JP6303223B2 - Method for solidifying residue containing rare earth - Google Patents

Method for solidifying residue containing rare earth Download PDF

Info

Publication number
JP6303223B2
JP6303223B2 JP2013265949A JP2013265949A JP6303223B2 JP 6303223 B2 JP6303223 B2 JP 6303223B2 JP 2013265949 A JP2013265949 A JP 2013265949A JP 2013265949 A JP2013265949 A JP 2013265949A JP 6303223 B2 JP6303223 B2 JP 6303223B2
Authority
JP
Japan
Prior art keywords
rare earth
mud
residue
cement
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265949A
Other languages
Japanese (ja)
Other versions
JP2015120124A (en
Inventor
真 小早川
真 小早川
晃一 山上
晃一 山上
考 生田
考 生田
隆 花田
隆 花田
御手洗 義夫
義夫 御手洗
友博 森澤
友博 森澤
要一 渡部
要一 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Toa Corp
National Institute of Maritime Port and Aviation Technology
Original Assignee
Taiheiyo Cement Corp
Toa Corp
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Toa Corp, National Institute of Maritime Port and Aviation Technology filed Critical Taiheiyo Cement Corp
Priority to JP2013265949A priority Critical patent/JP6303223B2/en
Publication of JP2015120124A publication Critical patent/JP2015120124A/en
Application granted granted Critical
Publication of JP6303223B2 publication Critical patent/JP6303223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

本発明は、太平洋の深海の海底に分布する、レアアースを高含有率で含む泥を典型例とするレアアースを含有する泥を、酸で処理した後に発生する酸性の残渣の固化処理方法に関する。   The present invention relates to a method for solidifying an acidic residue generated after treating a mud containing rare earth, typically a mud containing a high content of rare earth, distributed on the deep sea floor of the Pacific Ocean with an acid.

レアアースは、ネオジム・鉄・ボロン磁石、LED電球、燃料電池等に用いられる原料として、最先端技術産業に不可欠な元素であり、近年、その需要も急増している。一方、レアアースの寡占的産出国であった中国が、輸出奨励政策から規制強化政策へと方針を変更するなどの事情下において、レアアースの供給不足や価格高騰が懸念されており、レアアースの新たな供給源の確保が課題となっている。
このような状況下において、太平洋の広範囲に分布しているレアアースを高含有率で含む深海の泥が、レアアースの新たな供給源として注目されている。
レアアースを高含有率で含む泥(例えば、太平洋の深海の泥)は、その資源量が膨大であること、希酸中に1〜3時間浸漬するという簡易な方法で抽出することができること、トリウムやウラン等の放射性元素をほとんど含まないこと、等の数々の利点を有している。
Rare earth is an indispensable element in the state-of-the-art technology industry as a raw material used for neodymium / iron / boron magnets, LED bulbs, fuel cells, and the like, and its demand is rapidly increasing in recent years. On the other hand, China, which was an oligopolistic producer of rare earths, is worried about a shortage of rare earth supplies and rising prices under circumstances such as changing its policy from an export incentive policy to a more restrictive policy. Securing supply sources is an issue.
Under such circumstances, deep-sea mud containing a high content of rare earth distributed over a wide area in the Pacific Ocean has attracted attention as a new source of rare earth.
Mud containing a high content of rare earths (for example, deep sea mud in the Pacific Ocean) has an enormous amount of resources and can be extracted by a simple method of immersing in dilute acid for 1 to 3 hours, thorium It has many advantages such as almost no radioactive elements such as uranium and uranium.

レアアースを含む泥を処理する方法として、例えば、特許文献1に、光学ガラス研磨・洗浄工程およびこれに付帯する排水処理装置から発生する光学ガラス汚泥に硫酸を加えて加熱処理し、汚泥中に含まれるレアアースメタル成分を溶解するとともに鉛、バリウム、シリカ等を沈殿とし、該沈殿を処理液から分離することによりレアアースメタル成分の溶液を取得することを特徴とする光学ガラス汚泥からレアアースメタル成分を回収する方法が記載されている。   As a method for treating mud containing rare earths, for example, in Patent Document 1, sulfuric acid is added to the optical glass sludge generated from the optical glass polishing / cleaning process and the wastewater treatment equipment incidental thereto, and the heat treatment is performed, and is contained in the sludge. The rare earth metal component is recovered from the optical glass sludge, in which the rare earth metal component is dissolved, and lead, barium, silica, etc. are precipitated, and the precipitate is separated from the treatment liquid to obtain a rare earth metal component solution. How to do is described.

特開平11−50168号公報Japanese Patent Application Laid-Open No. 11-50168

レアアースを含有する泥の乾燥質量中のレアアースの質量の割合は、レアアースの含有率が高いことで知られる太平洋の深海底であっても、0.3質量%以下にすぎない。このため、レアアースを含有する泥から、希酸を用いてレアアースを抽出した後に、多量の酸性の残渣が発生するという問題がある。
この酸性の残渣の処理方法として、水酸化ナトリウム等のアルカリ剤で中和処理する方法が考えられる。しかし、中和処理後の残渣を例えば埋め立て資材として利用しようとしても、泥の水分含有率が大きいことから、軟弱な地盤になり、地盤を利用することができるまでに長期間が必要となったり、あるいは、別途、地盤の改良工事が必要となる。また、この残渣を土工資材として利用する場合には、泥を予め脱水処理しなければならないという問題がある。また、水分含有率が大きい泥は、移送や保管が困難であるという問題もある。
The ratio of the mass of the rare earth in the dry mass of the mud containing the rare earth is only 0.3% by mass or less even in the deep sea bottom of the Pacific Ocean, which is known to have a high content of the rare earth. For this reason, there is a problem that a large amount of acidic residue is generated after extracting rare earth from a mud containing rare earth using dilute acid.
As a method for treating this acidic residue, a method of neutralizing with an alkali agent such as sodium hydroxide can be considered. However, even if you try to use the residue after neutralization as landfill material, for example, the moisture content of the mud is large, so it becomes a soft ground and it may take a long time before you can use the ground. Or, ground improvement work is required separately. In addition, when this residue is used as earthwork material, there is a problem that the mud must be dehydrated in advance. Moreover, there is a problem that mud having a high moisture content is difficult to transport and store.

本発明の目的は、レアアースを含有する泥から、酸を用いてレアアースを抽出した後に発生する多量の酸性の残渣を、簡易に処理することができ、また、処理後に得られるものを埋め立て資材等として利用することができる方法を提供することにある。   The object of the present invention is to easily treat a large amount of acidic residue generated after extraction of rare earths using acid from mud containing rare earths, and to reclaim materials obtained after the treatment, etc. It is in providing the method which can be utilized as.

本発明者は、上記課題を解決するために鋭意検討した結果、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣と、アルカリ性固化材を混合して、固化体を得るようにすれば、この操作を簡易に行うことができるとともに、得られた固化体を、埋め立て資材等として利用することができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor mixed an acidic residue generated after treating rare earth-containing mud with an acid and an alkaline solidifying material to obtain a solidified body. For example, the present invention was completed by finding that this operation can be easily performed and the obtained solidified body can be used as a landfill material or the like.

すなわち、本発明は、以下の[1]〜[3]を提供するものである。
[1] レアアースを含有する泥を酸で処理した後に発生する酸性の残渣と、アルカリ性固化材を混合して、固化体を得ることを特徴とするレアアースを含有する残渣の固化処理方法。
[2] 上記アルカリ性固化材が、セメント、石灰、または酸化マグネシウムを含む、上記[1]に記載のレアアースを含有する残渣の固化処理方法。
[3] 上記レアアースを含有する泥は、海底の地盤に存在する、レアアースの含有率が1,000ppm以上の泥である、上記[1]又[2]に記載のレアアースを含有する残渣の固化処理方法。
That is, the present invention provides the following [1] to [3].
[1] A method for solidifying a residue containing a rare earth, comprising mixing an acidic residue generated after treating a mud containing rare earth with an acid and an alkaline solidifying material to obtain a solidified body.
[2] The method for solidifying a residue containing a rare earth according to [1], wherein the alkaline solidifying material contains cement, lime, or magnesium oxide.
[3] Solidification of residue containing rare earth according to [1] or [2], wherein the rare earth-containing mud is mud having a rare earth content of 1,000 ppm or more, which is present on the seabed ground. Processing method.

本発明によれば、レアアースを含有する泥を酸で処理した後に得られる多量の酸性の泥を、簡易に処理することができる。
特に、本発明では、酸性の残渣を得る前の酸性の泥の脱水を、アルカリ性固化材との混合によって固化体を得ることができる程度に行えばよいので、アルカリ性固化材を用いずに脱水して埋め立て資材を得る場合に比べて、脱水に要する負担(例えば、脱水手段の性能等)が軽減される。
また、本発明によれば、固化体を埋め立て資材等として利用することができる。
According to the present invention, a large amount of acidic mud obtained after treating mud containing rare earth with an acid can be easily treated.
In particular, in the present invention, dehydration of acidic mud before obtaining an acidic residue may be performed to such an extent that a solidified body can be obtained by mixing with an alkaline solidifying material. Compared with the case of obtaining landfill material, the burden required for dewatering (for example, the performance of the dewatering means) is reduced.
Moreover, according to this invention, a solidified body can be utilized as a reclamation material etc.

本発明のレアアースを含有する残渣の固化処理方法は、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣と、アルカリ性固化材を混合して、固化体を得るものである。
本発明における固化処理の対象は、レアアースを含有する泥を酸で処理して、レアアースを液中に抽出した後に発生する酸性の残渣である。
レアアースとは、周期律表の第3族のランタロイド(La(ランタン)〜Lu(ルテチウム)の計15種の元素)に、同じく第3族のSc(スカンジウム)とY(イットリウム)を加えた計17種の元素をいう。
レアアースを含有する泥の一例として、深海底(例えば、海の深さとして、3,500〜6,000mの領域)に層状(例えば、海底から、深さが数10m程度までの地盤)に分布する、レアアースの含有率が大きい泥が挙げられる。
本発明において、レアアースを含有する泥(乾燥状態のもの)の中のレアアースの含有率(質量基準)は、資源であるレアアースを採掘する際の経済性の観点から、好ましくは1,000ppm以上、より好ましくは2,000ppm以上である。
The method for solidifying a residue containing rare earth according to the present invention is to obtain a solidified body by mixing an acidic residue generated after treating mud containing rare earth with an acid and an alkaline solidifying material.
The object of the solidification treatment in the present invention is an acidic residue generated after the rare earth-containing mud is treated with an acid and the rare earth is extracted into the liquid.
Rare earth is a total of 15 lanthanoids in the periodic table (a total of 15 elements from La (lanthanum) to Lu (lutetium)) plus Sc (scandium) and Y (yttrium). Refers to 17 elements.
As an example of mud containing rare earth, it is distributed in layers on the deep sea floor (for example, the area of 3,500 to 6,000 m as the depth of the sea) (for example, the ground from the sea floor to a depth of about several tens of meters). And mud with a high rare earth content.
In the present invention, the rare earth content (based on mass) in the mud containing rare earth (in a dry state) is preferably 1,000 ppm or more from the viewpoint of economy when mining the rare earth as a resource. More preferably, it is 2,000 ppm or more.

本発明における固化処理の対象である酸性の残渣の水分含有率は、埋め立て資材等の用途に好適な物性を有する固化体を得るなどの観点から、好ましくは200質量%以下、より好ましくは50〜150質量%、さらに好ましくは50〜100質量%、特に好ましくは50〜80質量%である。
なお、該水分含有率が50質量%以上であると、脱水の負担を軽減することができる。
酸性の残渣の水分含有率が大きい場合は、泥をタンク等の容器に貯留して、泥の固形分を沈澱させ、その上澄みを回収する沈澱方式や、スクリューデカンター等の装置を用いる遠心分離方式や、フィルタープレス等の装置を用いる加圧脱水方式等の方法で脱水すればよい。
中でも、低コストで簡易に脱水することができる点で、沈澱方式及び遠心分離方式が好ましく、沈澱方式が、より好ましい。
なお、脱水の程度は、沈澱方式、遠心分離方式、加圧脱水方式の順に大きくなる。
The water content of the acidic residue that is the target of the solidification treatment in the present invention is preferably 200% by mass or less, more preferably 50 to 50%, from the viewpoint of obtaining a solidified material having physical properties suitable for uses such as landfill materials. 150 mass%, More preferably, it is 50-100 mass%, Most preferably, it is 50-80 mass%.
In addition, the load of dehydration can be reduced when the moisture content is 50% by mass or more.
If the water content of the acidic residue is large, the mud is stored in a container such as a tank, the solid content of the mud is settled, and the supernatant is recovered, or the centrifugal method using a device such as a screw decanter Alternatively, dehydration may be performed by a method such as a pressure dehydration method using an apparatus such as a filter press.
Among these, the precipitation method and the centrifugal separation method are preferable, and the precipitation method is more preferable because it can be easily dehydrated at low cost.
The degree of dehydration increases in the order of the precipitation method, the centrifugal separation method, and the pressure dehydration method.

本発明で用いるアルカリ性固化材とは、水に溶解するとpHがアルカリ性の領域となる固化材であり、例えば、セメント、石灰または酸化マグネシウムを含むものが挙げられる。
セメント、石灰または酸化マグネシウムを含むものとしては、例えば、セメント、セメント系固化材、石灰、石灰系固化材、マグネシア系固化材等が挙げられる。
中でも、固化体を埋め立て資材として用いた場合に、強固な地盤を得る観点から、セメントが好ましい。
The alkaline solidification material used in the present invention is a solidification material whose pH becomes an alkaline region when dissolved in water, and examples thereof include those containing cement, lime or magnesium oxide.
Examples of those containing cement, lime, or magnesium oxide include cement, cement-based solidified material, lime, lime-based solidified material, and magnesia-based solidified material.
Among these, cement is preferable from the viewpoint of obtaining a solid ground when the solidified body is used as a landfill material.

セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや、高炉セメント、フライアッシュセメント等の混合セメントや、エコセメント等が挙げられる。
中でも、廃棄物の利用の観点から、エコセメントが好ましい。
セメント系固化材とは、セメントを主成分(通常、50質量%以上)として含み、かつ、各種の有効成分を副成分として含む固化材である。市販品としては、太平洋セメント社製の「ジオセット」(商品名)等が挙げられる。
石灰としては、生石灰、消石灰等が挙げられる。
石灰系固化材とは、石灰を主成分(通常、50質量%以上)として含み、かつ、各種の有効成分を副成分として含む固化材である。
マグネシア系固化材としては、炭酸マグネシウムまたは水酸化マグネシウムを、低温(600〜900℃)で焼成して得られる軽焼マグネシア(軽焼酸化マグネシウムともいう。)等が挙げられる。
Examples of the cement include various portland cements such as ordinary portland cement, early-strength portland cement, medium heat portland cement, and low heat portland cement, mixed cements such as blast furnace cement and fly ash cement, and ecocement.
Among them, ecocement is preferable from the viewpoint of utilization of waste.
The cement-based solidifying material is a solidifying material containing cement as a main component (usually 50% by mass or more) and containing various active ingredients as subcomponents. Examples of commercially available products include “Geoset” (trade name) manufactured by Taiheiyo Cement.
Examples of lime include quick lime and slaked lime.
The lime-based solidified material is a solidified material containing lime as a main component (usually 50% by mass or more) and various active ingredients as subcomponents.
Examples of the magnesia-based solidifying material include light-burned magnesia (also referred to as light-burned magnesium oxide) obtained by baking magnesium carbonate or magnesium hydroxide at a low temperature (600 to 900 ° C.).

アルカリ性固化材の量は、酸性の残渣のpHによっても異なるが、酸性の残渣を中和して、中性または中性に近いpH領域の固化体を得る観点から、酸性の残渣1mに対して、好ましくは30〜400kg、より好ましくは50〜300kg、特に好ましくは100〜200kgである。
なお、本発明の固化処理においては、例えば、(1)酸性の残渣にアルカリ性固化材を添加して混合し、得られた混合物を埋め立て地等に打設して固化させる、(2)酸性の残渣を埋め立て地等に打設しておき、この打設した酸性の残渣に、アルカリ性固化材を添加して混合し、固化させる、(3)酸性の残渣にアルカリ性固化材を添加して混合し、粒状やブロック状の成形体を製造した後、該成形体を埋め立て資材等として利用する、等の実施形態を採用することができる。
The amount of the alkaline solidifying material varies depending pH of acidic residues, to neutralize the residual acid, from the viewpoint of obtaining a solidified body pH region close to neutrality or neutral, to the residue 1 m 3 of acidic And preferably 30 to 400 kg, more preferably 50 to 300 kg, particularly preferably 100 to 200 kg.
In the solidification treatment of the present invention, for example, (1) an alkaline residue is added to and mixed with an acidic residue, and the resulting mixture is placed in a landfill or the like to be solidified. The residue is placed in a landfill, etc., and an alkaline solidifying material is added to the cast acidic residue and mixed to solidify. (3) An alkaline solidifying material is added to the acidic residue and mixed. In addition, after manufacturing a granular or block shaped molded body, the molded body can be used as a landfill material or the like.

以下、実施例によって本発明を説明する。以下の文中の「%」は、特に断らない限り、質量基準の割合を表す。
(1)レアアースを含有する残渣の模擬試料の調製
太平洋の深海底から採取したレアアースを含有する泥の、公表されている化学成分及び公表されている含有鉱物から、レアアースを含有する残渣の模擬試料の鉱物組成を定めた。この鉱物組成を目標にして、珪砂24%、酸化鉄(Fe)14%、酸化マンガン(MnO)4%、酸化マグネシウム(MgO)3%、ハイドロキシアパタイト6%、フィリップサイト48%(以上の割合は、材料全量中の配合割合を表す。)を混合粉砕することによって、粘土(粒径:5μm以下)やシルト(粒径:5μmを超え、75μm以下)の粒度を有し、かつ、32μm残分が5%以下の粉砕物を得た。
得られた粉砕物を、0.1Nの塩酸に1時間浸漬し、次いで、含水率(水分含有率)100%になるように脱水して、レアアースを含有する残渣の模擬試料を得た。
また、比較用(比較例1〜3)に、含水率100%のシルト(幸手産)を用意した。
Hereinafter, the present invention will be described by way of examples. Unless otherwise specified, “%” in the following text represents a mass-based ratio.
(1) Preparation of simulated samples of residues containing rare earths Simulated samples of residues containing rare earths from published chemical components and published minerals of mud containing rare earths collected from the deep sea bottom of the Pacific Ocean The mineral composition was determined. With this mineral composition as a target, silica sand 24%, iron oxide (Fe 2 O 3 ) 14%, manganese oxide (MnO) 4%, magnesium oxide (MgO) 3%, hydroxyapatite 6%, philipite 48% (above) The ratio of represents the blending ratio in the total amount of the material.) By mixing and pulverizing, the particle size of clay (particle size: 5 μm or less) or silt (particle size: more than 5 μm, 75 μm or less), and A pulverized product having a residue of 32 μm of 5% or less was obtained.
The obtained pulverized product was immersed in 0.1N hydrochloric acid for 1 hour, and then dehydrated to a moisture content (water content) of 100%, to obtain a simulated sample of a residue containing rare earth.
In addition, for comparison (Comparative Examples 1 to 3), a silt having a moisture content of 100% (Satte product) was prepared.

(2)固化体の作製
「地盤工学会基準(案)JGS 0821(安定処理土の締固めをしない供試体作製方法」に準拠して、前記(1)の残渣の模擬試料を用いて、固化体の供試体を作製した。具体的には、残渣の模擬試料と、残渣の模擬試料1m当たり150kgの量のセメントを、ハンドミキサーで混合した後、得られた混合物を、φ5cm×10cmの円柱モールド内に収容して、成形体を作製した。この成形体を20℃の恒温室で7日間養生して、強度試験用の供試体である固化体を得た。この際、セメントとしては、普通ポルトランドセメント(実施例1、比較例1)、エコセメント(実施例2、比較例2)、エコセメント80%と無水石膏20%の混合物(実施例3、比較例3)を用いた。
(3)固化体の一軸圧縮試験
固化体の一軸圧縮試験を、「JIS A 1216」に準拠して行った。
結果を表1に示す。表1中、「普通」、「エコ」は、各々、普通ポルトランドセメント、エコセメントを表す。
(2) Preparation of solidified body In accordance with “Geotechnical Society Standard (Draft) JGS 0821 (Method for Preparing Specimen without Compaction of Stabilized Soil”), solidified using the simulated residue sample of (1) above. Specifically, a simulated residue sample and cement in an amount of 150 kg per 1 m 3 residue simulated sample were mixed with a hand mixer, and the resulting mixture was mixed with a diameter of 5 cm × 10 cm. The molded body was housed in a cylindrical mold, and the molded body was cured for 7 days in a constant temperature room at 20 ° C. to obtain a solidified body as a specimen for strength test. Ordinary Portland cement (Example 1, Comparative Example 1), eco cement (Example 2, Comparative Example 2), and a mixture of 80% eco cement and 20% anhydrous gypsum (Example 3, Comparative Example 3) were used.
(3) Uniaxial compression test of solidified body A uniaxial compression test of the solidified body was performed according to "JIS A 1216".
The results are shown in Table 1. In Table 1, “ordinary” and “eco” represent ordinary portland cement and eco-cement, respectively.

Figure 0006303223
Figure 0006303223

(4)固化体の吸着性能試験
レアアースを含有する泥(例えば、深海泥)には、ゼオライトが含まれている。このため、固化体には、BODや海水中のレアメタル等の吸着作用を期待することができる。そこで、実施例1及び比較例1の各固化体について、メチレンブルーの吸着量を測定した。測定は、セメント協会の「JCAS I−61:2008」(フライアッシュのメチレンブルー吸着量試験方法)に準拠して行った。具体的には、100℃で乾燥した固化体の試料を適度に破砕して試験に供し、単位質量(g)あたりのメチレンブルーの吸着量を求めた。
結果を表2に示す。表2から、実施例1の固化体は、比較例1の固化体に比べて、メチレンブルーの吸着量が非常に大きく、固化処理後も、周辺環境のBODや、海水中のレアメタル等の再吸着用の用途における利用を期待することができることがわかる。
(4) Adsorption performance test of solidified body Mud containing rare earth (for example, deep-sea mud) contains zeolite. For this reason, the solidified body can be expected to adsorb BOD and rare metals in seawater. Therefore, the adsorbed amount of methylene blue was measured for each solidified body of Example 1 and Comparative Example 1. The measurement was performed in accordance with “JCAS I-61: 2008” (Test method for methylene blue adsorption amount of fly ash) of Cement Association. Specifically, the solidified sample dried at 100 ° C. was appropriately crushed and subjected to the test, and the amount of methylene blue adsorbed per unit mass (g) was determined.
The results are shown in Table 2. From Table 2, the solidified body of Example 1 has a much larger amount of methylene blue adsorbed than the solidified body of Comparative Example 1, and after solidification treatment, BOD in the surrounding environment and re-adsorption of rare metals in seawater. It can be seen that it can be expected to be used in a specific application.

Figure 0006303223
Figure 0006303223

Claims (2)

海底の地盤に存在する、レアアースの含有率が1,000ppm以上の泥である、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣と、アルカリ性固化材を混合して、固化体を得ることを特徴とするレアアースを含有する残渣の固化処理方法。 Mix the acidified residue generated after treating the rare earth-containing mud, which is mud with a rare earth content of 1,000 ppm or more, present on the seabed ground with an alkaline solidifying material, and mix the solidified material. A method for solidifying a residue containing a rare earth, characterized in that it is obtained. 上記アルカリ性固化材が、セメント、石灰、または酸化マグネシウムを含む、請求項1に記載のレアアースを含有する残渣の固化処理方法。   The method for solidifying a residue containing a rare earth according to claim 1, wherein the alkaline solidifying material contains cement, lime, or magnesium oxide.
JP2013265949A 2013-12-24 2013-12-24 Method for solidifying residue containing rare earth Active JP6303223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265949A JP6303223B2 (en) 2013-12-24 2013-12-24 Method for solidifying residue containing rare earth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265949A JP6303223B2 (en) 2013-12-24 2013-12-24 Method for solidifying residue containing rare earth

Publications (2)

Publication Number Publication Date
JP2015120124A JP2015120124A (en) 2015-07-02
JP6303223B2 true JP6303223B2 (en) 2018-04-04

Family

ID=53532306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265949A Active JP6303223B2 (en) 2013-12-24 2013-12-24 Method for solidifying residue containing rare earth

Country Status (1)

Country Link
JP (1) JP6303223B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6633885B2 (en) * 2015-10-22 2020-01-22 太平洋セメント株式会社 Manufacturing method of earthwork material
JP6659303B2 (en) * 2015-10-22 2020-03-04 太平洋セメント株式会社 Manufacturing method of earthwork material
JP6654758B2 (en) * 2016-01-20 2020-02-26 太平洋セメント株式会社 Method for treating residue containing rare earth
JP6633927B2 (en) * 2016-02-01 2020-01-22 太平洋セメント株式会社 Earthmoving material and method of manufacturing the same
JP6656964B2 (en) * 2016-03-17 2020-03-04 太平洋セメント株式会社 Granular earthwork material and method for producing the same
CN106498166B (en) * 2016-11-02 2018-04-17 江西理工大学 A kind of method of neodymium iron boron greasy filth waste material redox full constituent recycling
JP7136670B2 (en) * 2018-11-22 2022-09-13 太平洋セメント株式会社 Structure for algal growth and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770354B2 (en) * 1997-06-23 2006-04-26 株式会社日本触媒 Solidification method for construction sludge
JPH1150168A (en) * 1997-07-31 1999-02-23 Canon Inc Recovery of rare earth metal component from optical glass sludge
JP3846820B2 (en) * 1997-08-20 2006-11-15 株式会社東芝 Solid waste treatment method
JP3615943B2 (en) * 1998-09-16 2005-02-02 三井金属鉱業株式会社 Method for recovering rare earth elements from used rare earth abrasives
JP4414214B2 (en) * 2003-12-24 2010-02-10 行政院原子能委員會核能研究所 Treatment method of waste ion exchange resin
JP4243230B2 (en) * 2004-08-25 2009-03-25 日本磁力選鉱株式会社 How to collect rare earth
FR2955320B1 (en) * 2010-01-20 2016-02-26 Commissariat Energie Atomique PROCESS FOR PREPARING COMPOSITE MATERIAL FROM WASTE AND MATERIAL THUS OBTAINED
US20120156116A1 (en) * 2010-12-15 2012-06-21 Basf Corporation Process For Metal Recovery From Catalyst Waste
JP5875065B2 (en) * 2012-02-09 2016-03-02 国立研究開発法人海洋研究開発機構 Recovery method and recovery system for submarine hydrothermal mineral resources

Also Published As

Publication number Publication date
JP2015120124A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6303223B2 (en) Method for solidifying residue containing rare earth
Du et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization
Samarakoon et al. Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization
Liu et al. The potential use of drinking water sludge ash as supplementary cementitious material in the manufacture of concrete blocks
Liu et al. Zinc leachability in contaminated soil stabilized/solidified by cement-soda residue under freeze-thaw cycles
Li et al. Reuse of dewatered sewage sludge conditioned with skeleton builders as landfill cover material
Shan et al. Hydrothermal solidification of municipal solid waste incineration fly ash
Jing et al. Municipal incineration bottom ash treatment using hydrothermal solidification
Chin et al. Characterization of sewage sludge ASH (SSA) in cement mortar
JP6268583B2 (en) Method for producing fired product
JP6493719B2 (en) Method for treating mud containing rare earth
Mao et al. Stabilization of simulated lead sludge with iron sludge via formation of PbFe12O19 by thermal treatment
Pan et al. Solidification/stabilization of gold ore tailings powder using sustainable waste-based composite geopolymer
Suo et al. Mechanical and leaching characteristics of red mud residue solidified/stabilized high Cu (II)-contaminated soil
Ribeiro et al. Study of mechanical properties and durability of magnesium phosphate cement matrix containing grinding dust
Tyagi et al. A review on recent trends in solidification and stabilization techniques for heavy metal immobilization
Zeng et al. Alkanolamines-activated steel slag for stabilization/solidification of heavy metal contaminated soil
Ulutas et al. Geotechnical, chemical and structural characterization of waste clay from boron production
Xing et al. Chemical speciation, distribution, and leaching behaviors of heavy metals in alkali-activated converter steel slag-based stabilization/solidification of MSWI FA
JP6654758B2 (en) Method for treating residue containing rare earth
JP6633885B2 (en) Manufacturing method of earthwork material
WO2013147034A1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
JP6536102B2 (en) Solidification material for neutralization treatment residue of acid water, solidification treatment product of neutralization treatment residue of acid water, and solidification treatment method of neutralization treatment residue of acid water
JP2009028639A (en) Sludge treatment method
KR20170022743A (en) Process for producing geopolymer from industrial wastes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180215

R150 Certificate of patent or registration of utility model

Ref document number: 6303223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250