member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187029670

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785608

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785608

Country of ref document: EP

Kind code of ref document: A1